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TURÁN NUMBERS OF BIPARTITE SUBDIVISIONS∗

TAO JIANG† AND YU QIU‡

Abstract. Given a graph H, the Turán number ex(n,H) is the largest number of edges in an H-
free graph on n vertices. We make progress on a recent conjecture of Conlon, Janzer, and Lee [More on
the Extremal Number of Subdivisions, arXiv:1903.10631v1, 2019] on the Turán numbers of bipartite
graphs, which in turn yields further progress on a conjecture of Erdős and Simonovits [Combinatorica,
1 (1981), pp. 25–42]. Let s, t, k ≥ 2 be integers. Let Kk

s,t denote the graph obtained from the complete
bipartite graph Ks,t by replacing each edge uv in it with a path of length k between u and v such that
the st replacing paths are internally disjoint. It follows from a general theorem of Bukh and Conlon

[J. Eur. Math. Soc. (JEMS), 20 (2018), pp. 1747–1757] that ex(n,Kk
s,t) = Ω(n1+ 1

k
− 1

sk ). Conlon,

Janzer, and Lee recently conjectured that for any integers s, t, k ≥ 2, ex(n,Kk
s,t) = O(n1+ 1

k
− 1

sk ).
Among many other things, they settled the k = 2 case of their conjecture. As the main result
of this paper, we prove their conjecture for k = 3, 4. Our main results also yield infinitely many
new so-called Turán exponents: rationals r ∈ (1, 2) for which there exists a bipartite graph H with
ex(n,H) = Θ(nr), adding to the lists recently obtained by Jiang, Ma, and Yepremyan [On Turán
Exponents of Bipartite Graphs, arXiv:1806.02838, 2018], by Kang, Kim, and Liu [On the Rational
Turán Exponent Conjecture, arXiv:1811.06916, 2018], and by Conlon, Janzer, and Lee. Our method
builds on an extension of the Conlon–Janzer–Lee method. We also note that the extended method
also gives a weaker version of the Conlon–Janzer–Lee conjecture for all k ≥ 2.
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1. Introduction. Given a family H of graphs, the Turán number ex(n,H) is
the largest number of edges in an n-vertex graph that does not contain any member
of H. If H consists of a single graph H , we write ex(n,H) for ex(n, {H}). Let
p = min{χ(H)− 1 : H ∈ H}, where χ(H) denotes the chromatic number of H . The
celebrated Erdős–Stone–Simonovits theorem [9, 11] asserts that ex(n,H) = (1 − 1

p +

o(1))
(
n
2

)
. This determines the function for all families that do not contain a bipartite

member. WhenH contains a bipartite graph, the problem is generally wide-open, with
many intriguing conjectures. See [16] for a recent survey and [10, 12, 13, 14, 15, 25, 27]
among others for some earlier work. One of these, known as the Turán exponent
conjecture, was made by Erdős and Simonovits (see [8]) and asserts that for any
rational r ∈ (1, 2) there exists a bipartite graph H such that ex(n,H) = Θ(nr). We
call a rational r for which the Erdős–Simonovits conjecture holds a Turán exponent.
In a recent breakthrough, Bukh and Conlon [2] proved that for any rational number
r ∈ (1, 2) there exists a finite family H of graphs such that ex(n,H) = Θ(nr). On
the other hand, the original conjecture of Erdős and Simonovits concerning single
bipartite graphs is still generally open. Until recently, it was only known to be true
for r = 1 + 1/k and r = 2 − 1/k, where k ≥ 2 is a positive integer. Recently,
there has been a lot of work done on the conjecture, by Jiang, Ma, and Yepremyan
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[21], by Kang, Kim, Liu [24], and by Conlon, Janzer, and Lee [6]. For more detailed
discussions on recent works on the Erdős–Simonovits conjecture, the reader is referred
to [2, 21, 24, 6]. See [19] for a rencent work on a related problem.

A recent focal point on the Erdős–Simonovits conjecture, with motivations from
other problems as well, concerns the Turán number of so-called subdivisions of graphs.
Given a graph H and an integer k ≥ 2, let Hk denote the graph obtained by replacing
each edge uv of H with a path of length k between u and v so that the e(H) replacing
paths are internally vertex disjoint. The Turán number of Hk is studied in [20] and
[22], based on earlier work in [26]. Recently, significant progress on the problem
have been made in [7], [17], and [6]. Let s, t, k ≥ 2 be integers. As usual, let Ks,t

denote the complete bipartite graph with part sizes s and t. Let Kk
s,t = (Ks,t)

k. It
follows from the above-mentioned breakthrough work of Bukh and Conlon [2] that

ex(n,Kk
s,t) = Ω(n1+ 1

k− 1
sk ) for sufficiently large t. Conlon, Janzer, and Lee [6] recently

made the following conjecture on a matching upper bound.

Conjecture 1.1 (see [6]). For any integers s, t, k ≥ 2, ex(n,Kk
s,t) = O(n1+ 1

k− 1
sk ).

In [6], among many other things, Conlon, Janzer, and Lee settled the k = 2 case

of Conjecture 1.1, showing that ex(n,K2
s,t) = O(n

3
2− 1

2s ). In this paper, we prove their
conjecture for k = 3, 4.

Theorem 1.1. For any integers s, t ≥ 2 and k ∈ {3, 4}, ex(n,Kk
s,t) = O(n1+ 1

k− 1
sk ).

We remark that our theorem together with the theorem of Bukh and Conlon also
yields infinitely many new Turán exponents: namely, those of the form 1 + 1

k − 1
sk ,

where s ≥ 2 is any integer and k ∈ {3, 4}. The majority of the rest of the paper is
devoted to the proof of our main result: Theorem 1.1. We then conclude with some
observations in the concluding remarks.

2. Terminologies, preliminary lemmas, and earlier results. As is often
the case in the study of bipartite Turán problems, our problem may be reduced to
the setting in which the host graph is almost regular. Specifically, given a positive
integer K, we say that a graph G is K-almost-regular if Δ(G) ≤ K · δ(G).

The following lemma can be found in [22], which is a slight adaption of the
regularization lemma of Erdős and Simonovits [10]. Another recent adaption of this
can be found in [6].

Lemma 2.1 (see [22, Proposition 2.7]). Let 0 < ε < 1 and c ≥ 1. There exists
n0 = n0(ε) > 0 such that the following holds for all n ≥ n0. If G is a graph on
n vertices with e(G) ≥ cn1+ε, then G contains a K-almost-regular subgraph G′ on

m ≥ n
ε−ε2

2+2ε vertices such that e(G′) ≥ 2c
5 m

1+ε and K = 20 · 2
1
ε2

+1.

For most of the rest of the paper we will always assume our host graph G to be
almost regular. Then in the main proof we apply Lemma 2.1 on general host graphs.

The following two definitions are due to Conlon, Janzer, and Lee [6]. To make
our presentation consistent with the rest of our paper, we present their terminologies
and results using our terminologies.

Definition 2.2 (Definition 6.2 of [6]). Let L be an integer. Define the function
f(�, L) for 0 ≤ � ≤ k recursively by setting f(0, L) = 1, f(1, L) = L, and for � ≥ 2,

f(�, L) = 1 + f(�− 1, L)16(� − 1)2 max
1≤i≤�−1

f(i, L)f(�− i, L).

Definition 2.3. We recursively define j-admissible and j-light paths in a graph
G. Any edge in G is both 1-admissible and 1-light. For j ≥ 2, a path in G is j-
admissible if it has length j and its every subpath of length � < j is �-light. A path
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558 TAO JIANG AND YU QIU

from x to y in G is j-light if it is j-admissible and the number of j-admissible paths
in G between x and y is at most f(j, L). A path in G is j-critical if it is j-admissible
but not j-light.

When the length is clear, we often drop the prefixes in Definition 2.3. The fol-
lowing lemma is implied by Lemma 6.8 and Corollary 6.9 of [6] since their forbidden
subgraph H is a supergraph of Kk

s,t.

Lemma 2.4. Let G be a Kk
s,t-free K-almost-regular graph on n vertices with min-

imum degree δ = ω(1). Then provided that L is sufficiently large compared to s, t, k,

and K, for any 2 ≤ � ≤ k, the number of �-critical paths is at most n 2(Kδ)�

f(�−1,L) .

Lemma 2.4 roughly says that if a graph has many short critical paths, then we
can build a copy of Kk

s,t. To prove our main theorem, Theorem 1.1, we will need to
expand the above concepts introduced by Conlon, Janzer, and Lee as follows.

A nonpath spider is a tree with exactly one vertex w of degree at least three,
called the center. Paths from the center to the leaves are called legs. A spider in
which all legs have length h is called a spider of height h. In this paper, we usually
specify the leaves of a spider T in an order as a vector (v1, . . . , vm) and call it the
leaf vector of T . Once the leaf vector is specified, for each i, we call the leg from
the center of T to vi the ith leg of T and denote its length by �i. We then call
(�1, . . . , �m) the length vector of T . So, a spider becomes leg-labeled once its leaf
vector is specified.

Definition 2.5. Let s ≥ 3, k ≥ 2 be integers. Let G be a graph. A spider in G is
feasible if it contains no critical subpath of length at most k as defined in Definition
2.2. Let �� := (�1, . . . , �s) be a vector of s positive integers, each of which is at most k.
We say that a vector of distinct vertices (v1, . . . , vs) in G is (�1, . . . , �s)-strong if G
contains at least (sk)sk−� · f(k, L) internally vertex-disjoint feasible spiders with leaf
vector (v1, . . . , vs) and length vector (�1, . . . , �s), where � = �1+ · · ·+ �s. A spider with
leaf vector (v1, . . . , vs) and length vector (�1, . . . , �s) is called (�1, . . . , �s)-strong if it
is feasible and its leaf vector (v1, . . . , vs) is (�1, . . . , �s)-strong. As the length vector of
any spider is fixed, when we say a spider is strong, it is understood that it is strong
relative to its length vector.

Definition 2.6. Let s ≥ 3 be an integer. Let (v1, . . . , vs) be a vector of s distinct
vertices. Let F be a spider with center w and leaf vector (v1, . . . , vs) and length vector
(�1, . . . , �s). Let (j1, . . . , js) be a vector of integers, where for each i ∈ [s], 0 ≤ ji ≤ �i.
We define the (j1, . . . , js)-truncation of F , denoted by F(j1,...,js), to be a leg-labeled
s-legged spider F ′ with center w obtained by taking its ith leg to be the subpath of
length ji starting at w along the ith leg of F for each i ∈ [s].

Note that in Definition 2.6, we allow a leg to have length 0 (and thus be the vertex
w itself). In most applications, we consider only truncations in which all legs still have
positive lengths. The only exception occurs in one place of the proof of Lemma 3.4,
where the allowance of a zero length leg is purely for notational convenience.

Next, we give a few preliminary lemmas.

Lemma 2.7. Let G be a K-almost-regular graph with minimum degree δ. Let x
be a vertex. Let C be a family of at least αδh distinct paths of length h with one
end x. Then C contains a subfamily D of more than (α/hKh−1)δ paths which are
vertex-disjoint outside {x}.
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Proof. Let D ⊆ C be a maximal subfamily of paths that are vertex disjoint outside
{x}. Let W be the set of vertices contained in these paths except x. Then |W | = h|D|.
By the maximality of D each member of C must pass through x and some vertex in
W . Since G has maximum degree at most Kδ, there can be at most |W |(Kδ)h−1

such paths. Hence |C| ≤ |W |(Kδ)h−1. Since |C| ≥ αδh and |W | = h|D|, we have
|D| ≥ (α/hKh−1)δ.

Lemma 2.8. Let G be a K-almost-regular graph with minimum degree δ. Let x be
a vertex. Let C be a family of at least αδh distinct paths of length h with one end x and
another end in a set S. For each i ∈ [h] there exists a vertex xi and a spider of height
i with center xi and leaves in S which has at least (α/hKh−1)δ legs. Furthermore, if
i �= h, then xi �= x.

Proof. Since G has maximum degree at most Kδ, there are at most (Kδ)h−i

distinct paths of length h − i starting at x. So there is a path Q of length h − i
starting at x and ending at some vertex xi that is the initial segment of at least
|C|/(Kδ)h−i ≥ (α/Kh−i)δi members of C. If i �= h, then xi �= x. Let C′ denote the
subfamily consisting of these members. Then {P −(V (Q)−{xi}) : P ∈ C′} is a family
of |C′| distinct paths of length i each of which starts at xi and ends in S. By Lemma
2.7, C′ contains a subfamily of size at least [(α/Kh−i)/iKi−1]δ ≥ (α/hKh−1)δ which
are vertex-disjoint outside {xi}. The claim holds.

An s-uniform hypergraph F is called s-partite if there exists a partition of V (F)
into A1, . . . , As such that each edge contains one vertex from each Ai. We call the
Ai’s the parts.

Lemma 2.9. Let F be an s-partite s-graph with parts A1, . . . , As. Suppose that
|F| > α|A1| · · · |As|, where α > 0. Let i ∈ [s]. Then there exists a subgraph F ′ such
that |F ′| ≥ (1/2)|F| and for each v ∈ Ai ∩ V (F ′), dF ′(v) > (α/2)

∏
j∈[s]\{i} |Aj |.

Proof. Let us call a vertex v ∈ Ai bad if its degree in the remaining graph is
at most (α/2)

∏
j �=i |Aj |. As long as there exists a bad vertex, we delete this vertex

from Ai. Let F ′ be the remaining subgraph. Then at most (α/2)
∏s

j=1 |Aj | edges
are removed in the process. So |F ′| > (1/2)|F|. Clearly F ′ satisfies the degree
requirement.

Note that one could easily modify Lemma 2.9 to apply to all parts. But it suffices
for our purposes.

3. Proof of Theorem 1.1. We break the proof of Theorem 1.1 into two parts.

3.1. Building subdivisions using strong spiders, the general case.

Lemma 3.1. Let K ≥ 1, k, t ≥ 2, s ≥ 3 be fixed integers. Then provided that L
is sufficiently large compared to s, t, k, and K, for any β > 0 there exists δ0 such
that the following holds. Suppose that G is a Kk

s,t-free K-almost-regular graph n
vertices with minimum degree δ ≥ δ0. If �1, . . . , �s are positive integers satisfying that
∀i ∈ [s], k/2 ≤ �i ≤ k and that ∀1 ≤ i < j ≤ s, �i + �j ≥ k + 1, then the number of
tuples (w, v1, . . . , vs) such that there is an (�1, . . . , �s)-strong spider with center w and
leaf vector (v1, . . . , vs) is at most βnδ�, where � = �1 + · · ·+ �s.

Proof. For each vertex w in G, let Hw denote the family of tuples (v1, . . . , vs) such
that there is an (�1, . . . , �s)-strong spider with center w and leaf vector (v1, . . . , vs).
Suppose for contradiction that there exist more than βnδ� tuples (w, v1, . . . , vs) such
that there is an (�1, . . . , �s)-strong spider with center w and leaf vector (v1, . . . , vs).
Then by the pigeonhole principle, there exists a vertex w such that |Hw| > βδ�. Let
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us fix such a w. For each (v1, . . . , vs) ∈ Hw, by definition, we may fix an (�1, . . . , �s)-
strong spider T (v1, . . . , vs) with leaf vector (v1, . . . , vs). For each i, we call the path
in T (v1, . . . , vs) from w to vi its ith leg.

Randomly and independently color vertices of G with colors 1, . . . , s with each
vertex receiving each color with probability 1/s. For each s-tuple (v1, . . . , vs) ∈ Hw,
we call it good if for each i ∈ [s] all the vertices on the ith leg of T (v1, . . . , vs) except w
are colored i. Since T (v1, . . . , vs) − {w} has � vertices, the probability of (v1, . . . , vs)
being good is 1/s�. Hence, there exists a coloring c such that the family

Fw = {(v1, . . . , vs) ∈ Hw : (v1, . . . , vs) is good}

satisfies

(3.1) |Fw| ≥ |Hw|/s� > (β/s�)δ�.

Let us fix such a coloring c. For each i ∈ [s], let

Ai = {v ∈ V (Fw) : c(v) = i}.

Then Fw is an s-partite s-graph with parts A1, . . . , As. By our assumption, for each
i ∈ [s] and each v ∈ Ai there is an (�1, . . . , �s)-strong spider with center w where v
plays the role of the ith vertex in the leaf vector. Furthermore, all the vertices on the
ith leg, except w, are colored i under c. Since G has maximum degree at most Kδ,
we have

(3.2) ∀i ∈ [s], |Ai| ≤ (Kδ)�i .

Let α = β
s�K� . For each i ∈ [s], let αi =

β
s�K�−�i

. By (3.1) and (3.2), we have

(3.3) |Fw| > α|A1| · · · |As| and ∀i ∈ [s], |Ai| ≥ |Fw|/
∏

j �=i

|Aj | ≥ αiδ
�i .

Now, we may assume without loss of generality that �1 ≤ �2 ≤ · · · ≤ �s. First, let
us observe that if �1 = �2 = · · · = �s = k, then we may take any (k, . . . , k)-strong tuple
(v1, . . . , vs). By the definition of strong tuples, there are at least f(k, L) internally
vertex-disjoint spiders with leaf vector (v1, . . . , vs). It is easy to see that the union of
any t of these spiders forms a copy of Kk

s,t, contradicting G being Kk
s,t-free. Hence,

we may assume that �1 < k. For each i ∈ [s], let mi = k − �i. By our assumption,
∀i ∈ [s], �i ≥ k/2, and ∀i, j ∈ [s], �i + �j > k. This implies that

m1 ≤ �1 and ∀2 ≤ i ≤ s,mi < �i.

Let q = max{i : �i < k}. Then 1 ≤ q ≤ s. By Lemma 2.9, Fw contains a
subgraph F1 such that

(3.4) |F1| > (1/2)|Fw| > (α/2)|A1| · · · |As|

and

(3.5) ∀v ∈ A′
1 := A1 ∩ V (F1), dF1(v) ≥ (α/2)

∏

j �=1

|Aj |.

By (3.4) and (3.3), we have

(3.6) |A′
1| ≥ (α/2)|A1| ≥ (1/2)αα1δ

�1 .
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For each v ∈ A′
1 there is an edge of F1 containing it, which in particular, by our

earlier discussion, implies that there is a path Pv of length �1 from w to v, all of whose
vertices except w are colored i by c. Let

β1 =
(1/2)αα1

�1K�1−1
.

By Lemma 2.8, there exist a vertex z1 and a spider S1 of height m1 with center at z1
and leaf set B1 ⊆ A′

1 such that

β1δ ≤ |B1| ≤ δ.

Note that if m1 = �1, then z1 = w. If m1 < �1, then z1 �= w. Also, all the vertices
in S1, except possibly w, have color 1 in c. Let F ′

1 be the subgraph of F1 induced by
the parts B1, A2, . . . , As. Since B1 ⊆ A′

1, by (3.5) we have that

(3.7) ∀v ∈ B1, dF ′
1
(v) ≥ (α/2)

∏

j �=1

|Aj |.

In general, let 1 ≤ i ≤ q − 1 and suppose we have defined F ′
1, . . . ,F ′

i and
B1, . . . , Bi, where each F ′

j has parts B1, . . . , Bj , Aj+1, . . . , As and satisfies that

(3.8) ∀v ∈ Bj , dF ′
j
(v) ≥ (α/2i)|B1| · · · |Bj−1||Aj+1| · · · |As|

and

βjδ ≤ |Bj | ≤ δ, where βj =
(1/2j)ααj

�jK�j−1
.

Also, suppose that there are distinct vertices z1, . . . , zi such that for each j ∈ [i], there
is a spider Sj of height mj with center zj and leaf set Bj , all of whose vertices except
possibly w lie in color class j of c. Also, suppose that z2, . . . , zi �= w and z1 = w if
and only if �1 = m1. By (3.8),

|F ′
i | ≥ (α/2i)|B1| · · · |Bi||Ai+1| · · · |As|.

By Lemma 2.9, F ′
i contains a subgraph Fi+1 such that

(3.9) |Fi+1| ≥ (1/2)|F ′
i| ≥ (α/2i+1)|B1| · · · |Bi||Ai+1| · · · |As|

and

(3.10) ∀v ∈ A′
i+1 := Ai+1 ∩ V (Fi+1), dFi+1(v) ≥ (α/2i+1)|B1| · · · |Bi||Ai+2| · · · |As|.

By (3.10) and (3.3) we have

(3.11) |A′
i+1| ≥ (α/2i+1)|Ai+1| ≥ (1/2i+1)ααi+1δ

�i+1 .

As before, for each v ∈ A′
i+1 there is a path Pv of length �i+1 from w to v, all of

whose vertices except w have color i+ 1 in c. Let

βi+1 =
(1/2i+1)ααi+1

�i+1K�i+1−1
.

By Lemma 2.8, there exist a vertex zi+1 and a spider Si+1 of height mi+1 with
center zi+1 and leaf set Bi+1 ⊆ A′

i+1 such that

βi+1δ ≤ |Bi+1| ≤ δ.
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Furthermore, since mi+1 < �i+1, we have zi+1 �= w. Also, all the vertices in Si+1

lie in color class i+ 1 of c. Since Bi+1 ⊆ A′
i+1, by (3.10)

∀v ∈ Bi+1, dFi+1(v) ≥ (α/2i+1)|B1| · · · |Bi||Ai+2| · · · |As|.

Finally, let F ′
i+1 be the subgraph of Fi+1 induced by the parts B1, . . . , Bi+1, Ai+2,

. . . , As. This allows to define F ′
1, . . . ,F ′

q, B1, . . . , Bq, and z1, . . . , zq. Now, we claim

that we can find a copy of Kk
s,t in G, which would give us a contradiction. To find

such a copy, we consider two cases.
Case 1. q = s.
By our assumption, F ′

s is an s-partite s-graph with parts B1, . . . , Bs, where

|F ′
s| ≥ (α/2s)|B1| · · · |Bs|

and

∀i ∈ [s], βiδ ≤ |Bi| ≤ δ, where βi =
(1/2i)ααi

�iK�i−1
.

Let M be a maximum matching in F ′
s. Then the maximality of M implies that

every edge of F ′
s contains some vertex in V (M). On the other hand, since F ′

s is
s-partite and each part has size at most δ, each vertex is contained in at most δs−1

edges. Hence
|F ′

s| ≤ |V (M)| · δs−1 = s|M|δs−1.

Hence by the above lower bounds on |F ′
s| and |B1|, . . . , |Bs|, we have

|M| ≥ |F ′
s|/(sδs−1) ≥ (2−sαβ1 · · ·βs/s)δ 	 t

for sufficiently large δ (as δ ≥ δ0). Let M′ be a set of t edges in M. Suppose M′ =
{e1, . . . , et}. For each i ∈ [t], suppose ei = (vi1, v

i
2, . . . , v

i
s), where ∀j ∈ [s], vij ∈ Bj .

For each j ∈ [s], let Zj be the subspider of Sj obtained by keeping only the t paths
from zj to V (M′)∩Bj . Since vertices in Z1−{w} have color 1 and for each 2 ≤ j ≤ s,
vertices in Zj have color j, Z1, . . . , Zt are vertex-disjoint.

By the definition of F ′
s ⊆ Hw, for each i ∈ [t], (vi1, . . . , v

i
s) is an (�1, . . . , �s)-strong

tuple and hence there are f(k, L) internally vertex-disjoint spiders with leaf vector
(vi1, . . . , v

i
s) and length vector (�1, . . . , �s). Since f(k, L) 	 |V (Kk

s,t)|, we can greedily
find t vertex disjoint spiders T1, . . . , Tt such that for each i ∈ [t], Ti has leaf vector
(vi1, . . . , v

i
s) and length vector (�1, . . . , �s) and that V (Ti) \ {vi1, vi2, . . . , vis} is disjoint

from
⋃s

j=1 V (Zj). Now (
⋃t

i=1 Ti) ∪ (
⋃s

j=1 Zj) forms a copy of Kk
s,t, contradicting G

being Kk
s,t-free.

Case 2. q < s.
Since |F ′

q| ≥ (α/2q)|B1| · · · |Bq||Aq+1| · · · |As|, by averaging, there exists a tuple
(zq+1, . . . , zs) ∈ Aq+1 × · · ·×As that is contained in at least (α/2s)|B1| · · · |Bq| of the
edges of F ′

q. Let

F∗ = {e \ {zq+1, . . . , zs} : {zq+1, . . . , zs} ⊆ e ∈ F ′
q}.

As in Case 1, for sufficiently large δ, F∗ contains a matching M = {e1, . . . , et} of size
t.

For each i ∈ [t], suppose ei = (vi1, v
i
2, . . . , v

i
q), where ∀j ∈ [q], vij ∈ Bj . For each

j ∈ [q], let Zj be the subspider of Sj obtained by keeping only the t paths from zj to
V (M) ∩Bj . Since vertices in Z1 − {w} have color 1 and for each 2 ≤ j ≤ s, vertices
in Zj have color j, Z1, . . . , Zq are vertex-disjoint.
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By definition, for each i ∈ [t], (vi1, . . . , v
i
q, zq+1, . . . , zs) is an (�1, . . . , �s)-strong

tuple and hence there are f(k, L) internally vertex-disjoint spiders with leaf vector
(vi1, . . . , v

i
q, zq+1, . . . , zs) and length vector (�1, . . . , �s). Since f(k, L) 	 |V (Kk

s,t)|, we
can greedily find t spiders T1, . . . , Tt such that for each i ∈ [t], Ti has leaf vector
(vi1, . . . , v

i
q, zq+1, . . . , zs) and length vector (�1, . . . , �s) and that V (Ti) \ {zq+1, . . . , zs}

are pairwise disjoint over different i and that V (Ti)\{vi1, . . . , viq, zq+1, . . . , zs} is disjoint
from

⋃q
j=1 V (Zj) for each i ∈ [t]. Now (

⋃t
i=1 Ti) ∪ (

⋃q
j=1 Zj) forms a copy of Kk

s,t,

contradicting G being Kk
s,t-free.

From Lemma 3.1, we immediately obtain the following.

Corollary 3.2. Let K ≥ 1 and integers k, t ≥ 2, s ≥ 3 be fixed. Then provided
that L is sufficiently large compared to s, t, k, and K, for any β > 0 there exists δ0
such that the following holds. Suppose that G is a Kk

s,t-free K-almost-regular graph
on n vertices with minimum degree δ ≥ δ0. Suppose �1, . . . , �s are positive integers
satisfying that ∀i ∈ [s], k/2 ≤ �i ≤ k and that ∀1 ≤ i < j ≤ s, �i + �j ≥ k + 1. Let F
denote the family of s-legged leg-labeled feasible spiders F of height k that satisfy that
F(�1,...,�s) is (�1, . . . , �s)-strong. Then |F| ≤ [Kkf(k, L)]sβnδks.

Proof. Let S be the family of (�1, . . . , �s)-strong spiders in G. Let � = �1+ · · ·+�s.
By Lemma 3.1, there are at most βnδ� tuples (w, v1, . . . , vs) such that there is a
member of S that has w as the center and (v1, . . . , vs) as the leaf vector. For each i,
there are at most f(�i, L) ≤ f(k, L) light paths of length �i in G between w and vi.
Since the members of S are strong and in particular are feasible, every leg of members
of S is light. It follows that |S| ≤ [f(k, L)]sβnδ�.

Now, let F ∈ F . By definition of F , F(�1,...,�s) is a member of S. Since G has maxi-

mum degree at most Kδ, for each F ∈ F , there are at most (Kδ)ks−� members F ′ ∈ F
with F(�1,...,�s) = F ′

(�1,...,�s)
. Hence |F| ≤ (Kδ)ks−�|S| ≤ (Kδ)ks−�[f(k, L)]sβnδ� ≤

[Kkf(k, L)]sβnδks.

3.2. Building subdivisions using strong spiders: The (1, k, . . . , k)-case.
In this section, we prove a second crucial ingredient (Lemma 3.4 below) which com-
plements Lemma 3.1. First we need an auxiliary lemma.

Lemma 3.3. Let F be a family of feasible spiders that have the same leaf vector
(v1, . . . , vs) and length vector (�1, . . . , �s), where each 1 ≤ �i ≤ k. Let � = �1+ · · ·+ �s.
If |F| ≥ [(sk)sk · f(k, L)2]�, then there exist a vector of positive integers (j1, . . . , js)
and a vector of distinct vertices (y1, . . . , ys) such that the family

{F(j1,...,js) : F ∈ F and F(j1,...,js) has leaf vector (y1, . . . , ys)}

contains at least (sk)sk−jf(k, L) internally disjoint members, where j = j1 + · · ·+ js.

Proof. We prove it by induction on �. The case of � = s is trivial. Assume � > s
and assume that claim holds for smaller � values. Now pick a maximal family M of
internally disjoint spiders in F . If |M| ≥ (sk)sk−� · f(k, L), then let (y1, . . . , ys) =
(v1, . . . , vs) and (j1, . . . , js) = (�1, . . . , �s) and we are done. So we may assume |M| <
(sk)sk−� · f(k, L). Let U be the set of internal vertices of the spiders in M. Then
|U | ≤ sk · |M| < (sk)sk−�+1 · f(k, L). By the maximality of M, any spider in F
contains a vertex in U as an internal vertex. So by averaging, there exists u ∈ U such
that the size of the family F ′ which consists of all spiders in F that contain u as an
internal vertex is at least

|F ′| ≥ |F|
|U | ≥

|F|
(sk)sk−�+1 · f(k, L) .

D
ow

nl
oa

de
d 

05
/2

3/
20

 to
 1

34
.5

3.
22

5.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

564 TAO JIANG AND YU QIU

By averaging again, there is a subfamily F ′′ ⊆ F ′ of size

|F ′′| ≥ |F ′|
� − s+ 1

≥ |F|
(sk)sk−�+2 · f(k, L)

such that u plays the same role in all the members of F ′′. Since F ′′ ⊆ F and the
members of F are all feasible, every leg of members of F ′′ is light. Hence there are no
more than

∏s
i=1 f(�i, L) ≤ [f(k, L)]s members of F ′′ that contain u as their center.

It is easy to check by our assumption on |F| that |F ′′| > [f(k, L)]s. So u cannot be
the center of the spiders in F ′′. Without loss of generality, suppose that u is in the
first leg of each member of F ′′ and that the distance between u and the center of the
member is �′1 < �1. Let

J = {F(�′1,�2,...,�s) : F ∈ F ′′}.

By the definition of F ′′ and J , all members of J have the leaf vector
(u, v2, . . . , vs). Since members of F ′′ are feasible, each member of F ′′ is the union of
a member of J and a (�1 − �′1)-light path between u and v1. Hence each member of
J is contained in fewer than f(�1 − �′1, L) ≤ f(k, L) members of F ′′. Therefore,

|J | ≥ |F ′′|
f(k, L)

≥ |F|
(sk)sk · f(k, L)2 ≥ [(sk)sk · f(k, L)2]�−1.

Since j := �′1 + �2 + · · · + �s ≤ � − 1 and |J | ≥ [(sk)sk · f(k, L)2]j , by the induction
hypothesis, J provides at least (sk)sk−j · f(k, L) internally disjoint subspiders with
the same length vector and leaf vector. This completes the proof.

Lemma 3.4. Let K ≥ 1 and integers k, s, t ≥ 2 be fixed. Then provided that L
is sufficiently large compared to s, t, k, and K, for any γ > 0 there exist n0, C > 0
such that the following holds. Let A = {(j1, . . . , js) : ∀i ∈ [s], ji ∈ [k]}. Let L be
the set of all s-tuples consisting of one 1 and s − 1 many k’s. Let G be a Kk

s,t-free

K-almost-regular graph on n ≥ n0 vertices with minimum degree δ ≥ Cn
1
k− 1

sk . Let
F be the family of all the s-legged leg-labeled feasible spiders F of height k in G that
satisfy the following:

1. For some (j1, . . . , js) ∈ L, F(j1,...,js) is (j1, . . . , js)-strong.
2. For all (j1, . . . , js) ∈ A \ L, F(j1,...,js) is not (j1, . . . , js)-strong.

Then |F| ≤ kγnδsk.

Proof. For each i ∈ [s], let Fi denote the subfamily of members F of F such
that F(j1,...,js) is (j1, . . . , js)-strong when ji = 1 and ∀� ∈ [k] \ {i}, j� = k. Then

F =
⋃k

i=1 Fi. Suppose to the contrary that |F| ≥ kγnδks. By averaging, there exists

some i ∈ [k] such that |Fi| ≥ |F|
k ≥ γnδsk. Without loss of generality, we may assume

that |F1| ≥ γnδsk. We derive a contradiction.
Let c > 0 such that 2cKsk = γ

4 . We do some cleaning to F1 through member
removals. We update F1 immediately after each removal. At any point, if there is a
member F ∈ F1 such that F(1,k,...,k) = F ′

(1,k,...,k) for fewer than cδ(Kδ)k−2 members

F ′ of F1 we remove all these members F from F1. Whenever there is a member
F ∈ F1 such that F(0,k,...,k) = F ′

(0,k,...,k) for fewer than cδ(Kδ)k−1 members F ′ ∈ F1,

we remove all these members F ′ from F1. We continue the process until no further
removal can be performed. Let F ′ denote the final F1.

Since G has maximum degree at most Kδ, the total number of members we have
removed from F1 is no more than n(Kδ)(s−1)k+1 · cδ(Kδ)k−2 + n(Kδ)(s−1)k · cδ ·
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(Kδ)k−1 ≤ 2cKksnδks = 1
4γnδ

ks. Hence

|F ′| ≥ γnδks − 1

4
γnδks =

3

4
γnδks.

Given an (s− 1)-tuple �a = (a2, . . . , as) of vertices in G, let

F�a = {F ∈ F ′ : F(1,k,...,k) has leaf vector (u, a2, . . . , as) for some vertex u}.

Let F ∈ F�a. By definition, F(1,k,...,k) is (1, k, . . . , k)-strong and has leaf vector
(u, a2, . . . , as) for some vertex u. Let w(F ) denote the center of F and u(F ) denote
the vertex u. Let

H�a = {w(F )u(F ) : F ∈ F�a}.
Furthermore, let

W�a = {w(F ) : F ∈ F�a} and U�a = {u(F ) : F ∈ F�a}.

Hence, H�a is a graph on W�a ∪ U�a. By definition, for each u ∈ U�a there exists some
F ∈ F ′ such that F(1,k,...,k) is (1, k, . . . , k)-strong and has leaf vector (u, a2, . . . , as).
So, in particular,

(3.12) for any u ∈ U�a, (u, a2, . . . , as) is (1, k, . . . , k)-strong.

Claim 1. Let �a be an (s−1)-tuple such that F�a �= ∅. Let uw ∈ H�a, where u ∈ U�a

and w ∈ W�a. Then the number of F ∈ F�a with (u(F ), w(F )) = (u,w) is at least
cδ(Kδ)k−2 and at most [f(k, L)]s−1 · (Kδ)k−1.

Proof of Claim 1. By definition, there is a member F ∈ F�a such that w(F ) = w
and u(F ) = u. By our cleaning rule in forming F ′, there are at least cδ(Kδ)k−2

members F ′ of F with F(1,k,...,k) = F ′
(1,k,...,k). For each such F ′, clearly, F ′ ∈ F�a and

(u(F ′), w(F ′)) = (u,w). So, the first part of the claim holds.
We now prove the second part of the claim. Since members of F�a are feasible

spiders, to form a member F ∈ F�a with (u(F ), w(F )) = (u,w), we need to pick a
k-light path from w to each of a2, . . . , as and a (k − 1)-path starting at u. So, there
are at most [f(k, L)]s−1 · (Kδ)k−1 such F .

Claim 2. For each (s − 1)-tuple �a = (a2, . . . , as) with F�a �= ∅, we have that
|F�a| ≥ e(H�a) · cδ(Kδ)k−2 and e(H�a) ≥ cδ · |W�a|.

Proof of Claim 2. By Claim 1, for each wu ∈ H�a there are at least cδ(Kδ)k−2

members F of F�a with (u(F ), w(F )) = (u,w). As different wu’s clearly give rise to
different F ’s, the first part of the claim follows.

Now, let w ∈ W�a. By definition of F�a, there is a member F ∈ F�a such that
w(F ) = w. By our cleaning rule in forming F ′, there are at least cδ(Kδ)k−1 members
F ′ ∈ F ′ such that F(0,k,...,k) = F ′

(0,k,...,k). Clearly, for each such F ′ we have F ′ ∈ F�a

and w(F ′) = w. Each such F ′ is the union of F(0,k,...,k) and a path of length k
from w with the first edge being wu(F ′). If there are fewer than cδ different u(F ′),
then since G has maximum degree at most Kδ the total number of such F ′ would be
fewer than cδ(Kδ)k−1, contradicting our definition of F ′. So over all F ′ ∈ F�a with
F ′
(0,k,...,k) = F(0,k,...,k) there must be at least cδ different u(F ′). So w has degree at

least cδ in H�a. This proves the second part of the claim.

For any (s− 1)-tuple �a = (a2, . . . , as), let

U+
�a = {u ∈ U�a : dH�a

(u) ≥ 2kt} and U−
�a = {u ∈ U�a : dH�a

(u) < 2kt}.
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Let
F+
�a = {F ∈ F�a : u(F ) ∈ U+

�a } and F−
�a = {F ∈ F�a : u(F ) ∈ U−

�a }.
Claim 3. For every (s − 1)-tuple �a, let H+

�a = {w(F )u(F ) : F ∈ F+
�a }. We have

e(H+
�a ) ≤ 2kt|W�a|.
Proof of Claim 3. Let �a be given. For convenience, let U+ = U+

�a and W = W�a.
Suppose that e(H+

�a ) > 2kt|W |. Then this, together with the definition of U+
�a , implies

that the average degree of H+
�a is at least 2kt. By a well-known fact, H+

�a contains a
subgraph H ′ with minimum degree at least kt. Even though W and U+ may not be
disjoint, using δ(H ′) ≥ kt and the fact that each edge of it has the form wu, where
w ∈ W and u ∈ U+, by a greedy process, in H ′, we can build a t-legged spider T
of height k − 1 with leaves lying in U+. Let x be its center and u1, . . . , ut be its
leaves. By (3.12), (ui, a2, . . . , as) is (1, k, . . . , k)-strong for every i ∈ [t]. Thus using
strongness one can greedily find t internally disjoint spiders of height k with leaf
vector (x, a2, . . . , as). The union of these t spiders forms a copy of Kk

s,t, contradicting

G being Kk
s,t-free.

By Claims 1 and 3, we have

(3.13) |F+
�a | ≤ e(H+

�a ) · [f(k, L)]s−1(Kδ)k−1 ≤ [2kt[f(k, L)]s−1Kk−1] · |W�a| · δk−1.

On the other hand, by Claim 2 we have that

|F�a| ≥ e(H�a) · cδ(Kδ)k−2 ≥ cδ|W�a| · cδ(Kδ)k−2 = c2Kk−2 · |W�a| · δk.

As δ ≥ Cn
1
k− 1

sk and n ≥ n0 is sufficiently large, this together with (3.13) yields that

|F+
�a | ≤ 1

2
|F�a|.

Thus |F−
�a | = |F�a| − |F+

�a | ≥ 1
2 |F�a|. Since F ′ = ∪�aF�a, we have that

∑
�a |F�a| ≥ |F ′| ≥

3
4γnδ

sk. It follows that

∑

�a

|F−
�a | ≥ 1

2

∑

�a

|F�a| ≥
3

8
γnδks ≥ 3γCsk

8
ns.

By averaging, there exists an (s− 1)-tuple �a such that |F−
�a | ≥ C1n for some constant

C1 that can be made arbitrarily large by taking C to be sufficiently large. By averaging
again, there exists some z such that the number of spiders in F−

�a with leaf vector (z,�a)
is at least C1. Fix such a vertex z and let

Fz,�a = {F ∈ F−
�a : F has leaf vector (z,�a)}.

By choosing C to be sufficiently large (which makes C1 arbitrarily large), we can
ensure

|Fz,�a| ≥ C1 ≥ [(sk)sk · f(k, L)2]sk.
Claim 4. There exists a member F of Fz,�a and a tuple (j1, . . . , js) ∈ A \ L such

that F(j1,...,js) is (j1, . . . , js)-strong.

Proof of Claim 4. Since |Fz,�a| ≥ [(sk)sk · f(k, L)2]sk, by Lemma 3.3, there exist
a tuple of distinct vertices (y1, . . . , ys) and and a tuple (j1, . . . , js) ∈ A such that the
family

T := {F(j1,...,js) : F ∈ Fz,�a and F(j1,...,js) has leaf vector (y1, . . . , ys)}

contains at least p := (sk)sk−jf(k, L) internally disjoint members T1, . . . , Tp, where
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TURÁN NUMBERS OF BIPARTITE SUBDIVISIONS 567

j = j1 + · · ·+ js. Since each member of Fz,�a is a feasible spider, each Ti is a feasible
spider. Since T1, . . . , Tp have the same leaf vector and are internally disjoint and
p ≥ (sk)sk−jf(k, L), by Definition 2.5, ∀i ∈ [p], Ti is (j1, . . . , js)-strong. Also by the

definition of T , ∀i ∈ [s] ∃F (i) ∈ Fz,�a such that F
(i)
(j1,...,js)

= Ti.

It remains to show that (j1, . . . , js) ∈ A \ L. For that, it suffices to show j1 /∈
{1, k}. For each i ∈ [p], let wi denote the center of Ti, ui its neighbor on the leg to
y1, and Pi the portion of the the leg from ui to y1. Then wi ∈ W�a and ui ∈ U−

�a .
First, suppose that j1 = 1. Then u1 = u2 = · · · = up = y1 but w1, . . . , wp are

distinct, which yields dH�a
(u1) ≥ p = e(S) ≥ (sk)sk−jf(k, L) 	 2kt, which contradicts

our definition of U−
�a .

Now suppose that j1 = k. Then y1 = z. Since T1, . . . , Tt are internally disjoint,⋃t
i=1 Pi is a t-legged spider of height k − 1 with center z and leaves u1, . . . , ut. By

(3.12), for each i ∈ [t], (ui, a2, . . . , as) is (1, k, . . . , k)-strong. Thus we can greedily
find t spiders Z1, . . . , Zt with length vector (1, k, . . . , k), satisfying that every Zi has
leaf vector (ui,�a) and that Z1 ∪ P1, . . . , Zt ∪ Pt are t internally disjoint spiders with
length vector (k, . . . , k) and leaf vector (z,�a). The union of these forms a copy Kk

s,t,
a contradiction. This completes the proof of Claim 4.

Claim 4 contradicts condition 2 of our assumption about F . This completes the
proof.

3.3. Proof of Theorem 1.1. The main idea of the proof of Theorem 1.1 is
roughly as follows. In an almost regular graph with minimum degree δ ≥ Ω(n

1
k− 1

ks )
there are Ω(nδks) ≥ Ω(ns) s-legged spiders of height k, that is, copies of Kk

1,s. Using
the lemmas in the previous subsection as well as some new ones specific to the k = 3, 4
cases, we argue that most of these spiders do not contain critical paths of length at
most k or any strong subspiders. Using the pigeonhole principle, we can find an s-
tuple that is the leaf vector of a large number of Kk

1,s that do not contain strong
subspiders or critical paths of length at most k. This allows us to find t copies that
are internally disjoint, whose union then forces a copy of Kk

s,t.
We need the following lemma, which holds only for k = 3, 4.

Lemma 3.5. Suppose that F is an (�1, . . . , �s)-strong spider where ∀i ∈ [s], 1 ≤
�i ≤ k. Then ∀1 ≤ i < j ≤ s, �i + �j ≥ k + 1. Moreover, if k ∈ {3, 4}, then either
∀i ∈ [s] �i ≥ k

2 or (�1, . . . , �s) ∈ L, where L is as defined in Lemma 3.4.

Proof. Since F is strong and in particular is feasible, any subpath of F of length
at most k is light. Suppose on the contrary that ∃i, j with �i + �j ≤ k. Without
loss of generality, suppose i = 1, j = 2. Let (v1, . . . , vs) be the leaf vector of F . Let
� = �1 + · · · + �s. Since F is strong, by Definition 2.5, there are at least (sk)sk−� ·
f(k, L) > f(k, L) internally disjoint feasible spiders with leaf vector (v1, . . . , vs) and
length vector (�1, . . . , �s). In particular, in their union, there exist at least f(k, L) ≥
f(�1 + �2, L) internally disjoint light paths of length �1 + �2 joining v1 and v2. This
means that the path in F that joins v1 and v2 is not (�1 + �2)-light, contradicting our
earlier discussion.

Now assume that k ∈ {3, 4} and there exists i ∈ [s] with �i <
k
2 . Fix such an i.

Then �i = 1. Since �i + �j ≥ k + 1 for all j �= i, we must have �j = k for all j �= i.
Hence (�1, . . . , �s) ∈ L.

By Corollary 3.2 and Lemmas 3.4 and 3.5, for k ∈ {3, 4} we have the following.

Corollary 3.6. Let k,K, s, t be positive integers where k ∈ {3, 4}, K ≥ 1, and
s ≥ 3, t ≥ 2. Then provided that L is sufficiently large compared to s, t, k, and K, for
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any ζ > 0 there exist C, n0 > 0 such that the following holds. Suppose that G is a
Kk

s,t-free K-almost-regular graph n ≥ n0 vertices with minimum degree δ ≥ Cn
1
k− 1

sk .
Let F denote the family of feasible s-legged spiders of height k in G that contain a
strong s-legged subspider. Then |F| ≤ ζnδsk.

Now, we are finally ready to prove our main theorem.

Proof of Theorem 1.1. First we set some constants. Fix integers s, t ≥ 2 and
k ∈ {3, 4}. Let K be obtained by Lemma 2.1 with ε = 1

k − 1
sk . Choose L to be a

large constant such that Lemma 2.4 and Corollary 3.6 are valid. We further require

that L is large enough such that 2(sk)!Ksk

f(1,L) ≤ 1
4k(sk+1)! . Let C1 = [(sk)sk · f(k, L)2]sk,

that is, the constant in Lemma 3.3 with � = sk. Let C be a large constant such that
Corollary 3.6 holds with ζ := 1

8(sk+1)! . We further require that C is large enough such

that Csk

8(sk+1)! ≥ C1.

By Lemma 2.1, it suffices to show the following statement. For sufficiently large
n, if G is an n-vertex K-almost-regular graph with minimum degree δ ≥ Cn

1
k− 1

sk ,
then G contains a copy of Kk

s,t.

We will prove this by contradiction. Suppose to the contrary that G is Kk
s,t-free.

Let F be the family of all the s-legged spiders of height k in G. Then by a greedy
process, it is easy to see that

(3.14) |F| ≥ 1− o(1)

(sk + 1)!
nδsk ≥ nδsk

2(sk + 1)!
,

where the last inequality holds because n is sufficiently large. By Lemma 2.4, for every

2 ≤ � ≤ k, the number of �-critical paths is at most 2n(Kδ)�

f(�−1,L) . Since the maximum

degree of G is at most Kδ, the number of members of F that contain a �-critical

path is at most
(
sk
�

) 2n(Kδ)�

f(�−1,L) · (Kδ)sk−� ≤ 2(sk)!Ksk

f(�−1,L) nδ
sk ≤ 2(sk)!Ksk

f(1,L) nδsk ≤ nδsk

4k(sk+1)! ,

where the factor
(
sk
�

)
upper bounds the number of positions of an �-critical path in

the s-legged spider of height k, and the last inequality holds by the choice of L. So
the number of members of F that contain a critical path of length at most k is no

more than (k− 1) · nδsk

4k(sk+1)! <
nδsk

4(sk+1)! . Let F ′ denote the family of feasible members

of F . It follows that

(3.15) |F ′| ≥ |F| − nδsk

4(sk + 1)!
≥ nδsk

4(sk + 1)!
,

where in the last inequality we used (3.14).
Let F ′′ denote the family of members of F ′ that contain no strong s-legged

subspider. By Corollary 3.6 we have that

|F ′ \ F ′′| ≤ ζnδsk =
nδsk

8(sk + 1)!
,

where the last equality holds by the choice of ζ. This, together with (3.15), gives us
that

|F ′′| = |F ′| − |F ′ \ F ′′| ≥ nδsk

4(sk + 1)!
− nδsk

8(sk + 1)!
=

nδsk

8(sk + 1)!
.

Since δ ≥ Cn
1
k− 1

sk , it follows that

|F ′′| ≥ Cks

8(sk + 1)!
ns ≥ C1n

s,
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where the last inequality holds because of the choice of C. By averaging, there exists
a tuple (v1, . . . , vs) of distinct vertices such that the subfamily F1 of F ′′ that consists
of all the members of F ′′ that have leaf vector (v1, . . . , vs) has size at least

|F1| ≥
|F ′′|
ns

≥ C1n
s

ns
= C1.

Now F1 is a family of s-legged feasible spiders that have the same leaf vector and
length vector. Since |F1| ≥ C1, by Lemma 3.3 and our choice of C1 given at the
beginning of this proof, there exists a member of F ′′ containing a strong s-legged
subspider. This contradicts our definition of F ′′ and completes the proof.

4. Concluding remarks. It is easy to derive from our discussions that the
following weakening of Conjecture 1.1 holds.

Proposition 4.1. Let s, t, k ≥ 2 be integers. Let K≤k
s,t denote the family of graphs

that can be be obtained from Ks,t by replacing each edge uv with a path of length at
most k between u and v so that the st replacing paths are internally disjoint. Then
ex(n,K≤k

s,t ) = O(n1+ 1
k− 1

sk ).

This together with the general theorem of Bukh and Conlon [2] implies the fol-
lowing.

Corollary 4.2. Let s, k ≥ 2 be integers. Then for sufficiently large t, ex(n,K≤k
s,t )

= Θ(n1+ 1
k− 1

sk ).

Acknowledgments and added note. The authors thank Jozsef Balogh for his
valuable comments on an earlier version of the paper, in particular, for suggesting the
question leading to Proposition 4.1. We thank the anonymous referee for his/her very
careful reading of the paper and for his/her many helpful comments.

Since our manuscript was submitted, Janzer [18] has extended our work and
proved Conjecture 1.1 for all k.
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