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Abstract

Switching the magnetization with an electric field in multiferroic heterostructures is desirable
since it provides a possibility to achieve information storage with lower power consumption
than traditional spintronic devices by using an electric current to drive magnetization rotation.
Most of the existing studies, however, have been on multiferroic heterostructures containing

either a single magnetic island or spatially well-separated multiple magnetic islands, where
the effect of long-range magnetostatic interactions among magnetic islands (i.e. so-called
cross-talking) can be ignored. Here we employ phase-field simulations to study the effect

of magnetic interactions among islands on the electric-field-controlled magnetization
switching in multiferroic heterostructures. As an example, we consider two interactive
CoyoFe49B2o(CoFeB) magnetic nanoislands grown on a PMN-PT ((00 1)-oriented Pb(Mg
13Nb2/3)0.7Ti 303) ferroelectric layer. We find that the distance between two neighboring
nanoislands has to exceed a critical value to achieve an independent 180° magnetization
switching in each nanoisland. The present work provides guidance for further experimental
studies on the electric field control of magnetization and design of novel multiferroic devices.

Keywords: multiferroic heterostructures, magnetic domain switching, critical neighboring

distance, phase-field modeling

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic/ferroelectric multiferroic heterostructures provide a
material platform where the electric polarization and magne-
tization can coexist and couple to each other, thus they are
promising candidates for magnetoelectronic devices [1-6].
The coupling between the polarization and magnetization in
a multiferroic heterostructure is achieved via the heterointer-
face between the magnetic and ferroelectric phases. To date,
several interfacial coupling mechanisms have been identified,

3 Author to whom any correspondence should be addressed.
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including the charge/orbital modulation [7-9] exchange cou-
pling [10-12] strain-mediated elastic coupling [13-20], charge
carrier modulation by the field effect [21, 22], and a recently
discovered mechanism by electrically controlled morphology
to tune the magnetic properties [23]. Exploiting these coupling
mechanisms to achieve electric-field-controlled magnetiza-
tion switching is desirable, since it may mitigate the energy
consumption from Joule heating caused by electric current in
most of the existing spintronic devices [24-29].

There have been many experimental and theoretical
attempts to achieve electric-field-controlled magnetization
switching in multiferroic heterostructures [11, 12, 30-37].

© 2019 IOP Publishing Ltd  Printed in the UK
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Most of them were focused on electric-field-driven 90° mag-
netization rotation. For example, Hu er al studied the 90°
magnetization switching induced by an applied voltage in Ni/
PMN-PT heterostructures, which was further used to design
a magnetoresistive random access memory (MRAM) [33].
The storage capacity of the MRAM proposed by Hu ef al can
be as high as 88 GB per square inches, which was estimated
by assuming a lateral size of 64nm for the magnetic layer.
However, in their studies of electric-field-driven magnetiza-
tion switching and estimation of storage capacity, the interac-
tions among storage units were neglected, which might cause
an overestimation of the storage capacity.

In comparison to 90° switching, the electric-field-con-
trolled 180° magnetization switching is more desirable since
it can induce larger resistance changes when used in MRAM.
By utilizing the synergetic effect from the shape anisotropy
and magnetoelastic anisotropy, the electric-field-induced
180° magnetization has been proved to be feasible via both
simulations and experiments [26, 27, 38—40]. In particular,
by etching a magnetic layer into a nanoisland with a 4-fold
symmetry, the magnetization can be switched unidirectionally
to complete a 180° full reversal under a pair of tensile and
compressive strains transferred from an underneath piezo-
electric layer [27]. These earlier studies were also focused
on the switching in a single magnetic nanoisland or isolated
nanoisland arrays [27, 40-43] grown on a piezoelectric sub-
strate, whereas the cross-talking among magnetic nanoislands
was ignored. Therefore, it is still unclear how the interactions
among the magnetic nanoislands will affect the magnetization
switching in each individual nanoisland. Understanding this
interaction is important for the design of multiferroic devices
containing densely packed magnetic nanoisland arrays with a
small distance between neighboring nanoislands as required
for a high memory storage density.

In this work, we employ phase-field simulations to study
the electric-field-controlled magnetization switching in mul-
tiferroic heterostructures containing two magnetic nanois-
lands, wherein the magnetostatic interaction between them
is incorporated as one of the driving forces to determine the
magnetization switching. The phase-field method has been
demonstrated as a powerful tool to study the microstructure
evolution and properties of materials [44—48] by solving the
time-dependent evolution and equilibrium equations, such as
the investigation of magnetic or ferroelectric domain struc-
tures and domain switching [49, 50], particularly in magnetic/
ferroelectric multiferroic heterostructures [51-53]. It has
also been extensively employed to calculate the temperature-
strain [54-57], strain—strain [56-58] and strain-composition
[55] phase-diagrams for ferroelectric materials and magnetic
materials.

Here, we use a CoFeB/PMN-PT multiferroic hetero-
structure as an example (see figure 1(a)) to show the effect
of interaction between the two neighboring nanoislands on
the magnetization switching in each individual nanoisland.
The CoFeB/PMN-PT multiferroic heterostructure has been
extensively employed to study the electric-field-controlled

x [100]

strain axis

Figure 1. (a) Schematic of the CoFeB/PMN-PT multiferroic
heterostructure consisting of two interactive CoFeB magnetic
nanoislands on individual (01 1) PMN-PT substrates; (b) top view
of the multiferroic heterostructure with R representing the distance
between the centers of the two neighboring CoFeB magnets, Hgrown
the growth magnetic field, and 0 the angle between the anisotropic
magnetic easy axis and y-axis. ¢4 indicates the angle between the
direction of the average magnetization my of magnet A and the x-
axis, and similarly, ¢p for magnet B.

magnetization switching [16, 59—64]. As shown in figure 1(a),
the two CoFeB magnetic nanoislands, named as magnet A and
magnet B, respectively, are located with a neighboring dis-
tances R (the distance between the centers of the two magnets).
The average magnetization directions in these two magnets
are indicated by directional angles ¢4 and ¢g, respectively, as
shown in Figure 1(b).

In order to study the long-range magnetostatic interaction
effect, we first obtain the equilibrium magnetization configu-
ration in each magnet before applying a voltage to the multi-
ferroic heterostructure. We next investigate the magnetization
switching behavior of the two magnets at various neighboring
distances in two successive switching steps. In switching
step 1, an external electric voltage is applied to the PMN-PT
substrate underneath magnet B, upon which a piezostrain
is generated and transferred to magnet B. Then, the applied
voltage is removed, allowing relaxation of the magnetization,
defined as switching step 2. The stable magnetization states of
the two magnets achieved during switching steps 1 and 2 are
referred to as the strained states and the final states, respec-
tively. We find that for each of the two switching steps, only
when the separation distance is larger than a critical distance,
an independent 90° magnetic switching for magnet B can be
accomplished, which by definition is that the magnetization
of magnet B switches by about 90° while that of magnet A
almost remains still, within a 10° tolerance of rotation angles
in our evaluation.
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2. Method

In the phase-field model, the temporal evolution of the magne-
tization field M is simulated by solving the Landau-Lifshitz-
Gilbert equation [26, 27, 65, 66], i.e.

3711177 Y0
o 1+a?

where m = M/Mj is the normalized magnetization field (Mg
denoting saturated magnetization), and 7y, «, and t are the
gyromagnetic ratio of an electron, damping coefficient and
time, respectively. The effective magnetic field Hg is given
by

(m x Hege + am x (m x Her)), (1)

1 6F
Het = ——.
ff 1o SM (2)
Here, 1 represents the vacuum permeability. The total
Helmbholtz free energy F of the system as a function of the
magnetization field within the two CoFeB magnetic nanois-
lands is expressed as [26, 27, 41]

F = / (fms +fexch +felastic +funi +fexlemal) dv. (3)

fmS9 fexch’ felastia funi’ and fextemal are the magnetOStatiQ
exchange, elastic, uniaxial anisotropy, and external magnetic

field energy densities, respectively.
The magnetostatic energy density is given by

1
fms = _ENOMsHstray -m, 4

where Hgay is the stray field arising from both the magneto-
static interaction between the two magnets and that due to the
inhomogeneity of the magnetization field within each magnet.
Hgiray is obtained by solving the magnetostatic equilibrium
equation

V-H+M)=0. (5)
The exchange energy density is calculated as

foxeh = A((Vmy)* + (Vma)* + (Vim3)?), (6)

where A is the exchange constant. The elastic energy density
is given by

Setastic = %Cijkl(ffij - 58) (gkl - 621)’

2 2 2
= S(en(en —€9)" +cnlenn — %) + casless — %))
+en((en — 9 (e — €3,) + (enn — €9)) (33 — €35)
+(e22 — €3,) (€33 — %))

2 2 2
+2cu((es — %) + ez —el) + (e —¢))), (D

where ¢y, €, and 62- are the elastic stiffness tensor, total
strain, and eigenstrain, respectively, and the Voigt notation is
used to reduce the order of the elastic stiffness tensor. The
eigenstrain is calculated as

el = 300 (mf — 7)€%, = 300 (m3 — 3)

€93 = 300 (M3 — 3)

% = 31 (mumy — §) . €% = 301 (mums — ),
95 = 3111 (mams — 3),

®)

Table 1. Material parameters of CoFeB used in the simulation.

Parameter Value Unit Ref.
Ms 1.0 x 10° Am™! [73]
o 1.76 x 10" HzT! [71]
Ao 3.1 x 107 / [69]
Al 3.1 x 107 / [69]
« 0.005 / [70]
ci 2.8 x 10! N m™? [72]
P 1.4 x 10" N m2 [72]
Cas 0.7 x 10! Nm™ [72]
Kgrowth 3500 Jm3 [41]
A 1.5 x 107! Jm™! /

where Ajgp and Ay are the saturation magnetostriction along
the (1 00) and (1 1 1) crystalline directions, respectively.
According to Khachatuyan’s microelasticity theory, the total
strain is equal to the summation of the homogeneous strain gj;
and the heterogeneous strain dej;, i.e. €;; = g; + d¢; [67, 68].
The distribution of the heterogeneous strain is solved from
the mechanical equilibrium equation [34]. The homogeneous
strain g;; represents the macroscopic deformation of the nano-
magnet, which can be caused by the piezoelectric strain trans-
ferred from the piezoelectric substrate underneath (PMN-PT).
The effective field orientation caused by g; depends on both
the anistropy of ;; and the sign of the magnetostrictive coeffi-
cients. For CoFeB nanomagnet with positive magnetostrictive
coefficients (table 1), an effective field along x direction will
be induced when €17 — €5, > 0, and it is along y direction if
gl —en < 0.

Following previous work [41], a uniaxial anisotropy due to
the application of a magnetic field along the direction of the
y-axis during the growth of the CoFeB magnets is considered,
given by

2
= - m;.
f uni growth/"t) (9)
The external magnetic field energy density is written as

Sextenal = —poMsHexe - m, (10)
where Hgy is the external magnetic field. In this work, we
focus on pure voltage-controlled magnetization switching,
thus Hey, = 0 is used in the simulation.

The simulation system is set as 180Ax x 90Ay x 40Az
with a grid size of Ax = Ay = 3nm and Az = 1nm. The in-
plane dimension of the CoFeB nanoislandsis 108 nm x 108 nm
while the thicknesses of the CoFeB nanoislands and the
PMN-PT substrate are Snm and 35nm, respectively. The
material parameters of CoFeB used in the phase-field simu-
lation are listed in table 1 [41, 69-72]. All simulations were
performed using the commercialized phase-field package

1i-PRO®.

3. Results and discussions

3.1. Initial states

In a single CoFeB nanoisland grown on a PMN-PT substrate
without an applied electric field or strain, the magnetization
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Figure 2. (a) Two initial magnetization configurations in the multiferroic heterostructure and (b) their free energy densities as a function of
the neighboring distance R. The free energy density of an isolated single magnet is also presented for comparison.

has two energetically equivalent states at equilibrium:
magnetization pointing up (¢ ~ 77°) and pointing down
(¢ ~ 257°) [41]. For a group of two interactive magnets A
and B, there might be four equilibrium magnetization states:
(¢a, P) = (77°, 77°), (77°, 257°), (257°, 77°), and (257°,
257°). They can be categorized into two types of magnetiza-
tion states: the antiparallel state with opposite magnetization
directions (¢4, ¢p) ~ (77°,257°) or (257°,77°) and the parallel
state with same magnetization directions (¢4, ¢p) ~ (77°,77°)
or (257°,257°). In the simulation, we use (¢4, ¢p) ~ (77°,77°)
and (77°, 257°) as examples for the parallel and antiparallel
states, respectively, as depicted in figure 2(a). We find that
both states can be stabilized, but they have different energies
due to the interaction between them. As shown in figure 2(b),
with the distances R between the two magnetic nanoislands
increasing, the energy of the antiparallel state increases while
the energy of the parallel state decreases, and both approach
to the energy of an isolated single nanoisland. This indicates
that the parallel state and the antiparallel state correspond to
the meta-stable and stable states, respectively.

3.2. Switching from the antiparallel state to the parallel state

The functionality of a multiferroic heterostructure lies in
the control of independent magnetization switching of each
magnet, where each magnet should be able to accomplish a
180° switching under the effect of a piezoelectric strain trans-
ferred from its underlying substrate without altering the mag-
netization configuration of the other magnet. Since the two
magnets in the heterostructure are equivalent to each other,
we just need to simulate the 180°switching of one magnet
(e.g. magnet B) of the two by applying an external electric
field to it while keeping the other one (e.g. magnet A) under
zero external electric field to study the interactions between
them. Here we focus on the 180° switching of magnet B while
keeping magnet A with an upward-pointing magnetization
(¢4 = T7°), which is the switching between an antiparallel
state of (¢a, ¢p) ~ (77°, 257°) and a parallel state of (¢4,

op) ~ (77°, 77°). We first study the switching from the anti-
parallel state to the parallel state. This process involves two
switching steps as defined above, which will be discussed in
detail as following.

3.2.1. Switching step 1. Starting from the antiparallel state,
an electric voltage is applied to the PMN-PT substrate beneath
magnet B. Under the voltage, an anisotropic strain €;; — €2,
can be induced in the PMN-PT [43], whose magnitude depends
on the strength of the applied voltage. Assuming that a strain
anisotropy of 17 — €3 = 1200ppm is generated on apply-
ing the voltage to the PMN-PT, which is the minimum strain
required to switch the magnetization in the CoFeB/PMN-PT
heterostructure with a single magnet, as identified in our sim-
ulation. We find that only when the neighboring distance R
is greater than 174nm can the magnetization be switched by
the voltage-induced strain in magnet B independently. When
the neighboring distance R is smaller than 174 nm, the sys-
tem shows an obvious cross-talking effect: both magnetiza-
tions of A and B switch away from their initial configurations.
For example, at R = 156 nm, which is about the closest pos-
sible neighboring distance for the chosen magnet size, the
average magnetizations of A and B rotate by A¢s ~ 36° and
Agp ~ —76° (see figure 3(b)), respectively, with reference to
the initial states in figure 3(a). For a larger neighboring dis-
tance R > 174 nm, the magnetization in magnet B rotates by
A¢p ~ —90° while the magnetization configuration of mag-
net A almost remains the same as its initial state, as shown in
figures 3(c) and (d).

The cross-talking behavior observed at R < 174nm is
attributed to the magnetostatic interaction between the two
magnets. In this case, the magnetization in magnet B switches
under the piezostrain transferred from the interface; meantime,
the magnetization of magnet A is also switched due to the
change in the magnetic stray field generated by magnet B. The
stray field generated by magnet B (denoted by Hﬁmy) in the
initial state and the strained state for R = 156 nm is shown in

figures 4(a) and (b), respectively. In the initial state, the stray
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Figure 3. Magnetization configuration in (a) the initial state and (b) the strained state at the neighboring distance R = 156 nm as well as (c¢)
the initial state and (d) the strained state at R = 174 nm during the antiparallel-to-parallel switching. A¢, and Agp are the rotation angles
of the average magnetization directions of magnets A and B between their initial states and straining state, respectively.

Figure 4. The magnetic stray field Hﬁmy generated by magnet

B in (a) the initial state and (b) the strained state, at R = 156 nm
during the antiparallel-to-parallel switching. The black squares
show the outline of the two magnets, while the color arrows inside

magnet B indicate the magnetization field. The white arrows and the

background color outside magnet B indicate the direction of HZ

(see the color bar), respectively.

stray

; B
and its component Hg,,

field HE

sray acting on magnet A is mostly along the y direc-
tion, with an average value of <H§rayfx>A = —550 Am™!
and <Hthray_y>A = 1337Am~!, so the magnetization of

magnet A is stabilized along the y direction. In the strained

state, as accompanied by a 90° rotation of the magnetiza-

tion of magnet B, the stray field Hfuay acting on magnet A

changes to the negative x direction, with an average value of
(HEy ) =-3250Am~'and (HE, ) =-393Am~!,
A A

stray _ stray —y
causing the magnetization in A to rotate toward the negative

B

stray acting on

x-axis from its initial state. The stray field H

magnet A reduces upon increasing the neighboring distance
R, and the magnetization switchings in the two magnets
become decoupled at R > 174nm. As a result, a criterion of
R > 174nm is required for an independent 90° switching of
magnet B in switching step 1.

3.2.2. Switching step 2. A second 90° clockwise switch-
ing of magnet B upon removal of the external electric field
in switching step 2 is required to accomplish a 180° mag-
netization rotation. We test different neighboring distances
R following the criteria of R > 174nm as required by the
switching step 1. The strained and final magnetization con-
figurations during switching step 2 of selected cases are
shown in figures 5(a)—(f). According to the simulation, the
magnetization configuration in magnet A is almost unal-
tered, while the magnetization in magnet B at the final state
may have several different configurations, depending on the
neighboring distance. For example, at R = 174 nm (figures
5(a) and (b)), the magnetization in B undergoes a slight
clockwise rotation by an angle of Ag¢g’ = —32.0°. When
the neighboring distance is R = 186 nm (figures 5(c) and
(d)), the magnetization in B is stabilized at a curved struc-
ture with a rotation angle A¢p’ = 62° from its initial state.
When the neighboring distance increases to R > 234nm
(figures 5(e) and (f)), the magnetization in B can switch by
~90°. In combination with step 1, the magnetization com-
pletes a 180° switching from the antiparallel state to the
parallel state.

The switching dependence on the neighboring distance R is
again understood from the magnetostatic interaction between
magnets A and B. At a small R, the magnetostatic interaction is
strong, hindering the 90° magnetization switching of magnet
B. Figures 6(a) and (b) show the stray fields H/:tray generated
by magnet A in the final states when R equals to 174nm and
234 nm, respectively. In both cases, the stray field within the
region of magnet B is nearly along the negative y direction,
which hinders the magnetization from switching toward the
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Figure 5. The magnetization configuration in (a) the strained state and (b) the final state at R = 156 nm, (c) the strained state and (d) the
final state at R = 186 nm, as well as (e) the strained state and (f) the final state at R = 234 nm during the antiparallel-to-parallel switching,
respectively. A¢), and A¢j are the rotation angles of the average magnetization directions of magnets A and B between their straining states

and final states, respectively.
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Figure 6. The stray magnetic field Hﬁray generated by magnet

A at(a) R = 174nm and (b) R = 234 nm during the antiparallel-
to-parallel switching. The black squares show the outline of the

two magnets, while the color arrows inside magnet A indicate the
magnetization field. The white arrows and the background color
outside magnet B indicate the direction of H‘:m,y and its component

Hﬁray_y (see the color bar), respectively.

y direction. Furthermore, the stray field acting on magnet B
reduces with R increasing, from (Hjyy ), = —954 A m™!
at R =174nm t0 (Hypy.y), = —364 A m~" at R =234nm.

Figure 7. Magnetization configuration in (a) the initial state, (b)
the strained state and (c) the final state at the neighboring distance
R = 234 nm during the parallel-to-antiparallel switching.

Therefore, the 90° magnetization switching of magnet B can
be achieved at R > 234 nm.

Based on the switching criteria for the two successive
switching steps, a combined criterion for achieving an inde-
pendent 180° magnetization switching in magnet B can be
obtained: the neighboring distance R should be greater than
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234nm to assure a sufficiently weak magnetostatic interaction
for decoupling the switching of the two magnets.

3.3. Switching from the parallel state to the antiparallel state

We next study the switching from the parallel state (¢4,
¢p) =~ (77°,77°) to the antiparallel state (¢4, ¢p) ~ (77°,257°).
The results are shown in figures 7(a)—(c). We consider the
critical neighboring distance of R =234nm. The simu-
lation shows that a quasi-180° magnetization switching,
A¢p = —85° in switching step 1 and A¢p = — 90° in
switching step 2, can be achieved in magnet B. Meanwhile,
the magnetization in magnet A almost remains unchanged
during the whole process. This suggests that the determinant
factors of achieving electric-field-controlled 180° magnetiza-
tion switching lie in the antiparallel-to-parallel process, which
is reasonable because the antiparallel state is energetically
more stable than the parallel state (discussed in section 3.1).
Consequently, the switching from the parallel state to antipar-
allel state is easier than the reversed switching process.

4. Summary

In summary, we have investigated the electric-field-controlled
magnetization switching in CoFeB/PMN-PT multiferroic
heterostructures containing two interactive magnetic nanois-
lands using phase-field simulations. By simulating the mag-
netization configuration in the nanoislands during different
switching steps, we identify a critical neighboring distance
between the two magnetic nanoislands in order to achieve a
180° magnetization switching. Therefore, this work delivers
an in-depth theoretical understanding on the effect of the mag-
netostatic interaction between two neighboring magnets on
the electric-field-controlled magnetic switching. It is expected
to provide valuable guidance for the fabrication and design of
high-density multiferroic devices containing densely packed
magnetic nanoislands.
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