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Abstract. We study the time asymptotic decay of solutions for a general system of
hyperbolic–parabolic balance laws in one space dimension. The system has a physical
viscosity matrix and a lower-order term for relaxation, damping or chemical reaction.
The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient.
For Cauchy problem around a constant equilibrium state, existence of solution global
in time has been established recently under a set of reasonable assumptions. In this
paper, we obtain optimal Lp decay rates for p ≥ 2. Our result is general and applies
to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and
logistic growth, and gas flows with translational and vibrational non-equilibrium. Our
result also recovers or improves the existing results in literature on the special cases of
hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively.
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1. Introduction

Consider a general class of partial differential equations in the form

wt +
m
∑

j=1

fj(w)xj
=

m
∑

j,k=1

[Bjk(w)wxk
]xj

+ r(w), m ≥ 1, (1.1)

where w, fj , r ∈ Rn and Bjk ∈ Rn×n. The unknown function w = w(x, t) depends

on the space variable x = (x1, . . . , xm)t ∈ Rm and the time variable t ∈ R+.

The equation describes a variety of phenomena from continuum mechanics, with

w being physical densities such as mass density, momentum density, energy den-

sity, etc. As given functions of w, fj are flux functions, and r represents external
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forces, relaxation, chemical reactions and so forth. The matrices Bjk are known as

viscosity matrices and are functions of w. They describe viscosity, heat conduction,

species diffusion, etc. Several examples of (1.1), such as Navier–Stokes equations

for compressible flows and the system for polyatomic gas flows in translational

and vibrational non-equilibrium, can be derived from the Boltzmann equation by

Chapman–Enskog expansion. A common feature of these equations is that Bjk

and r′ (the Jacobian matrix of r) are rank deficient. We refer (1.1) as hyperbolic–

parabolic balance laws, which describe the balance of physical quantities.

A special case of (1.1) is hyperbolic–parabolic conservation laws, where r = 0

wt +

m
∑

j=1

fj(w)xj
=

m
∑

j,k=1

[Bjk(w)wxk
]xj

, m ≥ 1. (1.2)

Among examples are Navier–Stokes equations and the full system of magneto-

hydrodynamics. Another special case of (1.1) is hyperbolic balance laws, with

Bjk = 0

wt +

m
∑

j=1

fj(w)xj
= r(w), m ≥ 1. (1.3)

Important examples include Euler equations with damping and polyatomic gas flows

in thermal non-equilibrium. For the most general form (1.1), with nontrivial Bjk

and r, we have polyatomic gas flows in both translational and vibrational non-

equilibrium as an important example. We also have Keller–Segel equations with

logistic growth in chemotaxis as an interesting application.

For (1.1), we consider the Cauchy problem with initial condition:

w(x, 0) = w0(x), (1.4)

where w0 is assumed to be a small perturbation of a constant equilibrium state w̄,

r(w̄) = 0. The author has proposed a set of structural conditions for (1.1), which

leads to the existence of solution for (1.1), (1.4) global in time if w0 is near w̄ [15].

The result applies to all space dimensions m ≥ 1. The same set of structural condi-

tions also give rise to the Lp (p ≥ 2) convergence rates of w to w̄. The conclusion

has been proved for multispace dimensions (m ≥ 2) in [16]. The purpose of this

paper is to prove the parallel result on decay rates for one space dimension, m = 1.

The approach for m = 1 needs to be different: The Green’s function decays slower

in one space dimension than in multispace dimensions. The approach for m ≥ 2 no

longer applies in several technical areas, where integrals with respect to time now

become divergent. Thus for m = 1, we need to make use of details from spectral

analysis, which on the other hand is not available in a straightforward manner for

m ≥ 2.

In this paper, we also discuss applications. We recover the known results for

the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance

laws. We also apply the general results to the Keller–Segel chemotaxis model and

to the polyatomic gas flows in both translational and vibrational non-equilibrium.
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Now, we formulate the decay results in one space dimension. Letting m = 1

in (1.1) we have

wt + f(w)x = [B(w)wx]x + r(w), x ∈ R, t ∈ R
+. (1.5)

We state the structural conditions for (1.5), which are the one-dimensional version

of the set proposed in [15]. Let O be a small neighborhood of a constant equilibrium

state w̄, and E be the equilibrium manifold in O

E = {w ∈ O | r(w) = 0}. (1.6)

Assume that f(w), B(w) and r(w) are smooth in O. In the following we use f ′ to

denote the Jacobian matrix of f with respect to w, etc.

Assumption 1.1. (1) There exists a strictly convex entropy function η, which is a

scalar function of w in O, such that η′′f ′ is symmetric in O, η′′B is symmetric,

semi-positive definite in O, and η′′r′ is symmetric, semi-negative definite on E.

Here, η′′ is the Hessian of η with respect to w.

(2) Equation (1.5) has n1 conservation laws. That is, there is a partition n =

n1 +n2, n1, n2 ≥ 0, such that

r(w) =

(

0n1×1

r2(w)

)

, w =

(

w1

w2

)

, (1.7)

with w1 ∈ Rn1 , r2, w2 ∈ Rn2 , and (r2)w2
∈ Rn2×n2 is nonsingular (if n2 > 0).

Here, (r2)w2
denotes the Jacobian matrix of r2 with respect to w2, etc.

(3) There is a diffeomorphism ϕ → w from an open set Õ ⊂ R
n to O and a constant

orthogonal matrix P ∈ R
n×n such that

P tB(w(ϕ))wϕ(ϕ)P =

(

0n3×n3
0n3×n4

0n4×n3
B∗(ϕ)

)

. (1.8)

Here, n3, n4 ≥ 0 are constant integers such that n3 + n4 = n, and B∗ ∈ Rn4×n4

is nonsingular (if n4 > 0) for ϕ ∈ Õ.

(4) [12] Let N1 be the null space of B(w̄) and N2 be the null space of r′(w̄). Then

N1 ∩ N2 contains no eigenvectors of f ′(w̄).

Remark 1.2. The partitions n = n1 + n2 and n = n3 + n4 in Assumption 1.1 are

independent. Here, n1 is the number of conservation laws in (1.5), including viscous

and inviscid ones. On the other hand, n3 is the number of equations without a vis-

cosity term, or being “hyperbolic type”, including both conservation laws and non-

conservation laws. The locations of the conservation laws and rate equations are also

independent to the locations of the “hyperbolic” equations and “parabolic” equa-

tions. Matrix P in condition (3) of Assumption 1.1 is usually a permutation to show-

case such independence. In Sec. 6, we use Keller–Segel model with logistic growth

and the system for polyatomic gas in translational and vibrational non-equilibrium

to illustrate the two partitions by different choices of dissipation parameters.
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We introduce the following notations to abbreviate the norms of Sobolev spaces

with respect to x:

‖ · ‖s = ‖ · ‖Hs(R), ‖ · ‖ = ‖ · ‖L2(R). (1.9)

With ϕ and P given in condition (3) of Assumption 1.1, we define

w̃ =

(

w̃1

w̃2

)

≡ P tϕ(w), (1.10)

where w̃1 ∈ Rn3 and w̃2 ∈ Rn4 . The following theorem is a special case for m = 1

of [15, Theorem 1.7].

Theorem 1.3 ([15]). Let w̄ be a constant equilibrium state, Assumption 1.1 be

satisfied, s ≥ 2 be an integer, and w0 − w̄ ∈ Hs(R). Then there exists a con-

stant ε > 0 such that if ‖w0 − w̄‖s ≤ ε, the Cauchy problem (1.5), (1.4) has a

unique global solution w. The solution satisfies w − w̄ ∈ C([0,∞); Hs(R)), Dxw ∈
L2([0,∞); Hs−1(R)), Dxw̃2(w) ∈ L2([0,∞); Hs(R)), r(w) ∈ L2([0,∞); Hs(R)),

and

sup
t≥0

‖w − w̄‖2
s(t) +

∫ ∞

0

[‖Dxw‖2
s−1 + ‖Dxw̃2(w)‖2

s + ‖r2(w)‖2
s](t)dt

≤ C‖w0 − w̄‖2
s, (1.11)

where C > 0 is a constant.

Our main result is the following L2 decay estimates of w to w̄.

Theorem 1.4. Let w̄ be a constant equilibrium state of (1.5), and Assumption 1.1

be true. Let s ≥ 4 be an integer, and w0 − w̄ ∈ Hs(R) ∩ L1(R). Then there exists a

constant ε > 0 such that if δ0 ≡ ‖w0 − w̄‖s + ‖w0 − w̄‖L1 ≤ ε, the solution of (1.5),

(1.4) given in Theorem 1.3 has the following estimates for t ≥ 0:

‖Dl
x(w − w̄)‖(t) ≤ Cδ0(t + 1)−

1
4
− l

2 , 0 ≤ l ≤ s − 2, (1.12)

‖Dl
xr2(w)‖(t) ≤ Cδ0(t + 1)−

3
4
− l

2 , 0 ≤ l ≤ s − 4. (1.13)

Here, C > 0 in (1.12) and (1.13) is a constant.

Recall Gagliardo–Nirenberg inequality [11]: There is a constant C > 0 such that

for g ∈ Hk(R),

‖Dl
xg‖Lp ≤ C‖Dk

xg‖θ‖g‖1−θ, (1.14)

where 0 ≤ l ≤ k, p ∈ [2,∞], and θ = l+1/2−1/p
k ≤ 1. Applying (1.14) to g = w − w̄

with k = s− 2, and to g = r2(w) with k = s− 4, respectively, we have the following

corollary of Theorem 1.4.
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Corollary 1.5. Under the assumptions of Theorem 1.4, the solution of (1.5), (1.4)

has the following Lp estimates with p ≥ 2: For t ≥ 0,

‖Dl
x(w − w̄)‖Lp(t) ≤ Cδ0(t + 1)−

1
2
+ 1

2p
− l

2 , 0 ≤ l ≤ s − 5

2
+

1

p
, (1.15)

‖Dl
xr2(w)‖Lp(t) ≤ Cδ0(t + 1)−1+ 1

2p
− l

2 , 0 ≤ l ≤ s − 9

2
+

1

p
. (1.16)

Here, δ0 is as defined in Theorem 1.4, and C > 0 is a constant.

Remark 1.6. For the special case of hyperbolic balance laws, i.e. when B = 0,

we only need s ≥ 3, and (1.15) is true for 0 ≤ l ≤ s − 3/2 + 1/p (rather than

0 ≤ l ≤ s − 5/2 + 1/p). Similarly, (1.16) is true for 0 ≤ l ≤ s − 5/2 + 1/p. This is

due to the lack of second derivatives in the equation. See Sec. 5 for details.

Remark 1.7. Results for multispace dimensions parallel to Theorem 1.4 and Corol-

lary 1.5 are given in [16]. One may further show that for m ≥ 2, a time asymptotic

solution to (1.1), (1.4) is the solution of the corresponding linear equation, linearized

around the constant equilibrium state w̄, with the same initial condition (1.4) [17].

However, such a conclusion is not true for one space dimension.

The plan of the paper is as follows. In Sec. 2, we give some preliminaries. In

Sec. 3, we carry out the spectral analysis of the linear system, which leads to decay

estimates of its solution. In Sec. 4, we perform weighted energy estimate. In Sec. 5,

we prove Theorem 1.4. Finally, in Sec. 6, we discuss applications, to hyperbolic–

parabolic conservation laws, to hyperbolic balance laws, to a chemotaxis model of

Keller–Segel type with logistic growth, and to polyatomic gas flows in translational

and vibrational non-equilibrium.

Throughout this paper, we use C to denote a universal positive constant. We

also use the bar accent for the value of a variable taken at the constant equilibrium

state w̄, e.g. ϕ̄ = ϕ(w̄), etc.

2. Preliminaries

In this section, we assume that condition (2) of Assumption 1.1 holds. As evidenced

by (1.11), r2(w) represents the part of solution with faster decay rate, and can be

used to isolate the leading term in the solution. For this, we introduce a new variable

ψ using the notations in (1.7):

ψ = ψ(w) =

(

w1

r2(w)

)

=

(

ψ1

ψ2

)

(w), (2.1)

where ψ1 = w1 ∈ Rn1 and ψ2 = r2 ∈ Rn2 . Under condition (2) of Assumption 1.1,

ψ is a diffeomorphism, with the Jacobian matrices

ψw =

(

In1×n1
0n1×n2

(r2)w1
(r2)w2

)

, wψ = ψ−1
w =

(

In1×n1
0n1×n2

−(r2)
−1
w2

(r2)w1
(r2)

−1
w2

)

. (2.2)
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Next, we linearize (1.5) around the constant equilibrium state w̄ using the new

variable ψ. Let

ψ̃ = ψ − ψ̄ =

(

w1 − w̄1

r2(w)

)

≡
(

ψ̃1

ψ̃2

)

(2.3)

be the perturbation. Multiplying (1.5) from the left by ψw, we have

ψ̃t + ψwf ′wψψ̃x = ψw(Bwψψ̃x)x + ψwr. (2.4)

Multiplying the equation by a constant matrix Ã0 to be defined in (2.6), we write

(2.4) or (1.5) as

Ã0ψ̃t + Ãψ̃x = B̃ψ̃xx + L̃ψ̃ + R̃, (2.5)

where

Ã0 = (wt
ψη′′wψ)(w̄),

Ã = (wt
ψη′′f ′wψ)(w̄),

B̃ = (wt
ψη′′Bwψ)(w̄),

L̃ = (wt
ψη′′r′wψ)(w̄),

(2.6)

and

R̃ = R1 + R2 + R3,

R1 = Ã0[(ψwf ′wψ)(w̄) − (ψwf ′wψ)(w)]ψx,

R2 = Ã0{ψw(w)[B(w)wx ]x − (ψwBwψ)(w̄)ψxx},

R3 = Ã0[(ψwr)(w) − (ψwr′wψ)(w̄)ψ̃].

(2.7)

Without the nonlinear source R̃, (2.5) would be a linear system of ψ̃ with con-

stant coefficients. It is straightforward to verify the following lemma for properties

of those coefficient matrices.

Lemma 2.1. Under conditions (1), (2) and (4) of Assumption 1.1, we have the

following:

(1) Ã0, Ã, B̃ and L̃ are real, symmetric. Ã0 is positive definite, B̃ is semi-positive

definite, and L̃ is semi-negative definite.

(2) If ζ ∈ Rn\{0} and B̃ζ = L̃ζ = 0, then λÃ0ζ + Ãζ �= 0 for any λ ∈ R.

When (1) of Lemma 2.1 holds, there are several equivalent forms of (2), see

[12, Theorem 1.1]. Among them there is the existence of a so-called compensating

matrix. Here, we state the following lemma as a consequence of Lemma 2.1 applying

[12, Theorem 1.1].
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Lemma 2.2. Let conditions (1), (2), and (4) of Assumption 1.1 be true. Then we

have the following:

(1) There exists a matrix K ∈ Rn×n, called a compensating matrix, such that KÃ0

is real, skew symmetric, and

S =
1

2
(KÃ + ÃKt) + B̃ − L̃ (2.8)

is real, symmetric and positive definite.

(2) Let λ(iξ) be the value of λ such that

λÃ0ζ + (iξÃ + ξ2B̃ − L̃)ζ = 0

has a nontrivial solution ζ ∈ Rn, where ξ ∈ R. Then there exists a constant

c > 0 such that the real part of λ(iξ) has the estimate

�λ(iξ) ≤ −cρ(|ξ|), ξ ∈ R, (2.9)

where

ρ(r) =
r2

1 + r2
, r ≥ 0.

To study a linear system with constant coefficients we use Fourier transform.

We use the hat accent to denote the Fourier transform of a function in x:

ˆ̃
ψ(ξ, t) =

∫

R

ψ̃(x, t)e−ixξ dx,

ψ̃(x, t) =
1

2π

∫

R

ˆ̃
ψ(ξ, t)eixξ dξ.

(2.10)

Taking Fourier transform of (2.5) we have

Ã0
ˆ̃
ψt + (iξÃ + ξ2B̃ − L̃)

ˆ̃
ψ = ˆ̃R. (2.11)

To simplify R̃ defined in (2.7) we write

R1 = Ã0

(

R11

R12

)

, R2 = Ã0

(

R21

R22

)

, R3 = Ã0

(

R31

R32

)

, (2.12)

where Rk1 ∈ R
n1 , and Rk2 ∈ R

n2 , k = 1, 2, 3. If we write

f =

(

f1

f2

)

, f1 ∈ R
n1 , f2 ∈ R

n2 ,

then from (2.7), (2.2) and (2.3) we have
(

R11

R12

)

= [(ψwf ′wψ)(w̄) − (ψwf ′wψ)(w)]ψx, (2.13)

R11 = f̃1x, f̃1 = −[f1(w) − f1(w̄) − (f ′
1wψ)(w̄)ψ̃] = O(1)|ψ̃|2. (2.14)
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Similarly,
(

R21

R22

)

= ψw(w)[B(w)wx ]x − (ψwBwψ)(w̄)ψxx, (2.15)

R21 = b1x, b1 =
(

In1×n1
0n1×n2

)

[B(w)wx − (Bwψ)(w̄)ψx]. (2.16)

With (1.7) we also have

R31 = 0, R32 = [(r2)w2
(w) − (r2)w2

(w̄)]r2(w) = O(1)|w − w̄|2. (2.17)

From (2.7), (2.12), (2.14), (2.16) and (2.17) we have

R̃ = Ã0

(

f̃1x + b1x

0n2×1

)

+ Ã0

(

0n1×1

R12 + R22 + R32

)

. (2.18)

We cite [14, Lemma 3.4].

Lemma 2.3 ([14]). If (η′′r′)(w̄) is symmetric then

(η′′wψ)(w̄) =

(

ηw1w1
− ηw2w1

(r2)
−1
w2

(r2)w1
ηw2w1

(r2)
−1
w2

0n2×n1
ηw2w2

(r2)
−1
w2

)

(w̄). (2.19)

Taking transpose of (2.19) and using (1.7) and (2.2), we simplify L̃ in (2.6).

Under the assumption of Lemma 2.3 we have

L̃ = diag(0n1×n1
, (ηw2w2

(r2)
−1
w2

)(w̄)). (2.20)

For the treatment of r in (1.5) in Sec. 4, we need the following crucial estimate

obtained in [14].

Lemma 2.4 ([14]). Under conditions (1) and (2) of Assumption 1.1, in a small

neighborhood of w̄ we have

ηw1w2
− ηw2w2

(r2)
−1
w2

(r2)w1
= O(1)|r2(w)|. (2.21)

For the treatment of the viscosity term in (1.5) we need the diffeomorphism

ϕ defined in condition (3) of Assumption 1.1. Here, we cite the following result

from [15].

Lemma 2.5 ([15]). Conditions (1) and (3) in Assumption 1.1 imply that P twt
ϕη′′P

is block-upper triangular, and P twt
ϕη′′BwϕP is block diagonal in the partition n =

n3 + n4 as follows :

P twt
ϕη′′P =

(

η̃1 0n3×n4

η̃3 η̃4

)

, (2.22)

P twt
ϕη′′BwϕP = diag(0n3×n3

, η̃4B
∗), (2.23)

where η̃4B
∗ is symmetric, positive definite for all w ∈ O.
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In Secs. 4 and 5, we need some tools from analysis, which are summarized as

Lemma 2.6 as follows. It can be verified by using Gagliardo–Nirenberg inequality,

for instance, see [14].

Lemma 2.6. (1) (Sobolev-type inequality) For w ∈ H1(R),

‖w‖L∞ ≤
√

2‖w‖ 1
2 ‖wx‖

1
2 . (2.24)

(2) Let g be a given smooth function of w in O. If w − w̄ ∈ Hs(R), s ≥ 1, and

‖w − w̄‖1 is bounded, then

‖Dl
xg‖ ≤ C‖Dl

xw‖, 1 ≤ l ≤ s, (2.25)

where C > 0 is a constant depending only on s and the bound of ‖w − w̄‖1.

(3) If Dxg, g̃ ∈ H l−1(R) ∩ L∞(R) then

‖Dl
x(gg̃) − gDl

xg̃‖ ≤ C(‖Dxg‖L∞‖Dl−1
x g̃‖ + ‖Dl

xg‖‖g̃‖L∞), (2.26)

where C > 0 is a constant depending only on l.

3. Spectral Analysis

In this section, we assume conditions (1), (2) and (4) of Assumption 1.1, and carry

out the spectral analysis of the linear system. Based upon it we derive estimates for

the linearized system. We write (2.11), which is equivalent to (1.5), as

ˆ̃ψt = E ˆ̃ψ + Ã−1
0

ˆ̃R, (3.1)

where

E = −Ã−1
0 (iξÃ + ξ2B̃ − L̃) = E(iξ). (3.2)

The solution of (3.1) is

ˆ̃ψ(ξ, t) = eEt ˆ̃ψ(ξ, 0) +

∫ t

0

eE(t−τ)Ã−1
0

ˆ̃R(ξ, τ) dτ. (3.3)

To estimate eEt we first have the eigen-decomposition of E. Since Ã0 is real,

symmetric and positive definite, we may choose an Ã
1
2

0 that is real, symmetric and

positive definite. We write

E = (Ã
1
2

0 )−1ẼÃ
1
2

0 , (3.4)

where

Ẽ = (Ã
1
2

0 )−1(L̃ − iξÃ − ξ2B̃)(Ã
1
2

0 )−1 = Ẽ(iξ). (3.5)

Note that Ẽ(z) is holomorphic in z ∈ C. From Kato’s perturbation theory [2], the

number ñ of distinct eigenvalues of Ẽ(z) is constant if z is not one of the exceptional

points, of which there are only a finite number in each compact set of C. In each

simply connected domain D containing no exceptional points, the eigenvalues of

Ẽ(z) can be expressed as ñ holomorphic functions λj(z), j = 1, . . . , ñ, with the
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eigenvalues λj(z) having constant multiplicities mj . The λj(z) are branches of one

or several analytic functions in C, which have only algebraic singularities, and which

are everywhere continuous in C. An exceptional point z0 is either a branch point of

some of the λj(z), or a regular point for all of them; in the latter case, the values of

some of the different λj(z) coincide at z = z0. Hence, there is always the splitting

of eigenvalues at (and only at) an exceptional point.

The eigenprojections Pj(z) and the eigennilpotents Dj(z) for the eigenvalue

λj(z) of Ẽ(z) are also holomorphic in each simply connected domain D containing

no exceptional points, being branches of one or several analytic functions with

only algebraic singularities. The analytic functions Pj(z) and λj(z) have common

branch points of the same order, but Pj(z) always has a pole at a branch point, see

Theorem 3.1, while λj(z) is always continuous there. Pj(z) and Dj(z) may have a

pole even at an exceptional point, even when λj(z) is holomorphic there.

From (3.5) we write

Ẽ(iξ) = (iξ)2Ẽ∞

(

1

iξ

)

,

Ẽ∞

(

1

iξ

)

= (Ã
1
2

0 )−1

[

B̃ − 1

iξ
Ã +

1

(iξ)2
L̃

]

(Ã
1
2

0 )−1.

With the same argument, Ẽ∞(z̃) has a finite number of exceptional points on |z̃| ≤ 1.

Thus, Ẽ(z) has a finite number of exceptional points on |z| ≥ 1, hence on the whole

complex plane C.

From (3.5) and Lemma 2.1, Ẽ(z) is real, symmetric for z ∈ R. Thus, it has

spectral decomposition

Ẽ(z) =

ñ
∑

j=1

λj(z)Pj(z), z ∈ R,

where Pj(z) are real, symmetric, semi-positive definite for z ∈ R. That is, Dj(z) = 0,

1 ≤ j ≤ ñ, for z ∈ R. By analytic continuation, Dj(z) = 0, 1 ≤ j ≤ ñ, for all z ∈ C.

Therefore, for all non-exceptional points z ∈ C, Ẽ(z) has the spectral decomposition

Ẽ(z) =

ñ
∑

j=1

λj(z)Pj(z), z ∈ C, (3.6)

where if z ∈ R, Pj(z) are orthogonal projections and their Euclidean norms

|Pj(z)| = 1.

Theorem 3.1 (Butler’s Theorem). If z0 is a branch point of λj(z) (hence also

of Pj(z)) of order p − 1 ≥ 1, then Pj(z) has a pole there. That is, the Laurent

expansion of Pj(z) in powers of (z− z0)
1/p necessarily contains negative powers. In

particular, |Pj(z)| → ∞ as z → z0.

A proof of Butler’s Theorem can be found in [2]. Here, we note that according

to the theorem, any real z is not a branch point of λj(z). Consequently, all λj(z)
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are holomorphic for real z. The Pj(z) are single-valued for real z. Since they do not

have a pole, Pj(z) are holomorphic for real z as well. In particular, λj(z) and Pj(z)

are holomorphic at z = 0.

From (3.4) and (3.6) we have

E(z) = (Ã
1
2

0 )−1Ẽ(z)Ã
1
2

0 =

ñ
∑

j=1

λj(z)P̃j(z), (3.7)

where

P̃j(z) = (Ã
1
2

0 )−1Pj(z)Ã
1
2

0 (3.8)

are eigenprojections of E(z) corresponding to the eigenvalues λj(z). From (3.8) and

the discussion above, we conclude that the eigenvalues λj(z) and eigenprojections

P̃j(z) of E(z) are holomorphic at z = 0.

Taking Taylor expansions at z = 0 and by (3.2) and (3.7) we have

E(z) = Ã−1
0 (L̃ − zÃ + z2B̃)

=

ñ
∑

j=1

[λj(0) + λ′
j(0)z + · · · ](P̃j0 + zP̃j1 + · · · ), (3.9)

where P̃j0, P̃j1, . . . are constant matrices. In particular,

P̃j0 = P̃j(0).

Comparing the constant terms on the both sides of (3.9) we have

Ã−1
0 L̃ =

ñ
∑

j=1

λj(0)P̃j0. (3.10)

Noting

P̃j(z)P̃k(z) = δjkP̃j(z),

ñ
∑

j=1

P̃j(z) = I,

by Taylor expansions we have

(P̃j0 + zP̃j1 + · · · )(P̃k0 + zP̃k1 + · · · ) = δjk(P̃j0 + zP̃j1 + · · · ),
ñ
∑

j=1

(P̃j0 + zP̃j1 + · · · ) = I.

Now, we compare the constant terms to have

P̃j0P̃k0 = δjkP̃j0,
ñ
∑

j=1

P̃j0 = I. (3.11)

Therefore, by combining those P̃j0 with the same value of λj(0) in (3.10), we

obtained the spectral decomposition of Ã−1
0 L̃. From Lemma 2.1, (Ã

1
2

0 )−1L̃(Ã
1
2

0 )−1

is real, symmetric and semi-negative definite, hence its eigenvalues are either zero
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or negative. Noting

Ã−1
0 L̃ = (Ã

1
2

0 )−1[(Ã
1
2

0 )−1L̃(Ã
1
2

0 )−1]Ã
1
2

0 ,

we conclude that λj(0) in (3.10) are either zero or negative.

Now, we label λj such that

λ1(0) = · · · = λñ1
(0) = 0, λj(0) < 0 for ñ1 < j ≤ ñ. (3.12)

Then
∑ñ1

j=1 P̃j0 is the eigenprojection of Ã−1
0 L̃ corresponding to the eigenvalue zero.

From (2.6), (2.2) and (1.7),

Ã−1
0 L̃ = (w−1

ψ r′wψ)(w̄) = diag(0n1×n1
, (r2)w2

(w̄)). (3.13)

It is clear that the eigenprojection of Ã−1
0 L̃ corresponding to the eigenvalue zero is

P0 ≡
ñ1
∑

j=1

P̃j0 = diag(In1×n1
, 0n2×n2

). (3.14)

Note that by (3.11)

P̃j0P0 = P0P̃j0 = P̃j0, 1 ≤ j ≤ ñ1. (3.15)

The following lemma is from [3]. We modify the proof to fit our assumptions.

Lemma 3.2 ([3]). Under conditions (1), (2) and (4) of Assumption 1.1, there exist

positive constants C and c such that

|eE(iξ)t| ≤ Ce
− cξ2t

1+ξ2 , ξ ∈ R, t ≥ 0. (3.16)

Proof. For definiteness we use Euclidean norm as the matrix norm. Consider the

linear system

ût = E(iξ)û, (3.17)

where the solution is û = eE(iξ)tû(ξ, 0). From (3.2), this is equivalent to

Ã0ût = (−iξÃ − ξ2B̃ + L̃)û. (3.18)

Multiplying (3.18) by û∗, the conjugate transpose of û, from the left, and taking

the real part, we have

1

2
(û∗Ã0û)t = −ξ2û∗B̃û + û∗L̃û, (3.19)

where we have applied (1) of Lemma 2.1.

From Lemma 2.2, there is a compensating matrix K, such that KÃ0 is real,

skew symmetric, and

S =
1

2
(KÃ + ÃKt) + B̃ − L̃
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is real, symmetric and positive definite. We multiply (3.18) by −iξû∗K from the

left, and take the real part. This gives us
(

− i

2
ξû∗KÃ0û

)

t

+
1

2
ξ2û∗(KÃ + ÃKt)û

= �{iξ3û∗KB̃û − iξû∗KL̃û}

≤ |ξ|3|û||KB̃
1
2 ||B̃ 1

2 û| + |ξ||û||K(−L̃)
1
2 ||(−L̃)−

1
2 û|

≤ c̃

2
ξ2|û|2 + Cξ4|B̃ 1

2 û|2 + C|(−L̃)−
1
2 û|2, (3.20)

where B̃
1
2 and (−L̃)

1
2 are real, symmetric, and semi-positive definite, and c̃ > 0 is

the smallest eigenvalue of S. Adding ξ2û∗(B̃ − L̃)û to both sides of (3.20) we have

(

− i

2
ξû∗KÃ0û

)

t

+
1

2
ξ2û∗Sû ≤ ξ2û∗(B̃ − L̃)û + C1ξ

4û∗B̃û + C1û
∗(−L̃)û

(3.21)

for some constant C1 > 1.

Next, we multiply (3.19) by (1 + ξ2), and (3.21) by α > 0 to be determined.

Summing up the results gives us

(1 + ξ2)(Eα)t +
α

2
ξ2û∗Sû + (1 + ξ2)(ξ2û∗B̃û − û∗L̃û)

≤ αC1(1 + ξ2)(ξ2û∗B̃û − û∗L̃û), (3.22)

where

Eα =
1

2

(

û∗Ã0û − iξα

1 + ξ2
û∗KÃ0û

)

.

Taking α ≤ 1/C1 in (3.22), we have

(Eα)t +
α

2

ξ2

1 + ξ2
û∗Sû ≤ 0. (3.23)

Now, we show that Eα is equivalent to |û|2 for appropriately chosen α. Since
∣

∣

∣

∣

i
ξ

1 + ξ2
û∗KÃ0û

∣

∣

∣

∣

≤ |ξ|
1 + ξ2

|û|2|K||Ã0| ≤ C2|û|2

for some constant C2 > 0, we have

1

2
(λm − αC2)|û|2 ≤ Eα ≤ 1

2
(λM + αC2)|û|2,

where λm > 0 and λM > 0 are the smallest and the largest eigenvalues of Ã0,

respectively. Taking α = min{1/C1, λm/(2C2)} we conclude that Eα is equivalent
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to |û|2. Noting S is positive definite, (3.23) implies

(Eα)t + 2c
ξ2

1 + ξ2
Eα ≤ 0 (3.24)

for some constant c > 0. Solving (3.24) we obtain

Eα(t) ≤ e
− 2cξ2t

1+ξ2 Eα(0),

which implies

|û(ξ, t)|2 ≤ Ce
− 2cξ2t

1+ξ2 |û(ξ, 0)|2.

Noting û(ξ, t) = eE(iξ)tû(ξ, 0) we arrive at (3.16).

Lemma 3.3. Let h(x) ∈ Rn. Under conditions (1), (2) and (4) of Assumption 1.1,

if h ∈ L1(R) and Dk
xh ∈ L2(R), then

‖eE(iξ)t(iξ)kĥ(ξ)‖ ≤ C(t + 1)−
1
4
− k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖, (3.25)

where C and c are positive constants. If in addition, h takes the form

h =

(

0n1×1

h2

)

, h2 ∈ R
n2 , (3.26)

then

‖eE(iξ)t(iξ)kĥ(ξ)‖ ≤ C(t + 1)−
3
4
− k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖. (3.27)

Proof. Applying (3.16) we have

‖eE(iξ)t(iξ)kĥ(ξ)‖2 =

∫

R

|eE(iξ)t(iξ)kĥ(ξ)|2dξ

≤ C

∫

{|ξ|≤ε}∪{|ξ|≥ε}

e
− 2cξ2t

1+ξ2 |ξ|2k|ĥ(ξ)|2dξ

≤ C

∫

|ξ|≤ε

e−cξ2t|ξ|2k|ĥ(ξ)|2dξ

+ C

∫

|ξ|≥ε

e
− 2cε2t

1+ε2 |(iξ)kĥ(ξ)|2dξ

≤ C

[

‖ĥ‖2
L∞

∫

|ξ|≤ε

e−cξ2t|ξ|2kdξ + e
− 2cε2t

1+ε2 ‖(iξ)kĥ(ξ)‖2

]

≤ C[(t + 1)−
1
2
−k‖h‖2

L1 + e
− 2cε2t

1+ε2 ‖Dk
xh‖2], (3.28)

where 0 < ε ≤ 1 is a small constant. Taking square root on both sides and resetting

the constant c we obtain (3.25).
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If h further satisfies (3.26), we refine the integral over |ξ| ≤ ε to obtain (3.27)

as follows. From (3.7),

eE(z)t =
ñ
∑

j=1

eλj(z)tP̃j(z),

where λj(z) and P̃j(z) are holomorphic at z = 0. Thus for |ξ| ≤ ε with a small ε,

taking Taylor expansions of P̃j(iξ), 1 ≤ j ≤ ñ1, and applying (3.14), (3.15) and

(3.26), we have

eE(iξ)t(iξ)kĥ(ξ) =

ñ1
∑

j=1

eλj(iξ)t[P̃j0 + O(|ξ|)](iξ)k ĥ(ξ)

+

ñ
∑

j=ñ1+1

eλj(iξ)tP̃j(iξ)(iξ)
kĥ(ξ)

=

ñ1
∑

j=1

eλj(iξ)tO(|ξ|)(iξ)k ĥ(ξ) +

ñ
∑

j=ñ1+1

eλj(iξ)tP̃j(iξ)(iξ)
kĥ(ξ).

This implies

|eE(iξ)t(iξ)kĥ(ξ)| ≤ C

⎡

⎣

ñ1
∑

j=1

e�{λj(iξ)}t|ξ|k+1|ĥ(ξ)| +
ñ
∑

j=ñ1+1

e�{λj(iξ)}t|ξ|k|ĥ(ξ)|

⎤

⎦.

(3.29)

From Lemma 2.2, noting λj(iξ) is an eigenvalue of E defined in (3.2), we have

�{λj(iξ)} ≤ − c̄ξ2

1 + ξ2
, ξ ∈ R, (3.30)

where c̄ > 0 is a constant. From (3.12) we also have

�{λj(iξ)} ≤ 1

2
λj(0) ≤ −c̄, ñ1 + 1 ≤ j ≤ ñ, (3.31)

for small ξ and by resetting c̄ > 0 if needed. Using (3.29)–(3.31), we refine the

integral over |ξ| ≤ ε as
∫

|ξ|≤ε

|eE(iξ)t(iξ)kĥ(ξ)|dξ ≤ C

∫

|ξ|≤ε

(e−c̃ξ2t|ξ|2k+2 + e−2c̃t)|ĥ(ξ)|2dξ

≤ C(t + 1)−
3
2
−k‖ĥ‖2

L∞ ≤ C(t + 1)−
3
2
−k‖h‖2

L1. (3.32)

Replacing the corresponding integral in (3.28) by (3.32) we obtain (3.27).

4. Weighted Energy Estimate

In this section, we carry out weighted energy estimate to derive decay rates for

the nonlinear system. The non-optimal decay rates for higher derivatives obtained
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in this section help us to obtain the optimal ones given in Theorem 1.4. Similar

methodology has been used for higher space dimensions [16]. However, the analysis

in [16] does not apply to one space dimension that we are considering. This is

because in one space dimension, the solution decays to the constant equilibrium

state at a slower rate. The new idea in this section is that we assume optimal decay

rates for lower derivatives, and perform weighted energy estimate to obtain rough

estimates on higher derivatives of the solution. In Sec. 5, we use these estimates to

obtain optimal ones for lower derivatives. In other words, the a priori estimate in

this section is not closed independently (unlike the case of higher space dimensions).

Instead, it is closed together with the analysis in Sec. 5. Similar ideas have been

employed to resolve other challenging problems [5, 9, 10].

We introduce the following notation for t ≥ 0 and 0 ≤ l ≤ s:

N2
l (t) = sup

0≤τ≤t

[

(τ + 1)
1
2

l
∑

k=0

(τ + 1)k‖Dk
x(w − w̄)‖2(τ)

]

. (4.1)

Theorem 4.1. Let w̄ be a constant equilibrium state of (1.5), and Assumption 1.1

be true. Let s ≥ 2 and w0 − w̄ ∈ Hs(R). Then there exists a constant ε > 0 such that

if ‖w0 − w̄‖s ≤ ε and N2(t) ≤ ε, the solution of (1.5), (1.4) given in Theorem 1.3

has the following estimates :

‖Dl
x(w − w̄)‖(t) ≤ C‖w0 − w̄‖s(t + 1)−

l
2 , t ≥ 0, 0 ≤ l ≤ s, (4.2)

∫ ∞

0

s−1
∑

l=0

(t + 1)l‖Dl+1
x w‖2

s−l−1(t)dt

+

∫ ∞

0

s
∑

l=0

(t + 1)l(‖Dl+1
x w̃2‖2

s−l + ‖Dl
xr2(w)‖2

s−l)(t)dt

≤ C‖w0 − w̄‖2
s, (4.3)

where C > 0 is a constant.

Proof. For t ≥ 0 we define

M2(t) =

s
∑

l=0

sup
0≤τ≤t

[(τ + 1)l‖Dl
x(w − w̄)‖2

s−l(τ)]

+

∫ t

0

s−1
∑

l=0

(τ + 1)l‖Dl+1
x w‖2

s−l−1(τ)dτ

+

∫ t

0

s
∑

l=0

(τ + 1)l(‖Dl+1
x w̃2‖2

s−l + ‖Dl
xr2(w)‖2

s−l)(τ)dτ. (4.4)

Our goal is to prove

M2(t) ≤ C‖w0 − w̄‖2
s, (4.5)
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where C > 0 is a constant. Equations (4.2) and (4.3) are then direct consequence

of (4.4) and (4.5). In what follows, we assume that M(t) and N2(t) are small.

First, we use N2(t) to express some L∞-norms needed in this section. From

(2.24), (4.1), (1.10) and (2.25) we have

‖w − w̄‖L∞ ≤ C‖w − w̄‖ 1
2 ‖wx‖

1
2 ≤ CN2(t)(t + 1)−

1
2 ,

‖wx‖L∞ ≤ C‖wx‖
1
2 ‖wxx‖

1
2 ≤ CN2(t)(t + 1)−1,

‖D2
xw̃2‖L∞ ≤ C‖D2

xw‖ 1
2 ‖D3

xw̃2‖
1
2 ≤ CN

1
2

2 (t)(t + 1)−
5
8 ‖D3

xw̃2‖
1
2 .

(4.6)

To estimate ‖r2(w)‖L∞ , we note r2(w) = ψ̃2(w) by (2.3). Thus taking the lower

half of (2.4) and using (2.2) we have

r2t − (r2)w2
r2 = R, (4.7)

where (r2)w2
= (r2)w2

(w̄) and

R =
(

(r2)w1
(r2)w2

)

{−f(w)x + [B(w)wx]x} + [(r2)w2
(w) − (r2)w2

]r2(w).

(4.8)

Solving the linear system (4.7) with respect to t gives us

r2(w(x, t)) = et(r2)w2 r2(w0(x)) +

∫ t

0

e(t−τ)(r2)w2 R(x, τ)dτ. (4.9)

From Lemma 2.1 and (2.20), (ηw2w2
(r2)

−1
w2

)(w̄) is real, symmetric and semi-negative

definite. Since it is nonsingular by Assumption 1.1, it is in fact negative definite.

This implies [η
1
2
w2w2

(r2)
−1
w2

(η
1
2
w2w2

)−1](w̄) is real, symmetric and negative definite,

hence the eigenvalues of (r2)w2
are all negative. Therefore, there is a constant c > 0

such that

‖r2(w)‖L∞(t) ≤ Ce−ct‖r2(w0)‖L∞ + C

∫ t

0

e−c(t−τ)‖R(·, τ)‖L∞dτ. (4.10)

From condition (3) of Assumption 1.1 and (1.10) we have

Dl
x[B(w)wx] = PDl

x[P tB(w)wϕPw̃x] = PD l
x

(

0n3×1

B∗(w)w̃2x

)

, l ≥ 0. (4.11)

From (4.8) and (4.11), and applying triangle inequality, we have

‖R‖L∞ ≤ C(‖wx‖L∞ + ‖D2
xw̃2‖L∞ + ‖w − w̄‖L∞‖r2(w)‖L∞). (4.12)

Substituting (4.6) into (4.12), we integrate both sides to arrive at
∫ t

0

e−c(t−τ)‖R‖L∞(τ)dτ

≤ CN 2(t)(t + 1)−1 + CN
1
2

2 (t)

∫ t

0

e−c(t−τ)(τ + 1)−
9
8 [(τ + 1)2‖D3

xw̃2‖2(τ)]
1
4 dτ

+ CN2(t)(t + 1)−
3
2 sup

0≤τ≤t
[(τ + 1)‖r2(w)‖L∞(τ)].
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Applying Hölder’s inequality and (4.4), the second term on the right-hand side is

bounded by CN
1
2

2 (t)M
1
2 (t)(t + 1)−

9
8 . Substituting the result into (4.10) gives us

‖r2(w)‖L∞(t) ≤ Ce−ct‖r2(w0)‖L∞ + C[N2(t) + M(t)](t + 1)−1

+ CN 2(t)(t + 1)−
3
2 sup

0≤τ≤t
[(τ + 1)‖r2(w)‖L∞(τ)],

which implies

sup
0≤τ≤t

[(τ + 1)‖r2(w)‖L∞(τ)] ≤ C[‖r2(w0)‖L∞ + M(t) + N2(t)]

for small N2(t). Applying (2.24) and (2.25) to the right-hand side, we have

‖r2(w)‖L∞(t) ≤ C[‖w0 − w̄‖s−1 + M(t) + N2(t)](t + 1)−1. (4.13)

Now, we start the weighed energy estimate. Applying Dl
x to (1.5) and multiply-

ing the result by Dl
xwtη′′(w), we have

Dl
xwtη′′(w)Dl

xwt + Dl
xwtη′′(w)Dl

x[f ′(w)wx]

= Dl
xwtη′′(w)Dl+1

x [B(w)wx] + Dl
xwtη′′(w)Dl

xr(w).

We replace the time variable by τ , multiply the equation by the weight function

(τ + 1)k, and integrate the result over R × [0, t]. After integration by parts and

noting the symmetry of η′′f ′, for 1 ≤ k ≤ l ≤ s, we have

1

2

∫

R

(t + 1)k[Dl
xwtη′′(w)Dl

xw](x, t)dx

=
1

2

∫

R

[Dl
xwtη′′(w)Dl

xw](x, 0)dx +
5
∑

j=1

Ij , (4.14)

where

I1 =
1

2

∫ t

0

∫

R

(τ + 1)k[Dl
xwtη′′(w)tD

l
xw](x, τ)dxdτ

+
k

2

∫ t

0

∫

R

(τ + 1)k−1[Dl
xwtη′′(w)Dl

xw](x, τ)dxdτ,

I2 =

∫ t

0

∫

R

(τ + 1)k 1

2
{Dl

xwt[η′′(w)f ′(w)]xDl
xw}(x, τ)dxdτ,

I3 = −
∫ t

0

∫

R

(τ + 1)k{Dl
xwtη′′(w)[Dl

x(f ′(w)wx) − f ′(w)Dl+1
x w]}(x, τ)dxdτ,

I4 = −
∫ t

0

∫

R

(τ + 1)k{[Dl+1
x wtη′′(w) + Dl

xwtη′′(w)x]Dl
x[B(w)wx]}(x, τ)dxdτ,

I5 =

∫ t

0

∫

R

(τ + 1)k[Dl
xwtη′′(w)Dl

xr(w)](x, τ)dxdτ. (4.15)
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From (1.5) and applying (4.6), (4.11) and (4.13) we have

‖wt‖L∞ ≤ C(‖wx‖L∞ + ‖[B(w)wx]x‖L∞ + ‖r(w)‖L∞)

≤ C(‖wx‖L∞ + ‖D2
xw̃2‖L∞ + ‖r2(w)‖L∞)

≤ C[‖w0 − w̄‖s−1 + M(t) + N2(t)](t + 1)−1

+ CN
1
2

2 (t)(t + 1)−
5
8 ‖D3

xw̃2‖
1
2 . (4.16)

Substituting (4.16) into (4.15) and noting 1 ≤ k ≤ l ≤ s, we have

I1 ≤ C

∫ t

0

(τ + 1)k‖wt‖L∞(τ)‖Dl
xw‖2(τ)dτ + C

∫ t

0

(τ + 1)k−1‖Dl
xw‖2(τ)dτ

≤ C[‖w0 − w̄‖s−1 + M(t) + N2(t)]M
2(t) + C

∫ t

0

(τ + 1)k−1‖Dl
xw‖2(τ)dτ.

(4.17)

Similarly, from (4.15) and (4.6),

I2 ≤ C

∫ t

0

(τ + 1)k(‖wx‖L∞‖Dl
xw‖2)(τ) dτ ≤ CN2(t)M

2(t). (4.18)

For I3 we apply Cauchy–Schwarz inequality, (2.26), (2.25) and (4.6) to have

I3 ≤ C

∫ t

0

(τ + 1)k‖Dl
xw‖(τ)‖Dl

x[f ′(w)wx] − f ′(w)Dl+1
x w‖(τ)dτ

≤ C

∫ t

0

(τ + 1)k(‖Dl
xw‖2‖wx‖L∞)(τ)dτ ≤ CN2(t)M

2(t). (4.19)

To estimate I4 we need the diffeomorphism ϕ defined in condition (3) of Assump-

tion 1.1. With w̃ defined in (1.10) we have

Dl+1
x wtη′′(w) = Dl+1

x w̃tP twt
ϕη′′(w) + [Dl

x(wϕϕx) − wϕDl+1
x ϕ]tη′′(w).

Applying (1.10), (2.22) and (4.11) gives us

Dl+1
x wtη′′(w)Dl

x[B(w)wx] = Dl+1
x w̃t

2η̃4D
l
x[B∗(w)w̃2x]

+ [Dl
x(wϕϕx) − wϕDl+1

x ϕ]tη′′(w)Dl
x[B(w)wx].

Substituting the equation into (4.15) and applying (2.25), (2.26) and (4.11), we

have

I4 = −
∫ t

0

∫

R

(τ + 1)k(Dl+1
x w̃t

2η̃4B
∗(w)Dl+1

x w̃2)(x, τ)dxdτ

+ O(1)

∫ t

0

(τ + 1)k(‖Dl+1
x w̃2‖‖wx‖L∞‖Dl

xw‖ + ‖wx‖2
L∞‖Dl

xw‖2)(τ)dτ.
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Noting that η̃4B
∗(w) is symmetric, positive definite by Lemma 2.5, we conclude

that there is a constant c > 0 such that

I4 ≤ −c

∫ t

0

(τ + 1)k‖Dl+1
x w̃2‖2(τ)dτ + CN2(t)M

2(t), (4.20)

where we have applied (4.4) and (4.6), noting 1 ≤ k ≤ l ≤ s.

To estimate I5, by (1.7) and the key estimate (2.21) we write

Dl
xwtη′′(w)Dl

xr(w) = Dl
xrt(w)η′′(w)Dl

xw

= Dl
xrt

2(w)(ηw1w2
Dl

xw1 + ηw2w2
Dl

xw2)

= Dl
xrt

2(w)ηw2w2
[(r2)

−1
w2

(r2)w1
Dl

xw1 + Dl
xw2]

+ O(1)|Dl
xr2(w)||r2(w)||Dl

xw1|.

Noting l ≥ 1 and Dxw2 = (w2)ψψx = −(r2)
−1
w2

(r2)w1
w1x + (r2)

−1
w2

r2(w)x, by (2.1)

and (2.2), we further have

Dl
xwtη′′(w)Dl

xr(w) = Dl
xrt

2(w)ηw2w2
Dl−1

x [(r2)
−1
w2

(r2)(w)x]

+ O(1)|Dl
xr2(w)||(r2)

−1
w2

(r2)w1
Dl

xw1

−Dl−1
x [(r2)

−1
w2

(r2)w1
w1x]|

+ O(1)|Dl
xr2(w)||r2(w)||Dl

xw1|.

By linearizing at w̄ of the leading term on the right-hand side, from (4.15), (2.25)

and (2.26) we arrive at

I5 =

∫ t

0

∫

R

(τ + 1)k{Dl
xrt

2(w)[ηw2w2
(r2)

−1
w2

](w̄)Dl
xr2(w)}(x, τ)dxdτ

+ O(1)

∫ t

0

(τ + 1)k‖Dl
xr2(w)‖2(τ)‖w − w̄‖L∞(τ)dτ

+ O(1)

∫ t

0

(τ + 1)k‖Dl
xr2(w)‖(τ)(‖wx‖L∞‖Dl−1

x w‖

+ ‖r2(w)‖L∞‖Dl
xw‖)(τ)dτ,

where the term containing ‖Dl−1
x w‖ disappears if l = 1. In the derivation of (4.10),

we have made conclusion that [ηw2w2
(r2)

−1
w2

](w̄) is real, symmetric, and negative

definite. Thus, there exists a constant c > 0 such that

I5 ≤ −c

∫ t

0

(τ + 1)k‖Dl
xr2(w)‖2(τ)dτ + C[‖w0 − w̄‖s−1 + M(t) + N2(t)]M

2(t),

(4.21)

again, with the help of (4.4), (4.6) and (4.13).
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Combining (4.14) and (4.17)–(4.21) and noting η′′ is symmetric, positive definite,

for 1 ≤ k ≤ l ≤ s we obtain

(t + 1)k‖Dl
xw‖2(t) +

∫ t

0

(τ + 1)k(‖Dl+1
x w̃2‖2 + ‖Dl

xr2(w)‖2)(τ)dτ

≤ C‖Dl
xw0‖2 + C[‖w0 − w̄‖s−1 + M(t) + N2(t)]M

2(t)

+ C

∫ t

0

(τ + 1)k−1‖Dl
xw‖2(τ)dτ, (4.22)

where C > 0 is a constant.

We still need an estimate of the integral on the right-hand side of (4.22). For

this we use the variable ψ̃ instead. Apply Dl
x to (2.5) and multiply the result by

Dl+1
x ψ̃tK, where K is the compensating matrix. Then we have

Dl+1
x ψ̃tKÃ0D

l
xψ̃t + Dl+1

x ψ̃tKÃDl+1
x ψ̃ = Dl+1

x ψ̃tK(B̃Dl+2
x ψ̃ + L̃Dl

xψ̃ + Dl
xR̃).

We replace t by τ , multiply the equation by (τ + 1)k, and integrate the result over

R × [0, t]. Noting KÃ0 is real, skew symmetric by Lemma 2.2, and using S defined

in (2.8), we have

∫ t

0

∫

R

(τ + 1)k(Dl+1
x ψ̃tSDl+1

x ψ̃)(x, τ)dxdτ =

9
∑

j=6

Ij , (4.23)

where

I6 =
1

2

∫ t

0

∫

R

(τ + 1)k(Dl
xψ̃tKÃ0D

l+1
x ψ̃)t(x, τ)dxdτ,

I7 =

∫ t

0

∫

R

(τ + 1)k(Dl+1
x ψ̃tB̃Dl+1

x ψ̃)(x, τ)dxdτ,

I8 = −
∫ t

0

∫

R

(τ + 1)k(Dl+1
x ψ̃tL̃Dl+1

x ψ̃)(x, τ)dxdτ,

I9 =

∫ t

0

∫

R

(τ + 1)kDl+1
x ψ̃tK(B̃Dl+2

x ψ̃ + L̃Dl
xψ̃ + Dl

xR̃)(x, τ)dxdτ.

(4.24)

Let 1 ≤ k ≤ l ≤ s − 1. By integration by parts and Cauchy–Schwarz inequality

we have

I6 ≤ C(t + 1)k(‖Dl+1
x ψ̃‖‖Dl

xψ̃‖)(t) + C(‖Dl+1
x ψ̃‖‖Dl

xψ̃‖)(0)

+ α

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ + Cα

∫ t

0

(τ + 1)k−2‖Dl
xψ̃‖2(τ)dτ, (4.25)

where α > 0 is a constant to be determined, and Cα > 0 is a constant depending

on the choice of α.
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To estimate I7 we need to convert the variable ψ associated with the kinetic term

to ϕ with viscosities via the mappings ψ → w → ϕ as follows: By (2.3) and (2.6),

Dl+1
x ψ̃tB̃Dl+1

x ψ̃ = Dl+1
x ψt(wt

ψη′′Bwψ)(w̄)Dl+1
x ψ

= Dl+1
x ψt(wt

ψη′′Bwψ)(w)Dl+1
x ψ + O(1)|Dl+1

x ψ|2|w − w̄|

= Dl
x(ψϕϕx)twt

ψη′′BwψDl
x(ψϕϕx) + O(1)|Dl+1

x ψ|2|w − w̄|

= Dl+1
x ϕtwt

ϕη′′BwϕDl+1
x ϕ + O(1)|Dl

x(ψϕϕx)

−ψϕDl+1
x ϕ|(|Dl+1

x ψ| + |Dl+1
x ϕ|) + O(1)|Dl+1

x ψ|2|w − w̄|.

Applying (4.24), (1.10), (2.23), (2.25), (2.26) and (4.6), we arrive at

I7 ≤
∫ t

0

∫

R

(τ + 1)k(Dl+1
x w̃t

2η̃4B
∗Dl+1

x w̃2)(x, τ)dxdτ

+ C

∫ t

0

(τ + 1)k‖Dl
x(ψϕϕx) − ψϕDl+1

x ϕ‖(τ)(‖Dl+1
x ψ‖ + ‖Dl+1

x ϕ‖)(τ)dτ

+ C

∫ t

0

(τ + 1)k(‖Dl+1
x ψ‖2‖w − w̄‖L∞)(τ)dτ

≤ C

∫ t

0

(τ + 1)k‖Dl+1
x w̃2‖2(τ)dτ

+ C

∫ t

0

(τ + 1)k(‖wx‖L∞‖Dl
xw‖‖Dl+1

x w‖)(τ)dτ

+ C

∫ t

0

(τ + 1)k(‖Dl+1
x w‖2‖w − w̄‖L∞)(τ)dτ

≤ C

∫ t

0

(τ + 1)k‖Dl+1
x w̃2‖2(τ)dτ + CN2(t)M

2(t). (4.26)

To estimate I8 we substitute (2.3) and (2.20) into (4.24) to have

I8 = −
∫ t

0

∫

R

(τ + 1)k[Dl+1
x r2(w)t(ηw1w2

(r2)
−1
w2

)(w̄)Dl+1
x r2(w)](x, τ)dxdτ

≤ C

∫ t

0

(τ + 1)k‖Dl+1
x r2(w)‖2(τ)dτ. (4.27)

For I9 we simplify the integrand first. From (2.6) and (2.7) we have

B̃Dl+2
x ψ̃ + L̃Dl

xψ̃ + Dl
xR̃ = Dl

xR1 + Dl
xR̃2 + Dl

xR̃3,

R1 = Ã0[(ψwf ′wψ)(w̄) − (ψwf ′wψ)(w)]ψx,

R̃2 = R2 + B̃ψ̃xx = Ã0ψw(w)[B(w)wx ]x,

R̃3 = R3 + L̃ψ̃ = Ã0(ψwr)(w).

(4.28)
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Therefore,

I9 ≤ C

∫ t

0

∫

R

(τ + 1)k(|Dl+1
x ψ̃||Dl

xR1 + Dl
xR̃2 + Dl

xR̃3|)(x, τ)dxdτ

≤ α

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ

+ Cα

∫ t

0

(τ + 1)k(‖Dl
xR1‖2 + ‖Dl

xR̃2‖2 + ‖Dl
xR̃3‖2)(τ)dτ, (4.29)

where α > 0 again is a constant to be determined, and Cα > 0 is a constant

depending on α. Applying (2.25), (2.26), (4.11) and (4.28), it is clear that the

second integral on the right-hand side of (4.29) is bounded by

Cα

∫ t

0

(τ + 1)k(‖wx‖2
L∞‖Dl

xw‖2 + ‖w − w̄‖2
L∞‖Dl+1

x w‖2 + ‖wx‖2
L∞‖Dl+1

x w‖2

+ ‖Dl
xw‖2‖D2

xw̃2‖2
L∞ + ‖Dl+2

x w̃2‖2 + ‖wx‖2
L∞‖Dl−1

x r2(w)‖2

+ ‖Dl
xw‖2‖r2(w)‖2

L∞ + ‖Dl
xr2(w)‖2)(τ)dτ.

Therefore, using (4.6) and (4.13), we have

I9 ≤ α

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ

+ Cα

∫ t

0

(τ + 1)k(‖Dl+2
x w̃2‖2 + ‖Dl

xr2(w)‖2)(τ)dτ

+ Ca[‖w0 − w̄‖2
s−1 + M2(t) + N2

2 (t)]M2(t). (4.30)

Combining (4.23), (4.25)–(4.27) and (4.30), and noting S is symmetric and posi-

tive definite by Lemma 2.2, we conclude that there is a constant c > 0 such that

for 1 ≤ k ≤ l ≤ s − 1,

c

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ

≤ 2α

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ + Cα

∫ t

0

(τ + 1)k−2‖Dl
xψ̃‖2(τ)dτ

+ Cα

∫ t

0

(τ + 1)k(‖Dl+1
x w̃2‖2

1 + ‖Dl
xr2(w)‖2

1)(τ)dτ

+ C(t + 1)k(‖Dl+1
x ψ̃‖2 + ‖Dl

xψ̃‖2)(t)

+ Cα‖w − w̄‖2
s + Cα[N2(t) + M2(t)]M2(t).
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Now, we choose α < c/4 to arrive at
∫ t

0

(τ + 1)k‖Dl+1
x w‖2(τ)dτ

≤ C

∫ t

0

(τ + 1)k‖Dl+1
x ψ̃‖2(τ)dτ

≤ C

{∫ t

0

(τ + 1)k−2‖Dl
xw‖2(τ)dτ +

∫ t

0

(τ + 1)k(‖Dl+1
x w̃2‖2

1

+ ‖Dl
xr2(w)‖2

1)(τ)dτ + (t + 1)k‖Dl
xw‖2

1(t) + ‖w0 − w̄‖2
s

+ [N2(t) + M2(t)]M2(t)

}

, (4.31)

where 1 ≤ k ≤ l ≤ s − 1.

Recall the energy estimate from Theorem 1.3,

sup
0≤τ≤t

‖w − w̄‖2
s(τ) +

∫ t

0

(‖Dxw‖2
s−1 + ‖Dxw̃2‖2

s + ‖r2(w)‖2
s)(τ)dτ

≤ C‖w0 − w̄‖2
s. (4.32)

Summing up (4.22) for k ≤ l ≤ s, we have for 1 ≤ k ≤ s,

sup
0≤τ≤t

[(τ + 1)k‖Dk
xw‖2

s−k(τ)] +

∫ t

0

(τ + 1)k[‖Dk+1
x w̃2‖2

s−k + ‖Dk
xr2(w)‖2

s−k](τ)dτ

≤ C

[

‖w0 − w̄‖2
s + M3(t) + N2(t)M

2(t) +

∫ t

0

(τ + 1)k−1‖Dk
xw‖2

s−k(τ)dτ

]

.

(4.33)

Also, summing up (4.31) for k ≤ l ≤ s − 1, we have for 1 ≤ k ≤ s − 1,
∫ t

0

(τ + 1)k‖Dk+1
x w‖2

s−k−1(τ)dτ

≤ C

[

‖w0 − w̄‖2
s + M4(t) + N2(t)M

2(t) + (t + 1)k‖Dk
xw‖2

s−k(t)

+

∫ t

0

(τ + 1)k(‖Dk+1
x w̃2‖2

s−k + ‖Dk
xr2(w)‖2

s−k)(τ)dτ

+

∫ t

0

(τ + 1)k−2‖Dk
xw‖2

s−k−1(τ)dτ

]

. (4.34)

By Induction, (4.32)–(4.34) imply

sup
0≤τ≤t

[(τ + 1)k‖Dk
x(w − w̄)‖2

s−k(τ)]

+

∫ t

0

(τ + 1)k[‖Dk+1
x w̃2‖2

s−k + ‖Dk
xr2(w)‖2

s−k](τ)dτ

≤ C[‖w0 − w̄‖2
s + M3(t) + N2(t)M

2(t)], 0 ≤ k ≤ s, (4.35)
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∫ t

0

(τ + 1)k‖Dk+1
x w‖2

s−k−1(τ)dτ

≤ C[‖w0 − w̄‖2
s + M3(t) + N2(t)M

2(t)], 0 ≤ k ≤ s − 1. (4.36)

The induction goes as follows: (4.32) implies both (4.35) and (4.36) for k = 0. Next,

taking k = 1 in (4.33) and k = 0 in (4.36) give us (4.35) for k = 1. Now taking k = 1

in (4.34) and (4.35) and k = 0 in (4.36) give us (4.36) for k = 1. As it continues,

we make the conclusion that (4.35) is true for 0 ≤ k ≤ s while (4.36) is true for

0 ≤ k ≤ s − 1. Summing up (4.35) and (4.36) we arrive at

M2(t) ≤ C[‖w0 − w̄‖2
s + M3(t) + N2(t)M

2(t)],

which implies

[1 − CM(t) − CN2(t)]M
2(t) ≤ C‖w0 − w̄‖2

s.

Therefore, if M(t) and N2(t) are small, we have

M2(t) ≤ C‖w0 − w̄‖2
s. (4.37)

By a standard continuity argument, (4.37) is true if ‖w0 − w̄‖s and N2(t) are

sufficiently small.

5. Optimal Decay Rates

In this section, we finish the nonlinear analysis to prove our main result, The-

orem 1.4, to obtain optimal decay rates of the solution w of (1.5), (1.4) to the

constant equilibrium state w̄. This is to perform a priori estimate via Duhamel’s

principle, using results derived in Secs. 3 and 4.

Recall N2
k defined in (4.1),

N2
k (t) = sup

0≤τ≤t

[

(τ + 1)
1
2

k
∑

l=0

(τ + 1)l‖Dl
x(w − w̄)‖2(τ)

]

, (5.1)

where t ≥ 0 and 0 ≤ k ≤ s. By a standard continuity argument, to prove (1.12) in

Theorem 1.4 under the smallness assumption on the initial data, we only need to

prove the following proposition.

Proposition 5.1. Under the hypotheses of Theorem 1.4, if Ns−2(T ) is bounded by

a small positive constant, which is independent of T > 0, then

Ns−2(T ) ≤ Cδ0, (5.2)

where δ0 ≡ ‖w0 − w̄‖s + ‖w0 − w̄‖L1 , and C > 0 is a constant independent of T .

Proof. From (5.1) and (4.2) (assuming Ns−2(T ) is small with s ≥ 4), for 0 ≤ t ≤ T

we have

‖Dl
x(w − w̄)‖(t) ≤ Ns−2(t)(t + 1)−

1
4
− l

2 , 0 ≤ l ≤ s − 2, (5.3)

‖Dl
xw‖(t) ≤ Cδ0(t + 1)−

l
2 , l = s − 1, s. (5.4)
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We carry out our analysis with the variable ψ̃ defined in (2.3). Applying

Plancherel theorem, (3.3), and triangle inequality, we have

‖Dl
xψ̃‖(t) = ‖(iξ)l ˆ̃ψ‖(t)

≤ ‖(iξ)leE(iξ)t ˆ̃
ψ(ξ, 0)‖ +

∫ t

0

‖(iξ)leE(iξ)(t−τ)Ã−1
0

ˆ̃R(ξ, τ)‖dτ. (5.5)

From (3.25), (2.3) and (2.25) we have

‖(iξ)leE(iξ)t ˆ̃
ψ(ξ, 0)‖ ≤ C(t + 1)−

1
4
− l

2 (‖ψ̃‖L1 + ‖Dl
xψ̃‖)(0)

≤ C(t + 1)−
1
4
− l

2 (‖w0 − w̄‖L1 + ‖w0 − w̄‖l). (5.6)

Similarly, from (2.18), (3.25) and (3.26) we have

∫ t

0

‖(iξ)leE(iξ)(t−τ)Ã−1
0

ˆ̃R(ξ, τ)‖dτ =

12
∑

j=10

Ij , (5.7)

where

I10 = O(1)

∫ t
2

0

(t − τ + 1)−
1
4
− l+1

2

(

‖f̃1‖L1 + ‖b1‖L1 +

3
∑

k=1

‖Rk2‖L1

)

(τ)dτ,

I11 = O(1)

∫ t

t
2

(t − τ + 1)−
3
4

(

‖Dl
xf̃1‖L1 + ‖Dl

xb1‖L1 +

3
∑

k=1

‖Dl
xRk2‖L1

)

(τ)dτ,

I12 = O(1)

∫ t

0

e−c(t−τ)

(

‖Dl+1
x f̃1‖ + ‖Dl+1

x b1‖ +

3
∑

k=1

‖Dl
xRk2‖

)

(τ)dτ,

(5.8)

with a positive constant c.

To estimate I10 we note that f̃1, b1 and Rk2, 1 ≤ k ≤ 3, are defined in (2.13)–

(2.17). Thus by (2.3), (2.25) and (5.3),

‖f̃1‖L1(τ) ≤ C‖ψ̃‖2(τ) ≤ C‖w − w̄‖2(τ) ≤ CN2
s−2(τ)(τ + 1)−

1
2 ,

‖b1‖L1(τ) ≤ C(‖w − w̄‖‖ψx‖)(τ) ≤ C(‖w − w̄‖‖wx‖)(τ) ≤ CN2
s−2(τ)(τ + 1)−1,

‖R12‖L1(τ) ≤ C(‖w − w̄‖‖ψx‖)(τ) ≤ CN2
s−2(τ)(τ + 1)−1,

‖R22‖L1(τ) ≤ C(‖wx‖‖ψx‖ + ‖w − w̄‖‖ψxx‖)(τ)

≤ C(‖wx‖2 + ‖w − w̄‖‖wxx‖)(τ)

≤ CN2
s−2(τ)(τ + 1)−

3
2 ,

‖R32‖L1(τ) ≤ C‖w − w̄‖2(τ) ≤ CN2
s−2(τ)(τ + 1)−

1
2 .



Lp decay for hyperbolic–parabolic balance laws 689

Substituting these into (5.8) gives us

I10 ≤ CN2
s−2(t)

∫ t
2

0

(t − τ + 1)−
3
4
− l

2 (τ + 1)−
1
2 dτ

≤ CN 2
s−2(t)(t + 1)−

1
4
− l

2 . (5.9)

To estimate I11 we consider 0 ≤ l ≤ s − 2. Again, by (2.14), (2.3), (2.25) and

(5.3) we have

‖Dl
xf̃1‖L1(τ) = ‖−Dl−1

x [f ′
1(w)wψψx] + (f ′

1wψ)(w̄)Dl
xψ‖L1(τ)

≤ C(‖w − w̄‖‖Dl
xψ‖ + ‖wx‖‖Dl−1

x ψ‖ + · · · + ‖Dl−1
x w‖‖ψx‖)(τ)

≤ C

l−1
∑

k=0

(‖Dk
x(w − w̄)‖‖Dl−k

x (w − w̄)‖)(τ)

≤ CN2
s−2(τ)(τ + 1)−

1
2
− l

2 , (5.10)

where we have considered l ≥ 1 while the result is clearly true for l = 0. Similarly,

from (2.13) and (2.15)–(2.17) we have

‖Dl
xb1‖L1(τ) ≤ C

l
∑

k=0

‖Dk
x(w − w̄)‖‖Dl+1−k

x (w − w̄)‖(τ)

≤ C[N2
s−2(τ)(τ + 1)−1− l

2 + Ns−2(τ)δ0(τ + 1)−
3
4
− l

2 ],

‖Dl
xR12‖L1(τ) ≤ C[N2

s−2(τ)(τ + 1)−1− l
2 + Ns−2(τ)δ0(τ + 1)−

3
4
− l

2 ],

‖Dl
xR22‖L1(τ) ≤ C

[

l+1
∑

k=0

‖Dk
x(w − w̄)‖‖Dl+2−k

x w‖

+ ‖wx‖L∞

l
∑

k=1

‖Dk
xw‖‖Dl+1−k

x w‖
]

(τ)

≤ C[N2
s−2(τ)(τ + 1)−

3
2
− l

2 + Ns−2(τ)δ0(τ + 1)−
5
4
− l

2 ],

‖Dl
xR32‖L1(τ) ≤ CN 2

s−2(τ)(τ + 1)−
1
2
− l

2 ,

(5.11)

where we have applied (5.4) and (2.24)–(2.26) as well. Substituting (5.10) and (5.11)

into (5.8) gives us

I11 ≤ C[N2
s−2(t) + Ns−2(t)δ0]

∫ t

t
2

(t − τ + 1)−
3
4 (τ + 1)−

1
2
− l

2 dτ

≤ C[N2
s−2(t) + Ns−2(t)δ0](t + 1)−

1
4
− l

2 . (5.12)
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To estimate I12, again we consider 0 ≤ l ≤ s − 2 and apply (2.24)–(2.26) to

(2.13)–(2.17) to have

‖Dl+1
x f̃1‖(τ) ≤ ‖−Dl

x[f
′
1(w)wψψx] + (f ′

1wψ)(w)Dl+1
x ψ‖(τ)

+ C(‖w − w̄‖L∞‖Dl+1
x ψ‖)(τ)

≤ C(‖wx‖L∞‖Dl
xw‖ + ‖w − w̄‖L∞‖Dl+1

x w‖)(τ)

≤ C[N2
s−2(τ)(τ + 1)−

5
4
− l

2 + Ns−2(τ)δ0(τ + 1)−1− l
2 ],

‖Dl+1
x b1‖(τ) ≤ C(‖wx‖L∞‖Dl+1

x w‖ + ‖w − w̄‖L∞‖Dl+2
x w‖)(τ)

≤ C[N2
s−2(τ)(τ + 1)−

7
4
− l

2 + Ns−2(τ)δ0(τ + 1)−
3
2
− l

2 ],

‖Dl
xR12‖(τ) ≤ C[N2

s−2(τ)(τ + 1)−
5
4
− l

2 + Ns−2(τ)δ0(τ + 1)−1− l
2 ],

‖Dl
xR22‖(τ) ≤ C(‖wx‖L∞‖Dl+1

x w‖ + ‖w − w̄‖L∞‖Dl+2
x w‖

+ ‖wx‖2
L∞‖Dl

xw‖ + ‖wxx‖L∞‖Dl
xw‖)(τ)

≤ C[N2
s−2(τ)(τ + 1)−

7
4
− l

2 + Ns−2(τ)δ0(τ + 1)−
3
2
− l

2 ],

‖Dl
xR32‖(τ) ≤ C(‖w − w̄‖L∞‖Dl

xw‖ + ‖wx‖L∞‖Dl−1
x w‖)(τ)

≤ CN2
s−2(τ)(τ + 1)−

3
4
− l

2 .

Here, we have assumed l ≥ 1 or l ≥ 2 in the above derivation but the results are

clearly true for 0 ≤ l ≤ s − 2. Substituting these estimates into (5.8) gives us

I12 ≤ C[N2
s−2(t) + Ns−2(t)δ0]

∫ t

0

e−c(t−τ)(τ + 1)−
3
4
− l

2 dτ

≤ C[N2
s−2(t) + Ns−2(t)δ0](t + 1)−

3
4
− l

2 . (5.13)

Combining (5.7), (5.9), (5.12) and (5.13) we have

∫ t

0

‖(iξ)leE(iξ)(t−τ)Ã−1
0

ˆ̃R(ξ, τ)‖dτ

≤ C[N2
s−2(t) + Ns−2(t)δ0](t + 1)−

1
4
− l

2 , 0 ≤ l ≤ s − 2. (5.14)

Substituting (5.6) and (5.14) into (5.5), for 0 ≤ l ≤ s − 2 we have

‖Dl
x(w − w̄)‖(t) ≤ C‖Dl

xψ̃‖(t) ≤ C[δ0 + N2
s−2(t)](t + 1)−

1
4
− l

2 .

Equivalently, we have

(t + 1)
1
2
+l‖Dl

x(w − w̄)‖2(t) ≤ C[δ0 + N2
s−2(t)]

2.

Summing up for 0 ≤ l ≤ s − 2 and taking supremum for 0 ≤ t ≤ T , we have

N2
s−2(T ) ≤ C[δ0 + N2

s−2(T )]2,
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or

[1 − CNs−2(T )]Ns−2(T ) ≤ Cδ0.

This gives us (5.2) provided Ns−2(T ) ≤ 1/(2C), which is independent of T .

Next, we carry out the proof of (1.13) in Theorem 1.4. For this we recall (4.9),

which implies the following L2-counterpart to (4.10).

‖Dl
xr2(w)‖(t) ≤ Ce−ct‖Dl

xr2(w0)‖ + C

∫ t

0

e−c(t−τ)‖Dl
xR(·, τ)‖dτ, (5.15)

where C and c are positive constants, and R is defined in (4.8).

Noting r2(w̄) = 0 and applying (2.25) we have

‖Dl
xr2(w0)‖ ≤ C‖Dl

x(w0 − w̄)‖, 0 ≤ l ≤ s. (5.16)

To estimate ‖Dl
xR‖ we use (4.8), (2.24)–(2.26) and (4.11) to arrive at

‖Dl
xR‖(τ) ≤ ‖Dl

x[(r2)wf(w)x]‖(τ) + ‖Dl
x[(r2)w(Bwx)x]‖(τ)

+ ‖Dl
x{[(r2)w2

(w) − (r2)w2
(w̄)]r2(w)}‖(τ)

≤ C[‖Dl+1
x w‖ + (‖wx‖L∞ + ‖D2

xw̃2‖L∞ + ‖w − w̄‖L∞)‖Dl
x(w − w̄)‖

+ ‖wx‖L∞‖Dl−1
x (w − w̄)‖ + ‖Dl+2

x w̃2‖](τ),

where the terms with ‖Dl−1
x (w − w̄)‖ does not exist if l = 0. Applying (1.12) and

taking 0 ≤ l ≤ s − 4 we further have

‖Dl
xR‖(τ) ≤ Cδ0[(τ + 1)−

3
4
− l

2 + (τ + 1)−
1
4
− l

2 ‖D2
xw̃2‖L∞(τ)]. (5.17)

Finally, we substitute (5.16) and (5.17) into (5.15), and apply Cauchy–Schwarz

inequality and (4.3) to obtain (1.13),

‖Dl
xr2(w)‖(t) ≤ Ce−ct‖w0 − w̄‖s−4 + Cδ0

∫ t

0

e−c(t−τ)(τ + 1)−
3
4
− l

2 dτ

+ Cδ0

∫ t

0

e−c(t−τ)(τ + 1)−
3
4
− l

2 [(τ + 1)
1
2 ‖D2

xw̃2‖s−1(τ)]dτ

≤ Cδ0(t + 1)−
3
4
− l

2 , 0 ≤ l ≤ s − 4. (5.18)

This completes the proof of Theorem 1.4.

To finish this section, we justify Remark 1.6 on the special case of hyperbolic

balance laws, i.e. B = 0 in (1.5). In this case, b1 = 0 and R22 = 0 in (5.8). We may

replace Ns−2(T ) by Ns−1(T ) in Proposition 5.1 and let s ≥ 3. It is straightforward

to verify that (5.12) and (5.13) are true for 0 ≤ l ≤ s − 1, with Ns−2 replaced

by Ns−1. As a consequence, (5.2) becomes Ns−1(T ) ≤ Cδ0, which gives (1.12) for

0 ≤ l ≤ s − 1, or (1.15) for 0 ≤ l ≤ s− 3/2 + 1/p. Similarly, (5.17), hence (5.18), is

true for 0 ≤ l ≤ s − 2. This implies (1.16) for 0 ≤ l ≤ s − 5/2 + 1/p.
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6. Applications

In this section, we discuss several applications. First, we consider the special case

of hyperbolic–parabolic conservation laws (1.2),

wt + f(w)x = [B(w)wx]x,

w(x, 0) = w0(x).
(6.1)

Assumption 1.1 is simplified to

Assumption 6.1. (1) There exists a strictly convex entropy function η of w such

that in O, η′′f ′ is symmetric, and η′′B is symmetric, semi-positive definite.

(2) There is a diffeomorphism ϕ → w from an open set Õ ⊂ Rn to O such that

B(w(ϕ))wϕ(ϕ) = diag(0n3×n3
, B∗(ϕ)),

where n3 and n4 = n − n3 > 0 are constant integers, and B∗ ∈ Rn4×n4 is

nonsingular in Õ.

(3) The null space of B(w̄) contains no eigenvectors of f ′(w̄).

We note that the constant orthogonal matrix P in Assumption 1.1 is not needed

since there is no intertwining of dissipation from viscosity and kinetic terms. We

also set n4 > 0 since otherwise (6.1) would be a system of hyperbolic conservation

laws, and condition (3) in Assumption 6.1 would not be satisfied. Theorem 1.4 and

Corollary 1.5 are reduced to Theorem 6.2.

Theorem 6.2. Let w̄ be a constant state and Assumption 6.1 be true. Let s ≥ 4 be

an integer, and w0 − w̄ ∈ Hs(R) ∩ L1(R). Then there exists a constant ε > 0 such

that if δ0 ≡ ‖w0 − w̄‖s + ‖w0 − w̄‖L1 ≤ ε, the Cauchy problem (6.1) has a unique

solution for t ≥ 0, satisfying

‖Dl
x(w − w̄)‖Lp(t) ≤ Cδ0(t + 1)−

1
2
+ 1

2p
− l

2 (6.2)

for 0 ≤ l ≤ s− 5/2 +1/p with p ≥ 2. In particular, the decay rate in L2 is

(t +1)−
1
4
− l

2 in (6.2).

With slightly simplified assumptions (condition (2) of Assumption 6.1), Theo-

rem 6.2 recovers existing results in [3, 4].

The second application is to the special case of hyperbolic balance laws (1.3),

wt + f(w)x = r(w),

w(x, 0) = w0(x).
(6.3)

In this case, Assumption 1.1 is simplified to

Assumption 6.3. (1) There exists a strictly convex entropy function η of w in O,

such that η′′f ′ is symmetric in O and η′′r′ is symmetric, semi-negative definite

on E.
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(2) Equation (6.3) has n1 conservation laws, i.e. there is a partition n = n1 + n2,

n1, n2 > 0, such that

r(w) =

(

0n1×1

r2(w)

)

, w =

(

w1

w2

)

,

with w1 ∈ Rn1 , r2, w2 ∈ Rn2 , and (r2)w2
∈ Rn2×n2 is nonsingular.

(3) The null space of r′(w̄) contains no eigenvectors of f ′(w̄).

In Assumption 6.3, we set n1, n2 > 0. The case n1 = 0 leads to better decay

rates than those in (6.4) below while physical models often demand n1 > 0. The

case n2 = 0 is precluded as otherwise the system would be one of hyperbolic con-

servation laws. Noting Remark 1.6, Theorem 1.4 and Corollary 1.5 are reduced to

Theorem 6.4.

Theorem 6.4. Let w̄ be a constant equilibrium state of (6.3) and Assumption 6.3

be true. Let s ≥ 3 be an integer, and w0 − w̄ ∈ Hs(R) ∩ L1(R). Then there exists a

constant ε > 0 such that if δ0 ≡ ‖w0 − w̄‖s + ‖w0 − w̄‖L1 ≤ ε, the Cauchy problem

(6.3) has a unique solution for t ≥ 0, satisfying

‖Dl
x(w − w̄)‖Lp(t) ≤ Cδ0(t + 1)−

1
2
+ 1

2p
− l

2 (6.4)

for 0 ≤ l ≤ s − 3/2 + 1/p, and

‖Dl
xr2(w)‖Lp(t) ≤ Cδ0(t + 1)−1+ 1

2p
− l

2 (6.5)

for 0 ≤ l ≤ s − 5/2 + 1/p, where p ≥ 2. In particular, the L2 rates in (6.4) and

(6.5) are (t + 1)−
1
4
− l

2 and (t + 1)−
3
4
− l

2 , respectively.

Under Assumption 6.3, which is simpler and slightly weaker, Theorem 6.4 recov-

ers existing results in [5]. A comparison of Assumption 6.3 and the set used in [5]

is given in [14].

The third application is to Keller–Segel model with logistic growth. The follow-

ing chemotaxis model was proposed by Keller and Segel [6] to describe the oriented

movement of cells toward a chemical concentration gradient
{

ct = εcxx − µucm,

ut = (Dux − χuc−1cx)x,
x ∈ R, t > 0, (6.6)

where the unknown functions c(x, t) and u(x, t) denote the chemical concentration

and cell density, respectively. The constants ε ≥ 0 and D ≥ 0 are, respectively,

diffusion coefficients of the chemical and cells. The constants µ > 0 and χ > 0 are

the coefficients of density-dependent degradation rate and of chemotactic sensitivity,

respectively, while m ≥ 0 is the degradation rate.

In our discussion, we set m = 1, and the degradation term in (6.6) is −µuc. This

implies that the chemical (oxygen) is consumed only when cells (bacteria) encounter
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the chemical. We also consider that cells undergo logistic growth. Therefore, our

model reads
⎧

⎨

⎩

ct = εcxx − µuc,

ut = (Dux − χuc−1cx)x + au
(

1 − u

K

)

,
x ∈ R, t > 0, (6.7)

where the constants a ≥ 0 and K > 0 are the natural growth rate and the typical

carrying capacity.

The singularity in the chemotactic sensitivity in (6.6) or (6.7) can be removed

by the inverse Hopf-Cole transformation [7],

v = (ln c)x. (6.8)

Under the new variables v and u, we write (6.7) as
⎧

⎨

⎩

vt + (µu − εv2)x = εvxx,

ut + χ(uv)x = Duxx + au
(

1 − u

K

)

.
(6.9)

Using the positive parameters µ, χ and K we simplify (6.9) by rescaling

t̃ = µKt, x̃ =

√

µK

χ
x, ũ =

u

K
, ṽ =

√

χ

µK
v. (6.10)

This converts (6.9) into
{

ṽt̃ + (ũ − ε̃ṽ2)x̃ = ε̃ṽx̃x̃,

ũt̃ + (ũṽ)x̃ = D̃ũx̃x̃ + ãũ(1 − ũ),
(6.11)

where

ε̃ =
ε

χ
, D̃ =

D

χ
, ã =

a

µK
. (6.12)

Dropping the tilde accent we write (6.11) as
{

vt + (u − εv2)x = εvxx,

ut + (uv)x = Duxx + au(1 − u),
(6.13)

where ε ≥ 0, D ≥ 0 and a ≥ 0 are constant parameters.

We consider Cauchy problem of (6.13) with initial data

(v, u)(x, 0) = (v0, u0)(x), (6.14)

where (v0, u0) is a perturbation of a constant equilibrium state (v̄, ū). Here to be

equilibrium, ū = 0 or 1, and to be stable equilibrium ū = 1. Therefore, we take

the constant equilibrium state as (v̄, 1), where v̄ is a constant. Now, we take a

neighborhood O of (v̄, 1). The equilibrium manifold is

E = {(v, 1)} ∩ O.
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Equation (6.13) is in the form of (1.5), with

w =

(

v

u

)

, f(w) =

(

u − εv2

uv

)

, B =

(

ε 0

0 D

)

, r(w) =

(

0

au(1 − u)

)

.

In what follows, we verify that Assumption 1.1 is satisfied. Let

η =
1

2
v2 + u lnu − u

be the entropy function [8]. By direct calculation,

η′′ =

⎛

⎝

1 0

0
1

u

⎞

⎠, f ′ =

(

−2εv 1

u v

)

, r′ =

(

0 0

0 a(1 − 2u)

)

.

Clearly, η is strictly convex in O; η′′f ′ is symmetric, and η′′B is symmetric, semi-

positive definite in O (for ε ≥ 0 and D ≥ 0); and η′′r′ is symmetric, semi-negative

definite on E.

If a > 0, (6.13) has one conservation law, and the partition n = n1 + n2 in

condition (2) is 2 = 1 + 1. In this case, (r2)w2
= ∂

∂u [au(1− u)] = a(1− 2u) �= 0. On

the other hand, if a = 0 then (6.13) has two conservation laws, and the partition is

2 = 2 + 0.

The diffeomorphism ϕ in condition (3) is the identity. The partition n = n3 +n4

is 2 = 0 + 2 if ε > 0 and D > 0 (two parabolic equations), 2 = 1 + 1 if ε > 0 and

D = 0, or ε = 0 and D > 0 (one parabolic equation), and 2 = 2 +0 if ε = D = 0 (two

hyperbolic equations). The constant orthogonal matrix P ∈ R2×2 is the identity in

all cases except when ε > 0 and D = 0, in which P is the permutation to interchange

the two equations in (6.13).

Finally, condition (4) is satisfied if at least one of ε, D and a is positive (oth-

erwise, (6.13) becomes a system of hyperbolic conservation laws). This is readily

verified since N1 ∩ N2 is either zero-dimensional, or one-dimensional, spanned by

(1, 0)t or (0, 1)t. Each of these subspaces of R2 does not contain eigenvectors of

f ′(v̄, 1).

We now conclude that Assumption 1.1 is satisfied by (6.13) as long as one of ε,

D and a is positive. This breaks down to seven cases as follows:

Case 1. ε > 0, D > 0 and a > 0;

Case 2. ε = 0, D > 0 and a > 0;

Case 3. ε > 0, D = 0 and a > 0;

Case 4. ε = D = 0 and a > 0;

Case 5. ε > 0, D > 0 and a = 0;

Case 6. ε = 0, D > 0 and a = 0;

Case 7. ε > 0, D = 0 and a = 0.

Here, Case 4 fits (6.3) and Theorem 6.4 applies, while Cases 5–7 fit (6.1) and Theo-

rem 6.2 applies. Therefore, we focus on Cases 1–3. In these cases, r2(w) = au(1−u),
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which is equivalent to 1−u since u is about one and a > 0. Applying Theorems 1.3,

1.4 and Corollary 1.5 to (6.13), (6.14), we have the following.

Theorem 6.5. Let v̄ be a constant, a > 0, s ≥ 2 be an integer, and

(v0 − v̄, u0 − 1) ∈ Hs(R). Then there exists a constant ε > 0 such that if

‖(v0 − v̄, u0 − 1)‖s ≤ ε, the Cauchy problem (6.13), (6.14) has a unique global

solution. The solution has an energy estimate as follows:

Case 1. If ε > 0 and D > 0 then

sup
t≥0

‖(v − v̄, u − 1)‖2
s(t) +

∫ ∞

0

(‖vx‖2
s + ‖u − 1‖2

s+1)(t)dt

≤ C‖(v0 − v̄, uo − 1)‖2
s.

Case 2. If ε = 0 and D > 0 then

sup
t≥0

‖(v − v̄, u − 1)‖2
s(t) +

∫ ∞

0

(‖vx‖2
s−1 + ‖u − 1‖2

s+1)(t)dt

≤ C‖(v0 − v̄, uo − 1)‖2
s.

Case 3. If ε > 0 and D = 0 then

sup
t≥0

‖(v − v̄, u − 1)‖2
s(t) +

∫ ∞

0

(‖vx‖2
s + ‖u − 1‖2

s)(t)dt

≤ C‖(v0 − v̄, uo − 1)‖2
s.

Theorem 6.6. Let v̄ be a constant and a > 0. Let s ≥ 4 be an integer, and

(v0 − v̄, u0 − 1) ∈ Hs(R) ∩ L1(R). Then there exists a constant ε > 0 such that if

δ0 ≡ ‖(v0 − v̄, u0 − 1)‖s + ‖(v0 − v̄, u0 − 1)‖L1 ≤ ε, the solution of (6.13), (6.14)

given in Theorem 6.5 has the following Lp estimate with p ≥ 2: For t ≥ 0,

‖Dl
x(v − v̄, u − 1)‖Lp(t) ≤ Cδ0(t + 1)−

1
2
+ 1

2p
− l

2 , 0 ≤ l ≤ s − 5

2
+

1

p
,

‖Dl
x(u − 1)‖Lp(t) ≤ Cδ0(t + 1)−1+ 1

2p
− l

2 , 0 ≤ l ≤ s − 9

2
+

1

p
.

We comment that due to the specific form of (6.13), such as the reduced system

being a scalar equation hence no wave interaction between different characteris-

tic families, we may obtain results better than what the general theory offers. For

instance, in a recent paper [18], we establish for cases one and two the global exis-

tence of solution to (6.13), (6.14) under the assumption (v0, u0 − 1) ∈ H2(R) and

u0 > 0 (initial density positive), without the smallness requirement on the H2-norm.

Asymptotic behavior of solution and decay rates are also obtained. In an upcoming

paper [19], we further obtain optimal time decay rates with non-small initial data

for the special case when the chemical is non-diffusive while v0 has zero mass. The

latter corresponds to the initial distribution of chemical being around a constant

background state, limx→±∞ c(x, 0) = c̄, where c̄ > 0 is a constant.
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Our final application is to polyatomic gas flows in both translational and vibra-

tional non-equilibrium [1, 13],
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρt + (ρu)x = 0,

(ρu)t + ((ρu2 + p)x = (µux)x,

(ρE)t + (ρEu + pu)x = (µuux + κT1x + νρe2x)x,

(ρe2)t + (ρe2u)x = (νρe2x)x + ρ
e∗2 − e2

τ
,

(6.15)

where ρ, u and p are the density, velocity and pressure, respectively. The total

energy is

E = e +
1

2
u2, e = e1 + e2,

where the internal energy e consists of two parts: e2 is the non-equilibrium vibra-

tional energy, and e1 is the rest of the internal energy.

We comment that since the relaxation time scale of the translational mode is

much smaller than that of vibrational mode, through Chapman–Enskog expansion

we introduce dissipation mechanisms to compensate the translational mode, and

single out the vibrational mode as the non-equilibrium mode. Therefore, we need

two sets of thermal dynamic variables, one for the translational mode and for all

other internal modes at the same pace of the translational mode, and the other for

the vibrational mode. We use subscript “1” for the former and “2” for the latter. For

instance, like e1 and e2 introduced above, we use T1 for the common temperature

of the translational mode and all other internal modes except the vibrational mode,

and T2 for the vibrational temperature. The two sets of variables obey different

thermodynamic equations as follows:

T1ds1 = de1 + pdv, T2ds2 = de2, (6.16)

where v = 1/ρ is the specific volume, and s1 and s2 are the equilibrium and vibra-

tional entropies, respectively.

The dissipation mechanisms due to the translational mode are realized

by the viscosity coefficient µ, thermal conductivity κ, and self-diffusion coefficient ν.

The first three equations in (6.15) are conservation of mass, momentum and energy.

The last equation is the relaxation of vibrational energy to its local equilibrium

state e∗2 at the time scale τ . Both e∗2 and τ are known functions of the thermal

dynamic variables in set one. In view of (6.16), (6.15) is a system of four equations

for four unknowns: the velocity, two thermodynamic variables in set one, and one

in set two.

It has been shown in [15] that (6.15) satisfies Assumption 1.1 under physical

assumptions. For this we introduce the following notations based on the relation

among thermodynamic variables,

p = p(v, e1) = p̃(v, T1), T1 = T1(v, e1), e2 = ω(T2).
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A state is an equilibrium state if and only if T2 = T1. Thus, the equilibrium manifold

is characterized as

E = {T2 = T1} ∩ O,

and e2 satisfies

e∗2 = ω(T1), ē2 = ω(T̄1).

Here, we recall that the bar accent is for the constant equilibrium state w̄. Without

loss of generality, we set ū = 0, hence

w̄ = (ρ̄, 0, ρ̄ē, ρ̄ē2)
t. (6.17)

The physical assumptions to be imposed are

p̃v =
∂

∂v
p̃(v, T1) < 0, T1e1

=
∂

∂e1
T1(v, e1) > 0,

pe1
=

∂

∂e1
p(v, e1) �= 0, ω′(T ) > 0.

(6.18)

We cite [15, Propositions 4.1 and 4.2].

Proposition 6.7. Let (6.18) be true, and the dissipation parameters in (6.15)

satisfy

κ > 0, ν ≥ 0, µ ≥ 0. (6.19)

Then (6.15) satisfies Assumption 1.1 in a small neighborhood O of w̄.

We comment that the entropy function η in condition (1) of Assumption 1.1 is

−ρs, where s = s1 + s2 is the physical entropy. The partition n = n1 + n2 in condi-

tion (2) is 4 = 3+1. The diffeomorphism ϕ in condition (3) is ϕ(w) = (ρ, u, T1, e2)
t.

The partition n = n3 + n4 is 4 = 1 + 3 if ν > 0 and µ > 0; 4 = 2 + 2 if ν > 0 and

µ = 0, or ν = 0 and µ > 0; and 4 = 3+1 if ν = µ = 0. The matrix P is the identity

except when ν = 0. In the latter, P is a permutation to move the rate equation

above the momentum equation.

We consider the Cauchy problem of (6.15) with prescribed initial data

w(x, 0) ≡ (ρ, ρu, ρE, ρe2)
t(x, 0)

=

(

ρ0, ρ0u0, ρ0

(

e0 +
1

2
u2

0

)

, ρ0e20

)t

(x) ≡ w0(x). (6.20)

Applying Theorem 1.4, Corollary 1.5 and Proposition 6.7 to (6.15), (6.20) we have

the following theorem.

Theorem 6.8. Let ρ̄, ē1 > 0 be constants, T̄1 = T1(1/ρ̄, ē1), ē2 = ω(T̄1) and

ē = ē1 + ē2. Let (6.18) and (6.19) be true, s ≥ 4 be an integer, and w0 − w̄ ∈
Hs(R)∩L1(R) for w0 and w̄ in (6.20) and (6.17), respectively. Then there exists a

constant ε > 0 such that if δ0 ≡ ‖w0 − w̄‖s + ‖w0 − w̄‖L1 ≤ ε, the Cauchy problem
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(6.15), (6.20) has a unique solution, with (ρ− ρ̄, ρu, ρE − ρ̄ē, ρe2 − ρ̄ē2) ∈ C([0,∞);

Hs(R)). The solution satisfies the following Lp decay properties with p ≥ 2: For

t ≥ 0,

‖Dl
x(ρ − ρ̄, ρu, ρE − ρ̄ē, ρe2 − ρ̄ē2)‖Lp(t) ≤ Cδ0(t + 1)−

1
2
+ 1

2p
− l

2 (6.21)

for 0 ≤ l ≤ s − 5/2 + 1/p, and

‖Dl
x[ρ(e∗2 − e2)/τ ]‖Lp(t) ≤ Cδ0(t + 1)−1+ 1

2p
− l

2 (6.22)

for 0 ≤ l ≤ s− 9/2+ 1/p. In particular, the L2 decay rates in (6.21) and (6.22) are

(t + 1)−
1
4
− l

2 and (t + 1)−
3
4
− l

2 , respectively.
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