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1.  Introduction

Magnetic/ferroelectric multiferroic heterostructures provide a 
material platform where the electric polarization and magne-
tization can coexist and couple to each other, thus they are 
promising candidates for magnetoelectronic devices [1–6]. 
The coupling between the polarization and magnetization in 
a multiferroic heterostructure is achieved via the heterointer-
face between the magnetic and ferroelectric phases. To date, 
several interfacial coupling mechanisms have been identified, 

including the charge/orbital modulation [7–9] exchange cou-
pling [10–12] strain-mediated elastic coupling [13–20], charge 
carrier modulation by the field effect [21, 22], and a recently 
discovered mechanism by electrically controlled morphology 
to tune the magnetic properties [23]. Exploiting these coupling 
mechanisms to achieve electric-field-controlled magnetiza-
tion switching is desirable, since it may mitigate the energy 
consumption from Joule heating caused by electric current in 
most of the existing spintronic devices [24–29].

There have been many experimental and theoretical 
attempts to achieve electric-field-controlled magnetization 
switching in multiferroic heterostructures [11, 12, 30–37]. 
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Abstract
Switching the magnetization with an electric field in multiferroic heterostructures is desirable 
since it provides a possibility to achieve information storage with lower power consumption 
than traditional spintronic devices by using an electric current to drive magnetization rotation. 
Most of the existing studies, however, have been on multiferroic heterostructures containing 
either a single magnetic island or spatially well-separated multiple magnetic islands, where 
the effect of long-range magnetostatic interactions among magnetic islands (i.e. so-called 
cross-talking) can be ignored. Here we employ phase-field simulations to study the effect 
of magnetic interactions among islands on the electric-field-controlled magnetization 
switching in multiferroic heterostructures. As an example, we consider two interactive 
Co40Fe40B20(CoFeB) magnetic nanoislands grown on a PMN-PT ((0 0 1)-oriented Pb(Mg
1/3Nb2/3)0.7Ti0.3O3) ferroelectric layer. We find that the distance between two neighboring 
nanoislands has to exceed a critical value to achieve an independent 180° magnetization 
switching in each nanoisland. The present work provides guidance for further experimental 
studies on the electric field control of magnetization and design of novel multiferroic devices.
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Most of them were focused on electric-field-driven 90° mag-
netization rotation. For example, Hu et  al studied the 90° 
magnetization switching induced by an applied voltage in Ni/
PMN-PT heterostructures, which was further used to design 
a magnetoresistive random access memory (MRAM) [33]. 
The storage capacity of the MRAM proposed by Hu et al can 
be as high as 88 GB per square inches, which was estimated 
by assuming a lateral size of 64 nm for the magnetic layer. 
However, in their studies of electric-field-driven magnetiza-
tion switching and estimation of storage capacity, the interac-
tions among storage units were neglected, which might cause 
an overestimation of the storage capacity.

In comparison to 90° switching, the electric-field-con-
trolled 180° magnetization switching is more desirable since 
it can induce larger resistance changes when used in MRAM. 
By utilizing the synergetic effect from the shape anisotropy 
and magnetoelastic anisotropy, the electric-field-induced 
180° magnetization has been proved to be feasible via both 
simulations and experiments [26, 27, 38–40]. In particular, 
by etching a magnetic layer into a nanoisland with a 4-fold 
symmetry, the magnetization can be switched unidirectionally 
to complete a 180° full reversal under a pair of tensile and 
compressive strains transferred from an underneath piezo
electric layer [27]. These earlier studies were also focused 
on the switching in a single magnetic nanoisland or isolated 
nanoisland arrays [27, 40–43] grown on a piezoelectric sub-
strate, whereas the cross-talking among magnetic nanoislands 
was ignored. Therefore, it is still unclear how the interactions 
among the magnetic nanoislands will affect the magnetization 
switching in each individual nanoisland. Understanding this 
interaction is important for the design of multiferroic devices 
containing densely packed magnetic nanoisland arrays with a 
small distance between neighboring nanoislands as required 
for a high memory storage density.

In this work, we employ phase-field simulations to study 
the electric-field-controlled magnetization switching in mul-
tiferroic heterostructures containing two magnetic nanois-
lands, wherein the magnetostatic interaction between them 
is incorporated as one of the driving forces to determine the 
magnetization switching. The phase-field method has been 
demonstrated as a powerful tool to study the microstructure 
evolution and properties of materials [44–48] by solving the 
time-dependent evolution and equilibrium equations, such as 
the investigation of magnetic or ferroelectric domain struc-
tures and domain switching [49, 50], particularly in magnetic/
ferroelectric multiferroic heterostructures [51–53]. It has 
also been extensively employed to calculate the temperature-
strain [54–57], strain–strain [56–58] and strain-composition 
[55] phase-diagrams for ferroelectric materials and magnetic 
materials.

Here, we use a CoFeB/PMN-PT multiferroic hetero-
structure as an example (see figure 1(a)) to show the effect 
of interaction between the two neighboring nanoislands on 
the magnetization switching in each individual nanoisland. 
The CoFeB/PMN-PT multiferroic heterostructure has been 
extensively employed to study the electric-field-controlled 

magnetization switching [16, 59–64]. As shown in figure 1(a), 
the two CoFeB magnetic nanoislands, named as magnet A and 
magnet B, respectively, are located with a neighboring dis-
tances R (the distance between the centers of the two magnets). 
The average magnetization directions in these two magnets 
are indicated by directional angles φA and φB, respectively, as 
shown in Figure 1(b).

In order to study the long-range magnetostatic interaction 
effect, we first obtain the equilibrium magnetization configu-
ration in each magnet before applying a voltage to the multi-
ferroic heterostructure. We next investigate the magnetization 
switching behavior of the two magnets at various neighboring 
distances in two successive switching steps. In switching 
step 1, an external electric voltage is applied to the PMN-PT 
substrate underneath magnet B, upon which a piezostrain 
is generated and transferred to magnet B. Then, the applied 
voltage is removed, allowing relaxation of the magnetization, 
defined as switching step 2. The stable magnetization states of 
the two magnets achieved during switching steps 1 and 2 are 
referred to as the strained states and the final states, respec-
tively. We find that for each of the two switching steps, only 
when the separation distance is larger than a critical distance, 
an independent 90° magnetic switching for magnet B can be 
accomplished, which by definition is that the magnetization 
of magnet B switches by about 90° while that of magnet A 
almost remains still, within a 10° tolerance of rotation angles 
in our evaluation.

Figure 1.  (a) Schematic of the CoFeB/PMN-PT multiferroic 
heterostructure consisting of two interactive CoFeB magnetic 
nanoislands on individual (0 1 1) PMN-PT substrates; (b) top view 
of the multiferroic heterostructure with R representing the distance 
between the centers of the two neighboring CoFeB magnets, Hgrowth 
the growth magnetic field, and θ the angle between the anisotropic 
magnetic easy axis and y-axis. φA indicates the angle between the 
direction of the average magnetization mA of magnet A and the x-
axis, and similarly, φB for magnet B.
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2.  Method

In the phase-field model, the temporal evolution of the magne-
tization field M is simulated by solving the Landau–Lifshitz-
Gilbert equation [26, 27, 65, 66], i.e.

∂m
∂t

= − γ0
1+ α2 (m×Heff + αm× (m×Heff)) ,� (1)

where m  =  M/MS is the normalized magnetization field (MS 
denoting saturated magnetization), and γ0, α, and t are the 
gyromagnetic ratio of an electron, damping coefficient and 
time, respectively. The effective magnetic field Heff is given 
by

Heff = − 1
µ0

δF
δM

.� (2)

Here, μ0 represents the vacuum permeability. The total 
Helmholtz free energy F of the system as a function of the 
magnetization field within the two CoFeB magnetic nanois-
lands is expressed as [26, 27, 41]

F =

ˆ
(fms + fexch + felastic + funi + fexternal) dV .� (3)

f ms, f exch, f elastic, f uni, and f external are the magnetostatic, 
exchange, elastic, uniaxial anisotropy, and external magnetic 
field energy densities, respectively.

The magnetostatic energy density is given by

fms = −1
2
µ0MsHstray ·m,� (4)

where Hstray is the stray field arising from both the magneto-
static interaction between the two magnets and that due to the 
inhomogeneity of the magnetization field within each magnet. 
Hstray is obtained by solving the magnetostatic equilibrium 
equation

∇ · (H+M) = 0.� (5)

The exchange energy density is calculated as

fexch = A((∇m1)
2
+ (∇m2)

2
+ (∇m3)

2
),� (6)

where A is the exchange constant. The elastic energy density 
is given by

felastic = 1
2cijkl(εij − ε0ij)(εkl − ε0kl),

= 1
2 (c11(ε11 − ε011)

2
+ c22(ε22 − ε022)

2
+ c33(ε33 − ε033)

2
)

+c12((ε11 − ε011)(ε22 − ε022) + (ε11 − ε011)(ε33 − ε033)
+(ε22 − ε022)(ε33 − ε033))

+2c44((ε23 − ε023)
2
+ (ε13 − ε013)

2
+ (ε12 − ε012)

2
),

�
(7)

where cijkl, εij, and ε0ij are the elastic stiffness tensor, total 
strain, and eigenstrain, respectively, and the Voigt notation is 
used to reduce the order of the elastic stiffness tensor. The 
eigenstrain is calculated as

ε011 =
3
2λ100

(
m2

1 − 1
3

)
, ε022 =

3
2λ100

(
m2

2 − 1
3

)
,

ε033 =
3
2λ100

(
m2

3 − 1
3

)
,

ε012 =
3
2λ111

(
m1m2 − 1

3

)
, ε013 =

3
2λ111

(
m1m3 − 1

3

)
,

ε023 =
3
2λ111

(
m2m3 − 1

3

)
,

� (8)

where λ100 and λ111 are the saturation magnetostriction along 
the 〈1 0 0〉 and 〈1 1 1〉 crystalline directions, respectively. 
According to Khachatuyan’s microelasticity theory, the total 
strain is equal to the summation of the homogeneous strain εij  
and the heterogeneous strain δεij, i.e. εij = εij + δεij [67, 68]. 
The distribution of the heterogeneous strain is solved from 
the mechanical equilibrium equation [34]. The homogeneous 
strain εij  represents the macroscopic deformation of the nano-
magnet, which can be caused by the piezoelectric strain trans-
ferred from the piezoelectric substrate underneath (PMN-PT). 
The effective field orientation caused by εij  depends on both 
the anistropy of εij  and the sign of the magnetostrictive coeffi-
cients. For CoFeB nanomagnet with positive magnetostrictive 
coefficients (table 1), an effective field along x direction will 
be induced when ε11 − ε22 > 0, and it is along y  direction if 
ε11 − ε22 < 0.

Following previous work [41], a uniaxial anisotropy due to 
the application of a magnetic field along the direction of the 
y -axis during the growth of the CoFeB magnets is considered, 
given by

funi = −Kgrowthm2
2.� (9)

The external magnetic field energy density is written as

fexternal = −µ0MsHext ·m,� (10)
where Hext is the external magnetic field. In this work, we 
focus on pure voltage-controlled magnetization switching, 
thus Hext  =  0 is used in the simulation.

The simulation system is set as 180Δx  ×  90Δy   ×  40Δz 
with a grid size of Δx  =  Δy   =  3 nm and Δz  =  1 nm. The in-
plane dimension of the CoFeB nanoislands is 108 nm  ×  108 nm 
while the thicknesses of the CoFeB nanoislands and the 
PMN-PT substrate are 5 nm and 35 nm, respectively. The 
material parameters of CoFeB used in the phase-field simu-
lation are listed in table 1 [41, 69–72]. All simulations were 
performed using the commercialized phase-field package 
µ-PRO®.

3.  Results and discussions

3.1.  Initial states

In a single CoFeB nanoisland grown on a PMN-PT substrate 
without an applied electric field or strain, the magnetization 

Table 1.  Material parameters of CoFeB used in the simulation.

Parameter Value Unit Ref.

MS 1.0  ×  106 A m−1 [73]

γ0 1.76  ×  1011 Hz T−1 [71]

λ110 3.1  ×  10-5 / [69]

λ111 3.1  ×  10-5 / [69]

α 0.005 / [70]
c11 2.8  ×  1011 N m−2 [72]
c12 1.4  ×  1011 N m−2 [72]
c44 0.7  ×  1011 N m−2 [72]
Kgrowth 3500 J m−3 [41]
A 1.5  ×  10−11 J m−1 /

J. Phys. D: Appl. Phys. 53 (2020) 024002
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has two energetically equivalent states at equilibrium: 
magnetization pointing up (φ  ≈  77°) and pointing down 
(φ  ≈  257°) [41]. For a group of two interactive magnets A 
and B, there might be four equilibrium magnetization states: 
(φA, φB)  ≈  (77°, 77°), (77°, 257°), (257°, 77°), and (257°, 
257°). They can be categorized into two types of magnetiza-
tion states: the antiparallel state with opposite magnetization 
directions (φA, φB)  ≈  (77°,257°) or (257°,77°) and the parallel 
state with same magnetization directions (φA, φB)  ≈  (77°,77°) 
or (257°,257°). In the simulation, we use (φA, φB)  ≈  (77°, 77°) 
and (77°, 257°) as examples for the parallel and antiparallel 
states, respectively, as depicted in figure  2(a). We find that 
both states can be stabilized, but they have different energies 
due to the interaction between them. As shown in figure 2(b), 
with the distances R between the two magnetic nanoislands 
increasing, the energy of the antiparallel state increases while 
the energy of the parallel state decreases, and both approach 
to the energy of an isolated single nanoisland. This indicates 
that the parallel state and the antiparallel state correspond to 
the meta-stable and stable states, respectively.

3.2.  Switching from the antiparallel state to the parallel state

The functionality of a multiferroic heterostructure lies in 
the control of independent magnetization switching of each 
magnet, where each magnet should be able to accomplish a 
180° switching under the effect of a piezoelectric strain trans-
ferred from its underlying substrate without altering the mag-
netization configuration of the other magnet. Since the two 
magnets in the heterostructure are equivalent to each other, 
we just need to simulate the 180°switching of one magnet 
(e.g. magnet B) of the two by applying an external electric 
field to it while keeping the other one (e.g. magnet A) under 
zero external electric field to study the interactions between 
them. Here we focus on the 180° switching of magnet B while 
keeping magnet A with an upward-pointing magnetization 
(φA  ≈  77°), which is the switching between an antiparallel 
state of (φA, φB)  ≈  (77°, 257°) and a parallel state of (φA, 

φB)  ≈  (77°, 77°). We first study the switching from the anti-
parallel state to the parallel state. This process involves two 
switching steps as defined above, which will be discussed in 
detail as following.

3.2.1.  Switching step 1.  Starting from the antiparallel state, 
an electric voltage is applied to the PMN-PT substrate beneath 
magnet B. Under the voltage, an anisotropic strain ε11  −  ε22 
can be induced in the PMN-PT [43], whose magnitude depends 
on the strength of the applied voltage. Assuming that a strain 
anisotropy of ε11  −  ε22  =  1200 ppm is generated on apply-
ing the voltage to the PMN-PT, which is the minimum strain 
required to switch the magnetization in the CoFeB/PMN-PT 
heterostructure with a single magnet, as identified in our sim-
ulation. We find that only when the neighboring distance R 
is greater than 174 nm can the magnetization be switched by 
the voltage-induced strain in magnet B independently. When 
the neighboring distance R is smaller than 174 nm, the sys-
tem shows an obvious cross-talking effect: both magnetiza-
tions of A and B switch away from their initial configurations. 
For example, at R  =  156 nm, which is about the closest pos-
sible neighboring distance for the chosen magnet size, the 
average magnetizations of A and B rotate by ΔφA  ≈  36° and 
ΔφB  ≈  −76° (see figure 3(b)), respectively, with reference to 
the initial states in figure 3(a). For a larger neighboring dis-
tance R  ⩾  174 nm, the magnetization in magnet B rotates by 
ΔφB  ≈  −90° while the magnetization configuration of mag-
net A almost remains the same as its initial state, as shown in 
figures 3(c) and (d).

The cross-talking behavior observed at R  <  174 nm is 
attributed to the magnetostatic interaction between the two 
magnets. In this case, the magnetization in magnet B switches 
under the piezostrain transferred from the interface; meantime, 
the magnetization of magnet A is also switched due to the 
change in the magnetic stray field generated by magnet B. The 
stray field generated by magnet B (denoted by HB

stray) in the 
initial state and the strained state for R  =  156 nm is shown in 
figures 4(a) and (b), respectively. In the initial state, the stray 

Figure 2.  (a) Two initial magnetization configurations in the multiferroic heterostructure and (b) their free energy densities as a function of 
the neighboring distance R. The free energy density of an isolated single magnet is also presented for comparison.

J. Phys. D: Appl. Phys. 53 (2020) 024002
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field HB
stray acting on magnet A is mostly along the y  direc-

tion, with an average value of 
¨
HB

stray−x

∂
A
= −550Am−1 

and 
¨
HB

stray−y

∂
A
= 1337Am−1, so the magnetization of 

magnet A is stabilized along the y  direction. In the strained 
state, as accompanied by a 90° rotation of the magnetiza-
tion of magnet B, the stray field HB

stray acting on magnet A 
changes to the negative x direction, with an average value of ¨
HB

stray−x

∂
A
= −3250Am−1 and 

¨
HB

stray−y

∂
A
= −393Am−1, 

causing the magnetization in A to rotate toward the negative 
x-axis from its initial state. The stray field HB

stray acting on 

magnet A reduces upon increasing the neighboring distance 
R, and the magnetization switchings in the two magnets 
become decoupled at R  ⩾  174 nm. As a result, a criterion of 
R  ⩾  174 nm is required for an independent 90° switching of 
magnet B in switching step 1.

3.2.2.  Switching step 2.  A second 90° clockwise switch-
ing of magnet B upon removal of the external electric field 
in switching step 2 is required to accomplish a 180° mag-
netization rotation. We test different neighboring distances 
R following the criteria of R  ⩾  174 nm as required by the 
switching step 1. The strained and final magnetization con-
figurations during switching step 2 of selected cases are 
shown in figures 5(a)–(f). According to the simulation, the 
magnetization configuration in magnet A is almost unal-
tered, while the magnetization in magnet B at the final state 
may have several different configurations, depending on the 
neighboring distance. For example, at R  =  174 nm (figures 
5(a) and (b)), the magnetization in B undergoes a slight 
clockwise rotation by an angle of ΔφB′  =  −32.0°. When 
the neighboring distance is R  =  186 nm (figures 5(c) and 
(d)), the magnetization in B is stabilized at a curved struc-
ture with a rotation angle ΔφB′  =  62° from its initial state. 
When the neighboring distance increases to R  ⩾  234 nm 
(figures 5(e) and (f)), the magnetization in B can switch by 
~90°. In combination with step 1, the magnetization com-
pletes a 180° switching from the antiparallel state to the 
parallel state.

The switching dependence on the neighboring distance R is 
again understood from the magnetostatic interaction between 
magnets A and B. At a small R, the magnetostatic interaction is 
strong, hindering the 90° magnetization switching of magnet 

B. Figures 6(a) and (b) show the stray fields HA
stray generated 

by magnet A in the final states when R equals to 174 nm and 
234 nm, respectively. In both cases, the stray field within the 
region of magnet B is nearly along the negative y  direction, 
which hinders the magnetization from switching toward the 

Figure 3.  Magnetization configuration in (a) the initial state and (b) the strained state at the neighboring distance R  =  156 nm as well as (c) 
the initial state and (d) the strained state at R  =  174 nm during the antiparallel-to-parallel switching. ΔφA and ΔφB  are the rotation angles 
of the average magnetization directions of magnets A and B between their initial states and straining state, respectively.

Figure 4.  The magnetic stray field HB
stray generated by magnet 

B in (a) the initial state and (b) the strained state, at R  =  156 nm 
during the antiparallel-to-parallel switching. The black squares 
show the outline of the two magnets, while the color arrows inside 
magnet B indicate the magnetization field. The white arrows and the 
background color outside magnet B indicate the direction of HB

stray 
and its component HB

stray-y (see the color bar), respectively.

J. Phys. D: Appl. Phys. 53 (2020) 024002
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y  direction. Furthermore, the stray field acting on magnet B 

reduces with R increasing, from 
〈
HA

stray-y
〉
B
  =  −954 A m−1 

at R  =  174 nm to 
〈
HA

stray-y
〉
B
  =  −364 A m−1 at R  =  234 nm. 

Therefore, the 90° magnetization switching of magnet B can 
be achieved at R  ⩾  234 nm.

Based on the switching criteria for the two successive 
switching steps, a combined criterion for achieving an inde-
pendent 180° magnetization switching in magnet B can be 
obtained: the neighboring distance R should be greater than 

Figure 5.  The magnetization configuration in (a) the strained state and (b) the final state at R  =  156 nm, (c) the strained state and (d) the 
final state at R  =  186 nm, as well as (e) the strained state and (f) the final state at R  =  234 nm during the antiparallel-to-parallel switching, 
respectively. Δφ′

A and Δφ′
B  are the rotation angles of the average magnetization directions of magnets A and B between their straining states 

and final states, respectively.

Figure 6.  The stray magnetic field HA
stray generated by magnet 

A at (a) R  =  174 nm and (b) R  =  234 nm during the antiparallel-
to-parallel switching. The black squares show the outline of the 
two magnets, while the color arrows inside magnet A indicate the 
magnetization field. The white arrows and the background color 
outside magnet B indicate the direction of HA

stray and its component 
HA

stray-y (see the color bar), respectively.

Figure 7.  Magnetization configuration in (a) the initial state, (b) 
the strained state and (c) the final state at the neighboring distance 
R  =  234 nm during the parallel-to-antiparallel switching.

J. Phys. D: Appl. Phys. 53 (2020) 024002
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234 nm to assure a sufficiently weak magnetostatic interaction 
for decoupling the switching of the two magnets.

3.3.  Switching from the parallel state to the antiparallel state

We next study the switching from the parallel state (φA, 
φB)  ≈  (77°,77°) to the antiparallel state (φA, φB)  ≈  (77°,257°). 
The results are shown in figures  7(a)–(c). We consider the 
critical neighboring distance of R  =  234 nm. The simu-
lation shows that a quasi-180° magnetization switching, 
ΔφB  =  −85° in switching step 1 and ΔφB′  =  − 90° in 
switching step 2, can be achieved in magnet B. Meanwhile, 
the magnetization in magnet A almost remains unchanged 
during the whole process. This suggests that the determinant 
factors of achieving electric-field-controlled 180° magnetiza-
tion switching lie in the antiparallel-to-parallel process, which 
is reasonable because the antiparallel state is energetically 
more stable than the parallel state (discussed in section 3.1). 
Consequently, the switching from the parallel state to antipar-
allel state is easier than the reversed switching process.

4.  Summary

In summary, we have investigated the electric-field-controlled 
magnetization switching in CoFeB/PMN-PT multiferroic 
heterostructures containing two interactive magnetic nanois-
lands using phase-field simulations. By simulating the mag-
netization configuration in the nanoislands during different 
switching steps, we identify a critical neighboring distance 
between the two magnetic nanoislands in order to achieve a 
180° magnetization switching. Therefore, this work delivers 
an in-depth theoretical understanding on the effect of the mag-
netostatic interaction between two neighboring magnets on 
the electric-field-controlled magnetic switching. It is expected 
to provide valuable guidance for the fabrication and design of 
high-density multiferroic devices containing densely packed 
magnetic nanoislands.
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