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Abstract. We study the time asymptotic decay of solutions for a general system of
hyperbolic—parabolic balance laws in one space dimension. The system has a physical
viscosity matrix and a lower-order term for relaxation, damping or chemical reaction.
The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient.
For Cauchy problem around a constant equilibrium state, existence of solution global
in time has been established recently under a set of reasonable assumptions. In this
paper, we obtain optimal LP decay rates for p > 2. Our result is general and applies
to models such as Keller-Segel equations with logarithmic chemotactic sensitivity and
logistic growth, and gas flows with translational and vibrational non-equilibrium. Our
result also recovers or improves the existing results in literature on the special cases of
hyperbolic—parabolic conservation laws and hyperbolic balance laws, respectively.
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1. Introduction

Consider a general class of partial differential equations in the form

we+ > fi(w)a; = > [Bik(w)wey o, +r(w), m>1, (1.1)
j=1 G k=1

where w, f;,7 € R™ and Bj; € R"*". The unknown function w = w(z,t) depends
on the space variable z = (21,...,2,)" € R™ and the time variable t € RT.
The equation describes a variety of phenomena from continuum mechanics, with
w being physical densities such as mass density, momentum density, energy den-
sity, etc. As given functions of w, f; are flux functions, and r represents external
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forces, relaxation, chemical reactions and so forth. The matrices B;; are known as
viscosity matrices and are functions of w. They describe viscosity, heat conduction,
species diffusion, etc. Several examples of (1.1), such as Navier—Stokes equations
for compressible flows and the system for polyatomic gas flows in translational
and vibrational non-equilibrium, can be derived from the Boltzmann equation by
Chapman-Enskog expansion. A common feature of these equations is that Bjj
and " (the Jacobian matrix of r) are rank deficient. We refer (1.1) as hyperbolic—
parabolic balance laws, which describe the balance of physical quantities.
A special case of (1.1) is hyperbolic—parabolic conservation laws, where r = 0
m m
we+ Y fiW)e, = Y [Big(w)we, |z, m> 1. (1.2)
j=1 Gok=1
Among examples are Navier-Stokes equations and the full system of magneto-
hydrodynamics. Another special case of (1.1) is hyperbolic balance laws, with
Bjk =0

wy + ij(w)xj =r(w), m>1. (1.3)

Important examples include Euler equations with damping and polyatomic gas flows
in thermal non-equilibrium. For the most general form (1.1), with nontrivial Bjj
and r, we have polyatomic gas flows in both translational and vibrational non-
equilibrium as an important example. We also have Keller-Segel equations with
logistic growth in chemotaxis as an interesting application.

For (1.1), we consider the Cauchy problem with initial condition:

w(z,0) = wo(x), (1.4)

where w is assumed to be a small perturbation of a constant equilibrium state w,
r(w) = 0. The author has proposed a set of structural conditions for (1.1), which
leads to the existence of solution for (1.1), (1.4) global in time if wq is near @ [15].
The result applies to all space dimensions m > 1. The same set of structural condi-
tions also give rise to the LP (p > 2) convergence rates of w to w. The conclusion
has been proved for multispace dimensions (m > 2) in [16]. The purpose of this
paper is to prove the parallel result on decay rates for one space dimension, m = 1.
The approach for m = 1 needs to be different: The Green’s function decays slower
in one space dimension than in multispace dimensions. The approach for m > 2 no
longer applies in several technical areas, where integrals with respect to time now
become divergent. Thus for m = 1, we need to make use of details from spectral
analysis, which on the other hand is not available in a straightforward manner for
m > 2.

In this paper, we also discuss applications. We recover the known results for
the special cases of hyperbolic—parabolic conservation laws and hyperbolic balance
laws. We also apply the general results to the Keller—Segel chemotaxis model and
to the polyatomic gas flows in both translational and vibrational non-equilibrium.
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Now, we formulate the decay results in one space dimension. Letting m = 1
in (1.1) we have

wy + f(w)y = [Blw)wg], +r(w), =R, teRT. (1.5)

We state the structural conditions for (1.5), which are the one-dimensional version
of the set proposed in [15]. Let O be a small neighborhood of a constant equilibrium
state w, and E be the equilibrium manifold in O

E={weO|r(w) =0} (1.6)

Assume that f(w), B(w) and r(w) are smooth in Q. In the following we use f’ to
denote the Jacobian matrix of f with respect to w, etc.

Assumption 1.1. (1) There exists a strictly convex entropy function 7, which is a
scalar function of w in @, such that n” f’ is symmetric in Q, " B is symmetric,
semi-positive definite in O, and 1”7’ is symmetric, semi-negative definite on [E.
Here, 1" is the Hessian of 1 with respect to w.

(2) Equation (1.5) has n; conservation laws. That is, there is a partition n =
ny1 +n9, n1,ne > 0, such that

e e
B ro(w) ’ B wy ) .

with w; € R™, ro,we € R and (r9),, € R™*"2 ig nonsingular (if ny > 0).
Here, (12)w, denotes the Jacobian matrix of ro with respect to ws, etc.

(3) There is a diffeomorphism ¢ — w from an open set O C R” to O and a constant
orthogonal matrix P € R™*™ such that

(1.8)

On3><n3 0n3><n4
P'B(w(p))w, ()P = ( )

0n4 Xn3g B* ((P)

Here, ns,ny > 0 are constant integers such that ns +ny = n, and B* € R™4*"4
is nonsingular (if ny > 0) for ¢ € Q.

(4) [12] Let Ny be the null space of B(w) and Ny be the null space of r/(w). Then
N; NNy contains no eigenvectors of f/(w).

Remark 1.2. The partitions n = ny 4+ ne and n = ng + n4 in Assumption 1.1 are
independent. Here, n; is the number of conservation laws in (1.5), including viscous
and inviscid ones. On the other hand, n3 is the number of equations without a vis-
cosity term, or being “hyperbolic type”, including both conservation laws and non-
conservation laws. The locations of the conservation laws and rate equations are also
independent to the locations of the “hyperbolic” equations and “parabolic” equa-
tions. Matrix P in condition (3) of Assumption 1.1 is usually a permutation to show-
case such independence. In Sec. 6, we use Keller-Segel model with logistic growth
and the system for polyatomic gas in translational and vibrational non-equilibrium
to illustrate the two partitions by different choices of dissipation parameters.
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We introduce the following notations to abbreviate the norms of Sobolev spaces
with respect to x:

[ ls =1 Nlgs@y [I-1=1"lc2m- (1.9)
With ¢ and P given in condition (3) of Assumption 1.1, we define
w1
W= = Ply(w), (1.10)
Wo
where w1 € R™ and we € R™. The following theorem is a special case for m =1

of [15, Theorem 1.7].

Theorem 1.3 ([15]). Let w be a constant equilibrium state, Assumption 1.1 be
satisfied, s > 2 be an integer, and wy — w € H*(R). Then there exists a con-
stant € > 0 such that if ||lwo — w||s < e, the Cauchy problem (1.5), (1.4) has a
unique global solution w. The solution satisfies w —w € C([0,00); H*(R)), Dyw €
12((0,00); H*}(R)), Dyiia(w) € L*(0,00); H*(R)), r(w) € L([0,00); H*(R)),

and
iglg|w@|§(t)+/0 (1 Dawl]?_y + | Deva(w)|3 + [[ra(w)[|Z)(¢)dt

< Cllwo — wlf2, (1.11)
where C' > 0 is a constant.

Our main result is the following L? decay estimates of w to w.

Theorem 1.4. Let w be a constant equilibrium state of (1.5), and Assumption 1.1
be true. Let s > 4 be an integer, and wo —w € H*(R) N LY(R). Then there exists a
constant € > 0 such that if o = ||wo — w||s + ||wo — @1 < €, the solution of (1.5),
(1.4) given in Theorem 1.3 has the following estimates for t > 0:

|DL(w — w)[|(t) < Coo(t+1)"37%, 0<1<s—2, (1.12)

|~

| DLro(w)||(t) < Coo(t+1)"572, 0<1<s—A4. (1.13)
Here, C >0 in (1.12) and (1.13) is a constant.

Recall Gagliardo—Nirenberg inequality [11]: There is a constant C' > 0 such that
for g € H*(R),

IDzgllze < ClIDZgl gl (1.14)

where 0 <1 <k, p € [2,00], and 0 = W < 1. Applying (1.14) to g = w — @
with k = s — 2, and to g = ro(w) with k = s — 4, respectively, we have the following
corollary of Theorem 1.4.
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Corollary 1.5. Under the assumptions of Theorem 1.4, the solution of (1.5), (1.4)
has the following LP estimates with p > 2: Fort > 0,

ot

|DL(w — @)||pe(t) < Coo(t +1)" 2% 72, 0<I<s—=+=,  (L15)

|~

| DLro(w)| Lo (t) < Coo(t +1)" %3 0<1

IN

- (1.16)

s —

oo N
SRS R

Here, 0 is as defined in Theorem 1.4, and C > 0 is a constant.

Remark 1.6. For the special case of hyperbolic balance laws, i.e. when B = 0,
we only need s > 3, and (1.15) is true for 0 < [ < s — 3/2 + 1/p (rather than
0<1<s—5/241/p). Similarly, (1.16) is true for 0 <1 < s —5/2+ 1/p. This is
due to the lack of second derivatives in the equation. See Sec. 5 for details.

Remark 1.7. Results for multispace dimensions parallel to Theorem 1.4 and Corol-
lary 1.5 are given in [16]. One may further show that for m > 2, a time asymptotic
solution to (1.1), (1.4) is the solution of the corresponding linear equation, linearized
around the constant equilibrium state w, with the same initial condition (1.4) [17].
However, such a conclusion is not true for one space dimension.

The plan of the paper is as follows. In Sec. 2, we give some preliminaries. In
Sec. 3, we carry out the spectral analysis of the linear system, which leads to decay
estimates of its solution. In Sec. 4, we perform weighted energy estimate. In Sec. 5,
we prove Theorem 1.4. Finally, in Sec. 6, we discuss applications, to hyperbolic—
parabolic conservation laws, to hyperbolic balance laws, to a chemotaxis model of
Keller—Segel type with logistic growth, and to polyatomic gas flows in translational
and vibrational non-equilibrium.

Throughout this paper, we use C to denote a universal positive constant. We
also use the bar accent for the value of a variable taken at the constant equilibrium
state w, e.g. ¢ = p(w), etc.

2. Preliminaries

In this section, we assume that condition (2) of Assumption 1.1 holds. As evidenced
by (1.11), r2(w) represents the part of solution with faster decay rate, and can be
used to isolate the leading term in the solution. For this, we introduce a new variable
) using the notations in (1.7):

wy (3
= w) = = ’U}7 2.1
¥ = P(w) (rz(w)> <w2>( ) (2.1)

where ¥; = wy € R™ and 19 = ro € R™2. Under condition (2) of Assumption 1.1,
1 is a diffeomorphism, with the Jacobian matrices

IanTLl OanTLQ _ Inlxnl 0711)(77,2
b = L wp =gt = v ") 22
(r2)uy  (r2)uw —(r2)w, (r2)uy  (r2)u,
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Next, we linearize (1.5) around the constant equilibrium state @ using the new

variable 1. Let
- wy — Wy 1
= — = - 23
V=9 -9 ( ra(10) ) ( ¢2> (2.3)

be the perturbation. Multiplying (1.5) from the left by t,,, we have

Dt + Y fwythy = Yoy (Bwypy )y + Y. (2.4)

Multiplying the equation by a constant matrix Ay to be defined in (2.6), we write

(2.4) or (1.5) as

Aoy + Apy = Bipyy + Lip + R, (2.5)
where
= (wyn"wy) (D),
/:1: (wyn" flwy ) (w), 26)
B = (wyn" Bwy)(w),
L = (wyn"r'wy) (@),
and
R =Ry + Ry + Rs,
Ry = Ao[(¢u f'wy) (@) = (o f'wyp) (w)]hz, an

Ry = Ao{thw(w)[B(w)wz]o — (b0 Bwy ) (0)tes },
Ry = Ao[(wr)(w) — (1hyr"wy ) (@)1].

Without the nonlinear source R, (2.5) would be a linear system of ¥ with con-
stant coefficients. It is straightforward to verify the following lemma for properties
of those coefficient matrices.

Lemma 2.1. Under conditions (1), (2) and (4) of Assumption 1.1, we have the
following:

(1) Ay, A, B and L are real, symmetric. Ay is positive definite, B is semi-positive
definite, and L is semi-negative definite.

(2) If ¢ € R"\{0} and B¢ = L¢ = 0, then AMAoC + AC # 0 for any X € R.

When (1) of Lemma 2.1 holds, there are several equivalent forms of (2), see
[12, Theorem 1.1]. Among them there is the existence of a so-called compensating
matrix. Here, we state the following lemma as a consequence of Lemma 2.1 applying
[12, Theorem 1.1].
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Lemma 2.2. Let conditions (1), (2), and (4) of Assumption 1.1 be true. Then we
have the following:

(1) There exists a matriz K € R™*™ called a compensating matriz, such that KA,
is real, skew symmetric, and

1 - N
S = §(KA+AKt) +B-L (2.8)

s real, symmetric and positive definite.
(2) Let \(i§) be the value of X such that

Mo¢+ (iEA+EB - L) =0

has a nontrivial solution ( € R™, where & € R. Then there exists a constant
¢ > 0 such that the real part of A\(i€) has the estimate

RA(E) < —cp([€]), € €R, (2.9)
where
r2
p(T):1+T2’ r=0.

To study a linear system with constant coeflicients we use Fourier transform.
We use the hat accent to denote the Fourier transform of a function in z:

J@¢%3/&@¢k”ﬂdm

(2.10)
dant) = 3= [ o6 e
Taking Fourier transform of (2.5) we have
Aoty + (iEA+ 2B — L)) = R (2.11)

To simplify R defined in (2.7) we write

. (R - [R - [R
Ri=Ag| ), Re=Ag| ), Re=Ao| ), (2.12)
R R R3o

where Ry € R™, and Rpe € R™?, k= 1,2, 3. If we write

f= (?) fLER™, fy €R™,

2

then from (2.7), (2.2) and (2.3) we have

Ry
<R12> = [(Yw f'wy) (@) — (Y f'wy ) (w)]Ys, (2.13)

Ri = fie, fi=—[filw) = fu(@) = (flwy)(@)d] = O (2.14)
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Similarly,

Roq
<R22> = Yy (0)[B(w)we ]z — (Yo Bwy) (0) e, (2.15)

Roy = bie, b1 = (Im xny Ony an) [B(w)we — (Bwy)(w)Yz].  (2.16)
With (1.7) we also have
Rot =0, Ray = [(r2)us () — (r2)un(@)rs (w) = O(Dw — d2.  (2.17)
From (2.7), (2.12), (2.14), (2.16) and (2.17) we have

~ ~ f x + b x ~ 077,1
R (1) L4 “ . (2.18)
Onax1 Ry + Roo + R3a

We cite [14, Lemma 3.4].

Lemma 2.3 ([14]). If (n'r")(w) is symmetric then

Twywy = Twaw, (TQ);; (TQ)wl TNwawy (TQ);;

Ong X1y Thwows (TQ);gl

(o"ung) () = ( ) @, (219)

Taking transpose of (2.19) and using (1.7) and (2.2), we simplify L in (2.6).
Under the assumption of Lemma 2.3 we have

L= dia’g(onl XMy (77w2w2 (TQ);;)(U_))) (220)

For the treatment of r in (1.5) in Sec. 4, we need the following crucial estimate
obtained in [14].

Lemma 2.4 ([14]). Under conditions (1) and (2) of Assumption 1.1, in a small
neighborhood of w we have

Nwiws — Thwows (TQ);gl(TQ)wl = 0(1)|T2(w)| (221)

For the treatment of the viscosity term in (1.5) we need the diffeomorphism
¢ defined in condition (3) of Assumption 1.1. Here, we cite the following result
from [15].

Lemma 2.5 ([15]). Conditions (1) and (3) in Assumption 1.1 imply that P*w!,n" P
is block-upper triangular, and thfan”waP is block diagonal in the partition n =
ns + ng as follows:

qi On n.
Pluly'P = (Zl ;X 4), (2.22)
3 4
P'wln" Bw, P = diag(On,xns, 14 B"), (2.23)

where N4 B* is symmetric, positive definite for all w € Q.
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In Secs. 4 and 5, we need some tools from analysis, which are summarized as
Lemma 2.6 as follows. It can be verified by using Gagliardo—Nirenberg inequality,
for instance, see [14].

Lemma 2.6. (1) (Sobolev-type inequality) For w € H'(R),
lwllze < V2|w]* [|ws]|2. (2.24)

(2) Let g be a given smooth function of w in Q. If w —w € H*(R), s > 1, and
|lw — |1 is bounded, then

DLyl < C|Dywll, 1<1<s, (2.25)

where C > 0 is a constant depending only on s and the bound of ||w — o||1.

(3) If Dyg,g € H=1(R) N L=(R) then
1D5(99) — 9D%4Il < C(IDagllL= D5 gl + 1 D5glllgllze=),  (2.26)

where C' > 0 is a constant depending only on I.

3. Spectral Analysis

In this section, we assume conditions (1), (2) and (4) of Assumption 1.1, and carry
out the spectral analysis of the linear system. Based upon it we derive estimates for
the linearized system. We write (2.11), which is equivalent to (1.5), as

b = B + AT 'R, (3.1)
where
E=—-Aj'(icA+ B — L) = E(i€). (3.2)
The solution of (3.1) is
~ ~ t ~
D(E,t) = (€, 0) + / P ATR(E, ) dr (3.3)
0

To estimate e®t we first have the eigen-decomposition of E. Since A is real,

1
symmetric and positive definite, we may choose an A; that is real, symmetric and
positive definite. We write

E=(A3)'BAg, (3.4)

where
E=(A5)"M(L —i€A - €B)(A) ™" = E(i€). (3:5)
Note that E(z) is holomorphic in z € C. From Kato’s perturbation theory [2], the
number 71 of distinct eigenvalues of E(z) is constant if z is not one of the exceptional
points, of which there are only a finite number in each compact set of C. In each

simply connected domain DD containing no exceptional points, the eigenvalues of
E(z) can be expressed as 7 holomorphic functions \;(z), j = 1,...,n, with the
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eigenvalues \;(z) having constant multiplicities m;. The \;(z) are branches of one
or several analytic functions in C, which have only algebraic singularities, and which
are everywhere continuous in C. An exceptional point zj is either a branch point of
some of the \;(z), or a regular point for all of them; in the latter case, the values of
some of the different \;(z) coincide at z = z. Hence, there is always the splitting
of eigenvalues at (and only at) an exceptional point.

The eigenprojections P;(z) and the eigennilpotents D;(z) for the eigenvalue
Aj(z) of E(z) are also holomorphic in each simply connected domain D containing
no exceptional points, being branches of one or several analytic functions with
only algebraic singularities. The analytic functions P;(z) and \;(z) have common
branch points of the same order, but P;(z) always has a pole at a branch point, see
Theorem 3.1, while \;(z) is always continuous there. P;(z) and D;(z) may have a
pole even at an exceptional point, even when \;(z) is holomorphic there.

From (3.5) we write

Blig) = (i€ B ).

~ 1 <1 1 -1 -
E A - —A +— } A
() = [B- i+ gt
With the same argument, E, (Z) has a finite number of exceptional points on |Z| < 1.
Thus, F(z) has a finite number of exceptional points on |z| > 1, hence on the whole
complex plane C.

From (3.5) and Lemma 2.1, E’(z) is real, symmetric for z € R. Thus, it has
spectral decomposition

[T

)~

z) = Z \j(2)Pj(z), z€R,

where P;(z) are real, symmetric, semi-positive definite for z € R. That is, D;(z) = 0,

1 <j <n,for z € R. By analytic continuation, D;(z) = 0,1 < j <q, for all z € C.

Therefore, for all non-exceptional points z € C, E(z) has the spectral decomposition
7

z) = Z \j(2)Pj(z), z€C, (3.6)

where if z € R, Pj(z) are orthogonal projections and their Euclidean norms
[P;(2)] = 1.

Theorem 3.1 (Butler’s Theorem). If zy is a branch point of \;(z) (hence also
of Pj(z)) of order p—1 > 1, then Pj(z) has a pole there. That is, the Laurent
expansion of P;(z) in powers of (z — 20)1/” necessarily contains negative powers. In
particular, |Pj(z)| — 0o as z — 2.

A proof of Butler’s Theorem can be found in [2]. Here, we note that according
to the theorem, any real z is not a branch point of \;(z). Consequently, all A;(z)
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are holomorphic for real z. The P;(z) are single-valued for real z. Since they do not
have a pole, P;j(z) are holomorphic for real z as well. In particular, A\;(z) and P;(2)
are holomorphic at z = 0.

From (3.4) and (3.6) we have

B(z) = (43) 7 B)AG = YoM (2)Py(2), (37)
where
Py(2) = (A3)7 Py (2) 4] (338)

are eigenprojections of E(z) corresponding to the eigenvalues A;(z). From (3.8) and
the discussion above, we conclude that the eigenvalues \;j(z) and eigenprojections
Pj(2) of E(z) are holomorphic at z = 0.

Taking Taylor expansions at z = 0 and by (3.2) and (3.7) we have

E(z) = AgY (L — zA+ 2°B)
= Z —l—)\l ~](Pj0+215j1 -‘r"'), (3.9)
where Pjo, le, ... are constant matrices. In particular,
Pjo = P;(0).

Comparing the constant terms on the both sides of (3.9) we have

L= zn: 2 (0) Pjo. (3.10)

Noting

Pi(2)Pi(2) = 0 Pi(2), > Py

by Taylor expansions we have

(]Sj0+z]5j1+'~)(15k0+215k1+~~): jk(pj0+215j1+"'),

]0+ZP]1+ ) I.

-

J=1

Now, we compare the constant terms to have

PjOPkO = 6jkpj0, ZPjO =1. (3.11)
j=1
Therefore, by combining those Pjo with the same value of \;(0) in (3.10), we

o Sl o1
obtained the spectral decomposition of Aj'L. From Lemma 2.1, (Ag)'L(Ag)™"
is real, symmetric and semi-negative definite, hence its eigenvalues are either zero
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or negative. Noting

)

S

)UL(A8) A

O o=

Ag'L=(A5)7(A
we conclude that A;(0) in (3.10) are either zero or negative.
Now, we label A\; such that

A(0) =---=X5,(0)=0, X;j(0)<0 foriy <j<i. (3.12)

Then Z?;l Pjo is the eigenprojection of flg 'L corresponding to the eigenvalue zero.
From (2.6), (2.2) and (1.7),

AT L = (wy ' wy) (@) = diag(Ony s (72) s (0)). (3.13)

It is clear that the eigenprojection of Aa 'L corresponding to the eigenvalue zero is

n1
Py =) Pjo = diag(In, xn;» Onyxns)- (3.14)
j=1
Note that by (3.11)
PjoPy = PyPjo = Pjy, 1<j <. (3.15)

The following lemma is from [3]. We modify the proof to fit our assumptions.

Lemma 3.2 ([3]). Under conditions (1), (2) and (4) of Assumption 1.1, there exist
positive constants C and ¢ such that

. _e€?t
PO < Ce™ 142, ¢eR, t>0. (3.16)

Proof. For definiteness we use Euclidean norm as the matrix norm. Consider the
linear system
= E(i&)a, (3.17)
where the solution is @ = eZ(9t(¢,0). From (3.2), this is equivalent to
Agily = (—i€A — 2B + L)a. (3.18)

Multiplying (3.18) by @*, the conjugate transpose of @, from the left, and taking
the real part, we have

(0 Agtt), = —€%0* Bi + 4" L, (3.19)

N =

where we have applied (1) of Lemma 2.1.
From Lemma 2.2, there is a compensating matrix K, such that KAy is real,
skew symmetric, and

1 . - - .
S=§(KA+AKt)+B—L
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is real, symmetric and positive definite. We multiply (3.18) by —ia*K from the
left, and take the real part. This gives us

<%§@*Kﬁofa) + %gQa*(KA + AKYYa
t

= R{ie*0* K B — i¢u* K L}

IN

€ |al| K B3 || B2 a| + |¢]a]| K (~L)? ||(~L) 24l

IN

S&%al? + Cg|BYaf + C| (~L)~#al?, (3.20)

where B2 and (—i)% are real, symmetric, and semi-positive definite, and ¢ > 0 is
the smallest eigenvalue of S. Adding £24*(B — L)@ to both sides of (3.20) we have
) } 1 o ) 3
(%5@*1@10@) + €St < €i'(B — D+ Coé*ar Bi+ Cri(~L)i

t
(3.21)

for some constant C7 > 1.
Next, we multiply (3.19) by (1 + £2), and (3.21) by a > 0 to be determined.
Summing up the results gives us

(1+ €2)(Ea), + %g%*sa +(1+ &) (€0 Ba — a*La)

< aCy(1+&3)(&%0* Bt — 4* L), (3.22)
where
1/ .+ . o o~
E, = 3 <u Agti — 1_?:—6211 KA0U>.

Taking o < 1/C4 in (3.22), we have

a &2

ST el siso (3.23)

(Ea)t +

Now, we show that E,, is equivalent to |@|? for appropriately chosen a. Since

é- ~ 1~ |§| ~12 1 ~12
e K] < oLl Aol < ol

14¢2

i

for some constant C > 0, we have

1
~Ohn — aC)[af? < B, <

5 ()\M+a02)|ﬁ|2,

O =

where \,, > 0 and A\p; > 0 are the smallest and the largest eigenvalues of Ay,
respectively. Taking o = min{1/C4, A,/ (2C3)} we conclude that E, is equivalent
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to |@1|2. Noting S is positive definite, (3.23) implies

2

(Ba)i + 2c1i—€2Ea <0 (3.24)

for some constant ¢ > 0. Solving (3.24) we obtain

2ce2t

Ba(t) < e 1+ E,(0),

which implies
_20£2t
(&, )* < Ce™ & Ja(€,0)]%.
Noting @(&,t) = eP9t(£,0) we arrive at (3.16). i

Lemma 3.3. Let h(x) € R™. Under conditions (1), (2) and (4) of Assumption 1.1,
if h € LY(R) and D¥h € L%(R), then

PO G < Ot + 1) [hll e + Ce™* | DER, (3.25)
where C' and ¢ are positive constants. If in addition, h takes the form
h— (0’2;1) hy € R"2, (3.26)
then
[P0 R < Ot +1) 7 2 [[hl|: + Ce™ | DR, (3.27)

Proof. Applying (3.16) we have
PG ()P = [ [ePOO e hi)Pdg
R
720§2t ~
<C e e |¢PF|h(E)[Pdg
{lg]<etu{l€|=¢e}
<c / e~ eE ¢ [2E R (£) [2de
|€]<e
vo [ HE g Pag
[€]>e

<C

~ —ee? _ 2ce?t . ~
1Az~ /g< oo g2 e + o | (16)Fh(e) P
<e

2ce2t

e | DAl ], (3.28)

<O[t+1)" 2 |hl2, +e”

where 0 < £ < 1 is a small constant. Taking square root on both sides and resetting
the constant ¢ we obtain (3.25).
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If h further satisfies (3.26), we refine the integral over || < e to obtain (3.27)
as follows. From (3.7),

E(z)t Z 6)\ (z)tP

where \;(z) and Pj(z) are holomorphic at z = 0. Thus for |¢| < & with a small ¢,
taking Taylor expansions of P;(i€), 1 < j < nq, and applying (3.14), (3.15) and
(3.26), we have

B (ie)kp, Z MO Py + O(J€])](i€)* &)

7j=1

+ ) M) (i€) (€

j=h1+1
= SN OO (e (i6)* Z AU P (i€) (i) h(€).
i=1 J=rt

This implies

FEON g R(E)| < C |3 RO () + Y RMEOM efifige)

j=1 J=n1+1
(3.29)
From Lemma 2.2, noting \;(i§) is an eigenvalue of E defined in (3.2), we have
R{N; R 3.30
M9} <15 cer (3.30)

where ¢ > 0 is a constant. From (3.12) we also have
1
RO} < M0 < -6, m+1<j<n, (3.31)

for small ¢ and by resetting ¢ > 0 if needed. Using (3.29)—(3.31), we refine the
integral over |{| < ¢ as

/§< PO (i€ R R(e)dE < C / (P[22 4 20 e [2de

l¢l<e
<Ct+1)FFR)3e <CE+1)TF R (3.32)
Replacing the corresponding integral in (3.28) by (3.32) we obtain (3.27). |

4. Weighted Energy Estimate

In this section, we carry out weighted energy estimate to derive decay rates for
the nonlinear system. The non-optimal decay rates for higher derivatives obtained
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in this section help us to obtain the optimal ones given in Theorem 1.4. Similar
methodology has been used for higher space dimensions [16]. However, the analysis
in [16] does not apply to one space dimension that we are considering. This is
because in one space dimension, the solution decays to the constant equilibrium
state at a slower rate. The new idea in this section is that we assume optimal decay
rates for lower derivatives, and perform weighted energy estimate to obtain rough
estimates on higher derivatives of the solution. In Sec. 5, we use these estimates to
obtain optimal ones for lower derivatives. In other words, the a priori estimate in
this section is not closed independently (unlike the case of higher space dimensions).
Instead, it is closed together with the analysis in Sec. 5. Similar ideas have been
employed to resolve other challenging problems [5, 9, 10].
We introduce the following notation for ¢t > 0 and 0 <[ < s:

l
NE(t) = sup |(r+ 1) (7 + D)} DEw —w)|*(r)]. (4.1)
0<r<t =0

Theorem 4.1. Let @ be a constant equilibrium state of (1.5), and Assumption 1.1
be true. Let s > 2 and wo —w € H*(R). Then there exists a constant € > 0 such that
if lwo — w||s < e and Na(t) < e, the solution of (1.5), (1.4) given in Theorem 1.3

has the following estimates:

1D (w = ®)[[(t) < Cllwo —@ls(t+1)72, t>0, 0<I<s, (4.2)

oo s—1
[ S+ vIp i

- / SO+ DD 2, + [ DLra(w)|2 ) (0)de
=0
< Clfwo — . (4.3)

where C' > 0 is a constant.

Proof. For t > 0 we define

S

M) = sup [(m+ 1) Dy(w —@)|2_(7)]

+ [ e D el i
0

+ Z T+ DI DF Dall2y + [ Dira(w) |2 ) (r)dr. (4.4)

0 =0

S—

Our goal is to prove

M?(t) < Cllwo — 3, (4.5)
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where C' > 0 is a constant. Equations (4.2) and (4.3) are then direct consequence
of (4.4) and (4.5). In what follows, we assume that M (t) and Nx(t) are small.

First, we use Na(t) to express some L°°-norms needed in this section. From
(2.24), (4.1), (1.10) and (2.25) we have

lw = @]z < Cllw = ]| [Jw,]|> < CNa(t)(t + 1)

m\»-A

ez < Cllws || wesl|? < CNa(8)(t+ 1), (4.6)

| D2 |~ < C||D2wl|? | D3w2||2 < CNF (£)(t + 1) 3| D3, 2.

To estimate ||ro(w)]|| Lo, we note ro(w) = by (w) by (2.3). Thus taking the lower
half of (2.4) and using (2.2) we have

Tot — (Tg)w2T2 = R, (47)
where @wz = (r2)w, (w) and
R = ((r2)w, (r2)w,) {— + [Bw)wgle} + [(r2)ws () = (ra),, Jra(w).

(4.8)

Solving the linear system (4.7) with respect to t gives us

t -
ra(w(@, t)) = 2wz py (wo(z)) + / )y Rz, 7)dr. (4.9)

0

From Lemma 2.1 and (2.20), (9uw,yw, (72) 5, ) (@) is real, symmetric and semi-negative
definite. Since it is nonsingular by Assumption 1.1, it is in fact negative definite.
This implies [nézw2 (72) 100 (ném)*l](m) is real, symmetric and negative definite,
hence the eigenvalues of @W are all negative. Therefore, there is a constant ¢ > 0
such that

t
72 (w)]| Lo (t) < Ce™||ra(wo) || L + C/ €_c(t_T)HR(-’T)||LoodT. (4.10)
0

From condition (3) of Assumption 1.1 and (1.10) we have

0713)(1

DL[B(w)w,] = PDL[P'B(w)w, Pi,] = PD,
o[ B(w)wg] [P*B(w) ] (B*(w)ng

), 1>0. (4.11)

From (4.8) and (4.11), and applying triangle inequality, we have
IRz < ClwallLe + D2l Lo + [|w = Bl|zoe [ra(w)][pee).  (4.12)
Substituting (4.6) into (4.12), we integrate both sides to arrive at

t
/ e~ | R L (r)dr
0
1 t 9 1
< CNa(t)(t+1)"' + ON3 (t)/ e~ (7 £ 1)75 (7 + 1)?|| D3y ||? (7)) Tdr
0

+CNo(£)(t+1)77 sup [(7 + 1)|ra(w)] 2= (7).

0<7<t
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Applying Holder’s inequality and (4 4), the second term on the right-hand side is
bounded by CNZ ()M 2 (t)(t + 1)~ . Substituting the result into (4.10) gives us
[r2(w)l| L= (£) < Ce™|[ra(wo) | + C[Na(t) + M(1)](t +1)~"
+ ONo()(t+1)72 sup [(7+ 1)l|ra(w)] 1~ (7)),

0<r<t

which implies

Oiligt[(T + Dllra(w)[z=(7)] < Cllra(wo) [~ + M (t) + Na(t)]

for small Na(t). Applying (2.24) and (2.25) to the right-hand side, we have
lr2(w) ]| o= (t) < Clllwo — wlls—1 + M () + Na($))(t +1) 7" (4.13)

Now, we start the weighed energy estimate. Applying D% to (1.5) and multiply-
ing the result by DLwtn”(w), we have

Dl t //( )Dlwt+Dl t //( )Dl [f'(w)wz]
— DL’y (w) DL [B(w)w,] + D'y (w) Dhr(w).

We replace the time variable by 7, multiply the equation by the weight function
(7 + 1)*, and integrate the result over R x [0,#]. After integration by parts and
noting the symmetry of n” f/, for 1 <k <1 < s, we have

;/R(thl) [D why (w )Diw](x,t)d:c

1 5
= 3 ‘/R[Déwtn/l(’w)Dlzw](fL', 0)dz + ZI]-’ (4.14)

j=1

where

I == // + D)*[DLwny” (w); DL w)(x, T)dxdr
//T+1’€ YD wtny” (w) DLw)(x, 7)dxdr,
L= [ [ 0D ) @l D) o,
I = - /1/T+1 “{DLuw'y (@) (DL (f (w)w,) - £/ (w) DLl (a, T)dads,
I = - //T+1 (D5 " (w) + D'y (w), ] DL [B(w)w, ]} (w, 7)dadr,

= T k t” ! T, T TAT. .
ngA<+n[ (w) DL (w))(z, 7)drd (4.15)
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From (1.5) and applying (4.6), (4.11) and (4.13) we have
[wellL < Cllwallze + [[B(w)was || Lo + [Ir(w)l|ze)
< C(|wellpe + || D22 Lo + |[ra(w)]| L)
< Ofllwo — @|[s—1 + M () + No()](t+ 1)~ !
+ ONZ(t)(t+ 1)~ 8[| D34y . (4.16)

Substituting (4.16) into (4.15) and noting 1 < k < < s, we have

t t
b <C [+ DM i~ OIDLwlP(r)dr +C [+ 1Dl (r)ar
0 0

Clllwo — lles + M(t) + Na(8)]M2(t) + C / (7 + 1| Dbl (r)dr
(4.17)

Similarly, from (4.15) and (4.6),

I, < C/o (7 4 D)*(||we || Lo || DLwl|?) (1) dr < CNo(t) M2 (t). (4.18)

For Is we apply Cauchy—Schwarz inequality, (2.26), (2.25) and (4.6) to have
t
fs = C/ (7 + D Dywl (N DLLSf (w)ws] — f'(w) Dl (r)dr
0

< C/O (m+ 1P| Dwlf[lwa || o) (T)dr < CNa(8) M3 (2). (4.19)

To estimate Iy we need the diffeomorphism ¢ defined in condition (3) of Assump-
tion 1.1. With @ defined in (1.10) we have

Dty (w) = DL Plut'(w) + [Dh (i) — w D) ().
Applying (1.10), (2.22) and (4.11) gives us
Dy 'y (w) Dy [B(w)ws] = Dy ihiia DL [B* (w) bz,
+ Dy (wepa) — wo Dy o]y (w) Dy [B(w)w, ]

Substituting the equation into (4.15) and applying (2.25), (2.26) and (4.11), we
have

t
_ / / ( + 1F (D it B (w) DY i ) (w, 7)dadr
0 R

t
+0(1)/0( D (|1 D sl |wl| oo | Dywll + lws ||F | D5 w]|*) (7)dr.
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Noting that 74B*(w) is symmetric, positive definite by Lemma 2.5, we conclude
that there is a constant ¢ > 0 such that

t
I < —c / (7 + V)| DE i |2(7)dr + CN (6 M2(1), (4.20)
0

where we have applied (4.4) and (4.6), noting 1 < k <[ <s.
To estimate I5, by (1.7) and the key estimate (2.21) we write

Diw'n (w) Dyr(w) = Dyr(w)n" (w) Dyw
= DL (w) (1w, ws D w1 + Tusyw, Dyws)
= DLrb (W) Nuwsws [(12) 0y (r2)w, Dywi + Diws]
+O0(1)[Dra(w)|[r2 (w)|| Dy |-

Noting I > 1 and Dyws = (w2)ythy = —(r2) 51 (r2)w, wis + (r2)yir2(w)s, by (2.1)
and (2.2), we further have
Diw'n" (w) Dlr(w) = Dyrh () w, Dy [(12) 4, (r2) (w)e]
+O0(1)|Dyra(w)||(r2) y (r2)w, Dyuwn
= DM (r2) g (r2)wy wia]|

+0(1)| Dyra(w)||ra (w)[| Dywr .

By linearizing at w of the leading term on the right-hand side, from (4.15), (2.25)
and (2.26) we arrive at

Is = /0 /R(T + 1) { DLrh (W) ey w, (12) 21 (@) Dira (w) }Ha, 7)dzdr
+ 0(1)/0 (7 + D)M||DLra (w) [ (7) |w — @ | g (7)dr

+0(1)/0 (7 + 1" Dyra (w) | (7) ([[we | Lo | DG ol

+ [[ra(w)| e | Dyl (7)dr,

where the term containing || DL 1w|| disappears if [ = 1. In the derivation of (4.10),
we have made conclusion that [1uw,w,(72),,](@) is real, symmetric, and negative
definite. Thus, there exists a constant ¢ > 0 such that

Is < —c /Ot(f + )M Dgra(w) [P (T)dr + Clllwo — @|s—1 + M(t) + Na ()] M>(1),
(4.21)

again, with the help of (4.4), (4.6) and (4.13).
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Combining (4.14) and (4.17)—(4.21) and noting n” is symmetric, positive definite,
for 1 <k <[ < s we obtain

(t+ 1)*||DLw|?(t) +/0 (7 + D) (| D5 e ||* + (| Dera (w)[|?) (7)dr
< C||DLwol? + Clllwo — w]|s—1 + M (t) + Na(t)]M?(t)
+O/t(r+ DY DLwl|?()dr, (4.22)
0

where C' > 0 is a constant.

We still need an estimate of the integral on the right-hand side of (4.22). For
this we use the variable 1/; instead. Apply D! to (2.5) and multiply the result by
Dé‘*‘liﬁtK , where K is the compensating matrix. Then we have

DY K Ao Dy + D W K AD ) = DEFW! K (BD0 + LD + DL R).

We replace ¢ by 7, multiply the equation by (7 4 1), and integrate the result over
R x [0,t]. Noting K Ay is real, skew symmetric by Lemma 2.2, and using S defined
in (2.8), we have

t 9
/ / (7 + VMDY S D) (3, T)dwdr =Y 1, (4.23)
0 JR j=6
where

1 t - - ~
Is =3 / / (7 + V(DL K A D) (@, 7)ddr,
0 JR

t ~ ~ ~
I; = / /R (7 4+ D)¥(DIFY) BDU ) (2, 7)ddr,
0
(4.24)

t
I = —/ /(7' + 1)k(Di+11/3tiDi+lzz)(x,T)d:ch,
0 JR
t
Iy = / / (7 + 1)*DLPYp K (BDL ) + LD 4y + DL R)(x, 7)dwdr.
0 JR

Let 1 <k <1< s—1. By integration by parts and Cauchy—Schwarz inequality
we have

Is < C(t+ D*(| DL ||| DL () + C (|| DL ||| L) (0)
t N t B
—I—a/ (7 + V)| DEFLI2(r)dr + ca/ (1 + )F2|DLg|2(r)dr,  (4.25)
0 0

where « > 0 is a constant to be determined, and C, > 0 is a constant depending
on the choice of a.
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To estimate I7 we need to convert the variable 1 associated with the kinetic term
to ¢ with viscosities via the mappings ) — w — ¢ as follows: By (2.3) and (2.6),

DI BD b = D (wiyn Buwy) (@) D
= D! (win Bwy)(w) D5 + O(1) D P lw — |
= DL (Yppa) wiyn” By Dy (Yp.) + O(1)| DS P |w — ]
= D wln" Bwy Dy o + O(1)| Dy (Ypipr)
— Y, D el (| DS | + | DS ]) + O(1)| DL ) fw — ).

Applying (4.24), (1.10), (2.23), (2.25), (2.26) and (4.6), we arrive at

t
I7 S/ /(r+1)’“(D;+1w§ﬁ4B*D;+1w2)(x,T)dzdr
0 JR
t
+C [+ 1 IDL ) = D R IDE ]+ 105 ol ()
t
+0 [+ DHIDE P — ) ()i
0
t
<C [+ VMDY | rar
0
t
+C [+ D (= 1Dl D5 i ()i
t
+0 [+ DD Pl - wllue)r)dr
0

t
< C/ (7 4+ 1)¥|| DL s || (7)dr + CNa(t) M2 (t). (4.26)
0
To estimate Is we substitute (2.3) and (2.20) into (4.24) to have

Iy = - / / (r -+ F DL (0)! (g (r2) 51 (0) D s ()] (2, 7) e

<0 [+ IR ) P 4.27)
0
For Iy we simplify the integrand first. From (2.6) and (2.7) we have
BD*2) + LD'¢+ D' R = D' Ry + D\ Ry + D\ Rs,
Ry = Ag[(thu [wp) (@) = (oo i) (w)]1),
Ry = Ry + Bty = Agthy (0)[B(w)ws]s,
Rs = Ry + Ltp = Ag(¢,r)(w).

(4.28)
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Therefore,

t
Iy < c/ /(r + 1)*(|D59)|| DL Ry + DY Ry + DL Rs|)(x, 7)daxdr
0 JR
t ~
<a [+ DD
0

t
+ Ca/ (7 + V(I DL RA® + [ DL R || + || Dy R ) () d (4.29)

0
where o > 0 again is a constant to be determined, and C, > 0 is a constant

depending on «a. Applying (2.25), (2.26), (4.11) and (4.28), it is clear that the
second integral on the right-hand side of (4.29) is bounded by

t
Ca/o (7 + 1)*(wa | L~ | Dew]|? + llw — @l | D" wl® + [z |7 | Dy ]

+ [ Dyw|| D32 | Foe + (| D21 + [[we || Lo | D5 (w) 2
+ [ Dyw|?[lr2(w)l[f + [|D5r2(w)|[*)(7)dr.

Therefore, using (4.6) and (4.13), we have
t ~
b <a [+ DD (r
0

t
+Ca [ (7 VMDY 20 + | Dlralw) ) (r)dr
0

+ Calllwo — @3y + M>(t) + N3 (£)|M>(1). (4.30)
Combining (4.23), (4.25)—(4.27) and (4.30), and noting S is symmetric and posi-

tive definite by Lemma 2.2, we conclude that there is a constant ¢ > 0 such that
forl1 <k<Il<s-—1,

t ~
[+ DM DL
0

t ~ t ~
<20 / (r + V¥ DE Y2 ()dr + Ca / (r + )2 DL|P(r)dr
0 0

t
+Ca [ (o DMUDY l + | Dlra(w) ) (r)dr
0

+C(t+ DM(IDZHD + |1 DL l*) (1)

+ Collw — 0||% + Co[Na(t) + M?(t)| M3 (t).
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Now, we choose a < ¢/4 to arrive at
t

[ DM iDL P ryar
0

t ~
<c [+ DM DI r)ar
0

tT k—2 lw27_ o tT k l+1w2 2
SC{/O( + 1) || Dywl|*(7)d +/0( + 1) ([[Dy" weally

+ [ Dsra(w)|[3)(7)dr + (t + 1)*|DLwl|3 (£) + lwo — w]|3

+ [Na(t) + M2(t)]M2(t)}, (4.31)

where 1 < k<[ <s—1.
Recall the energy estimate from Theorem 1.3,

t
sup Hw*'@l\i(TH/ (IDzwl2_y + |Dba 12 + [r2(w)|12)(r)dr
0<r<t 0

< Cllwp — w2, (4.32)

Summing up (4.22) for k <1 <s, we have for 1 <k <s,

t
sup [(m+ 1) DywlZ_(r)] + /0 (T + DMIDS a3 + | Dira(w) 4] (r)dr

0<r<t

t
SC[WOm||§+M3(t)+N2(t)M2(t)+/ (74 D) Y DEw||?_,.(1)dr|.
0

(4.33)
Also, summing up (4.31) for £ <1< s—1, we have for 1 <k <s—1,
t
[ e+ 0HipE el rar
0
< C{Ilwo — |2+ M*(t) + Na(t)M>(t) + (t + 1)¥| Diw]|2_,(t)
t
+ / (r+ D)F(ID5 o |12y, + || Dhro(w) |12y (7)dr
0
t
4 [ 02Dkl e, (4:31)
0

By Induction, (4.32)—(4.34) imply
sup [(7 +1)*[| D (w — @) [|3_4(7)]
0<T<t

t
+ / (m+ DFIDE a2, + | Do (w) |2 ) (7)dr
0

< C[||lwo — w||* + M3(t) + No(t)M>*(t)], 0<k<s, (4.35)
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t
lAu+nwD?wm%4er

< Cl|lwo —w||? + M3(t) + No()M3(t)], 0<k<s—1. (4.36)
The induction goes as follows: (4.32) implies both (4.35) and (4.36) for k = 0. Next,
taking £ = 11in (4.33) and k = 0 in (4.36) give us (4.35) for k = 1. Now taking k = 1
in (4.34) and (4.35) and k = 0 in (4.36) give us (4.36) for & = 1. As it continues,
we make the conclusion that (4.35) is true for 0 < k < s while (4.36) is true for
0 <k < s—1. Summing up (4.35) and (4.36) we arrive at

M2(t) < Clllwo — @] + MP(t) + Na()M?(1)],
which implies
[1— CM(t) = CN2 (1) M?(t) < Cllwo — w]3.
Therefore, if M (t) and No(t) are small, we have
M2(t) < Clluwo — . (4.37)

By a standard continuity argument, (4.37) is true if ||wy — @||s and Na(t) are
sufficiently small. O

5. Optimal Decay Rates

In this section, we finish the nonlinear analysis to prove our main result, The-
orem 1.4, to obtain optimal decay rates of the solution w of (1.5), (1.4) to the
constant equilibrium state w. This is to perform a priori estimate via Duhamel’s
principle, using results derived in Secs. 3 and 4.

Recall N? defined in (4.1),

k

Ni(t) = S (e D2 (r + DD (w —@)|*(7) |, (5.1)
Srst 1=0

where t > 0 and 0 < k < s. By a standard continuity argument, to prove (1.12) in
Theorem 1.4 under the smallness assumption on the initial data, we only need to
prove the following proposition.

Proposition 5.1. Under the hypotheses of Theorem 1.4, if Ns_o(T) is bounded by
a small positive constant, which is independent of T > 0, then

Ng—o(T) < Cdo, (5.2)

where §g = ||wg — W||s + [Jwo — @|| L1, and C > 0 is a constant independent of T.

Proof. From (5.1) and (4.2) (assuming Ns_o(7T') is small with s > 4), for 0 <t < T
we have

DL (w — @)||(t) € Ne_o(B)(t+1)"572, 0<I1<s—2, (5.3)
|DLwl||(t) < Coo(t+1)"2, I=s5—1,s. (5.4)



688 Y. Zeng

We carry out our analysis with the variable 1/; defined in (2.3). Applying
Plancherel theorem, (3.3), and triangle inequality, we have

IDLEI(E) = 1) (0
< e PG 0 + [ Nie'eP O A Rig Dlar. (55)

From (3.25), (2.3) and (2.25) we have

€)1 ePEOH) (€, 0)| < Ot + 1) 45 ()1 + | DLE])(0)

1

<COt+1)"5 2 (|wo — || + Jwo — @])).  (5.6)

Similarly, from (2.18), (3.25) and (3.26) we have

/ (€)= A= Re, 1) | dr = Z I, (5.7)

7j=10

where

t 3
2 1141 ~
Ilo=0(1)/ (t—r+1)787 7 <||f1||L1+|bllL1+§ |Rk2|L1>(7)d7a
0

k=1

t 3
I = 0(1)/t (t—7+1)73 (HDQJHHL1 + Dbyl + ) ||DiRk2|L1> (T)dr,

2 k=1

¢ 3
By =0(1) [ et <||D;+1f1|| 1D b+ Y |Diszll> (r)ar
0 k=1
(5.8)

with a positive constant c.
To estimate ;9 we note that fq1, by and Rye, 1 < k < 3, are defined in (2.13)—
(2.17). Thus by (2.3), (2.25) and (5.3),

1fillzs () < ClIP(r) < Cllw — @]*(7) < ONZ_y(7)(r +1)72,

(1) <
[b1]l21(7) < Clllw = @ [[¢2])(7) < C(llw = @|||wa ) (1) < CNZ_,H(r)(r +1)7,
[Riz]l1(m) < C(J|w = @ [[¢a]))(7) < CNZo(r) (7 + 1)~
[ Ro2|lL1(7) < Cllwall[[¥a ]l + [[w — @[[[[¢wal])(7)
C(llwa |l + 1w — ll|[wae)(7)
< CON? ,(7)(r+1)"3,
C

[ Razl[21(7) <
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Substituting these into (5.8) gives us

t
ho < ON2,(0) [“e-r+ )7 E ) har
0

I\)\N

< ON?_,()(t+1)"i 2. (5.9)

To estimate I;; we consider 0 <1 < s — 2. Again, by (2.14), (2.3), (2.25) and
(5.3) we have

1D% filloa (7) = || =Dy i (w)wytpa] + (flwy) (@) Dyl 1 (7)

< C(llw = wll| D || + lwa [ D ] + - + |1 D wll [ a ) (7)
< CZ (15 (w — ) [ [ D5~ (w — w)|[)(r)

< ONZy(r)(r+1)727%, (5.10)

where we have considered [ > 1 while the result is clearly true for [ = 0. Similarly,
from (2.13) and (2.15)—(2.17) we have

1Dgb1 ] £ (7) <CZHD’“ w)[[| DEF T (w — w)| (7)

3

< CINZ,(r) (T +1)71 7% + Nooa(7)do (T + 1) 717 2],

2l

Mw
m\~

IDLRus| 11 (1) < CINZo(7)(r + 1) 7172 + Ny_o(r)8o(7 + 1)~

I+1
ID% Roa |2 (7) < C ZIID’“ w)||[[D5F* | (5.11)

l
+lwe = Y [ DEw] | D]l ()
k=1
< CINZ5(r)(r +1)"37% + Ny (r)do(7 + 1)~ 575),
|IDL Rag| 1 (1) < ON2_o(7)(r +1)727 %,

where we have applied (5.4) and (2.24)—(2.26) as well. Substituting (5.10) and (5.11)
into (5.8) gives us

t
I < CINZ5(0) + Naoat )50]/ (t—7+1)7i(r+1) 2" 2dr

< CINZ_5(t) + Ny_a(t)8o] (£ + 1) 7575, (5.12)
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To estimate 12, again we consider 0 < [ < s — 2 and apply (2.24)—(2.26) to
(2.13)—(2.17) to have

IDSFill(7) < Il = DL (w)wyiba] + (Fiwy)(w) DL )| (7)
+C([lw — | | D5 ) ()
< C([lwa ]| o | Dhwl| + [lw — ]| oo | DL w])) ()
< CINZo(7)(7 +1)757% 4 No_o(7)do(r +1)71 %),
IDEba|(7) < C(llwal o | D w]] + [Jw — ]| oo | D500 ) (7)
< CINZo(7)(7 +1)757% 4+ No_o(7)do (7 +1)7275],
IDLR12|(7) < CINZ 5(7)(r + 1) 578 4+ Ny_p(r)do(r + 1) 717 2],
IDL Raa|(7) < C(|wa| o | DL ]| + w — @] Lo || D5 2wl
+ [[wa 13 oo | Dhw]| + [[wae || o | Diawl]) (7)
< CINZ (1) (7 +1)757% 4+ Ny_a(r)do(r +1)~5732),
IDL Raa || (1) < C(lw — @] poe | Dhwl| + [[we | o | DY ) (7)
< CON2 ,(r)(r+1)"i 2,

Here, we have assumed [ > 1 or [ > 2 in the above derivation but the results are
clearly true for 0 <1 < s — 2. Substituting these estimates into (5.8) gives us

t
s < CIN 5(0) + Noa(03] [ 41 H-hdr
0

< C[N2_ () + Ny—a(t)o](t + 1)~ 175 (5.13)

Combining (5.7), (5.9), (5.12) and (5.13) we have

t ~
| )00 5 e ) e
0

1_

< CINZ,(t) + Ne_o (1)) (t+1)"573, 0<I<s—2.  (5.14)
Substituting (5.6) and (5.14) into (5.5), for 0 <1 < s — 2 we have
IDL(w — @) || (£) < CIDLPII(E) < Cldo + NZo(t)](E+1)5 2.
Equivalently, we have
(t+ )DL (w — @)[P(1) < Cloo + N (1)
Summing up for 0 <[ < s — 2 and taking supremum for 0 < ¢ < T, we have

NI 5(T) < Cldo + N2 (D)),
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or
[1 = CONs—o(T)]Ng—2(T) < Cdy.
This gives us (5.2) provided Ny_2(T) < 1/(2C), which is independent of T'. O

Next, we carry out the proof of (1.13) in Theorem 1.4. For this we recall (4.9),
which implies the following L2-counterpart to (4.10).

1D5r2(w)||(t) < Ce™ || Dyra(wo)|| + C/Ote_c(t_T)lDiR('J)lldT’ (5.15)
where C' and ¢ are positive constants, and R is defined in (4.8).
Noting r2(w) = 0 and applying (2.25) we have
1D5r2(wo)|l < ClIDL (wo = w)[|, 0<1<s. (5.16)
To estimate || DL R|| we use (4.8), (2.24)-(2.26) and (4.11) to arrive at
IDLRI(r) < DL [(r2)uf ()a]ll(7) + DL (72 (B ) ()
DL A1(r2)ws (W) = (r2)wy (@)]r2 (w)} (7)
< O[IDGH w]| + (well L= + [|D32|| L + [[w — @] o= )|| D} (w — @)
+llwe| Lo 1D (w — )| + | DF 2] (7),

where the terms with || DL (w — w)|| does not exist if [ = 0. Applying (1.12) and
taking 0 <[ < s — 4 we further have

IDLRI(r) < Cool(r +1)7% % + (r 4+ 1)+ 2| Didn (7)) (5.07)
Finally, we substitute (5.16) and (5.17) into (5.15), and apply Cauchy—Schwarz
inequality and (4.3) to obtain (1.13),

t
HDirg(w)H(t) < Ce Y wo — w||s—a + 050/ efC(t*T)(T + 1)*%*5517-
0

t
+ 5 / == (r 1+ 1) 44 [(r + 1)}| D2a o1 (7))dr
0

< Co(t+1)"i72, 0<I<s—4 (5.18)
This completes the proof of Theorem 1.4.

To finish this section, we justify Remark 1.6 on the special case of hyperbolic
balance laws, i.e. B =0 in (1.5). In this case, b; = 0 and Rz = 0 in (5.8). We may
replace Ns_o(T') by Ns_1(T) in Proposition 5.1 and let s > 3. It is straightforward
to verify that (5.12) and (5.13) are true for 0 < [ < s — 1, with Ny_5 replaced
by Ns_1. As a consequence, (5.2) becomes Ny_1(T) < Cdp, which gives (1.12) for
0<i<s—1,or (1.15) for 0 <] < s—3/2+ 1/p. Similarly, (5.17), hence (5.18), is
true for 0 <! < s — 2. This implies (1.16) for 0 <[ <s—5/2+1/p.
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6. Applications

In this section, we discuss several applications. First, we consider the special case
of hyperbolic—parabolic conservation laws (1.2),

wi + f(w)e = [B(w)wela,

(6.1)
w(z,0) = wo(x).

Assumption 1.1 is simplified to

Assumption 6.1. (1) There exists a strictly convex entropy function 7 of w such
that in @, 0’ f' is symmetric, and 1"’ B is symmetric, semi-positive definite.
(2) There is a diffeomorphism ¢ — w from an open set @ C R™ to @ such that

B(w(w))w@ (50) - diag(0n3><n37 B*(@))v

where ng and ny = n — nz > 0 are constant integers, and B* € R™*™ ig
nonsingular in Q.
(3) The null space of B(w) contains no eigenvectors of f/(w).

We note that the constant orthogonal matrix P in Assumption 1.1 is not needed
since there is no intertwining of dissipation from viscosity and kinetic terms. We
also set ny > 0 since otherwise (6.1) would be a system of hyperbolic conservation
laws, and condition (3) in Assumption 6.1 would not be satisfied. Theorem 1.4 and
Corollary 1.5 are reduced to Theorem 6.2.

Theorem 6.2. Let w be a constant state and Assumption 6.1 be true. Let s > 4 be
an integer, and wo —w € H*(R) N LY(R). Then there exists a constant ¢ > 0 such
that if 69 = ||lwo — w||s + ||wo — w||z1 < €, the Cauchy problem (6.1) has a unique
solution for t > 0, satisfying

|IDL (w — @) 1o () < Coo(t +1) "2+ 255 (6.2)

for 0 < 1 < s—5/2+4+1/p with p > 2. In particular, the decay rate in L? is
(t+1)"5i72 in (6.2).
With slightly simplified assumptions (condition (2) of Assumption 6.1), Theo-

rem 6.2 recovers existing results in [3, 4].

The second application is to the special case of hyperbolic balance laws (1.3),
wy + f(w):E = T<w)7
(6.3)
w(x,0) = wo(x).

In this case, Assumption 1.1 is simplified to

Assumption 6.3. (1) There exists a strictly convex entropy function 7 of w in Q,
such that n” f/ is symmetric in @ and 7”7’ is symmetric, semi-negative definite
on E.
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(2) Equation (6.3) has n; conservation laws, i.e. there is a partition n = nj + no,

ni,ng > 0, such that
0,, w
rw) = ") w= (),
ro(w) Way

with wy € R™, ro,we € R™ | and (r2)y,, € R™*" is nonsingular.
(3) The null space of v/(w) contains no eigenvectors of f'(w).

In Assumption 6.3, we set ni,no > 0. The case n; = 0 leads to better decay
rates than those in (6.4) below while physical models often demand ny > 0. The
case ny = 0 is precluded as otherwise the system would be one of hyperbolic con-
servation laws. Noting Remark 1.6, Theorem 1.4 and Corollary 1.5 are reduced to
Theorem 6.4.

Theorem 6.4. Let w be a constant equilibrium state of (6.3) and Assumption 6.3
be true. Let s > 3 be an integer, and wo —w € H*(R) N L*(R). Then there exists a
constant € > 0 such that if 69 = ||wo — W|s + ||wo — W||pr < &, the Cauchy problem
(6.3) has a unique solution for t > 0, satisfying

DL (w — )| 1o (£) < Coo(t+1) 3+ 2% (6.4)
for0<1<s—3/2+1/p, and
IDLra(w) | Lo (t) < Coo(t + 1)~ 252 (6.5)

for 0 <1 < s—5/2+ 1/p, where p > 2. In particular, the L? rates in (6.4) and
(6.5) are (t+1)"32 and (t + 1)~ 32, respectively.

Under Assumption 6.3, which is simpler and slightly weaker, Theorem 6.4 recov-
ers existing results in [5]. A comparison of Assumption 6.3 and the set used in [5]
is given in [14].

The third application is to Keller—Segel model with logistic growth. The follow-
ing chemotaxis model was proposed by Keller and Segel [6] to describe the oriented
movement of cells toward a chemical concentration gradient

{ct = ECyqp — puc™,

reR, t>0, (6.6)
up = (Duy — xuc tey)s,

where the unknown functions ¢(x,t) and u(x,t) denote the chemical concentration
and cell density, respectively. The constants ¢ > 0 and D > 0 are, respectively,
diffusion coefficients of the chemical and cells. The constants 4 > 0 and x > 0 are
the coefficients of density-dependent degradation rate and of chemotactic sensitivity,
respectively, while m > 0 is the degradation rate.

In our discussion, we set m = 1, and the degradation term in (6.6) is —puc. This
implies that the chemical (oxygen) is consumed only when cells (bacteria) encounter
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the chemical. We also consider that cells undergo logistic growth. Therefore, our
model reads

Ct = ECpg — HUC,

u reR, t>0, (6.7)
%)
where the constants a > 0 and K > 0 are the natural growth rate and the typical

uy = (Duy — xuc *cp), + au(l -

carrying capacity.
The singularity in the chemotactic sensitivity in (6.6) or (6.7) can be removed
by the inverse Hopf-Cole transformation [7],

v=(Inc),. (6.8)
Under the new variables v and u, we write (6.7) as

v+ (pu — ev?), = vy,

(6.9)
us + x(uv)y = Dugy, + au (1 — %)

Using the positive parameters p, x and K we simplify (6.9) by rescaling

~ [uK
f=ukt, &= “795 a:%, 5= MLKU. (6.10)

7 + (U — £0%)z = Ezz,
as )N (6.11)
uy + (ﬂ’f))i = Duzz + &ﬁ(l — ﬁ),
where
€ -~ D a
=%, D=2, a=-2. 6.12
X X pK A
Dropping the tilde accent we write (6.11) as
v + (u — ev? r = EVgg,
e ) (6.13)
u + (uv)y = Dugy + au(l — u),

where ¢ > 0, D > 0 and a > 0 are constant parameters.
We consider Cauchy problem of (6.13) with initial data

(v,u)(x,0) = (vo,uo)(x), (6.14)

where (vg,ug) is a perturbation of a constant equilibrium state (v,a). Here to be
equilibrium, @ = 0 or 1, and to be stable equilibrium @ = 1. Therefore, we take
the constant equilibrium state as (v,1), where v is a constant. Now, we take a
neighborhood © of (7, 1). The equilibrium manifold is

E = {(v,1)} NO.



LP decay for hyperbolic—parabolic balance laws 695

Equation (6.13) is in the form of (1.5), with

S P G B A W
u uv 0 D au(l —u)

In what follows, we verify that Assumption 1.1 is satisfied. Let
L,
n=gv +ulnu —u

be the entropy function [8]. By direct calculation,

(0 o L0 0
— s = y T = .
K 0 1 u v 0 a(l—2u)
u

Clearly, n is strictly convex in @; n” f’ is symmetric, and n” B is symmetric, semi-
positive definite in O (for € > 0 and D > 0); and 1”7’ is symmetric, semi-negative
definite on E.

If @ > 0, (6.13) has one conservation law, and the partition n = n; 4+ ng in
condition (2) is 2 = 1+ 1. In this case, (r2)y, = %[au(l —u)] = a(l—2u) #0. On
the other hand, if a = 0 then (6.13) has two conservation laws, and the partition is
2=2+0.

The diffeomorphism ¢ in condition (3) is the identity. The partition n = ng+ny
is2=0+2ife >0 and D > 0 (two parabolic equations), 2 =141 if ¢ > 0 and
D =0,ore =0and D > 0 (one parabolic equation), and 2 = 2+ 0ife = D = 0 (two
hyperbolic equations). The constant orthogonal matrix P € R?*? is the identity in
all cases except when € > 0 and D = 0, in which P is the permutation to interchange
the two equations in (6.13).

Finally, condition (4) is satisfied if at least one of ¢, D and a is positive (oth-
erwise, (6.13) becomes a system of hyperbolic conservation laws). This is readily
verified since Ny N Ny is either zero-dimensional, or one-dimensional, spanned by
(1,0)! or (0,1)". Each of these subspaces of R? does not contain eigenvectors of
(v, 1).

We now conclude that Assumption 1.1 is satisfied by (6.13) as long as one of ¢,
D and a is positive. This breaks down to seven cases as follows:

Case 1. € >0, D >0 and a > 0;
Case2. e=0,D >0 and a > 0;
Case 3. ¢ >0, D=0 and a > 0;
Case 4. e =D =0 and a > 0;

Case 5. € >0, D >0 and a = 0;
Case 6. e =0, D >0 and a = 0;
Case 7. e >0,D=0and a=0.

Here, Case 4 fits (6.3) and Theorem 6.4 applies, while Cases 5-7 fit (6.1) and Theo-
rem 6.2 applies. Therefore, we focus on Cases 1-3. In these cases, r2(w) = au(l —u),
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which is equivalent to 1 — u since u is about one and a > 0. Applying Theorems 1.3,
1.4 and Corollary 1.5 to (6.13), (6.14), we have the following.

Theorem 6.5. Let v be a constant, a > 0, s > 2 be an integer, and
(vo—T,up—1) € H?(R). Then there exists a constant ¢ > 0 such that if
[[(vo = B,ug — 1)||s < e, the Cauchy problem (6.13), (6.14) has a unique global
solution. The solution has an energy estimate as follows:

Case 1. If e >0 and D > 0 then

sup [|(v = o, u = DIEE) + /0 (lvall? + llu = 11Z42) (1)dt

< Cll(vo — B, u0 — DII3.

Case 2. If e =0 and D > 0 then

sup (0= = DIEO + [ (sl o+ u= 1))

t>
< Cll(vo = v,u0 — 1|13

Case 3. If e >0 and D =0 then

sup [ (v = v, u = D) + /0 (lvall + [lu — 1I2)(t)dt

t>

< Cl(vo — 7, uo — D3

Theorem 6.6. Let v be a constant and a > 0. Let s > 4 be an integer, and
(vo — D,up — 1) € H¥(R) N LY(R). Then there exists a constant ¢ > 0 such that if
5o = ||(vo — v,up — 1)||s + || (vo — U, up — 1)||p1 < &, the solution of (6.13), (6.14)
giwen in Theorem 6.5 has the following LP estimate with p > 2: Fort > 0,

5 1
IDL (v = B,u — 1)1 (£) < Coo(t + 1) 522, 0si<s—g+2,

DL (u— 1) 1o (t) < Coo(t+ 1) 372, 0<1<s— g + %.

We comment that due to the specific form of (6.13), such as the reduced system
being a scalar equation hence no wave interaction between different characteris-
tic families, we may obtain results better than what the general theory offers. For
instance, in a recent paper [18], we establish for cases one and two the global exis-
tence of solution to (6.13), (6.14) under the assumption (vo,ug — 1) € H*(R) and
ug > 0 (initial density positive), without the smallness requirement on the H2-norm.
Asymptotic behavior of solution and decay rates are also obtained. In an upcoming
paper [19], we further obtain optimal time decay rates with non-small initial data
for the special case when the chemical is non-diffusive while vy has zero mass. The
latter corresponds to the initial distribution of chemical being around a constant
background state, lim, .+ ¢(z,0) = ¢, where ¢ > 0 is a constant.
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Our final application is to polyatomic gas flows in both translational and vibra-
tional non-equilibrium [1, 13],
Pt + (pu)z =0,
(pu)i + ((pu® 4+ p)z = (ptiz) e,

(pE)t + (pEu +pu)z = (IMUUI + kT + Vp€2x)za
€

(6.15)

*_

€2

)

(pea)e + (peau)e = (vpezs)s + p=> .
where p, u and p are the density, velocity and pressure, respectively. The total
energy is
Ly
E:eJriu , e=-¢e]+eq,
where the internal energy e consists of two parts: es is the non-equilibrium vibra-
tional energy, and e; is the rest of the internal energy.

We comment that since the relaxation time scale of the translational mode is
much smaller than that of vibrational mode, through Chapman—Enskog expansion
we introduce dissipation mechanisms to compensate the translational mode, and
single out the vibrational mode as the non-equilibrium mode. Therefore, we need
two sets of thermal dynamic variables, one for the translational mode and for all
other internal modes at the same pace of the translational mode, and the other for
the vibrational mode. We use subscript “1” for the former and “2” for the latter. For
instance, like e; and ey introduced above, we use T3 for the common temperature
of the translational mode and all other internal modes except the vibrational mode,
and T5 for the vibrational temperature. The two sets of variables obey different
thermodynamic equations as follows:

T1d51 = d€1 +pd1), T2d82 = d62, (616)

where v = 1/p is the specific volume, and s; and sy are the equilibrium and vibra-
tional entropies, respectively.

The dissipation mechanisms due to the translational mode are realized
by the viscosity coefficient u, thermal conductivity x, and self-diffusion coefficient v.
The first three equations in (6.15) are conservation of mass, momentum and energy.
The last equation is the relaxation of vibrational energy to its local equilibrium
state e at the time scale 7. Both e5 and 7 are known functions of the thermal
dynamic variables in set one. In view of (6.16), (6.15) is a system of four equations
for four unknowns: the velocity, two thermodynamic variables in set one, and one
in set two.

It has been shown in [15] that (6.15) satisfies Assumption 1.1 under physical
assumptions. For this we introduce the following notations based on the relation
among thermodynamic variables,

p=p,e1) =pw,T1), Ti=Ti(v,e1), ez =w(T2).
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A state is an equilibrium state if and only if 75 = T3. Thus, the equilibrium manifold
is characterized as

E= {T2 :Tl}ﬂ@,
and ey satisfies
e; :w(Tl), égzw(Tl).

Here, we recall that the bar accent is for the constant equilibrium state w. Without
loss of generality, we set @ = 0, hence

w = (p,0, pe, pés)". (6.17)
The physical assumptions to be imposed are

0
—T1 (U, 61) > O,

0
D p(v, T 0, Tie, =
p('U, 1) < ? 1 1 861

Pv = %
(6.18)

0
Pe, = 8—p(v,el) #0, W'(T)>0.
€1
We cite [15, Propositions 4.1 and 4.2].

Proposition 6.7. Let (6.18) be true, and the dissipation parameters in (6.15)
satisfy

k>0, v>0, u>0. (6.19)
Then (6.15) satisfies Assumption 1.1 in a small neighborhood O of w.

We comment that the entropy function 7 in condition (1) of Assumption 1.1 is
—ps, where s = s1 + so is the physical entropy. The partition n = ni + ne in condi-
tion (2) is 4 = 3+ 1. The diffeomorphism ¢ in condition (3) is p(w) = (p, u, T}, e2)t.
The partition n =n3+ngisd=1+3ifr >0and p>0;4=24+2if v > 0 and
uw=0,orv=0and u>0;and 4 =341 if v = u = 0. The matrix P is the identity
except when v = 0. In the latter, P is a permutation to move the rate equation
above the momentum equation.

We consider the Cauchy problem of (6.15) with prescribed initial data

U)(.’,E, 0) = (pvpua pEa peg)t(I,O)

1 ¢
= (po,pouo»[}o (60 + §U%)a,00620) () = wo(x). (6.20)

Applying Theorem 1.4, Corollary 1.5 and Proposition 6.7 to (6.15), (6.20) we have
the following theorem.

Theorem 6.8. Let p,é; > 0 be constants, T) = Ti(1/p,é1), e = w(Ty) and
€ = & + é2. Let (6.18) and (6.19) be true, s > 4 be an integer, and wy — W €
H*(R) N LYR) for wo and @ in (6.20) and (6.17), respectively. Then there exists a
constant € > 0 such that if 5o = ||wo — @||s + ||wo — @|| 1 < €, the Cauchy problem
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(6.15), (6.20) has a unique solution, with (p — p, pu, pE — pe, pes — pés) € C([0, 0);
H*(R)). The solution satisfies the following LP decay properties with p > 2: For
t>0,

1411
1D%(p = p, pu, pE = pe, pez — pea)|[Lr () < Coo(t +1)72 2072 (6.21)

for0<1<s—5/2+1/p, and

1

IDL [p(e5 — e2) /7]l e (1) < Cdo(t + 1)~ T2 2 (6.22)

1

for 0 <1< s—9/2+41/p. In particular, the L* decay rates in (6.21) and (6.22) are
(t+1)"35"2 and (t + 1)~ 5"z, respectively.
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