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Abstract—Recorder is a multi-level I/O tracing tool that
captures HDF5, MPI-I/O, and POSIX I/O calls. In this paper, we
present a new version of Recorder that adds support for most
metadata POSIX calls such as stat, link, and rename. We also
introduce a compressed tracing format to reduce trace file size
and run time overhead incurred from collecting the trace data.
Moreover, we add a set of post-mortem and visualization routines
to our new version of Recorder that manage the compressed trace
data for users. Our experiments with four HPC applications show
a file size reduction of over 2× and reduced post-processing time
by 20% when using our new compressed trace file format.

Index Terms—Compressed I/O Traces, Parallel I/O, MPI-I/O

I. INTRODUCTION

The I/O subsystem of a high performance computing (HPC)
system is a critical component, because the I/O time of
scientific applications can become a practical limiting factor
in application throughput. In modern supercomputers, the I/O
subsystem is typically multi-tiered which includes a temporary
tier such as burst buffers of fast Flash devices, a capacity tier
supported by traditional disks, and a persistent tier based on
tapes. Due to the complexity of these tiered systems, many
strategies have been developed to ease the burden of scientific
applications running on them, including I/O libraries such as
HDF5 [1] and ROMIO [2], checkpointing libraries such as
SCR [3] and VeloC [4], data management systems such as
Data Elevator [5] and DataSpaces [6], and file systems that
support temporary tiers [7]–[10].

Although these libraries make complex I/O systems much
easier to use, the performance of applications using these
libraries can vary dramatically when run on different I/O
systems or when used with different library configuration pa-
rameters. To aid in understanding these complex I/O scenarios,
we introduce our multi-level tracing tool, Recorder 2.0, that
can provide key insights to end users, library developers,
and file system developers. Recorder generates trace records
for each layer in the I/O stack, beginning at high level I/O
libraries and ending at the POSIX layer. Thus, users and library
developers can see the trace of calls generated for a high level
I/O operation and see how they affect performance.

Some newer file systems that support temporary tiers (e.g.,
UnifyFS [9] and SymphonyFS [10]) are user-level file systems
that are not fully POSIX-compliant, as they relax POSIX

semantics in order to improve I/O performance. For these
file system developers, important questions include: which
functions and POSIX features do applications utilize? And to
what extent can POSIX semantics be relaxed without affecting
applications? To aid in answering these questions, Recorder
collects all parameters to POSIX I/O operations so that file
system developers can see the details of the I/O behaviors
of applications. The post-mortem analysis tools can answer
questions such as whether an application performs conflicting
updates to the same file location.

In this paper, we present Recorder 2.0, a major update of
the previous work in Recorder 1.0 [11]. The key difference
between Recorder and other tracing tools is that it faithfully
records all parameters of intercepted function calls. However,
there were some limitations and design flaws in Recorder
1.0 that prevented users from achieving their I/O analysis
goals. We summarise some of those limitations along with
our solutions we implemented in Recorder 2.0 here:

• Recorder 1.0 writes trace records in plain text files that
often contain redundant information for function calls
with the same parameters (e.g., file name), which can
result in very large trace files for I/O-heavy applications.
In Recorder 2.0, we utilize a compressed trace schema
that greatly reduces the overall trace file size.

• Recorder 1.0 performs I/O in a simplistic fashion - it
writes trace records to the trace file without buffering
which can perturb the application’s performance since I/O
operations can be slow. In Recorder 2.0, the logging unit
caches trace records in an in-memory buffer and only
writes to the trace file when the buffer is full.

• Recorder 1.0 does not capture all POSIX functions that
are needed for file system developers’ to perform their
analyses. Recorder 2.0 addresses this gap by including
a more complete set of POSIX routines, now including
functions such as rename, unlink, stat.

• To better understand the I/O behavior of HPC applica-
tions, we developed a set of analysis and visualization
routines for Recorder 2.0. Those routines can perform
post-mortem analysis with on-the-fly decompression.

In the rest of this paper, we refer to Recorder 2.0 as simply
Recorder. We refer to the original version of Recorder as



Recorder 1.0. The rest of this paper is organized as follows.
Section II discusses the existing tracing tools and explains the
difference between them and Recorder. Section III describes
the mechanism of Recorder and the proposed tracing format
in details. We also illustrate how to work with the compressed
traces by using three example analysis routines. The evaluation
of Recorder is given in Section IV. And finally the conclusion
and future work are given in Section V.

II. RELATED WORK

There are many existing efforts in the area of tracing tools.
Based on their scope, those tracing efforts can be classified into
two categories. (1) System-level tools, e.g., iotop, iostat and
blktrace, monitor system level I/O activities and report useful
metrics across the entire system or at least one device or one
partition. (2) Application-level tools, including Darshan [12],
Score-P [13], IPM-IO [14], IOPin [15], and Recorder [11], run
along with an application and only collect information about
that one application. In this section, we focus on application-
level tools because they are more closely related to our work.

I/O profiling tools. Darshan [12] and TAU [16] record
POSIX I/O and MPI-IO activities and report statistics of indi-
vidual applications. Although these tools collect their statistics
with low overhead and provide a good estimation of overall
performance, they do not capture the detailed information
needed for in-depth analysis, e.g., function parameters and
entry/exit times of function calls.

I/O tracing tools. IOPin [15], built on top of Pin [17], is
a dynamic instrumentation tool for parallel I/O tracing that
traces from the application layer all the way to storage server
layer. IOPin is tightly associated with the PVFS file system and
does not trace I/O libraries above the MPI layer. IPM-I/O [14]
extended an existing performance tool called IPM [18] to
add I/O operation tracing. IPM-I/O traces POSIX I/O calls
but applications need to be linked against IPM-I/O library.
VampirTrace [19] also records calls to I/O functions of the
standard C library and is capable of tracing GPU accelerated
applications. ScalaIOTrace [20] supports both MPI-IO and
POSIX I/O and can generate compressed event logs. Score-
P [13] is a popular tool suite for profiling, event tracing, and
online analysis of HPC applications. It works with many other
tools like TAU [16], Vampir and Scalasca [21]. In contrast to
the above tools, Recorder intercepts HDF5, MPI and POSIX
I/O calls and does not require modification or recompilation
of applications.

I/O trace visualization tools. MPE (MPI Parallel En-
vironment) contains several logging and visualization tools
including Upshot [22], Nupshot [23] and Jumpshot [24]. MPE
largely focuses on MPI performance visualizations, whereas
our work in Recorder is tailored specifically for multi-level
I/O. Other tools like Cube [25] and Vampir [26] are also
able to display performance monitoring data at multiple levels.
And current developments of Vampir also include the analysis
of applications I/O behaviors. Similarly, the visualization tool
in Recorder can take an application’s trace file as input and
generate a detailed I/O report. We believe it can complement

the existing tools as our trace files contain more detailed I/O
information. Moreover, we are developing trace converters so
that our trace files can be used by other tools as well.

Trace format optimizations. The Open Trace Format
Version 2 (OTF2 [27]) is an event tracing format that is used
in Score-P and is highly optimized for managing large traces
from parallel programs. Typically, a tool using OTF2 generates
n event files for n processes along with local index files and
a global definition file. The Score-P project recently added
support for multi-level I/O tracing to OTF2 [28]. However,
OTF2’s logging API classifies I/O functions as metadata
operations and data operations and ignores many details of
the actual I/O functions. For example, it does not distinguish
pwrite, write or writev. Also many system function
calls are not intercepted such as lstat, stat and umask. It
is possible to manually instrument users code to intercept those
functions, but it is difficult to do so if they are called within
shared libraries. In contrast, the trace optimizations introduced
in Recorder are tailored for detailed I/O function call tracing
and our tool captures a wide range of POSIX and standard
I/O calls.

Trace overhead reduction. Many efforts have been made to
reduce tracing overhead and trace file size. OTFX [29], based
on OTF2, applies filters to eliminate function calls that are
shorter than a minimum duration and thus reduces intermediate
memory buffer flushes. Wagner et al. [30] proposed several
encoding optimizations for OTF2, including leading zero elim-
ination and timer resolution reduction. General compression
approaches have also been applied in many trace formats.
CCCG (compressed complete call graphs [31]) compresses the
data according to the similarity of reoccurring event sequences
in a trace, within or across different processes. ScalaTrace [32]
uses pattern recognition to accumulate recurring patterns to
minimize trace data.

Overall, Recorder addresses key gaps in current tools sup-
port in multi-level I/O analysis. Namely, it captures detailed
function tracing information (including function parameters)
from a wide-range of POSIX and standard I/O function calls;
it requires no code modification or recompilation; it provides
analysis and visualization features specifically tailored for I/O
operations; and it utilizes trace format operations that account
for the detailed I/O information gathered and that reduce I/O
overhead and trace file size.

III. RECORDER

In this section, we describe the Recorder framework and our
additions and optimizations to Recorder over the 1.0 version.
While we retain the same tracing mechanism in Recorder from
version 1.0, we add support for many metadata functions.
Additionally, we updated Recorder’s tracing format to reduce
file size and tracing overhead and added post-processing
support for our new compressed tracing format.

A. Framework

Understanding the I/O behavior of an HPC application is not
a simple task due to the complex interactions between multiple



software components. Figure 1 shows a common parallel I/O
software stack found on many current HPC systems.

In a hierarchical I/O stack, the layers are a bridge between
high-level operations at the application level and low-level
hardware and offer abstractions to users that hide complex
implementation details. Each layer employs optimization tech-
niques designed to improve performance. Unfortunately, since
each layer is normally treated as a black box, optimizations
are seldom coordinated across layers and the source of perfor-
mance bottlenecks can be extremely difficult to determine. A
multi-level I/O tracing and analysis tool that presents a view of
the function call flow through the entire I/O stack can expose
cause and effect relationships across layers and make the origin
of performance bottlenecks more apparent.

Recorder is built as a shared library so that no code
modifications or re-compilations are required. Recorder uses
function interposing to intercept function calls. This can be
done easily in Linux systems by library preloading. Once
specified as the preloaded library, Recorder intercepts HDF5,
MPI and POSIX function calls issued by the application
and reroutes them to the tracing implementation. During the
tracing process, Recorder first saves the function name, file
name, function entry timestamp and the other arguments. Next,
Recorder calls the original library function and records its exit
timestamp. It then cuts and compresses a record that stores all
this information. Details about encoding and compression will
be given in Section III-B. This whole process is depicted with
an example in Figure 2.

POSIX I/O

Parallel File System

Storage Hardware

High-Level I/O Library
(HDF5, NetCDF, etc.)

I/O Middleware (MPI I/O)

Application

Fig. 1. Parallel I/O Software Stack

B. Recorder Tracing Format

In Recorder 1.0, all outputs are in ASCII format as it is
human readable and good for debugging purposes. However,
this text format retains redundant information and can easily
result in very large trace files. The run time overhead and post-
processing times can be high in Recorder 1.0 due to the I/O
time incurred in writing and analyzing large trace files.

One straightforward way to solve this problem is to com-
press trace records at run time or afterwards using an ex-
ternal compression library like zlib [33]. We implemented
this method in Recorder as our first approach. However,
most external compression libraries use general algorithms

Application

herr_t	H5DWrite(...)

HDF5

int	MPI_File_write_at_all(...)

MPI	I/O

ssize_t	pwrite(...)

POSIX

Recorder
1.	Obtain	the	address	of	the	original	function	call

2.	Call	the	original	function
3.	Encode	and	compress	the		record	once	the

function	returns

Recorder
...

Recorder
...

1 2

3

4
5

Fig. 2. Example of instrumentation of the I/O stack by Recorder. 1©
Application calls the HDF5 library method H5Dwrite. 2© Recorder in-
tercepts the function and performs the tracing process. 3© Recorder calls
the real H5Dwrite function. 4© H5Dwrite calls the MPI function
MPI_File_write_at_all. 5© MPI_File_write_at_all is also in-
tercepted and recorded by Recorder. This continues until the I/O stack reaches
the POSIX layer.

that work with arbitrary strings, which means it is difficult
to perform record-level selective decompression during post-
processing since the general compression/decompression al-
gorithms are unaware of the structure information of the
trace record. Selective decompression is important, as many
analyses need only a subset of the record fields. Moreover,
we noticed that with online zlib compression, the overall
overhead is similar to that incurred with the text format: The
compression/decompression overheads are similar to the I/O
time saved by writing and reading shorter files. Thus, we
pursued the development of a Recorder-specific tracing format
and a format-aware compressing algorithm.

We designed a compact binary encoding for trace records
as shown in Figure 3. The status byte of the record is used
to indicate whether the current record is compressed, which
we will discuss later. The ∆tstart and ∆tend are calculated as
follows:

∆tstart = (Ts − T0)/TR

∆tend = (Te − T0)/TR

Ts and Te are the function entry and exit time. T0 is the starting
timestamp of the program, and TR is the adjustable time
resolution. The 10th byte, func id is a non-negative integer
representing the corresponding function. We created a function
table where each function intercepted by Recorder has a hard-
coded entry for its name and identifier. The rest of the bytes
in the record are variable length function arguments, which
we simply write in string characters. One exception is that
file names are mapped into integers since they are often long
strings and appear repeatedly in argument lists.

Recorder uses a global metadata file to keep program level
information including time resolution, program starting time,
and user-specified options. In addition, each MPI rank also
keeps a local metadata file to keep track of <filename, integer



id> mappings and several per-rank metrics such as function
counters and file access counters.

status

1Byte

Δtstart

4Bytes

Δtend

4Bytes

func_id

1Byte

arg1 ... argn

variable

Fig. 3. Recorder Binary Encoding of Trace Records

Although the binary encoding saves space for long
strings within a record, there are still many repetitions
between records. For instance, an application may call
MPI_Allreduce many times in sequence to collect data
values. Or an application may call MPI_File_write_at to
write a checkpoint file, which in turn calls pwrite multiple
times to perform the actual job. To take advantage of this
“temporal locality”, we use a peephole-based compression
technique. The algorithm keeps a sliding window of a few
of the most recent records. Once a new record arrives, the
algorithm checks if the new record is similar to one of the
records in the sliding window. The similarity is decided using
two criteria: (i) two records must store the same function, (ii)
this function should contain at least one argument and the two
records should have at least one argument in common. The
new record is compressible if we can find a similar record in
the sliding window. If multiple similar records exist then the
algorithm prefers the one with most common arguments. Ties
are broken by choosing the most recent one. If the new record
is not compressible, we simply encode it as before (the binary
encoding shown in Figure 3). However, if a similar record
exists in the sliding window, then we compress the new record
by only keeping the differences. The compressed encoding
is shown in Figure 4. It is similar to the uncompressed
binary encoding except that the func id is now ref id that
stores the relative location of that similar record. We only
need one byte for the ref id as the sliding window is small
(3 by default). For uncompressed records, the eight status
bits are all zeros, whereas for a compressed record, the first
status bit is always 1, and the following 7 bits are used to
indicate the indices of the different arguments. It is worth
noting that this representation only supports compression of
functions with up to 7 arguments. However, this is not a large
limitation in practice because it is adequate to handle most
popular functions like pwrite, MPI_Send, and MPI_Recv.
Figures 5 and 6 give examples of records before and after
compression. Here a window of 3 recent records is capable
of compressing all functions after their first appearance. As
shown in Section IV, a

status

1Byte

Δtstart

4Bytes

Δtend

4Bytes

ref_id

1Byte

diff_arg1 ... diff_argn

variable

Fig. 4. Recorder Compressed Encoding

C. Analyzing routines

We developed a set of helper functions to interact with
the compressed traces and also a converter that translates
them to human-readable format. Assume we have a function
DECOMPRESS() that decompresses one record, a LOAD()
function that reads one field (e.g., status, func id, etc.) from
a decompressed record, and a COMPRESSED() function to
check if a record is compressed. Those helper functions are
responsible for reading and decompressing the trace files on-
the-fly so the users can focus on their analyzing logics.

We use three examples to show how to work with the
compressed traces.

1) Function counters: As mentioned earlier, each rank
maintains a function counter along with several other per-
rank metrics in their local metadata file. This metadata file
is normally very small so no compression or special encoding
is used. Users simply need to perform a reduction operation on
the counters collected by each rank to form the final answer.

2) Statistics: Application-level statistics are important for
end-users to get an overall picture of their application’s I/O
performance. For example, I/O bandwidth is a key metric for
I/O intensive applications: one can check read bandwidth to
make sure that I/O is not the bottleneck. To report application-
level statistics, we need to aggregate information from each
rank. Algorithm 1 gives the pseudocode for computing average
read bandwidth. For each record, we only decompress it when
it contains the function we need. So we always load and check
func id (line 6-10) before the decompression at line 12.

The time complexity of this algorithm is O(N), where N is
the total number of records across all ranks. The same method
should apply to many other statistics as well. According to the
specific requirement, users may need to change the desired
function set at line 10 and the fields loaded at line 15.

Algorithm 1 Compute average read bandwidth
1: for each rank do
2: total bytes = 0
3: total time = 0 + ε
4: for each record do
5: status← LOAD(record, “status”)
6: if COMPRESSED(status) then
7: func id← LOAD(ref record, “func id”)
8: else
9: func id← LOAD(record, “func id”)

10: if func id in {pread, read, readv, etc} then
11: if COMPRESSED(status) then
12: DECOMPRESS(record)
13: ∆tstart← LOAD(record, “∆tstart”)
14: ∆tend← LOAD(record, “∆tend”)
15: total bytes += LOAD(record, “bytes”)
16: total time += (∆tstart−∆tend) ∗ TR
17: avg bandwidth← total bytes/total time

3) Check for overlapping I/O: A more difficult task and
also one of the motivations of this paper is to check for



tstart tend funciton args

1572448298.799995 1572448298.799995 MPI_Comm_rank MPI_COMM_WORLD 0x7ffdc64a6f64

1572448298.800000 1572448298.800000 MPI_Comm_rank MPI_COMM_WORLD 0x7ffdc64a6f64

1572448298.800002 1572448298.800002 MPI_Comm_rank MPI_COMM_WORLD 0x7ffdc64a6f64

1572448298.800004 1572448298.800004 MPI_Comm_rank MPI_COMM_WORLD 0x7ffdc64a6f64

1572448298.802099 1572448298.802102 MPI_Allreduce 0x564591831ec0 0x5645917a10a0 11 MPI_DOUBLE_PRECISION 1476395010 MPI_COMM_WORLD

1572448298.802106 1572448298.802110 MPI_Allreduce 0x564591831f20 0x564591831e60 11 MPI_DOUBLE_PRECISION 1476395009 MPI_COMM_WORLD

1572448298.802955 1572448298.802960 MPI_File_write_at 0x5645916fdaa0 39416 0x5645917a1cf0 256 MPI_BYTE 0x7ffdc649cc70

1572448298.802957 1572448298.802958 pwrite ./sedov_check.h5 0x5645917a1cf0 256 39416

1572448298.802960 1572448298.802962 MPI_File_write_at 0x5645916fdaa0 34184 0x7ffdc64a73b0 48 MPI_BYTE 0x7ffdc649c430

1572448298.802965 1572448298.802968 pwrite ./sedov_check.h5 0x7ffdc64a73b0 48 34184

Fig. 5. Example records before encoding and compression, in total of 10 functions and 40 arguments.

status Δtstart Δtend func_id/ref_id args / diff_args

B’00000000 0 0 100 1 0x7ffdc64a6f64

B’10000000 5 5 -1

B’10000000 7 7 -1

B’10000000 9 9 -1

B’00000000 2095 2098 116 0x564591831ec0 0x5645917a10a0 11 2 1476395010 1

B’11100100 2102 2106 -1 0x564591831f20 0x564591831e60 1476395009

B’00000000 2951 2956 92 0x5645916fdaa0 39416 0x5645917a1cf0 0x7ffdc649cc70 256 3

B’00000000 2953 2954 11 0 0x5645917a1cf0 256 39416

B’10111010 2956 2958 -2 34184 0x7ffdc64a73b0 48 0x7ffdc649c430

B’10111000 2961 2964 -2 0x7ffdc64a73b0 48 34184

Fig. 6. Example records after encoding and compression. With a sliding window of 3 records, every function can be compressed after their first appearance.

overlapping I/O: Does a process ever write to the same part of
a file more than once? Do multiple processes write or read the
same part of a file? Do applications perform read after write
or write after read to the same offset? These questions were
sparked by the design of a lightweight user level file system,
UnifyFS [9]. We believe the answers to these questions could
help file system developers make better optimization decisions
by having a better understanding of the I/O behaviors of users
applications.

We denote the start offset and end offset of an I/O function
as os and oe. And we use a table P [r1, r2] to keep track
of the existence of overlapping I/O patterns between rank r1
and r2, where r1 and r2 are possibly equal. Each entry in
the table stores the patterns we found, including: read after
read (RAR), write after write (WAW), read after write (RAW)
and write after read (WAR). Similar to algorithm 1, we iterate
through every record of every rank to build a list of tuples T .
Each tuple has the form of (t, r, os, oe, read), where t and r
is the timestamp and rank of the record, and read is a binary
value indicates whether this is a read function, e.g., pread,
read, or readv. We use algorithm 2 to fill in the table P .
Note that we only show how to fill RAW and WAR of each
entry in table P due to space restrictions. RAR and WAW can
be done in the same manner.

In the worst case where all I/O operations access the same
range, the table has Θ(N2) entries and any algorithm will take
Θ(N2) time to finish. However, in most common cases where

most accesses do not overlap with each other, or when one
only needs to decide whether an overlap exists, this algorithm
takes Θ(N logN), due to the sorting phase.

Algorithm 2 Check for overlapping I/O patterns
1: Sort tuples by os
2: for each tuple Ti do
3: for each tuple Tj after Ti do
4: if osj > oei then
5: break . The remaining tuples can not overlap

with Ti
6: else . Ti and Tj are overlapped
7: if readi && !readj then
8: if t1 < t2 then
9: P [ri, rj ].WAR← 1

10: else
11: P [ri, rj ].RAW ← 1

12: Similarly, check for RAR and WAW

IV. EVALUATION

The experiments were performed on Stampede2 at TACC.
The Stampede2 system is configured with 4204 Dell/Intel
Knights Landing (KNL) nodes and 1736 Intel Xeon Skylake
(SKX) nodes. Each SKX node (Intel Xeon Platinum 8160)
includes 48 cores, 192GB DDR-4 memory, and a 200GB SSD.
Compute nodes have access to the dedicated Lustre Parallel file



TABLE I
CONFIGURATIONS OF EACH APPLICATION

App Version I/O library Description
FLASH 4.4 PHDF5 2D Sedov

LAMMPS Stable (7 Aug 2019) MPI-IO LJ Benchmark
QMCPACK 3.8.0 PHDF5 Moleculear H2O Test

ENZO 2.6 PHDF5 3D Collapse Test

systems provided by Cray. An Intel Omni-Path Architecture
switch fabric connects the nodes and storage through a fat-
tree topology with a point-to-point bandwidth of 100 Gb/s
(unidirectional speed). We used 24 SKX nodes with 24 MPI
ranks per node in all our experiments.

We evaluated Recorder and compared it with Score-P 6.0
using four HPC applications: FLASH [34], LAMMPS [35],
QMCPACK [36], and ENZO [37]. The applications are com-
piled with the Intel MPI library 17.0.3, Intel Math library
17.0.4, and Parallel HDF5 (PHDF5) library 1.8.16. The con-
figurations of each application are summarised in Table I. For
each application, we run a certain number of steps and write
out a total of 5 checkpoints.

We configured Recorder and Score-P to trace all MPI
and POSIX function calls. And we used Score-P’s filtering
mechanism to ignore user function calls to make sure that
Recorder and Score-P record the same set of function calls.
Also we disabled the profiling functionality of Score-P so we
could have a fair comparison of runtime overhead.

For the runtime overhead experiments, we repeated mea-
surements at least 30 times for each application and reported
averages and a 95% confidence interval. The result is shown
in Figure 7. In the figure, Text, Binary, Recorder denote
three different output formats as we discussed in Section III:
Text is the text format with ASCII encoding, Binary is the
binary format without compression, and Recorder represents
our proposed compressed encoding schema.

The overhead experiments show a high degree of variability
for FLASH between runs. The noise is largely introduced
by the parallel I/O phase due to the use of shared parallel
file system, and is present even without tracing. The variance
between runs is much larger than the overhead of tracing, so
that the overhead of tracing cannot be estimated with high
confidence. Also note that we do not show the overhead of
Score-P for QMCPACK as it runs about 3 times slower with
Score-P. Overall, when using the compressed tracing format,
Recorder achieves similar or smaller overheads Score-P.

Figure 8 shows the aggregated trace file sizes using different
encoding methods. The results are normalized to the text
format. Both OTF2 and the Recorder format achieves over
2× compression ratio in all four applications. Note that
Recorder keeps more information per function call (it records
all function arguments).

QMCPACK and ENZO achieves slightly better compression
ratios in comparison with the other two applications. The
final compression ratio depends on how many records can
be compressed, how many arguments within a record can be
compressed and also the length of compressible arguments. To

Fig. 7. Runtime overhead of Recorder and Score-P with 95% confidence
intervals

Fig. 8. Aggregated trace file size with different encoding (normalized to text
format)

understand the difference of compression ratios in these four
applications, we show in Table II and Table III the number of
compressed records and the number of compressed arguments.
QMCPACK has the lowest percentage of compressible records
but within each compressible record, 70% of its arguments
are compressed, i.e. do not need to be stored. On the other
hand, 96% of records in ENZO can be compressed but 47%
arguments of those compressible records still need to be kept.

ENZO has a surprisingly high percentage of compressible

TABLE II
NUMBER OF COMPRESSED RECORDS OF EACH APPLICATION

App # Records # Compressed records Ratio
FLASH 16,612,758 8,443,078 50.82%

LAMMPS 18,628,201 8,696,241 46.68%
QMCPACK 12,944,238 5,402,263 41.73%

ENZO 338,803,012 325,794,888 96.16%



TABLE III
NUMBER OF COMPRESSED ARGUMENTS OF EACH APPLICATION

App # Arguments # Compressed arguments Ratio
FLASH 40,913,405 26,628,876 65.85%

LAMMPS 40,138,951 24,577,733 61.23%
QMCPACK 21,251,485 15,028,209 70.72%

ENZO 2,176,397,368 1,158,611,935 53.24%

records. We use the visualization routines built-in Recorder to
show the number of records kept by each rank in Figure 9
and the top 10 visited functions in Figure 10. These 10 most-
visited functions are accounted for over 99% of all function
calls. As we can see, 9 of them are MPI functions and they are
invoked repeatedly, which makes them very easy to compress.

Fig. 9. Record count of each MPI rank in ENZO

Fig. 10. The 10 most-visited functions in ENZO

Finally, we evaluated the overlapping testing algorithm
described in Section III-C with FLASH traces containing
four million records. The experiment was conducted on our
local workstation, which is equipped with an AMD Ryzen
7 Eight-Core CPU and 8GB DDR-4 memory. Figure 11
compares the execution time of the different phases of the
algorithm running on traces from two processes, for different
encodings: the uncompressed binary encoding, and our new

compressed encoding. We also show the result of Recorder
tracing format with selective decompression feature (3rd bar in
the figure). With the binary format, the decompression phase
is free as no records are compressed. In contrast, with the
Recorder format, we pay for decompression but also gain
from reading and decoding smaller trace files. Moreover, with
selective decompression, the algorithm only decompresses and
keeps in memory the needed functions and fields. Selective
decompression requires more time to build the interval list as
one needs to check and decompress functions in this step. But
this also results in a smaller memory footprint and potentially
better cache localities. Note that for large trace files such as for
ENZO, which produced in our experiments a total of 24GB,
it may not be possible to fit all records in memory on a single
machine. So a selective loading or decompression method have
to be used. The cost of sorting and testing phase are similar
since the interval lists once constructed will be the same in
all three cases. Overall, using Recorder format can improve
this algorithm by 15.75% and with selective decompression,
the performance is improved by about 20%.

Fig. 11. Time decomposition for checking overlapping patterns

V. CONCLUSION AND FUTURE WORK

In this paper, we described Recorder 2.0, a multi-level
tracing tool for HPC applications. Recorder 2.0 is a major
update of the first version and comes with many new features.
It uses a compressed encoding that achieves over 2× reduction
on trace file sizes. Recorder 2.0 also includes a set of post-
processing and visualization routines for better understanding
the I/O behavior of HPC applications. We have made Recorder
2.0 publicly available at https://github.com/uiuc-hpc/Recorder.

In our future work, we plan to support other high level
I/O libraries, such as NetCDF, and also support manual
instrumentation of specific user routines.
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