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ABSTRACT: Accurate protein inference in the presence of shared peptides
is still one of the key problems in bottom-up proteomics. Most protein
inference tools employing simple heuristic inference strategies are efficient
but exhibit reduced accuracy. More advanced probabilistic methods often
exhibit better inference quality but tend to be too slow for large data sets.
Here, we present a novel protein inference method, EPIFANY, combining a
loopy belief propagation algorithm with convolution trees for efficient
processing of Bayesian networks. We demonstrate that EPIFANY combines
the reliable protein inference of Bayesian methods with significantly shorter
runtimes. On the 2016 iPRG protein inference benchmark data, EPIFANY
is the only tested method that finds all true-positive proteins at a 5% protein
false discovery rate (FDR) without strict prefiltering on the peptide-
spectrum match (PSM) level, yielding an increase in identification
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performance (+10% in the number of true positives and +14% in partial AUC) compared to previous approaches. Even very
large data sets with hundreds of thousands of spectra (which are intractable with other Bayesian and some non-Bayesian tools) can
be processed with EPIFANY within minutes. The increased inference quality including shared peptides results in better protein
inference results and thus increased robustness of the biological hypotheses generated. EPIFANY is available as open-source software

for all major platforms at https://OpenMS.de/epifany.
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B INTRODUCTION

Ever since the emergence of bottom-up proteomics experi-
ments,' mapping the identified peptides back to their most
plausible source proteins, the protein inference problem, has
been a key problem in proteomics.”~* High dynamic range of
protein abundance, limitations in digestion, separation, and
mass spectrometry result in incomplete coverage of the source
proteins by identified peptides. Reconstructing the source
proteins originally present in the sample should thus rely on as
much of the experimental evidence (i.e., peptide identifica-
tions) as possible, which also includes nonunique peptides
shared between multiple source proteins. Starting from a
notion of a probability of the presence or absence of peptides
in the sample, usually expressed by a score, we want to infer
the presence or absence of the proteins these peptides
originated from. Due to the common presence of ambiguous
peptides arising from one or more proteins sharing parts of
their amino acid sequence, this is not a trivial task.”

The scores for peptides are typically obtained by so-called
peptide search engines that match experimentally observed
spectra to theoretically derived ones based on the sequences of
an in silico-digested database of protein candidates. Those
peptide-spectrum matches (PSMs) then need to be scored to
be able to quantify the uncertainty in correctness of such a
match. Uncertainty in the assignment of a peptide sequence to
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a spectrum may be a consequence of multiple peptide
candidates matching to the same spectrum or a result of
imperfect data such as incomplete or noisy spectra as well as
incomplete protein databases.’

The formulation of protein inference algorithms naturally
leads to a representation of the relation between peptides and
proteins as a bipartite graph of nodes (proteins and peptides)
that are connected with an edge if a peptide is part of the
theoretical digest of the (parent) protein (Figure 1). Figure 1
also shows that the ambiguity of peptides across proteins may
lead to proteins without unique evidence (e.g., protein E) and,
in an extreme case, to experimentally indistinguishable protein
groups (e.g., one comprising proteins F and G, which share all
of their observed peptides). Reasons for ambiguous peptides
are manifold in biology and include, among others, homology,
alternative splicing, or somatic recombination. Depending on
the degree of ambiguity between the peptides of different
proteins, they are often clustered into various types of so-called
protein ambiguity groups.” It should be noted that those
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Figure 1. Example of a bipartite protein—peptide graph. Nodes with letters represent potential proteins from the input database. Colored nodes are
the peptides from in silico digest with the given enzyme (trypsin). Arrows are drawn when a protein may theoretically generate a peptide. Dashed
circles represent experimentally unobserved entities due to missing (NA) peptide-spectrum matches. Red peaks in the sketched hypothetical
tandem mass spectra were matched to a theoretical ion of the peptide that matched best to this spectrum. Probability scores roughly follow a dot-
product-based score but were invented for the sake of this example. Bold scores highlight the chosen match probability for this peptide (i.e., the
maximum probability). The left side shows the used protein database with its tryptic peptides (upper-case bold underlined substrings) following the
same color and number scheme as the nodes in the graph. Proteins in the same shaded curved rectangle comprise an experimentally
indistinguishable (ambiguity) group. The arrows on the bottom show the general directions of the two processes: causality in the course of the

experiment and inference based on the observed data.

groups can be defined solely either based on the experimentally
observed peptides or based on all theoretically possible
peptides.® Preliminary grouping (especially of indistinguishable
proteins) is often used automatically by inference algorithms to
solve a less ambiguous problem. While this is enough for
studies that only need to confirm the presence of any protein
in a group (using group-level inference probabilities), other
studies look for the effects of a certain isoform on a disease and
need to know how likely it is that this specific isoform was
expressed (therefore interested in single protein-level results).
Comparing results of inference methods on the same level
(wherever possible) is an important consideration during
benchmarking.

Early inference approaches resorted to simple rule-based
conclusions. If a protein is connected to n or more peptides—
where 7 is usually one or sometimes two to avoid so-called
one-hit-wonders—then it is declared present; otherwise, it is
considered absent. The problem with such approaches,
however, is the implicit overcounting of shared peptides. In
the presence of very large proteins like titin, false-positive
identifications may arise due to matching one of its many
peptides. Similarly, titin might be wrongly identified if it just
shares enough peptides with truly present proteins. Some
methods tackle this problem by ignoring shared peptides
(Percolat0r7’8) , employing maximum parsimony principles and
finding a minimal set of proteins explaining found peptides or
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PSMs (PIAY), iteratively distributing its evidence among all
parents (ProteinProphet”), or incorporating the evidence in a
fully probabilistic manner (Fido,'® MSBayesPro,"" MIP-
GEM'?) to make use of the “explaining-away” property of
Bayesian networks (BNs)."? Explaining-away is a term used in
probabilistic reasoning to describe the implicit conditional
dependency between multiple causes of a common effect
(when its probability is nonzero). In this case, knowledge
about one cause from other evidence or prior to inference
influences our belief about the other causes. In probabilistic
models with synergistic parametrizations like the ones in the
aforementioned Bayesian tools, this means that if one protein
is very likely to be present from its unique evidence, it is
already a sufficient explanation for peptides that it shares with
other proteins (without evidence) and thereby affects their
probability in a negative way. This leads to a probabilistic type
of parsimony.

On a gold standard data set, it was shown by The et al.'*
that fully probabilistic models perform among the best in terms
of the pure identification task. However, current solutions are
computationally demanding. Additionally, in the case of
candidate protein databases with many cases of peptides
being shared between truly present and absent proteins, the
reported probabilities are not a good basis for well-calibrated
target-decoy false discovery rates (FDRs) as they yield poor

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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approximations of the true FDR. This leads to over-/
underestimation of the true amount of false discoveries.

In our new approach Efficient Protein InFerence for ANY
protein—peptide network (EPIFANY), we used a fast
approximate inference algorithm called loopy belief propaga-
tion (LBP), which has already been shown to perform well in
solving other types of probabilistic graphical models (e.g.,
models used in important information theoretic algorithms like
the error-correcting turbo codes'® as well as on quick medical
reference (QMR) disease diagnosis networks'®). Using LBP,
we can achieve drastically improved runtimes than other
Bayesian approaches without any approximations on the
underlying graph itself. We improved the calibration of the
resulting FDRs by introducing an optional regularized model
with max-product inference and a greedy protein group
resolution based on the reported protein probabilities.

B METHODS

In the following section, we define the underlying probabilistic
graphical model used to describe the protein inference
problem including all of its conditional dependencies. Then,
we present the inference algorithm, which allows one to
efficiently calculate probabilities for peptides, proteins, and
protein groups. In addition, we provide information on the pre-
and postprocessing of the data.

Model

The model we chose for protein inference is based on a
Bayesian network (BN) representation. The protein—peptide
graph (Figure 1) encodes the conditional dependencies of
proteins and their peptides. The advantage of this specification
of conditional (in-)dependencies is the resulting factorization
of the high-dimensional joint distribution into smaller
distributions, namely, prior distributions for the proteins and
conditional probability distributions (CPDs) for the peptides
given their parents. In the case of the binary representation for
every peptide and protein, these distributions are discrete and
correspond to conditional probability tables (CPTs).

Additionally, the Bayesian network needs to be para-
metrized. Although the factorization into smaller distributions
decreases the number of parameters, each CPT still needs 27
parameters, where p is the number of parent nodes, to be set or
learned. By recognizing the fact that in the generative process
from proteins to peptides the presence of any of the parent
proteins is enough to potentially produce a peptide, we can
reduce the number of parameters further when specifying the
conditional probability according to a noisy-OR model."” In its
original form, the network using the noisy-OR model requires
the following parameters:

e y, prior for protein with index p

® @, noisy-OR emission probability of a protein p
generating peptide € and

e f. noisy-OR leak probability for a peptide & being

generated by chance.

For now, we employ the same simplification used in the Fido'°
algorithm by assuming equality among all @ and the presence
of only one . Additionally, a constant prior y for all proteins
prevents biases on the protein level when no further
information is available. The parameters a, 5, and y either
have to be specified manually or are by default selected from a
grid of initial values based on target-decoy classification
performance and probability calibration (see the Implementa-
tion subsection for details).
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One addition to the original model is an option to add prior
probabilities for the random variables (RVs) that model the
number of proteins that might produce a certain shared
peptide. These priors were designed empirically to decrease
with a rising number of present parents. In the course of
inference, this results in a form of regularization on the number
of parent proteins and a more uneven distribution of the
evidence from shared peptides starting at the most likely
producing proteins (based on their beliefs from the rest of the
network), especially in conjunction with the so-called max-
product inference. For a more detailed description of the
parameterization including equations and an example, please
refer to the Supplementary Methods (Section 25.1).

Algorithm

Once the protein inference problem is modeled as a
(factorized) probability distribution, probabilities can be
inferred on random variables of interest. Usually, probabilities
of interest are the marginal probabilities of proteins, protein
groups, or peptides, given the evidence on the PSM level, the
so-called posterior probabilities.

As peptide-level evidence, the algorithm first reads the PSM
probabilities and the associations with their parent proteins
from spectra searched with a peptide search engine. It then
aggregates PSM probabilities at the peptide level by picking the
maximum PSM probability per unmodified peptide sequence
and filters out peptides with extremely small probabilities (e.g.,
below 0.001).

A naive approach to inference in a Bayesian network would
be to create a large joint probability table for each connected
component of the network and marginalize each protein by
aggregating the probabilities of all possible configurations
leading to the same state of the current protein of interest. To
make this approach viable for at least small to medium-sized
problems, previous tools resorted to (Gibbs) sampling'' or
sped up calculations by caching results and making use of
symmetries arising due to the chosen model.'” A possible
symmetry to be exploited is the dependence of the peptide
probability only on the number of parent proteins (not their
exact combination). This symmetry consideration reduces the
number of different input configurations in the presence of
indistinguishable groups. Although this procedure has been
implemented efficiently in tools like Fido, the worst-case
runtime is exponential in the number of proteins in a
connected component. Reducing the size of the connected
components by splitting them at low-probability peptides is a
reasonable approximation only if the probability cutoff is not
too high. Using the looping version'® of Pearl’s belief
propagation algorithm,'” even nontree structured graphs with
cycles (such as all but the most simple protein—peptide
networks) can be processed efficiently while keeping flexibility
in which types of factors (probability table-based factors,
functionlike factors, convolution-tree-based adder factors, etc.)
on which sets of random variables are used. Convolution
trees'® (CTs) leverage fast Fourier transformation to calculate
the convolution of probability distributions. Additionally,
convolutions are performed in a hierarchical procedure to
keep the sizes of intermediate tables as small as possible.
EPIFANY uses CTs to propagate probabilities between
peptide and protein (group) levels efficiently even at peptides
with many parents (see Supplementary Methods Section 25.2
for details). To apply loopy belief propagation to our problem,
we create a factor graph (see Figure 2 and Implementation

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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Figure 2. Factor graph created for the loopy belief propagation algorithm based on the example in Figure 1 (same color and letters). Each node
represents one factor. Annotations on the factors describe the set of random variables (RVs) comprising the dimensions of its initial potential and
in later stages its updated beliefs. Circles are table-based factors; diamonds are convolution-tree (CT)-based probabilistic adders. The set of RVs on
CT-based adders is implicitly defined by the union of variables from neighbors on the left side of the graph (indicated by a plus sign) and an output
variable. Although edges are displayed unidirectionally to represent the causality, messages will be passed in both directions.

subsection) from our model and initialize messages on all
edges in both directions uniformly. In the following, we will
use the term “belief” for the current marginal probabilities of a
set of variables in a factor. All beliefs on a factor are initialized
according to their priors, evidence, and/or the likelihoods
calculated based on the parameterization (i.e., noisy-OR
parameters and regularization). Lastly, starting from factors
that carry initial information, the algorithm iteratively queues,
updates, and passes messages between the factors (to update
their beliefs) until messages do not change anymore (i.e.,
convergence is reached in terms of their mean-squared error).
By default, messages with the highest residuals, compared to
the last message, gain the highest priority for the next
iteration.'” Beliefs are updated by incoming messages following
the HUGIN algorithm.”® Details about the algorithm can be
found in the Supplementary Methods on an applied example
(Section 25.2). Since the loopy belief propagation is an
approximate algorithm on nontree structured parts of the
network and convergence is an important concern, messages
can additionally be dampened (by a “momentum”) in a way
such that the updated message is a convex combination of old
and new messages.' The idea of damping for solving the
problem of oscillating messages is further discussed in the
Limitations section and on an example in the Supplementary
Methods (Section 25.3).
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Implementation

EPIFANY starts with the output from probabilistic rescoring
tools applied to peptide search engine results. It writes the
PSM probabilities and associations from PSMs to proteins into
OpenMS’ datastructures. After aggregating PSM probabilities
at the peptide level and creating the bipartite graph from the
peptide mapping to potential protein candidates as described
in the previous section, the resulting protein—peptide graph is
split into connected components by a depth-first search. Then,
using the OpenMP 2.0 APT*' in a dynamic scheduling mode,
the processing of the connected components is distributed on
as many CPU threads as allowed by a user-specified parameter.
For each connected component in the graph, a factor graph is
built, equivalent to the Bayesian network specified in the
Model section. The Bayesian network represented by the
bipartite graph is converted to a factor graph as follows
(example shown in Figure 2). First, to allow querying
posteriors for indistinguishable protein groups, an additive
factor is introduced for all sets of proteins that share the same
set of peptides. Then, to reduce loops, save computations, and
avoid oscillations later on, we also create peptide cluster factors
that calculate and hold the current beliefs for the number of
parent proteins for sets of peptides that share the same parent
proteins or parent protein groups. Both of these factor types
use convolution trees for an efficient adding of discrete random
variables.'® It is worth noting that this hierarchy could also
include more intermediate factors, but since no subquadratic

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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algorithm is known to us to create an optimal hierarchy for the
parent protein (sub-)sets, the algorithm uses only two levels of
aggregation. Also, this aggregation is performed only if the
number of contributing proteins or protein groups is greater
than one (see, e.g., peptide E in the example). Finally, for each
peptide, a factor is added to the graph, which holds the CPT
for the probability of a peptide being present given the number
of parent proteins. The factor nodes on the very left and very
right are just singleton factors to keep track of the beliefs on
proteins and peptides. They are initialized with priors
(parameter y for proteins) and evidence probabilities (for
peptides, e.g., from Percolator) and, after convergence of the
algorithm, hold the final posteriors to be queried. This allows
the simultaneous reporting of protein, protein group, and
updated peptide-level posteriors as the outcome of the
inference on this unified model.

An additional outer loop evaluates the model for (by default
42) points on a three-dimensional grid over the three
parameters «, 3, and y based on a convex combination of
partial AUC (for target-decoy classification) and posterior
probability calibration (i.e, comparing posterior-based and
target-decoy-based FDRs). Details on parameter optimization
can be found in Supplementary Methods (Section 25.4).

As an optional postprocessing, a greedy protein group
resolution can be performed. It implements a probabilistic
maximum parsimony model, where protein groups are ordered
by their posterior probability, and starting from the best group,
each greedily claims all peptides that it potentially generates
until all peptides have been claimed. Proteins or protein groups
without any remaining evidence are then deleted or, if
preferred, implicitly assigned a probability of 0.

Data and Data Preprocessing

To benchmark the main advancements of EPIFANY and to
show the different strengths of the tool, we focused on three
distinct data sets.

Accuracy and calibration can best be measured on a data set
like the iPRG2016 benchmark data with a set of known
ground-truth Protein Epitope Signature Tags (PrESTs).'* Two
sets (labeled A and B) of known PrESTs were designed to
share a large number of peptides, spiked into an Escherichia coli
lysate background in three different experiments, and then
measured in triplicates: one experiment each exclusively
containing one of the spike-in sets (A, B) and a third
containing both sets of PrESTs (A + B). For all sets, we
evaluated the performance on identifying the PrESTs of A/B/
A + B while having the full database of spike-ins (from A + B),
entrapment proteins (i.e., intentionally absent PrESTs), and
background proteins as potential candidates. All experiments
contained an equimolar concentration of each PrEST. To
avoid confusion, we will simply use the term “protein” instead
of PrEST in the rest of the manuscript.

A small Universal Proteomics Standard 2 data set was
additionally analyzed with the same pipeline as for the iPRG
data to better evaluate the pros and cons of the methods in
detail.

With the goal to measure the scalability of the new tool, a
third, larger-scale data set was analyzed. It is part of an
unpublished study and consists of two measurements of
human immune cells on a long gradient at two different time
points in duplicates.

iPRG2016 Data Set. Raw files from the corresponding
PRIDE** project PXD008425 were converted and centroided
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with msConvert™ on all levels. The fasta database provided
together with the study was used to generate a decoy database
through homology-aware (i.e, peptide-based) shuffling of
amino acids with the OpenMS’ DecoyDatabase**** tool. Then,
spectra were searched using Comet (2016.01 rev. 3),%¢
allowing a 10 ppm precursor mass tolerance and one missed
cleavage for fully tryptic peptides. As fixed modification, we
required carbamidomethylation (C). Variable modification was
set to oxidation (M). After merging the results over replicates
(by creating the union of proteins and concatenating PSMs),
we added target-decoy annotations on the protein and PSM
levels. To obtain better discrimination through Percolator 3.02,
we extracted additional features specific for the Comet search
engine (see Section 25.5 in the Supplementary Methods and
the corresponding Supplementary Table S1) before running
Percolator with standard settings for the PSM score
recalibration and basic protein inference. For all other methods
tested, we used the PSM-level posterior error probabilities
reported by Percolator as the input after filtering them at
different levels of PSM confidence—once slightly by removing
PSMs with error probabilities higher than or equal to 0.999 (to
be consistent with the defaults in Fido and EPIFANY), once at
5% FDR, and once at 1% FDR. For comparability with
Percolator, which supports only group-level reports, Fido and
EPIFANY were run with group-level inference as well, thereby
querying posteriors on the (indistinguishable) protein group
level (ie. reporting the probability of at least one member
being present). ProteinProphet and EPIFANY then report
both group-level and single protein-level probabilities. PIA’s
recommended default inference procedure “spectrum extrac-
tor” also reports groups. Its “report all” option without any
parsimonious steps during inference was additionally tested for
completeness.

UPS2 Standard. Raw data for the UPS2 standard in
solution was downloaded from http://data.marcottelab.org/
MSdata/Data_13/. The highest concentrated sample (30 uL)
was chosen to potentially yield the most discoverable proteins.
The converted mzML was reuploaded for reproducibility.”” A
database with the 48 known proteins in various concentrations
and 6 differently shuffled decoys for each protein was used as
provided by the lab. One set of decoys was masked before the
Comet search such that full ground-truth information is at no
point available for any of the methods. Comet settings were the
same as for the iPRG data. The different FDR cutoffs (1 and
5%) at which PSMs were filtered were corrected for the factor
of additional protein decoys present. During evaluation of
protein FDRs, we included the knowledge about both decoys
and entrapment proteins again by counting false positives with
a factor of 1/6.

Large-Scale Data. After searching the spectra of four runs
with MSGF+”* (unspecified number of missed cleavages, 10
ppm precursor mass tolerance, fully specific trypsin/P as
enzyme, fixed methylthio (C) modification, variable oxidation
(M)) against the whole human part of the UniProt database
(SWISS-PROT + TrEMBL)* (release 2017 06, 70939
proteins plus peptide-level pseudo-reversed decoys appended)
and merging the samples, the data set can be summarized by
the following numbers:

e 119921 proteins (matched by at least one PSM);

e 533218 different peptide sequences;

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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Figure 3. Summary statistics on the identification performance of different inference methods at a 5% protein entrapment FDR on the iPRG2016
data set, samples “A” and “B”. PSMs were filtered at two distinct levels (at 0.001 posterior probability and a stricter 0.01 PSM FDR). Upper:
Number of true-positive proteins found. The maximum number of true positives according to the ground-truth database given is 191 for B and 192
for A, as indicated by a dashed horizontal line. Lower: The percentage of the maximum area under the partial receiver operating curve (% pAUC)
as a measure of how quickly methods accumulate true positives at increasing FDR levels until the chosen cutoff at 5% protein entrapment FDR.

e 807663 PSMs (including tied matches due to
isoleucine/leucine ambiguities or modification loca-
tions); and

e 734522 spectra.

Again, PSMs were rescored and probabilities extracted via
Percolator 3.02 by training its support vector machine on a
subset of 250000 PSMs for speed and memory efliciency.
Since, currently, there is no way to run protein inference in
Percolator separately, the corresponding options were set to be
activated as well. The identifications with MSGF scores as well
as Percolator scores and features were made available publicly
for reproducibility.®® To evaluate the computationally most
demanding task for the Bayesian approaches, Fido was run in
the single protein-level mode (no groups to exploit
symmetries). EPIFANY calculates both levels simultaneously
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by default. Other parameters were left with their defaults in all
tools, except for filtering out PSMs under 0.001 probability in
ProteinProphet and PIA (to be comparable with the defaults in
Fido and EPIFANY). Times and peak memory usage were
measured with the Unix utility time on a two-socket Intel
Xeon X5570 machine (i.e., 16 possible threads) with 64 GB of
RAM.

Benchmarked Tools and Tool-Specific Adaptions. The
tools tested represent a diverse set of algorithms. PIA 1.3.10
was chosen as the spectrum-level parsimony approach
considering shared peptides. Percolator 3.02 represents
aggregation-based approaches on unique peptides only.
ProteinProphet (compiled from TPP 5.1) was included as a
commonly used iterative and pseudo-probabilistic heuristic,
which considers shared peptides as well. Lastly, Fido (in the
version shipped with OpenMS) is the representative of

https://dx.doi.org/10.1021/acs.jproteome.9b00566
J. Proteome Res. 2020, 19, 1060—1072
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Bayesian methods with a very similar model to EPIFANY’s but
with a different inference procedure. The selection is also
based on other recent evaluations of protein inference
methods.'**!

Since PIA accepts the OpenMS’ idXML format by default,
the only change that was done was a renaming of the PSM
score type name resulting from Percolator to OpenMS’
posterior error probability type so that PIA accepts the scores
and interprets them as error probabilities. Inference was
performed with and without PIA’s own FDR estimation. The
main manuscript shows the results directly on Percolators’
PEPs as they yield a fairer comparison.

For ProteinProphet, OpenMS’ IDFileConverter was used to
write the error probabilities from Percolator into a pepXML
file that is compatible with ProteinProphet to make sure that
all tools start from the same set of scores. The protein FDR
estimation procedures of the tools were used whenever
possible. For ProteinProphet, we used the same FDR
estimation procedure as for EPIFANY with a concatenated
(Niecoy + 1) 32

target ’
Groups are counted as decoy if they consist of only decoy
proteins. Unless explicitly stated otherwise, FDRs were
converted to g-values and are used synonymously throughout
the text.

target-decoy database and the equation FDR =

B RESULTS AND DISCUSSION

EPIFANY Shows Improved Identification Performance

Identification performance of protein inference was bench-
marked using the iPRG2016 data set, which was specifically
designed to include 192/191 ground-truth proteins and a
database with additional entrapment sequences. This allowed a
comparison of tools at specific known entrapment protein
FDRs with different cutoffs at the PSM and protein levels.
Further, a more detailed investigation of the impact of
unfiltered PSMs on a UPS2 data set with varying
concentrations of known proteins was performed.

Unpooled Samples A/B with PSMs Filtered at 0.001
Posterior Probability. Results on the loosely filtered,
unpooled experiments of the iPRG2016 study show that
EPIFANY (with greedy group resolution enabled) yields the
highest count of known true-positive proteins among the
tested methods (Figure 3, top). On sample B, EPIFANY
identifies 9.14% more true positives (TPs) at 5% FDR than the
second-best method for this measure, PIA. Considering the
low number of missing true positives to be identified, this
increase is of even greater importance. On both samples, PIA
and ProteinProphet do not perform well on just mildly filtered
sets of PSMs. Additionally, a special case occurs for sample B,
where ProteinProphet’s reported proteins are first found at
entrapment g-values higher than 5%, and therefore an empty
bar is shown. The performance of ProteinProphet might be
explained by the different pipeline® usually used to create its
input. Furthermore, ProteinProphet performs a different and
more aggressive protein grouping not only by aggregating
indistinguishable groups but also by subsuming groups into
more general protein ambiguity groups.

However, since this data set is limited in the number of
known proteins that can be found (191 in sample B, 192 in A),
the number of identifications at a certain cutoff does not
indicate the full strength of our new method. Not only does it
identify more known spike-ins, it also finds them at overall
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lower entrapment FDRs than most other methods and thus at
a threshold where it is reporting fewer false positives. This is
evident in the quickly rising curve of the receiver operating
characteristic (ROC). On sample B, EPIFANY is covering the
largest partial area under the curve of all tested tools
(truncated at nine false positives equaling the maximum
number to reach a 5% entrapment FDR; abbreviated pAUC).
On the other sample (A), Percolator slightly outperforms
EPIFANY in this regard. This pAUC measure is summarized in
the lower part of Figure 3.

Together with Fido, EPIFANY is also the only tool reporting
all correct proteins of sample B after all—though Fido finds all
191 present proteins at an entrapment FDR of 47% (beyond
the cutoff in the figures). The other tools tested on loosely
filtered sample B (even without any protein FDR cutoff)
completely ignore or filter some true positives, most likely due
to missing/insufficient evidence, e.g.,, missing unique peptides
in Percolator (which reaches 187 true proteins on B at its
maximum FDR of 56%). On sample A, no method is able to
identify all true positives at any protein-level cutoff.

When applied to data without stringent PSM FDR filtering,
PIA achieves only consistently moderate pAUCs (around 70—
75%). Therefore, we evaluated all tools again with the often-
suggested precutoff of 0.01 (in the Supplementary Results also
with 0.05) PSM FDR.**

Unpooled Samples A/B with PSMs Filtered at 1%
FDR. Different methods are affected by prefiltering on the
PSM level in various degrees. While Fido struggles to perform
well on 1% cutoffs on both unpooled samples, PIA now slightly
outperforms EPIFANY (Figure 3) on the pAUC measure of
sample B. EPIFANY still finds all known true positives at the
lowest entrapment FDR (0.035 vs 0.04 in PIA) and achieves
the best agreement between reported FDR and entrapment
FDR (Supplementary Figure S1). Supplementary Table SS
suggests that EPIFANY’s parameter optimization actually
missed configurations with almost perfect pAUCs (due to
balancing calibration and not having information about the
labels of entrapment proteins).

On sample A with a strict 1% PSM FDR cutoff however, it is
again EPIFANY (almost tied with Percolator) that shows the
overall steepest ROC curve. PIA’s performance first recovers at
around 2% entrapment FDR and finds, together with
EPIFANY, most (181) of the 192 known true positives at
5% protein entrapment FDR (Figure 3). Percolator behaves
robust to additional data from low-scoring PSMs but misses
out on several true positives on sample B in both strictly and
loosely filtered test cases. Although ProteinProphet’s number
of identified true positives (TPs) benefits significantly from
prefiltering, its pAUC does not.

Identification Performance at 1% Protein Entrap-
ment FDR. Since a cutoff of 1% FDR on the protein level is
often suggested for reporting, we compared performance at
this stricter protein-level cutoff as well. However, we want to
emphasize that due to the small number of known true
positives, an evaluation of 1% entrapment FDR is now defined
based on the ranking of the first two false-positive entrapment
proteins only. This results in both performance measures
(pAUC and number of TP) being very similar and overall less
robust (Supplementary Figure S21).

The general trend that can be seen at a 5% protein
entrapment FDR is also valid at this stricter FDR: PIA (180
TP on sample B; 1% PSM FDR) and Percolator (175 TP on
sample A; both PSM-level cutoffs) can reach top identification

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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performance but also can fall behind significantly, as can be
seen on some of the tested configurations (e.g,, max. 126 TP
for PIA on A and max. 75 TP for Percolator on B). Fido is
robust across samples without a strict PSM cutoff (min. 150
TP) but does not perform well at strict PSM-level filtering.
Even more pronounced now is the reduced performance of
ProteinProphet (max. S5 TP in any combination). EPIFANY
shows robust performance across all tested combinations of the
sample and PSM-level filtering and identifies 147 true-positive
proteins on sample B and 164 on sample A (independent of
any tested PSM filtering); however, its full strength here is
better reflected in the pAUCs at higher, more stable cutoffs,
which implicitly include lower ones (Figure 3, bottom), or in
the full ROC curves shown in the Supplementary Results.
Potential Advantages of Unfiltered PSM Input for
Protein Inference. While a filtering on the PSM level before
inference indeed seems beneficial to identification performance
for at least PIA and ProteinProphet on the subset of known
proteins, we argue that in general with Bayesian methods (as
with most machine learning approaches), inference on as much
data as possible may have several advantages as well.
However, specific examples can be shown more easily on
smaller ground-truth data sets such as the universal proteomics
standard 2 (UPS2), where it can be observed that with full
information available, EPIFANY is able to improve the ranking
of low-concentrated true proteins (e.g., lysozyme C) compared
to some decoys (Figure 4). With milder filtering at the PSM
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Figure 4. Number of true-positive UPS2 proteins (max. 48) plotted
against the FDR at the protein level. No protein groups were present.
The subplots from left to right show the results of protein inference
on PSMs filtered at increasingly strict cutoffs. Left: PSMs were filtered
at 0.05 PSM target-decoy FDR. Right: PSMs were filtered at 0.01
PSM target-decoy FDR. The results from a run of EPIFANY on
completely unfiltered data were overlaid as a dashed line over both of
the subplots. Note that the y-axis was cut at the minimal number of
true positives observed.

level, inference methods can rely on additional data from low-
scoring PSMs. Decoys that acquired one or few high-scoring
PSMs can then more easily be penalized based on the number
of bad PSMs that simultaneously match them. EPIFANY on
unfiltered PSMs therefore achieves the highest true-positive
count at almost all protein FDRs across all analyzed cutoffs and
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methods (Figure 4). With strict FDR cutoffs on the PSM level,
even medium-scoring peptides of the true proteins are often
not considered since their PSMs do not pass the threshold.
Therefore, with stricter cutoffs, much of each method’s
performance depends solely on the ordering among the top-
scoring peptides of each protein as established by the PSM
rescoring procedures (here Percolator).

Another advantage of less strict cutoffs is that previously
indistinguishable proteins (above the desired protein FDR
threshold) may become distinguishable. On iPRG2016 sample
B for example, EPIFANY on loosely filtered PSMs is able to
resolve 3 additional indistinguishable protein groups (of
previously 16 on filtered data).

In any case, good performance on both strictly filtered and
almost unfiltered data shows the increased robustness of our
method. Supplementary Figures S10 and S11 also suggest that
additional PSMs from other sources (in this example wider
precursor search windows and additional variable modifica-
tions) can be more easily tolerated or even used
advantageously in a Bayesian setting (see the curves of Fido
and EPIFANY). With those settings, PIA struggles in the very
low FDR ranges even with strict cutofls.

FDR Estimates of EPIFANY Are More Realistic than Other
Estimates

Before the introduction of a regularized model and greedy
resolution as implemented in EPIFANY, Bayesian methods
were shown to report overly optimistic FDRs in the case of
data sets like the one tested here.'* This is due to the fact that
on iPRG2016 samples A and B although only a small number
of proteins are known to be present in the sample, the spectra
were searched against an additional equal number of absent
proteins designed to share peptides with the present ones
along with an even bigger number of 1000 absent random
entrapment proteins. Unregularized models using standard
(sum-product) inference like Fido then would conservatively
assign probabilities far from O to proteins with similar or no
unique evidence that share one or more peptides with truly
present proteins. Regularized max-product inference in
EPIFANY now makes the assumption that it is less likely for
peptides to be generated by many proteins and preferentially
distributes the evidence among proteins with the highest
unique evidence. Greedy resolution additionally makes a
definite, unprobabilistic choice among those proteins based on
their posterior probability. By postponing this decision until
the end of an identification pipeline, however, reliable
uncertainty estimates are available up to the very last step.
Even compared to conservative methods ignoring shared
peptides for FDR estimation (e.g., Percolator), FDRs reported
by EPIFANY are often closer to the known entrapment FDRs
(also across different PSM cutoffs on A and B). The differences
between reported FDR and observed entrapment FDR can be
seen, e.g, for the barely filtered sample B in Figure 5, which
shows up to a 15% cutoff (since higher cutoffs are usually not
of interest). The cutoff was set this high to generate more
robust measures of calibration (by being able to include more
point estimates for each method). For sample A, the increase
in calibration compared to Percolator is seen mainly in the
higher FDRs, but it calibrates as well or better than PIA with
simultaneously improved identification performance. Addi-
tional pseudo-ROC curves and calibration plots for unpooled
samples A and B, different cutoffs, and the full FDR ranges can
be found in Supplementary Figures S1—S6.
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Additionally, with the optional greedy postprocessing step
turned off, regularized inference in EPIFANY on its own offers
a balance between better calibration (at least in low
entrapment FDR ranges of up to almost 2%) on the one
extreme (A or B) and identification performance on the other
(A + B), where it recovers the remaining known true proteins
between entrapment FDR ranges of 3 and 8% (compare
Supplementary Figures S1—S6 vs S7—S9). This is due to the
fact that proteins, which were identified through shared
peptides alone, are then assigned a lower probability than the
proteins with additional unique evidence but still outscore
many of the decoy or false entrapment proteins. Heuristic
approaches like greedy, parsimonious, and “unique peptide”
methods cannot model the actually present sharedness in such
data sets. “Report all” methods (e.g., through the correspond-
ing option in PIA) perform well on that extreme but are not an
alternative for data sets deviating from this very optimistic
assumption.

Scalable Algorithms Allow Application to Large-Scale
Data Sets with Vastly Disparate Discoveries

A common challenge with inference on generative Bayesian
models was their scalability due to the speed of the method,
which is inherently related to the complexity of the underlying
model. The efficiency of EPIFANY enables full Bayesian
inference on problem sizes that were previously intractable
given the used model. On the loosely filtered human data set
searched against the full UniProt database, even non-Bayesian
approaches struggle with the high connectivity in the resulting
protein—peptide graph. This is evident in Figure 6, which
shows the runtimes and memory consumption of the different
tools. Fido took longer than a day of runtime (33.5 h),
ProteinProphet did not finish after a week, and PIA required
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Figure 6. Memory usage in megabytes (upper) and runtimes in
minutes (lower) on the large-scale human data set filtered at 0.001
PSM probability. ProteinProphet did not terminate within a week of
runtime and was thus not included in the figure. EPIFANY uses one
thread by default. Another bar represents EPIFANY with multi-
threading on 16 threads enabled via the thread parameter (“EPIFANY
(16 threads)”.).

more than 2 days of processing (without considering
compilation of the intermediate graph format used by PIA).
While multithreaded EPIFANY (16 min) is even faster than
(subset-trained) Percolator (33 min), it should be noted that
most of Percolator’s runtime consists of peptide rescoring and
internal training of a support vector machine model. The same
argument holds for memory usage. Although running
Percolator just for protein inference is, to our knowledge,
currently not possible, it is likely that the actual runtime on
that data set will be in the single-digit minutes. EPIFANY and
Fido were both run with parameter optimization enabled.
Runtimes for EPIFANY are roughly linear in the number of
parameter sets tested although there are sets that lead to more
oscillation and therefore may take longer than others.
Concerning multithreading, none of the methods except for
EPIFANY has the option to pass the number of threads to be
used. However, it seems from the log that PIA automatically
distributes work across all of them. Percolator supports
automatic multithreading across three threads. EPIFANY was
run once with 1 thread and once with all 16 threads enabled. A
full 16-fold speedup is yet far from being achieved due to the
different sizes in connected components processed by each
thread and the synchronization required during parameter

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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evaluation. For completeness, Fido on the easier problem of
“group inference only” took 5.5 h less (28 h).

Except for the lower theoretical complexity of the algorithm
compared to methods like Fido with a similar model, it is
difficult to make absolute statements about the scalability of its
runtime due to its dependency on multiple factors (e.g, the
size of connected components, their connectivity, and
convergence; Supplementary Figure S20).

In general, it starts with a bigger overhead than all of the
other methods due to the allocation of the tables and messages
for every parameter set. Even very small components where
posteriors could be quickly calculated naively are currently
processed with the general LBP algorithm. This leads to
disadvantages on small- and/or low-complexity data sets (e.g,
on filtered iPRG2016 A + B, EPIFANY needed 86 s instead of
2.5-36 s like the other methods on a MacBook Pro 2014;
Supplementary Table S2). EPIFANY starts to gain from the
theoretical advancements on medium—complex data as in the
case of loosely filtered PSMs from the A + B sample.
Therefore, it already is faster (183 s) than PIA (302 s) and
ProteinProphet (498 s). Fido still benefits from the very
efficient implementation on small connected components and
completes in 80 s. For comparison, the full Percolator run on
all spectra including inference took 312 s (see also
Supplementary Table S3). Figure 7 additionally shows the
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Figure 7. Runtime in seconds of EPIFANY (16 threads) for different
PSM-level thresholds on the human data set. The total resulting
number of potential peptides and proteins was used as the x-axis.

scalability of our method based on different posterior
probability filter thresholds on the large-scale data set. A
linear trend is observed here but cannot be guaranteed in
general as explained above.

It is expected that in data sets with more spectra than our
human data set, the complexity and size of separate connected
components will at some point reach saturation (on the same
protein database) such that the growth in runtime of inference
methods decreases. More and more PSMs will start hitting the
same peptides and form less new paths between previously
independent proteins until all peptides are observed.

The efficiency of EPIFANY should allow an application of
Bayesian methods also on databases with a higher amount of
ambiguities such as proteogenomics or metaproteomics
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databases as well as in the context of post-translationally
modified proteoforms.

We also empbhasize that an application of a Bayesian method
incorporating results from shared peptides may lead to
different discoveries compared to methods currently used on
big data sets that ignore this complication.”*> On the largest of
the tested data sets for example, Percolator considers only
26 182 of the S1 576 potential target proteins (with at least one
PSM above the 0.001 probability cutoff as used in EPIFANY).

Implementation Grants Flexibility in Input and Output
Information

In addition to overall increased performance, EPIFANY’s
general Bayesian framework also permits the inclusion of
auxiliary information (besides PSM data) in a convenient
manner. The new implementation allows the usage of arbitrary
protein priors for any protein that allows integration of
information from complementary RNA-seq experiments, which
has been shown to improve protein identification.’® Due to its
modular graph structure, it is also easy to add additional
probabilistic evidence on the peptide level in the future. Since
the factor graph includes both single proteins and indis-
tinguishable protein groups, both results can be output
simultaneously. It is not possible to report single protein-
level probabilities of proteins in indistinguishable groups in
either PIA—its “report all” option allows that but skips
parsimonious inference altogether—or Percolator. Another
novelty is the reporting of updated peptide-level posteriors that
can be used to rescore and improve the FDR peptide level,
yielding increased target-decoy classification performance by
up to 6% (measured on the full target-decoy-based AUC). This
effect arises from the fact that the information from sibling
peptide” in the graph was now propagated and incorporated
into every peptide’s posterior.

Limitations

Since the algorithm’s grid search explores multiple para-
metrizations of the model, there might be settings in which, at
some point during LBP, contradicting messages are generated
that have disagreeing beliefs about the probability of a protein
or peptide (e.g,, from evidence of different parts of the graph).
This can often be solved by a stepwise increase in damping in
later iterations (see also Supplementary Methods Section
25.3). In extreme cases, however, it can lead to interruptions in
the inference on that part of the graph (since, e.g, zero
probabilities cannot be recovered). In the latter case, we
evaluate the (failing) parameter set by using the prior
probabilities of the affected proteins (assuming no knowledge
could be gained for those proteins). In the case of
nonconvergence, due to too many iterations, the current
beliefs for a protein are used. However, those cases are rare and
usually seen in very large components caused by extreme
parameter sets and evidence only.

Also, due to the fact that the parameter estimation is based
on target-decoy annotations, our method is affected by the
composition of the decoy database. However, as shown in
Supplementary Figure S3, different random shuffles of the
iPRG2016 database resulted in comparable identification
performances with a median partial AUC of 92% and a
median absolute deviation of one percent point.

Furthermore, group-level inference is still based on
experimentally indistinguishable proteins, which hinders
reproducibility of the specific groupings across multiple
runs.® If other types of groupings are to be performed, this

https://dx.doi.org/10.1021/acs.jproteome.9b00566
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has to be reflected in the input before running inference (e.g.,
by merging protein IDs beforehand).

Availability

EPIFANY runs on all major platforms (Windows, Linux,
OSX). It is available under an open-source license (BSD three-
clause) at https://openms.org/epifany. This website also
contains demo data, a manual, binary installers for all
platforms, and links to the source code repository. EPIFANY
relies on the Evergreen inference library released by O. Serang
under an MIT license, which can be found under https://
bitbucket.org/orserang/ evergreenforest.37

B CONCLUSIONS AND OUTLOOK

With EPIFANY, we present a new approach to efficient
Bayesian protein inference in proteomics that combines
excellent inference quality with good runtimes. We also
showed that inference on unfiltered data can yield improved
identification rates at widely accepted protein FDR thresholds.
The underlying method certainly can be improved upon. As
mentioned in the Limitations section, the results depend on
the convergence of the algorithm. Convergence is generally
affected by the current parametrization of the model as well as
the connectivity and evidence in the graph; to which degree
however still has to be investigated. In the case of suboptimal
results on a connected component, the algorithm could, in the
future, try different message-scheduling types or resort to
heuristics. Additionally, the current experimental options of
peptide rescoring and user-defined priors are worth further
research. Incorporation of additional evidence especially from
the MSI1 level, replicates, or multiple PSMs is a viable
extension, too; however, initial tests with precursor mass and
retention time deviations yielded noisy, generally disappointing
results so far. Regularization of protein groups could be
improved by facilitating user-defined protein groups (e.g.,, by
gene or theoretical digest). Reintroduction of proteotypicity
with discretized a parameters per peptide instead of a single &
per data set could help in the discrimination of otherwise
indistinguishable proteins. In general, parameter estimation via
grid search is a very time-consuming part of the algorithm, and
although different parameter sets can be distributed across
machines on even larger-scale data, learning speed might be
improved by learning on a subset of the graph or completely
circumvented by including the parameters as hyperparameters
into the probabilistic model. Concerning the impact on
quantification, it should be noted that optionally, greedily
assigned shared peptides could now be used in quantifying
tools as well. While this procedure boosts the number of
peptides to be used for quantification, it should be handled
with care since those quantities might be distorted due to
actual contributions from the greedily removed proteins. It is
then even more important to use quantification approaches
that filter peptides with heavily disagreeing profiles.”® Another
promising approach would be to incorporate peptide quantities
into the model, e.g, in a way that they influence the degree of
regularization of each peptide. After correction for their
response factors, shared peptides that show significantly higher
intensities than the unique peptides of a protein are more likely
to have been produced by multiple parent proteins. This might
also help estimate when a complete greedy approach on a data
set is too conservative.
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