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ABSTRACT: In the metabolomics, glycomics, and mass spectrometry of structured small
molecules, the combinatoric nature of the problem renders a database impossibly large,
and thus de novo analysis is necessary. De novo analysis requires an alphabet of mass
difference values used to link peaks in fragmentation spectra when they are different by a
mass in the alphabet divided by a charge. Often, this alphabet is not known, prohibiting de
novo analysis. A method is proposed that, given fragmentation mass spectra, identifies an
alphabet of m/z differences that can build large connected graphs from many intense
peaks in each spectrum from a collection. We then introduce a novel approach to
efficiently find recurring substructures in the de novo graph results.

KEYWORDS: metabolomics, glycomics, mass spectrometry, small molecules, de novo sequencing, proteomics, subgraph isomorphism,
locality sensitive hashing, algorithm, Gibbs sampler

■ INTRODUCTION

The mass spectrometric analysis of structured molecules is
important for the analysis of glycoconjugates1 and for drug
discovery.2 Often, these methods cannot rely on machine-
generated databases (as can often be done for peptide search)
because of the combinatoric nature of these small molecules,
which would make a machine-generated database far too large
to use. Fragmentation trees may be used for the analysis of
small molecules where databases may not exist or are too large,
but they rely on enumerating all molecular formulas that match
the precursor mass.3 Enumerating over all molecular formulas
for a precursor mass can become very costly, particularly for a
larger precursor mass or with a fairly imprecise mass-to-charge
measurement, and thus fragmentation trees may not be
suitable in all cases. Spectral libraries generated by known
small-molecule content can be used, but they need to be
painstakingly curated; therefore, even if the resources are
available to do so, they may not be suitable for applications
that include unexpected compounds or reactions. Likewise,
when an MS1 spectrum is generated by a few intact molecules,
it may be possible to isolate the most abundant mass in the
spectrum using only Fourier analysis.4

To date, de novo approaches, which link peaks in
fragmentation spectra when they are different by a mass in
the “alphabet”, are the best tools for these problems. For
example, de novo peptide sequencing may be performed using
an “alphabet” of 20 amino acid masses, whereas de novo glycan
analysis may be performed using an alphabet of four common

sugar residues. Once an alphabet is known, dynamic
programming can be used to link peaks for linearly chained
molecules (e.g., peptides)5,6 or arbitrarily structured small
molecules (e.g., sugars).7,8 The ability to use certain
“characters” in the alphabet can also be constrained to an
arbitrary flowchart (for instance, it may state that a peptide
with more than two of a given amino acid should not be
considered) by performing dynamic programming on the
Cartesian products between the graph of linked peaks and the
flowchart from the constraints.9 Distinctions between
fragmentation spectra can also be used to build graphs for a
given alphabet by clustering spectra to find highly similar
neighbor spectra and then attempting to match small changes
between these neighboring spectra using the given alphabet.10

Approaches reminiscent of this can be used to better
characterize biochemical pathways.11

All of the above approaches need to know the alphabet, that
is, the masses considered during the de novo; however, in a
truly blind de novo application, this alphabet will not be
known. This is important when identifying active compounds
and therapeutic components in venoms12 or plant products13

and can similarly be significant when finding drug metabolites
produced. Even fundamental chemical components of the
sugar alphabet (such as O-GlcNAc-P) were only discovered
relatively recently;14 thus if there are more undiscovered
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components of the sugar alphabet, then any current sugar
alphabet will be incomplete, and a blind approach may be the
only way to use these undiscovered sugars in an alphabet.
Two approaches with partially blind aspects to them are the

offset frequency function and the spectral networks. The offset
frequency function, introduced by Dancı̌ḱ et al.,15 builds a de
novo graph using the amino acid alphabet and then builds the
empirical distribution of peak differences between peaks in the

de novo peptide path and peaks not in the de novo peptide
path; however, this approach needs to know the amino acid
alphabet in advance. Spectral networks16 are likewise used for
the analysis of peptides. For example, a pair of spectra-
matching peptides with either overlapping sequences (e.g.,
EEAMPN and AMPNGGR) or a pair of modified and
unmodified peptide spectra can be matched by sequence
overlap after the database search; then, differing peaks in a

Figure 1. Zero-knowledge de novo analysis of fragmentation spectra. From a collection of fragmentation spectra, an alphabet δ* is inferred. This
alphabet is used to perform de novo analysis and build graphs from the fragmentation spectra. Recurring structures in these de novo graphs are then
efficiently found via locality-sensitive hashing (LSH).

Table 1. Definitions of Notations Used Throughout the Papera

variable meaning

s( ) indices of peaks in a fragmentation spectrum

mi
( ) for i ∈ s( ) m/z of peak i in spectrum s( )

p
i

( ) for i ∈ s( ) intensity of the peak at m/z in spectrum s( )

D( ) set of s( ), m( ), and p
i

( ) for spectrum

−m mj i
( ) ( ) for i ∈ s( ), j ∈ s( ) m/z difference between two peaks in spectrum s( )

Δ1, Δ2, Δ3, ..., Δd alphabet of size d (units are mass, not m/z)

ϵ maximum allowed error tolerance in m/z; if two m/z values are approximately equal, then the absolute value of their difference
must be ≤ϵ.

Ez i j k, , ,
( ) for i ∈ s( ), j ∈ s( ), k ∈ {1, 2,

..., d}
peaks i and j in spectrum s( ) can be connected by difference Δk using charge z; i.e., − − ≤ ϵ

Δ
m mj i z

( ) ( ) k for some charge state

Ez
( ) all edges for spectrum that use charge state z

g(Ez
( )) = {e1, e2, ...} collection of edges in the connected components of the graph defined by Ez

( )

θ hyperparameter that can be tuned to influence the acceptance rate; θ = 0 will accept all proposed changes; θ =∞ will only accept changes
that improve the likelihood

aIn each spectrum s( ), a peak i ∈ s( ) has an m/z value mi
( ), with machine tolerance ϵ and intensity p

i

( ). The set of s( ), mi
( ), and p

i

( ) for all peaks in

spectrum forms D( ). The alphabet of size d, Δ1, Δ2, Δ3, ..., Δd, is used to form a set of edges, Ez
( ), for charge state z, and the set of edges forms

connected components, g(Ez
( )) = {e1, e2, ...}, of the graph defined by Ez

( ).
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spectral pair can elucidate sequence changes, modifications,
and so on. Like the offset frequency function, this approach
relies on knowledge of the amino acid alphabet and methods
for sequencing peptide spectra (either de novo or database
search) via that amino acid alphabet.
In this Article, we introduce an approach to perform blind

de novo analysis of mass spectra and to estimate an alphabet
from a collection of spectra (i.e., the “alphabet projection of
the spectra”). Our approach seeks to find the alphabet that
would best explain the most high-intensity peaks and
simultaneously build the largest connected graphs. This
approach is also informative as to which peaks can be linked
by this alphabet; the graph produced by linking peaks in a de
novo manner can be helpful to inferring the chemical structure
of a compound. In this manner, the method proposed can also
be seen as an unsupervised de novo approach (i.e., a de novo
approach where the alphabet is not known in advance). We
then introduce a hash-based method by which we can find the
de novo graphs built with the inferred alphabet that recur in
the fragmentation spectra (Figure 1).

■ METHODS

We use the notation from Table 1 to formalize the alphabet
projection problem: We use variables i and j to index peaks in
the spectra, whereas we use variable k to index the alphabet.
For variables i and j, assume that the indices are ordered so

that the masses are sorted in ascending order: mj
( ) >mi

( )
↔ j >

i.
Each neutral loss alphabet Δ = δ is the same constant, given

size, d, and deterministically produces a graph consisting of the
edges E; these edges connect every pair of peaks within one
spectrum if the m/z difference between the peaks is within ϵ of
the m/z difference created by dividing alphabet mass Δk by
charge z

=
− −

Δ
≤ ϵ

E
m m

z
1

0 else

z i j k
j i

k

, , ,
( )

( ) ( )
lmooooonooooo

The edges E can be found deterministically once Δ and D
are known; for this reason

δ δ|Δ = = |Δ = = = | =D D E e D E ePr( ) Pr( , ) Pr( )

We assume that all spectra s(1), s(2), ... (and their masses and
intensities) are conditionally independent from one another
given the graph induced by E

∏

∏

δ|Δ = = | =

= | =

= | =

= | =

D D E e

D D E e

D D E e

s m p E e

Pr( ) Pr( )

Pr( , , ... )

Pr( , , ... )

Pr( , , )

(1) (2)

(1) (2)

( ) ( ) ( )

Conditional independence of the spectra given the edges is
fairly reasonable because it resembles the fact that given the
sample content (which is informed through the graph of
connected peaks), the production of one fragmentation
spectrum does not interfere with the process by which other
fragmentation spectra are produced. Even the caveat,
competition between abundant analytes in data-dependent

acquisition (DDA), applies more to which precursors will be
selected for fragmentation rather than how peaks in those
fragmentation spectra can be connected.
We seek, δ*, a maximum a posteriori (MAP) estimate of Δ

∏

∏

δ δ

δ δ

δ δ

* = Δ = |

= |Δ = · Δ =

= |Δ = · Δ =

δ

δ

δ

D

D

s m p

argmax Pr( )

argmax Pr( ) Pr( )

argmax Pr( , , ) Pr( )

( )

( ) ( ) ( )

Noncombinatorial Approach

A naive approach to this problem is to empirically estimate the

distribution of mass differences mj
( )

− mi
( ) over all spectra .

This can be performed in an unweighted manner (all (i, j)
pairs contribute equally to the distribution) or in a weighted
manner (an (i, j) pair has contribution proportional to

p
j

( )
·p
i

( )). Because exactly overlapping differences are improb-

able, the noncombinatorial approach treats two differences as
equal if they are within ϵ of one another. The process of

finding all differences mj
( )

− mi
( ) can be done efficiently using

the fast Fourier transform (FFT) by binning the spectrum by
m/z then convolving the spectra with itself.
The alphabet Δ1, Δ2, ..., Δd is estimated as the top d peaks in

the empirical distribution after being sorted by either the count

in the unweighted case or the sum of the proportional p
j

( )
·p
i

( )

values in the weighted case. It is important to note that this
noncombinatorial approach only cares about the abundance of
the Δ values and does not take into account the connectivity of
any graphs that are formed by the edges induced by Δ.

Combinatorial Approach

The noncombinatorial approach does not incentivize building
of large connected graphs, such as long amino acid chains in a
peptide or large forking substructures in glycoconjugate
spectra.7 A combinatorial approach can be used to incentivize
large connected graphs.

Efficient Graph Construction. For each spectrum D( ), we
efficiently build the graph of all possible connected peaks. In

each spectrum D( ) and for each charge state z, we create an

edge Ez i j k, , ,
( ) if and only if

− −
Δ

< ϵm m
z

j i
k( ) ( )

This connects two peaks whose m/z difference is within ϵ of
the predicted m/z difference from alphabet mass Δk using
charge z.
Of course, for any charge state z and some fixed spectrum

consisting of n peaks, edges can be trivially formed in Θ(n·n·d);

however, by sorting the m( ) values and the Δ values, this can

be sped up: By proposing the peaksmi
( ) andmj

( )
first, we know

that we are looking for an alphabet mass with Δ

z

k within ϵ of

mj
( )

− mi
( ); because the search for Δk can be processed on the

sorted array, this can be accomplished in Θ(n·n·log(d)) steps.

Likewise, if we first propose starting peak mi
( ) and alphabet

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00216
J. Proteome Res. 2019, 18, 3268−3281

3270



mass Δk, then we are searching for the ending peak mj
( ) with

m/z value within ϵ of +
Δ

mi z

( ) k ; this can be accomplished in

Θ(n·d·log(n)) steps. This problem is closely related to the
famous 3SUM problem. (Here we have a generalization
because it allows matches within ϵ instead of requiring exact
matches as the classic 3SUM problem does.) Interestingly,
there exists no known solution to the classic 3SUM problem in
O(n2−Ω(1)).17 Furthermore, the “within ϵ” criteria does not
easily accommodate the use of hashing (used to achieve one
O(n2) algorithm) or other advanced approaches.
In practice, we accelerate the log2 search for each spectrum

by computing a dense table of the cumulative counts of peaks
with m/z at or below some target m/z value x. This table has
bin widths of α

α= |{ ≤ · }|c i m t:t i
( ) ( )

If α ≥ ϵ, then we can then use this table to find bounds on
indices with which we seed the log2 search: The lower bound

index for matches will be found by α α· −cx
( ) . The upper bound

index for matches will be found by α α· +cx
( ) .

Using these bound values, we finish with two log2 searches:
One searches for the first peak with m/z crossing x − ϵ, and
the other searches for the last peak with m/z not crossing x +
ϵ. In practice, we observe a substantial speedup, even when the
number of peaks in the spectrum is relatively low (Table 2).

This c( ) table has the effect of uniformizing the m/z search
space; for some distributions of m/z values, this can make the
lookup run in constant time.

Furthermore, because the n peaks are stored in a contiguous,
sorted order (in an array, not a balanced binary search tree),
we can define all ending peaks j that would be within ϵ of
starting peak i using alphabet mass Δk and record them with
only two integers: the beginning of the matching window and
the size of the matching window. This likewise introduces a
considerable speed advantage over using a linked list of peak
indices (which would not be cache localized). By choosing a

large enough α, constructing a c( ) table for fragmentation
spectrum takes space roughly equivalent to the sorted m/z

array, m( ), and the intensity array, p( ). An α that is sufficiently
small will create a table that is too large to fit into a cache,
causing cache misses and slowing the search. (This happens for

α = 0.0001 in Table 2.) Too large of an α can create a large
space for the two log searches, similarly slowing the search.
As a result of this, on a spectrum of the size of that in Table

2, we get an 11.7-fold speed-up over a standard log search.
MAP Estimation Using Sampling. We use a Gibbs

sampler18 to obtain a sequence of random samples of Δ, with
one new Δk|Δ1, Δ2, ..., Δk−1, Δk+1, ..., Δd being proposed per
iteration. For each univariate cross-section, the changes to Δk

are proposed and accepted via Metropolis−Hastings.19

Each Δk is proposed from one of three proposal functions
(with the choice of proposal function selected at uniform):
The first proposal selects an m/z from the intensity-weighted
distribution used for the noncombinatorial approach (selected
from all possible m/z differences, not just the top d). The
second proposal scales Δk to have an equivalent m/z value at
some charge state. For example, if Δk = 3, then it may propose
1 (from z = 3 to z = 1), 2 (from z = 3 to z = 2), ... or 9 (from z
= 1 to z = 3). The third proposal selects a random peak in
some connected component for some charge state and then
chooses a new value for Δk that would create a new edge
incident to that peak, thereby adding a new edge to the
connected component. The first and third proposal functions
are topologically equivalent in that they have the same solution
space from which to pull Δk; however, the third solution is
greedy and guarantees that the value it selects will connect a
peak to some already existing connected component. The first
proposal function does not make this guarantee.
The updated joint probability Pr(D, Δ = δ′) is compared

with the current joint probability Pr(D, Δ = δ). If Pr(D, Δ =
δ′) > Pr(D, Δ = δ), then the new Δk = δk is accepted;
otherwise, the probability of accepting the new Δk = δk is

δ

δ

Δ = ′

Δ =

D

D

Pr( , )

Pr( , )

A value proportional to the joint probabilities can be
computed as the product between a prior on Δ and a
likelihood proportional to Pr(D|Δ).

Likelihood Model. Here we model the process by which E

creates the peaks in spectrum . We partition E( ) into E1
( ), E2

( ),
... connected components for each charge state z

∏| = |D E D EPr( ) Pr( )
z

z
( ) ( ) ( ) ( )

We compute Pr(D( )
|Ez

( )) as the likelihood of the graph using a

particular charge state z. Let g(Ez
( )) be a collection of the edges

in each connected component of the graph formed by Ez
( ). We

define the likelihood of the graph formed when using that
particular charge state to be the sum of the likelihoods over
these connected components

∑| = | =
∈

D E D G gPr( ) Pr( )z

g g E

( ) ( )

( )

( )

z
( )

Lastly, we define the likelihood of a single connected
component g using a single charge state z on a single spectrum
using the intensities of the peaks joined by each edge

∏| = = ·
∈

D G g p pPr( )
i j g

i j

( )

( , )

The values pi and pj have been normalized by dividing by the
minimal intensity value.

Table 2. Runtimes to Find a Peak in a Spectrum within ϵ =
0.01 Da of the Target m/z Value, Repeated for 220 Such
Searches on a Spectrum with 1000 Peaksa

alpha
naive
search

log
search

binned-log
search

average runtime(s) 0.0001 0.45861 0.08461 0.01541

0.005 0.45841 0.08472 0.00862

0.01 0.45902 0.08344 0.00780

0.02 0.45873 0.08342 0.00712

0.05 0.45826 0.08483 0.00738

0.1 0.45838 0.08464 0.00778

0.5 0.45919 0.08490 0.01304

1 0.45847 0.08479 0.01820
aNote that for α < ϵ, the size of the window returned by the search
must be widened to find the correct peak.
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Prior Model. The prior model has three requirements,
which all produce a prior of either 0 or 1: The first requirement
is that all alphabet masses be ≥1 − ϵ. This restricts alphabets
to larger masses; being that smaller masses often have no
chemical significance, if we do not enforce this, then small
masses may be selected because they are actually differences
between actual alphabet masses. The second requirement is
that no two masses in the alphabet produce similar m/z values
at any charge considered (e.g., Δ1 = 1.00860, Δ2 = 2.01720
would not be possible in the same alphabet). This prevents
doubling (or tripling, etc.) up on a single alphabet mass
strongly supported by the spectra. The third requirement is
that no alphabet results be within 0.5 Da of one another (e.g.,
Δ1 = 1, Δ2 = 1.1 would not be possible in the same alphabet).

∏

∏

Δ =
∀ Δ ≥ − ϵ

·

∀
Δ ·

Δ ·
∉ [ − ϵ + ϵ]

·

|Δ − Δ | <

≠

≠

k

z z
z

z

Pr( )
1 , 1

0 else

1 , , 1 , 1

0 else

0
1

2

1 else

k

k k

k

k

k k

k k

1 2
1

2

1 2

1

2

1 2

1 2

lmooooonooooo lmooooonooooolmooooonooooo
For faster runtime, we encode the prior model using the

random proposal distribution. Given the current alphabet Δ,
we propose an alphabet Δ′ that is identical in all but one
character Δk, which has been changed. We do this by first
randomly choosing k, the index that will be changed, and then
proposing δk′, a new value for Δk. The new value is proposed by
one of the three proposal functions described above.
When exactly one value in the current alphabet (Δt) can

produce an m/z too similar to the newly proposed mass (for
some charge states z1, z2), we could simply reject the proposal
as having a zero prior probability; however, that approach can
lead to fixation in local optima of the likelihood surface
because it can be difficult to exchange an alphabet mass with a
multiple of itself that would produce an equivalent m/z at a
different charge state. Instead, it is more efficient to simply
assign k = t to overwrite Δt if the proposal is accepted. When
two or more values in the current alphabet can produce an m/z
too similar to the newly proposed mass (for some charge states
z1, z2), then the modification to the alphabet would lower the
prior probability to 0; therefore, the proposal is simply
repeated without building the graphs or computing the
likelihood.
The prior probability is completely accounted for in the

proposal step, and thus we may substitute Pr(D|Δ) for Pr(D,
Δ).
Adjusting Likelihood Steepness Using θ. In traditional

Metropolis−Hastings, a proposal from Δ to Δ′ will be
accepted with the probability

Δ′

Δ

D

D

Pr( , )

Pr( , )

certainly accepting the proposal when Pr(D, Δ′) ≥ Pr(D, Δ).
We allow for this to be distorted using hyperparameter θ,
accepting the proposed change from Δ to Δ′ with probability

Δ′

Δ

θ
D

D

Pr( , )

Pr( , )

ikjjjj y{zzzz
The motivation behind including θ is that the Markov chain
Monte Carlo (MCMC) will not mix well if the surface is too
steep and will not find the optimum efficiently if the surface is
not steep enough. In this manner, θ = 0 results in always
accepting proposed changes, and θ = ∞ results in only
accepting changes that immediately improve the joint
probability. In the experiments outlined here, we use θ = 1
but offer the ability to set θ to different values at the command
line.
Additionally, our software implementation outputs the

acceptance rate of proposals as well as the average deviation
between log(Pr(D, Δ′)) and log(Pr(D, Δ)) to help adjust θ.
For example, if you want to set θ to get roughly a 50%
acceptance rate and you know that the previous run gave an
average deviation between log(Pr(D, Δ′)) and log(Pr(D, Δ))

of x, then =
Δ ′

Δ( )ex
D

D

Pr( , )

Pr( , )
, and you can solve (ex)θ = 0.5 for θ.

The same objective could be accomplished using simulated
annealing where a loose θ value turns hard according to some
carefully selected cooling curve that allows for the most
probable outcome to be expected with a probability of one if
the simulation is ran long enough.20

Ranking Masses in Δ. If desired by the user, using a flag at
runtime, the frequency in which masses are in the alphabet
may be written to a file. This may be used to create a ranking
of the Δ values based on how many iterations of the Gibbs
sampler stayed in the alphabet. This is done for all masses, not
just the masses in the final alphabet.

Mapping Δ to Canonical Masses. Inferring masses from
mass-to-charge gaps is difficult because two masses may look
identical at different charge states. For this reason, the
combinatorial approach sometimes finds integer multiples or
fractions of a mass instead of the mass itself. For example,
water has a mass of roughly 18.01057 Da; however, the
combinatorial approach may find some Δk = 36.02114 = 2·
18.01057. In general, if multiple charge states of neutral water
losses are well represented, then we would expect that using Δk

= 18.01057 will produce a superior likelihood compared with
using Δk = 36.02114; therefore, the combinatorial approach
would eventually choose the canonical mass. However, there
are cases where using Δk = 36.02114 may produce a higher
likelihood. For example, if three peaks indicate a double
neutral loss of water peaks a, b, and c at xTh, (x +
18.01057)Th, and (x + 36.02114)Th, then Δk = 36.02114
can connect a → c using a charge state of z = 1 and also
connect a→ b and b→ c using a charge state of z = 2. If the z
= 3 charge state is not well represented (using Δk = 36.02114
will not find gaps of size 9.0075 Th produced by water at a
charge state of z = 3), then the model will prefer Δk =
36.02114 to Δk = 18.01057.
For this reason, before we report the final mass alphabet Δ,

for each Δk ∈ Δ, we compare the masses
Δ Δ Δ Δ
, , , ...,

c1 2 3
k k k k ,

where c is the value of the max charge used in the Gibbs
sampler. For each of the new candidate masses, Δk′, the graphs
produced over al l spectra for i ts charge states

Δ′

=

Δ′

=

Δ′

=

Δ′

=
, , , ...,

z z z z c1 2 3
k k k k are built. If Δ

1
k and its charge states

produce the most edges, then we report the mass as Δk

(unchanged); if Δ

2
k and its charge states produce the most
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edges, then we report the mass as Δ

2
k . In this manner, double

neutral losses, double mass differences, and dimers do not
force us to report multiples or fractions of the mass of interest.

Finding Recurring Structures via Similar Subgraphs

Given the Δ collection estimated by the Gibbs sampler, we are
able to use the de novo approach to connect as many peaks as
possible in each spectrum at every charge state of interest. On
each spectrum and for each charge state, we record all
connected components.
From this collection of graphs, we would like to find large

connected components that are isomorphic to one another
(i.e., one graph is the same as the other, but with renamed
vertices); however, graph isomorphism is a difficult problem:
although it is not known if it is NP-complete, it is thought to
be recalcitrant enough to be employed in cryptography.21

For this reason, finding large, recurring structures in the de
novo graphs appears difficult. This is made more difficult if we
generalize to the optimization variant in which we find the
largest isomorphic subgraphs of each graph rather than scoring
each as “isomorphic” or “not isomorphic”.
Finding Graph Isomorphism with Cross-Correlation

of Subspectra. Fortunately, the graphs that we are using have
a metric property in which distances are preserved. For
instance, if a graph connects peaks at 2, 6, and 9 Th, then any
isomorphic graph must connect peaks of the form xTh, (x +
4)Th, and (x + 7)Th (e.g., 90, 94, and 97 Th). For this reason,
we can use the cross-correlation of the subspectra (i.e., the
peaks that correspond to nodes in our graph) to discover the
largest isomorphic subgraph. The cross-correlation shifts the
two subspectra over one another and computes the dot
product at each shift. The shift that produces the maximum

dot product solves for x, and the peaks that align at that shift
indicate corresponding nodes in the two subgraphs.
Using this approach, we can efficiently score pairs of

connected components for similarity.
Locality-Sensitive Hashing Approach to Clustering

Subgraphs. We could use this cross-correlation approach to
find the largest isomorphic subgraphs on all pairs of connected
components found in all spectra; however, the runtime of this
would be quadratic in the total number of connected
components found (and this would be far more than quadratic
in the number of spectra); this is not efficient enough to be
applied to many spectra.
For this reason, we generalize locality-sensitive hashing

(LSH) to find subspectra that have a high maximum value in
the cross-correlation. (The maximum value of the cross-
correlation is the measure of subgraph isomorphism described
immediately above.)
LSH encodes objects (i.e., subspectra) as large vectors by

binning them by m/z. The probability that a random plane

cuts between two such vectors is −
ψ

π
1 , where ψ is the angle

between the two vectors;22,23 therefore, by applying a random
plane to an object, we get 1 bit of information for that object
(e.g., a 0 is encoded by being on the negative side of the vector
normal to the plane, and a 1 is encoded by being on the
positive side of the vector normal to the plane). We can apply
this procedure b times, thereby producing a b-length bitstring
label for each object and thus binning each object into one of
2b bins. If several planes are applied, then there is only a small
probability that two dissimilar objects would reach the same
bin. This has recently been applied to clustering mass
spectra.24

This standard LSH approach to clustering mass spectra
cannot be applied in our case because we do not know the shift

Figure 2. LSH approach to finding similar subgraphs. In the left column, three spectra are shown with the subspectra (shown in color), which are
peaks contained in a connected component produced by building the graph with the estimated mass alphabet Δ. The second column shows only
those peaks in the subspectrum. The third column shows the absolute values of the DFTs of the subspectra. Each of these power spectra is dot-
producted with a random hyperplane, and the sign of the resulting value is used to produce a single bit. When two connected components have
large subgraphs isomorphic to one another, their subspectra must be shifted versions of each other, and thus their power spectra must be nearly
identical. Two subspectra drawn (first and second rows) are similar in this manner, producing similar power spectra and thus a low probability of
being separated by a random hyperplane. Repeating this process with several different random hyperplanes and concatenating the bits produces a
hash, which has a high probability of binning together connected components that have substantial subgraph isomorphism.
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between a pair of subspectra that would allow them to align
and produce a high dot product; LSH does not work in this
case.
We introduce a means by which we can cluster spectra that

allows spectra to be placed into a similar bin even when they
are shifted. Given a vector a (from binning a spectrum) and a
vector b (from binning a second spectrum) where both have
length n, we note the value of index k for each discrete Fourier
transform (DFT)
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We note that a ≡ b; that is, a is equivalent to b up to
rotation if ∃u: a(i+u) mod n = bi. Thus we have
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because we can equivalently shift the ai terms forward or the
π− · · −e i k n(2 / ) 1 terms backward by u. Thus

∑= · ·

= ·

π π

π

=

−

+
− · · − · · −

· · −

B a

A

e e

e

k

i

n

i u n
i k n u k n

k
u k n

0

1

( )mod
(2 / ) 1 (2 / ) 1

(2 / ) 1

That is, rotating a sequence will simply change the phases of
each index of the DFT.
If we ignore the phase of each term in the DFT (using the

magnitudes |Ak| and |Bk| at each index, known in signal
processing as the “power spectra”), then two objects that are
identical up to rotation must look identical.
Thus, we use FFT25 to create the power spectrum of each

subspectrum derived from a connected component and then
use LSH to bin similar power spectra. Bins that contain
subspectra coming from many large connected graphs are
indicative of de novo results that are likely reproduced in
multiple spectra and multiple charge states. These recurring
subgraphs give insight into common chemical structures found
with the inferred alphabet Δ (Figure 2).
Importantly, the cost of running the above procedure

(ignoring the cost of performing the FFT for each subspectrum
corresponding to a connected component) will be linear in the
number of connected components investigated, an improve-
ment from many quadratically computationally difficult graph
isomorphism problems.

■ RESULTS

The values in the results are reported using five decimal places
despite having machine tolerances of 0.02 and 0.05 Da. The
reason for this is that we often find masses to a much higher
precision. This is because if we have a set of masses that are
within machine tolerance of the monoisotopic mass of water
and connect at least one pair of peaks in a spectrum, then the
distribution of the masses in the set should center around the

true monoisotopic mass of water. For example, in the alphabet
for the 62 expert-curated spectra which uses ϵ = 0.02 Da, we
find water at a mass of 18.01068 Da, which is 0.000115 Da
from the monoisotopic mass of water, and we find a mass of
30.01058 Da, which is accurate for the value of a serine/glycine
substitution, 30.010565 Da, to four digits.26

Ranking Masses in Δ

Tables 3 and 4 show the rankings of masses in alphabets for
the 62 glycoconjugate spectra and 1891 glycoprotein spectra,
respectively. In both instances, the Gibbs sampler was ran for
16 000 iterations. Taking into account the alphabet sizes for
the two tables (8 and 16, respectively), you can see which
masses were highly desirable. With some masses in almost
every iteration, they must have been proposed early; this shows
why having a great proposal function is crucial. These rankings
are saved to file before the mapping to the canonical mass step.

Efficiency of LSH When Hashing Pairs of Similar and
Dissimilar Graphs

Now we look at how effective this LSH method is at putting a
pair of similar but shifted graphs into the same bin versus a pair
of very different graphs (Figure 3). De novo sequencing was
performed on spectra taken from the 1891 glycoprotein data
set with the alphabet from Table 8. The graphs are the

Table 3. Results from Ranking Masses in Δ for 62
Glycoconjugate Spectraa

rank Δ frequency label

1 42.01047 16000

2 84.02204 16000

3 188.01611 16000

4 130.00746 15997

5 0.98410 15953 neutron/deamidation

6 18.00746 15952 water

7 162.04746 15905 hexose

8 94.03555 15894
aRankings of the masses by frequency of presence in Δ. The higher
the frequency, the more times this mass (or a mass within ϵ of it) was
included in the alphabet. This was run with ϵ = 0.02 Da and d = 8.

Table 4. Results from Ranking Masses in Δ for 1891
Glycoprotein Spectraa

rank Δ frequency label

1 162.05000 16000 hexose

2 228.07500 15997 2× N

3 0.98210 15996 neutron/deamidation

4 18.01130 15986 water

5 42.00810 15909

6 30.02500 15899

7 180.06330 15756

8 57.00000 15721 G

9 23.00420 15692

10 144.06510 15650

11 790.37500 15648

12 202.10000 15590

13 17.01790 15569

14 720.25740 13857

15 2.07260 9725

16 839.37500 8935
aRankings of the masses by frequency of presence in Δ. The higher
the frequency, the more times this mass (or a mass within ϵ of it) was
included in the alphabet. This was run with ϵ = 0.05 Da and d = 16.
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bijective to the subspectra and are created by isolating the
peaks connected by the alphabet. Graphs 1 and 2 are very
similar but not exactly the same and are shifted by roughly 300
Da. Graph 3 is almost completely different from the first two.
For hashes with different numbers of bits (i.e., different
number of cutting planes), all pairs were binned together at
different rates with the pair of similar graphs always being
binned together at a significantly higher rate than any pair
involving the dissimilar graph.
Below, we look at the results from two data sets; both used

32 threads. The manually curated glycoconjugate data set has
62 spectra and was ran with ϵ = 0.02 Da. The horseradish
peroxidase glycoprotein has 1891 spectra and was run with ϵ =
0.05 Da. Both data sets are available at the site listed in the

Figure 3. Effectiveness of LSH on binning together pairs of similar but shifted graphs and pairs of dissimilar graphs. Three subspectra were created
by applying de novo sequencing on the 1891 glycoprotein spectra with the alphabet from Table 8. (a,b) Graphs 1 and 2 are very similar subspectra
(44 out of 55 similar peaks) but are shifted by roughly 300 Da. (c) Graph 3 is a very different subspectra from graphs 1 and 2. (d) Percentage of
times each pair of graphs are binned together plotted versus the number of bits in each hash. In the subspectra, the different colored peaks represent
being connected by Δk/c values of different charges.

Table 5. Most Frequent d = 8 Gap Pairs (i.e., mj − mi) on 62
Expert-Curated Glycoconjugate Spectraa

rank mass molecule

1 0.99686 neutron/deamidation

2 18.00686 water

3 0.49686

4 60.01686

5 42.00686

6 162.04686 hexose

7 27.98686

8 36.01686

16 17.01686 ammonia

110 203.07686 HexNAc

923 146.06686 dHex

1765 291.09686 NeuAc

rank mass molecule

1 0.99686 neutron/deamidation

2 18.00686 water

3 0.49686

4 162.04686 hexose

5 60.01686

6 88.00686

7 36.01686

8 30.00686

17 17.01686 ammonia

136 203.08686 HexNAc

832 146.06686 dHex

1522 291.09686 NeuAc

aTop table ranks using the unweighted frequency of gaps; bottom
table weights each gap by the product of peak intensities pi·pj. Masses
are rounded to five decimal points.

Table 6. Results When Running the Combinatorial
Approach on 62 Expert-Curated Glycoconjugate Spectra
with d = 8a

mass value manual interpretation known a priori? monoisotopic mass

1.00328 neutron yes 1.00860

17.00746 ammonia no 17.02655

18.01068 water no 18.01057

30.01058

42.01071

88.01555

162.04746 hexose yes 162.05282

203.06746 HexNAc yes 203.07943
aBecause the combinatorial approach assigns no ranks to the masses,
they are reported in ascending order. Masses are rounded to five
decimal points. Masses known a priori are labeled; these masses were
not provided to the model but instead are known true-positives in
advance.
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“available” section. The ϵ values are machine-dependent and
were recommended by the scientists who produced the data
(Dr. Froehlich for the glycoconjugate data set and Dr. Shu and
Dr. Yang for the glycoprotein data set). In each fragmentation
spectrum, we remove peaks that are <1% of the maximum
intensity in that spectrum.
Manually Curated Glycoconjugate Spectra from

Human Urine. Thousands of glycoconjugate spectra from
human urine were manually curated by an expert to find 62
with strong evidence of glycoconjugates.7 A priori, four sugar
residue masses (Hexose, HexNAc, dHex, and NeuAc) as well
as the neutron mass (whose mass is roughly the shift to
produce isotope peaks) are the only masses we expect. Note
that these masses were not provided for analysis but are used
only to validate the resulting masses found. A more detailed
explanation of the sample preparation is available in ref 7.
Noncombinatorial results are shown with d = 8 for both the

unweighted and weighted approaches (Table 5).

The combinatorial approach was run for 16 epochs per
thread. Each epoch used 1000 iterations. The total real runtime
of the analysis was 4 min. Combinatorial approach alphabet
results are shown with d = 8 (Table 6).
Examples of recurring structures found using LSH with the d

= 8 alphabet projection (i.e., the alphabet reported in Table 6)
are shown in Figure 4.

Horseradish Peroxidase Glycoprotein Standard Spec-
tra. Glycoprotein stain (Pierce Glycoprotein Staining Kit,
catalog number 24562) containing horseradish peroxidase
(UniProt accession P0043327) was analyzed on an ABSciex
Triple TOF 5600+ apparatus, producing 1891 fragmentation
spectra (similar to ref 28).
The data were provided and processed blind without

knowledge of their sample origins, only that sugars were
present; like the 62 curated spectra, these sugars were not used
in the analysis, only in the validation of the results. Thus like
the first data set, the only a priori expected masses are of four
common sugar residues (Hexose, HexNAc, dHex, and NeuAc)

Figure 4. Example similar subgraph pair found using LSH on results from 62 expert-curated glycoconjugate spectra. Two spectra (a,c) and their
corresponding de novo graphs (b,d) found using the combinatorial approach. Spectra are drawn with peaks used in the graph colored red and
unused peaks colored green. LSH is used to find this matching pair, and fast convolution finds the largest isomorphic subgraph in the pair (e). A
minimal number of peaks were removed from panels b and d for legibility. The top subspectrum is from “120810_JF_HNU142_16.5710.5710.3”,
and the bottom is from “120810_JF_ HNU142_16.6444.6444.4”.
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as well as the neutron mass. It is important to note that the
presence of amino acids was not expected.
Noncombinatorial results are shown with d = 16 for both the

unweighted and weighted (Table 7) approaches.
The amino acids found with the d = 16 alphabet projection

(i.e., the alphabet reported in Table 8) are G, T, I/L, N, and K/
Q. (K and Q are listed together because the machine’s ϵ is too
large to differentiate between the two for the mass found.)
These amino acids can form a chain, LNGNL, which are the
241st through 245th amino acids in the peptide sequence. This
includes the glycosylation site at the 244th amino acid (the
second asparagine in LNGNL) in the sequence.27 The amino
acid chain TLNTT can also be produced from the alphabet.
This chain covers the 226th through the 230th amino acids in
the peptide sequence, which includes another glycosylation site
that occurs at the 228th amino acid in the peptide sequence.

The weighted noncombinatorial approach, which found
more amino acids than the unweighted noncombinatorial
approach, was only able to find I/L, T, and A. Because of the
lack of asparagine found by either noncombinatorial approach,
neither one is able to build an amino acid chain that covers any
of the glycosylation sites for this peptide.
Examples of recurring structures found using LSH with the d

= 16 are shown in Figure 5.
Examples of two subspectra, from two different spectra, and

their connected de novo graphs, which include the amino acid
chain LNGNL, are shown in Figure 6.
The combinatorial approach was run for 16 epochs per

thread. Each epoch used 1000 iterations. The total real runtime
of the analysis was 4 h for d = 16 and 10.6 h for d = 64. The
acceptance rate eventually decays, and similar results may be
achievable with lower runtimes.

■ DISCUSSION

Alphabets Found with the Combinatorial Approach

Alphabet for 62 Expert-Curated Spectra Including
Neutron, Water, Sugars, and More. Even though no
masses or chemical knowledge was provided to the
combinatorial approach and we only expected four sugar
resides and the neutron mass in advance, our approach finds
masses close to water and ammonia in the 62 expert-curated
spectra. The mass we do find that is within ϵ of the mass of a
neutron is also within ϵ of the mass difference caused by
deamidation. Deamidation is a modification to amino acids
where a nitrogen and a hydrogen are replaced by an oxygen
with a mass difference of 0.984 Da. These are both plausible,
particularly because these data came from a urine sample. We
also find masses close to hexose and to HexNAc in these data.
Whereas the noncombinatorial approach does not assign a
high rank to HexNAc, the combinatorial approach finds it with
d = 8 because the connectivity improvement of HexNAc is
superior enough to justify its low frequency and incidence to
low-intensity peaks. Interestingly, we also find a mass at

Table 7. Most Frequent d = 16 Gap Pairs (i.e., mj − mi) on
1891 Glycoprotein Standard Spectraa

rank mass molecule

1 18.00000 water

2 0.02500

3 0.97500 neutron/deamidation

4 113.07500 I/L

5 203.07500 HexNAc

6 17.02500 ammonia

7 17.00000 ammonia

8 1.00000 neutron/deamidation

9 0.05000

10 101.02500 T

11 0.00000

12 18.02500 water

13 17.97500 water

14 27.97499

15 113.05000 I/L

16 203.05000 HexNAc

18 162.05000 Hexose

54 146.05000 dHex

914 291.12500 NeuAc

rank mass molecule

1 18.00000 water

2 0.02500

3 203.07500 HexNac

4 113.07500 I/L

5 0.97500 neutron/deamidation

6 17.02500 ammonia

7 0.00000

8 17.00000 ammonia

9 0.05000

10 162.05000 hexose

11 101.02500 T

12 35.99999

13 1.00000 neutron/deamidation

14 203.05000 HexNac

15 41.02499

16 17.97500 water

53 146.05000 dHex

1112 291.10500 NeuAc
aTop table ranks using the unweighted frequency of gaps; bottom
table weights each gap by the product of peak intensities pi·pj. Masses
are rounded to five decimal points.

Table 8. Results When Running the Combinatorial
Approach on 1891 Glycoconjugate Spectra with d = 16a

mass value manual interpretation
known a
priori? monoisotopic mass

1.02500 neutron/deamidation yes 1.00860

1.94080

12.01713

18.00000 water no 18.01056

30.02305

42.02500

57.00000 G no 57.02146

96.05000

101.04583 T no 101.04767

102.05000

113.06250 I/L no 113.08406

114.05188 N no 114.04292

128.06040 K/Q no 128.09496/128.058578

162.06580 hexose yes 162.04746

180.08750

240.10286
aMasses are reported in ascending order and are rounded to five
decimal points. Masses known a priori are labeled; these masses were
not provided to the model but instead are known true-positives in
advance.
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88.01555 Da. This matches the difference between several
pairs of saccharide oxonium ions:29 Neu5Ac (292.103 Da) −

HexNAc+ (204.087 Da) = 88.0162 Da; [Neu5Ac−H2O]
+

(274.092 Da) − [HexNAc−H2O]
+ (186.076 Da) = 88.0159

Da. Those are instances where the alphabet mass connects two
whole glycan oxonium ions, but it also connects [HexNAc−
2H2O]+ (168.066 Da) to 256.082 Da and [HexNAc−
C2H4O2]

+ to 232.081 Da. It appears that Neu5Ac generates
a series of oxonium ions 292.103, 274.092, 256.082, and
232.081 Da. The second and third result from the loss of a
water molecule, and the last results from the loss of two
carbons. HexNAc generates series of oxonium ions 204.087,
186.076, 168.066, and 144.065 Da. Similar to Neu5Ac, the first
two mass shifts are due to the loss of water molecules, and the
final shift is due to the loss of two carbon atoms.
The other two unknown masses are 30.01058 and 42.01071

Da. 30.01058 Da is very close to the isotopic mass of H2CO,
30.010565 Da. There are a few different things that can create
a mass equal to H2CO: the molecule hydroxymethyl, an alanine
and glycine substitution, a glycine and serine substitution, or a
formaldehyde-induced modification.26

Similar to 30.010565 Da, there are a few known
modifications that could create the 42.01071 Da mass: a
glutamic acid and serine substitution or acetylation.26 Similar
to 88.01555 Da, there may be other analytes or differences
between two other mass changes that form 30.010565 and
42.01071 Da.

Alphabet for 1891 Glycoprotein Standard Spectra
Including Neutron, Amino Acids, Sugars, and More. On
the 1891 glycoprotein standard spectra, our approach discovers
multiple amino acid masses without prior knowledge that are
in the samples containing peptides. For d = 16, the
combinatorial approach found glycine, arginine, and one or
both of lysine/glutamine when neither noncombinatorial
approach did. However, the weighted noncombinatorial
approach found alanine, which the combinatorial approach
did not find. Both the combinatorial and noncombinatorial
approaches found isoleucine/leucine and threonine.
The fact that the combinatorial approach finds glycine and

arginine is important because the amino acids in the alphabet
can form the chains LNGNL and TLNTT. LNGNL covers the
241st through 245th amino acids in the peptide sequence,

Figure 5. Example similar subgraph pair found using LSH on results from 1891 glycoprotein standard spectra. Two spectra (a,c) and their
corresponding de novo graphs (b,d) found using the combinatorial approach. Spectra are drawn with peaks used in the graph colored red and
unused peaks colored green. LSH is used to find this matching pair, and fast convolution finds the largest isomorphic subgraph in the pair (e).
Some peaks were removed from panels b and d for legibility. The top subspectrum is from “Locus:1.1.1.2518.2” and the bottom is from
“Locus:1.1.1.8343.2”.
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which includes the glycosylation site at the 244th amino acid
(the second asparagine in LNGNL) in the sequence.27

Similarly, TLNTT covers the 226th through the 230th amino
acids in the peptide sequence, which includes another
glycosylation site occurring at the 228th amino acid in the
peptide sequence.
Both the 30.02305 and 42.02500 Da mass differences are

within ϵ of the mass differences discussed in the previous
section, so all possible explanations of those mass differences
apply here as well. Similar to the alphabet for the 62 expert-
curated spectra, the mass found that is within ϵ of a neutron
mass is also within ϵ of deamidation.
Future Improvements. Possible improvements to the

model include parametrizing a penalty on masses too close to
one another or even triplets of masses where Δ1 ≈ Δ2 + Δ3.
The user could supply a list of peaks in which the program
should favor or be forced to connect, such as a precursor peak.
Because the method allows for us to seed the initial masses

from the combinatorial approach, there will probably be a
benefit to seeding them with the results of the non-
combinatorial approach or to seeding them with available
prior knowledge (i.e., the neutron mass and the four sugar
residues) or with any masses known to be in the sample a
priori.

Neither data set was charge deconvolved. However, charge
deconvolution would allow the graph-building method to only

connect peaks by Δ

z

k when the two peaks have a charge equal to

z.
An approach to making our method semisupervised could be

as follows: First, run the program as it currently is to get an
original alphabet. Second, try and find a known molecule in the
alphabet (i.e., through mass decomposition) and populate a
new alphabet with a family of molecules based on this known
molecule. For example, if you blindly find an amino acid, then
rerun the program with an alphabet larger than 21, seeding the
first 21 with the amino acid masses. (Use the “-f” flag to
protect the seeded alphabet masses.) Similarly, if you blindly
find a sugar, then rerun the program while seeding the alphabet
with sugar masses. This could be particularly useful for finding
something like a post-translational modification on a peptide
once an original alphabet containing amino acids is found.

Recurring Subgraphs

By finding an alphabet Δ and subgraphs that have a high
degree of isomorphism to one another (Figures 4 and 6), we
find results consistent with standard sugar trees.7 Because we
expect a good alphabet Δ to produce connected components
from different spectra with large isomorphic subgraphs, it may
be possible to invert this notion: By first clustering spectra that

Figure 6. Subgraphs with an amino acid chain matching glycosylation sites. Three spectra (a,c,e) and their corresponding de novo graphs (b,d,f)
found using the combinatorial approach. The top two spectra contain the amino acid chain LNGNL, and the bottom contains the amino acid chain
TLNTT. Graphs use red edges to mark charge z = 1, green edges to mark z = 2, and blue edges to mark z = 3. The nodes colored yellow represent
nodes touched by the amino acid chain. Panels a and b came from spectrum titled “Locus:1.1.1.8405.3”. Panels c and d came from spectrum titled
“Locus:1.1.1.8036.2”. Panels e and f came from “Locus:1.1.1.2523.2”.
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have similar peaks (up to mass shifts), we could possibly use
those clustered spectra to help estimate the alphabet Δ.
The convolutional/LSH approach proposed here may also

be used to find spectra containing graphs with graph products.9

This may be useful for inferring chemical structure from the
graphs built in this paper.
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(15) Dancı̌ḱ, V.; Addona, T.; Clauser, K.; Vath, J.; Pevzner, P. De
novo peptide sequencing via tandem mass spectrometry. J. Comput.
Biol. 1999, 6, 327−342.
(16) Bandeira, N. Spectral networks: a new approach to de novo
discovery of protein sequences and posttranslational modifications.
BioTechniques 2007, 42, 687.
(17) Cygan, M.; Mucha, M.; Weģrzycki, K.; Włodarczyk, M. On
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