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Duality and socle generators for
residual intersections

By David Eisenbud at Berkeley and Bernd Ulrich at West Lafayette

Abstract. We prove duality results for residual intersections that unify and complete
results of van Straten, Huneke—Ulrich and Ulrich, and settle conjectures of van Straten and
Warmt. Suppose that / is an ideal of codimension g in a Gorenstein ring, and J C [ is an ideal
with s = g + ¢ generators such that K := J : I has codimension s. Let I be the image of /
in R := R/K. In the first part of the paper we prove, among other things, that under suitable
hypotheses on 7, the truncated Rees ring R @ I @ --- @ 1’71 is a Gorenstein ring, and that the
modules 7% and 7*+17* are dual to one another via the multiplication pairing into 7*+! =~ wR-
In the second part of the paper we study the analogue of residue theory, and prove that, when
R/K is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses
are satisfied, the socle of I**1/JI" ~ wg /K 1s generated by a Jacobian determinant.

Introduction

There are two important aspects of duality for local complete intersections. We write
T = k[[x1,...,xn]]/(a1,...,a,_g) for a power series ring over a field k modulo an ideal
generated by the regular sequence ay, . .., a,—q. The first aspect is so central that it has become
a definition: such a ring 7' is Gorenstein — that is, T = w7, the canonical module of 7'. In the
case where T is 0-dimensional, this means that 7 =~ Homy (7, k) as a T-module; and more
generally that 7 = Homy (7, A) as T-module, where A is a Noether normalization of 7'.

The second important aspect is the theory of residues, which we think of as the explicit
identification of the canonical module. Suppose that (7, m) is a reduced, equidimensional com-
plete local k-algebra of dimension d, where k is a perfect field, and let L be its total ring of
quotients. Let A = k[x1,...,x4]] C T be a separable Noether normalization, that is, 7" is
module finite over A and L is a product of separable field extensions of K, the quotient field
of A. We think of the canonical module wr as Homy (7, A), which, after tensoring with K,
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author was also supported as a Fellow of the Simons Foundation.
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184 Eisenbud and Ulrich, Duality and socle generators for residual intersections

is generated by the trace map Trz /. Thus there is a fractional ideal €(7//A) C L, called the
Dedekind complementary module, such that

Homy(T, A) = €(T/A) Trp k.

The resulting representation of wr as

d
C(T/A)Ydxy A+ Adxg C Ldxy A+ Adxqg = L®r |\ Q.

where Q7 is the universally finite module of differentials, is independent of the choice of A.
The usual residue map Hfa (wr) — k, which serves to make local duality explicit, is then
defined by representing an element o € an (w7) as a Cech class

|:fdx1/\-~/\dxdi|
o = s

xl...xd

for suitable f € €(T/A) and suitable A, and mapping o to Trz, /g (f)(0). For all this, see for
example Kunz [22, Chapter 10].
A goal of the theory is thus to compute €(7'/A). When T is a complete intersection, the

classical theory says that
C(T/A) = AT,

where A is the Jacobian determinant of 7" over A. Equivalently, Trz/4 is A times a generator
o of Homy (T, A) = T.

Thus, if k has characteristic 0 and 7 is a complete intersection, then A7 is the socle
of the ring T :=T/(x1....,xg). The well-known argument goes as follows: Since 7T is
Cohen—Macaulay, the fact that the trace is A times o is preserved if we factor out xy, ..., xy to
geta O—gimensional ring 7. Since the maximal ideal m7 is nilpotent, the trace Trz Jk annihi-
lates mT', but, because the characteristic is 0, the trace is not zero. It follows that Trz,, = Ao
generates the socle of Homy (T, k) = o T. Thus AT is the socle of T. In Section A we give
the classical proof for complete intersections.

In this paper we provide analogous duality results for residual intersections. We recall
the definition: Let I be an ideal of codimension g in a local Gorenstein ring R, and let s > g.
A residual intersection (or s-residual intersection) of I is a proper ideal K of codimension
at least s that can be written in the form K = J : I, where J C [ is an ideal generated by s
elements. We sett = s — g. We will use this notation for the rest of this introduction. We think
of ¢ as measuring how far J is from being a complete intersection. The case when [ is unmixed
and r = 0 is the case of linkage ([27]). The class of residual intersections contains the ideals of
maximal minors of sufficiently general matrices and many other examples. Our general results
have technical hypotheses, so we begin with an example.

Duality. Suppose that / is generated by a regular sequence of length g in a local
Gorenstein ring R with infinite residue field, and J is generated by s = g+ < dim R elements
chosen generally inside the maximal ideal times /. The ideal K = J : I is then an s-residual
intersection (even a geometric s-residual intersection, as defined in Section 1). We write I for
the image of I in R := R/K. By a result of Huneke and Ulrich [20] (see Theorem 3.1), the
canonical module of R is 711 in particular, when ¢ = 0, the truncated Rees algebra R Tis
Gorenstein. We show for arbitrary ¢ that the truncated Rees algebra R® [ @ [> @ --- @ ']
is Gorenstein, which implies that the complementary intermediate powers 7* and /1%

Brought to you by | provisional account
Unauthenticated
Download Date | 12/21/19 10:54 PM



Eisenbud and Ulrich, Duality and socle generators for residual intersections 185

are dual to each other via the multiplication pairing into 7?1, We also prove corresponding
results for the truncated associated graded ring R/I @ I/I1?> @ --- @ I'/I'T! (Theorem 2.5
and Proposition 5.2).

Residues. To illustrate the second main result of this paper, again in the case where /
is a complete intersection, we suppose in addition to the above that R is a power series ring in

d variables x; over a field of characteristic 0. Let A = k[[xs5+1,...,x4] be a general Noether
normalization of R. Write J = (ay,...,as) and set
day day
ox1 °°° Oxg
A =det]| : :
gas oas
ox; " Oxg

We strengthen the statement wg = 1! by proving in Theorem 7.4 that €(R/A4) = A~ [+!
if R is reduced. This gives an explicit description of the complementary module of residual
intersections.

As an application, in Corollary 7.6, we give a formula for the complementary module of
any reduced ring defined by an ideal of maximal minors of generic codimension.

We also apply Theorem 7.4 to certain O-dimensional residual intersections, with the goal
of identifying the socles of their canonical modules as Jacobian determinants. For example,
when R/K is 0-dimensional, we obtain a formula for the socle of I'*1/JI* = wg /KIS
generated by the image of an element of the form A + p, where p € (ay,...,as—1) (Theo-
rem 7.8). In general, A itself is not even in I? 1 but, when it is, it generates the socle.

We show that A € I'*! when the generators a; of J are forms of the same degree and
I is radical (Theorem 7.10). In Proposition 7.12 we prove this without the radical condition
when [ is principal — already a nontrivial computation. In general, we do not know whether the
radical condition is necessary.

When the generators of J have different degrees, the ideal AR depends on the choice of
generators, and in this case A may not be in 7?1 (Example 7.14). We show that this can even
happen when J is generated by the partial derivatives of a quasi-homogeneous polynomial, and
thus have the same degrees with respect to an appropriate weighting (Example 7.15).

Our results are much more general than the setting above. We assume that R is Gorenstein
and that / satisfies two sorts of conditions: one on the local numbers of generators and the
other that depth(R/I%*) > dim R/l —u + 1 for some range of values of u. We assume that
K = J : I is an s-residual intersection of / and we set t = s — codim /.

Our main results on duality are Theorems 2.2 and 2.6, which unify and complete a num-
ber of results of Huneke, Ulrich and van Straten. Theorem 2.2 says that

u t+1—u

W is dual to W foru=0,...,t+1,

where, in the case u = 0, we interpret J1 ! as J : I. In fact, we show that the duality is given
in the most natural way, by multiplication,

V& It+l—u It—l-l

mult N
71 ® i JIt = ORIK:
On the other hand, Example 6.4 shows that the duality statement above can hold even when the

multiplication maps are not perfect pairings.
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186 Eisenbud and Ulrich, Duality and socle generators for residual intersections

Theorem 2.6 gives a deformation condition under which such dualities hold that is in
many cases more general than the condition of Theorem 2.2. In Section 6 we present examples
showing the necessity of some of the hypotheses.

In Theorems 7.4, 7.8, and 7.10 we prove theorems about €(R/A) and the socle extending
the results described above to the more general case as well.

History. Residual intersections have a long history in Algebraic Geometry, perhaps be-
ginning with Chasles’ Theorem that there are 3,264 conics in the complex projective plane that
are tangent to five general conics [8]. The theory became part of commutative algebra with the
work of Artin and Nagata [1]. They asserted the Cohen—Macaulay property of residual inter-
sections, but stated it more generally than it is true. The error was corrected by Huneke [19],
and a series of papers, culminating in [31], gave stronger and stronger results in this direction
(see also [7,13, 14]).

The first duality results for residual intersections were proven by Peskine and Szpiro [27]
in the case t = 0, the theory of liaison: if R is a local Gorenstein ring and J & [ are ideals
of the same codimension with R/I Cohen—Macaulay and J generated by a regular sequence,
then 7/J is the canonical module of R = R/K = R/(J : I). The formula for €(R/A) in this
case can be found in [23, 3.5 (a)].

For ¢ > 0, such results were considered in two separate lines of work, starting about 25
years ago. In one, Duco van Straten showed that if J is 1-dimensional and ¢t = 1, then the
module //J is self-dual. Around the same time work of Huneke and Ulrich [20], generalizing
the corresponding statement in the theory of linkage [27], showed that, for any s and #, under
suitable hypotheses on I, the modules R/K and 7**1/JI* are dual to one another; in partic-
ular, I'T1/JI >~ wg k- The paper [7] gives another version of the duality, to which we will
return in Section 6.

Comparing our Theorem 2.2, we see that the result of Huneke and Ulrich is the case
u = 0, while the result of van Straten is included in our result for r = 1.

Van Straten’s result, cited above, appears with geometric applications in the papers of
van Straten and Warmt [32,33]. Sernesi [30] gives further geometric applications.

Conjectures of van Straten and Warmt. The paper of van Straten and Warmt contains
interesting conjectures, which we were able to settle in much generalized form. The conjectures
[32, Conjecture 7.1 (1)—(3)] are essentially as follows:

Conjecture 0.1. Suppose that J is an ideal of codimension g and dimension 1, with
s = g + 1 = d generators, in a power series ring R = k[x1, ..., x4] over a field k of charac-
teristic 0, and / is the unmixed part of J, so that //J has finite length. (Note that in this case
van Straten’s original result shows that / /J is self-dual.) If / is aradical ideal and I # J, then:

(1) The module 7/J is self-dual by a pairing that factors through the multiplication map
1/J®I1)J—1%]JI.

(2) The R-module 7%/J1I has a 1-dimensional socle.
(3) The socle of 712/J1 is generated by the Jacobian determinant of the generators of J.

Van Straten and Warmt were particularly interested in the case when J is generated by
the partial derivatives of a given power series f .
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In our terms (see Section 1), the ideal / in the conjecture satisfies the Strong Hypo-
thesis (G because it is reduced and the depth conditions because it is Cohen—Macaulay of
dimension 1). We give a proof of Conjecture (1) (Theorem 2.2) in a more general setting.
Conjecture (2) was in fact already known [31, 2.9], also in a more general setting.

As stated, Conjecture (3) is false, even for the case when the ideal J is generated by
the partial derivatives of a quasi-homogeneous polynomial, and we give a counter-example in
Example 7.15. However, we prove Conjecture (3) in Theorem 7.10, again in a more general
setting, under the additional hypothesis that J is generated by homogeneous polynomials of
the same degree.

Acknowledgement. The results of the present paper owe a great deal to the program
Macaulay?2 [36], which enabled us to determine the limits of validity of many of the assertions
below; some of those computations are represented by examples in the current paper. We are
also grateful to Craig Huneke, whose work on residual intersections inspired and guided the
whole subject.

1. Definitions, hypotheses and notation

Let I be an ideal of codimension g in a Noetherian local ring R. Recall that a proper
ideal of the form K = J : I is called an s-residual intersection (of / with respect to J), for
some integer s > g,if J C I is generated by s elements and K has codimension at least 5. The
ideal K is said to be a geometric s-residual intersection if in addition codim(/ + K) > s + 1.

In order for an s-residual intersection of / to exist, it is clearly necessary that I be gen-
erated by s elements locally at every prime of codimension < s, and for a geometric s-residual
intersection to exist, this condition must also be satisfied at primes of codimension s con-
taining /. For inductive purposes, the proofs of most results in the theory require a slightly
stronger hypothesis: The ideal I is said to satisfy the condition Gy if u(Ip) < codim P for all
prime ideals P O I withcodim P < s — 1.

For example, the homogeneous ideal of any smooth variety in P” satisfies G +1.

The significance of the condition Gy is in the following result, which allows an induction
that we will use often.

Lemma 1.1.  Let R be a Noetherian local ring with infinite residue field, and let I C R
be an ideal that satisfies Gg. Let a S I be any ideal with codim(a : [) > s. Let ay, ..., as
be general elements of a, and set J,, = (ay,...,ay), Ky = Jy : I. Write R,, = R/K,,. For
g < u < s theideal Ky is a u-residual intersection, and this residual intersection is geometric
ifu <s.

Here, and in the rest of the paper, the notion of a set of general elements may be defined as
follows. Let R be a Noetherian local ring with infinite residue field k, and let a be an ideal. We
say that the elements a1, ...,as C a are general in a if the image of the point (aq, ..., as) € a’
in (k ® g a)® is general.

Proof. The result follows from the theory of basic elements [10]. For a detailed treat-
ment, see [31, Section 1], and in particular [31, 1.5 (i1)—(iii)]. O
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188 Eisenbud and Ulrich, Duality and socle generators for residual intersections

Now suppose in addition that R is Gorenstein. We say that / satisfies the Standard Hypo-
thesis (respectively Weak or Strong Hypothesis) with respectto s = g + ¢ if [ satisfies G and,
in addition, the Depth Conditions

depth(R/17) > dim(R/I) — j + 1

for j <t (respectively j <t—1lorj <t +1).

For example, if # = 1, then the Standard Hypothesis is equivalent to the condition that
R /I is Cohen—Macaulay and / is generically a complete intersection. Also note that if s is
equal to dim R, then the Strong Hypothesis is the same as the weak hypothesis, since the extra
requirement is that the depth of R/I?T1is > 0.

Assuming that the ideal [ satisfies G, the Strong Hypothesis holds, for example, if the
Koszul homology modules H; (/) of some generating sequence of / are Cohen—Macaulay in
the range 0 < i <t (see [31, 2.10]); in particular it holds for strongly Cohen—Macaulay ideals;
thus it is satisfied by Cohen—Macaulay almost complete intersection ideals, Cohen—Macaulay
ideals of deviation 2 (see [2, p.259]), and ideals in the linkage class of a complete intersec-
tion (see [18, 1.11]). Standard examples include perfect ideals of codimension 2 and perfect
Gorenstein ideals of codimension 3 (see [34, proof of the only theorem]).

The ideal of the Veronese surface in P satisfies the Standard hypothesis with s = 4 and
the Weak Hypothesis with s = 5 — this is the ideal that appears in the five conics problem of
Chasles [8]. (It also satisfies “sliding depth” for the Koszul homology, so the general residual
intersection K := (ay,...,as) : I is unmixed —see [17, 2.3 and 3.3]. By a Bertini argument as
in the proof of Proposition 3.4, the ideal K is the homogeneous ideal of a set of reduced points.)

2. Duality results

We will assume throughout this section that / is an ideal of codimension g in the local
Gorensteinring R, and K = J : [ is an s-residual intersection for some s > g. We sett = s—g.
When we refer to the Standard, Weak, or Strong Hypothesis, it will always be with respect to s.

In this section we give precise statements of our main duality results. Proofs will be found
in Section 5.

Huneke gave a simple proof of van Straten’s + = 1 result in a more general context. We
include it with his gracious permission:

Theorem 2.1. Suppose that the ring R/ 1 is Cohen—Macaulay of codimension g and
J =(a1,....ag4+1) C 1 issuchthat K = J : I has codimension g+1. Then the R/ K-module
1/J is self-dual; that is, I /J = Hompg(I/J, wR/Kk)-

Assuming the Standard Hypothesis allows us to extend the result to higher values of 7,
and to prove a statement that is stronger even in the case t = 1:

Theorem 2.2. Under the Standard Hypothesis, Theorem 4.1 applies to give an injective
map g 1P/ JIY — wr/k- For 1 <u <1, both the multiplication map
1
m(Lu,t): [¥)JIv" V@ i+iu i ML i+l gt

and the composition p; o m(I,u,t) are perfect pairings.
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If in addition / satisfies the Strong Hypothesis, then the duality of Theorem 2.2 holds in
the full range 0 < u < ¢+ 1. Here, when u = 0, we interpret /% /JI* YasR/(J : I) = R/K,
and the statement is simply that /’*!/JI" >~ wg/k and R/K = End(wg, k), which holds by
Theorem 3.1.

Note that the hypothesis of Theorem 2.1 does not include the condition Gy; on the other
hand, Example 6.4 shows that the duality asserted in Theorem 2.1 does not necessarily come
from the multiplication map as in Theorem 2.2. Examples suggest that the weaker result should
also be true with a condition weaker than Gy:

Conjecture 2.3. The duality
1*/J1% ' =~ Homg(I' ™17 /JI"™ wr, k)

holds for 1 <u <t if K = J : I is an s-residual intersection and / satisfies a weakened Stan-
dard Hypothesis with G4 replaced by G4—;.

The conjecture is immediate in the case where R is regular and g = 1: then I = (G)
is principal, and J = (GF), where F is a regular sequence (of length s). In this case the
pairings all reduce to the usual isomorphisms R/(F) — Hom(R/(F), R/(F)) induced by
multiplication. We will prove the conjecture under an additional assumption in Corollary 2.7
of Theorem 2.6 below.

The condition Gy in the Strong, Standard, and Weak Hypotheses is used in the induc-
tive proof of many theorems about residual intersections, but it is not clear why it should be
necessary. Recent work [7, 13, 14] has aimed at removing this hypothesis, and has had success
in the case when [ is strongly Cohen—Macaulay. In particular, Chardin, Naéliton and Tran [7]
have proved an analogue of Theorem 2.2 in this setting, replacing the modules /*/JI*~1 with
the modules Sym,,(//J). In Section 6 we will see that this statement does not extend too far
beyond the strongly Cohen—Macaulay case; see Examples 6.6 and 6.7.

Under the Strong Hypothesis we can combine all the dualities of Theorem 2.2 in the
statement that a certain quotient of the Rees algebra R[/z] of I is Gorenstein:

Corollary 2.4. Under the Strong Hypothesis, the following ring is Gorenstein:
R:=R/K®I/J®I*/JI&---®I'"T ) JI' = R[Iz]/(K,Jz,(Iz)'?).

As an application of Theorem 2.2 and Corollary 2.4 we will deduce:

Theorem 2.5. [n addition to the Strong Hypothesis, suppose that K = J : I is a geo-
metric s-residual intersection.

(1) Let I C R := R/K be the image of 1. The truncated Rees algebra
Relol?q. gl
is Gorenstein. In particular, 1' 1 =~ wg and the multiplication maps
Tu ® 7t+1—u _ Tt-i-l
are perfect pairings.

(2) Let I' C R' := R/(K + I'*1) be the image of 1. The associated graded ring gry,(R’)
is Gorenstein.

Brought to you by | provisional account
Unauthenticated
Download Date | 12/21/19 10:54 PM



190 Eisenbud and Ulrich, Duality and socle generators for residual intersections

Sometimes the duality statements of Theorem 2.2 hold only for a restricted range of
values of 1. Our most general result involves another definition: We say that a pair (R, )
consisting of a Noetherian local ring R and an ideal I is a deformation of the pair (R, 1) if R
contains a regular sequence X, ..., X, whose image in R / [ is also a regular sequence such
that R is isomorphic to ﬁ/(xl, ...,Xp)and [ = IR.

Theorem 2.6. Suppose that (R, I) has a deformation (R, I) such that I satisfies the
condition Gy and the Koszul homology H;(I) is Cohen—-Macaulay for 0 <i <t = s — g.
Assume further that I satisfies the condition Gg 1y for some u <v<t. LetJ bea lift-
ing of J to an ideal with s generators contained in I. The tdeal K = J : I is an s-residual
intersection of I. Our hypothesis implies that Theorem 4.1 holds with K in place of K and

gives an isomorphism [;. The inverse ¢ : OR/R I"H/JI’ of |t induces a map
¢ orx = I'TII.
We have:
(1) ¢’ is a surjection, and is an isomorphism if K is a geometric s-residual intersection.
(2) There are perfect pairings
m: I/ I I I - wp i
for
tr—v=<u<v+l1

or, equivalently, for
t+1 t+1
—— —&f=u=—(/—+¢
—1 2 2
5
(3) If the perfect pairing m is chosen as in Figure 1 in the proof, then ¢’ o m is the map
induced by multiplication I* @ ['T17% — [i+1

where ¢ = v —

Under the hypotheses of Theorem 2.6, the ideal I satisfies the Strong Hypothesis
(see [31, 2.10]). Thus the ring R/K is Cohen—Macaulay with canonical module 7?1/ I*
by Theorem 3.1. From the proofs below it follows that the map ¢’ can also be described as

a composition
] ~ -~
wR/Kk —> R®p WR/R —R> R®p 'y gr ——s 1ttty

We remark that all the hypotheses of Theorem 2.6 are satisfied when [ is licci and satis-
fies Gg 4y (see [18, 1.11] and [20, proof of 5.3]). We will see that the G 4, assumption cannot
be weakened to Gg4y—1, even when / is a codimension 2 perfect ideal (Example 6.3), and also
that the deformation assumption cannot be dropped, even when / satisfies Gy (Examples 6.5
and 6.6).

Applying Theorem 2.6 with g + v = s — 1, we obtain a result extending Theorem 2.1
under the additional hypothesis that the pair (R, /) admits a “good” deformation:

Corollary 2.7. Assume that (R, ) has a deformation (R, I) such that I satisfies the
condition Gy and the Koszul homology H;i(I) is Cohen—Macaulay for 0 <i <t. If I satis-
fies Gg_1, then

1*/J1* ' ~ Homg(I'T' ™" /J "™ wpr k)

forl <u <t.
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3. Preliminary results

We will repeatedly use a number of results from [31]. For the reader’s convenience we
gather them here. Unless stated otherwise, we will assume that R is a local Gorenstein ring of
dimension d, [ is an ideal of codimension g, and K = J : [ is an s-residual intersection of /
for some s > g. As before, we write 1 = s — g, and when referring to the Weak, Standard, or
Strong Hypotheses, we mean that these hypotheses hold with respect to s.

Theorem 3.1. If I satisfies the Strong Hypothesis, then R/K is Cohen—Macaulay of
codimension s with wg g = I't1/JI".

Proof. Thisis [31, 2.9]. O

Proposition 3.2. If I satisfies the Standard Hypothesis, then the ideal K is unmixed of
codimension exactly s.

Proof.  One uses Theorem 3.1 and [31, 1.7 (a)]. O

Proposition 3.3. LetJ = (ay,...,as). Foru with0 <u < s write J, = (ay,....ay),
Ky, = Jy: 1, Ry = R/Ky, and assume that Ky, is a geometric u-residual intersection of |
whenever g < u < s.
(1) If I satisfies the Weak Hypothesis and u > 1, then the element a,, is regular on Ry,,—1 and
KuRu—l = CluRu_l . IRu_l.
(2) If I satisfies the Standard Hypothesis and 2 < j <t + 1, or if I satisfies the Strong
Hypothesis and 2 < j <t + 2, then there are exact sequences
1'=1  q, R R
— — — — — .
Jy_11772 Jy_11/71 JulJ—1

0

—0

foru > 1.
(3) If I satisfies the Standard Hypothesis and 1 < j <t, or if I satisfies the Strong Hypo-
thesisand 1 < j <t + 1, then
depth I/ /J, 177! > min{d —u,dim R/I — j + 2}.
In particular, 17/J,I17= is a maximal Cohen-Macaulay Ry-module if in addition
Jsu—g+2
(4) If I satisfies the Standard Hypothesis and 1 < j <t + 1, or if I satisfies the Strong
Hypothesis and 1 < j <t + 2, then
depth R/ J, 177! > min{d —u,dim R/I — j + 2}.
(5) If I satisfies the Standard Hypothesis, u < s, and 1 < j <t + 1, or if I satisfies the

Strong Hypothesis, K is a geometric s-residual intersection, and 1 < j <t + 2, then

I'NnkKy,=J,1°7 1.

Proof. First notice that if u < g, then K;, = J,, is generated by the regular sequence
ai,...,ay. Part (1) follows from Theorem 3.1 and [31, 1.7 (a), (c)], part (2) is a consequence
of Theorem 3.1 and [31, 2.7 (a)], and item (3) follows from Theorem 3.1 and [31, 2.7 (b)].
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192 Eisenbud and Ulrich, Duality and socle generators for residual intersections

We now prove (4). The assertion for j = 1 follows from Theorem 3.1 and [31, 1.7 (b)].
Thus we may assume that j > 2. We show part (4) by induction on u. The assertion is obvious
foru =0.1f 1 <u <, we apply the exact sequence of part (2), the depth estimate of part (3),
and the induction hypothesis.

If the ideal I satisfies the Strong Hypothesis, K is a geometric residual intersection and
1 < j <t + 2, then part (5) follows from Theorem 3.1 and [31, 2.7 (¢)]. If on the other hand /
satisfies the Standard Hypothesis, u < s and 1 < j <t + 1, then [ satisfies the Strong Hypo-
thesis with respectto s—1, Ks_; is a geometric residual intersectionand 1 < j < (s—1—g)4+2,
so the assertion follows from the previous case. O

Proposition 3.4. Suppose that R satisfies Serre’s condition (Rs—1) and contains a field
of characteristic 0. Let ay,...,as—1 be general elements of J, and set J,, = (ay,...,ay),
Ky=Jy:1, Ry = R/Ky. If R is reduced and I satisfies the Weak Hypothesis with respect
to s, then the factor ring Ry, is reduced and equidimensional of codimension u for every u < s.

Proof. Again, ifu < g, then K;, = J,, is generated by the regular sequence ay, ..., ay.
If g <u < s, then K, is a geometric u-residual intersection by Lemma 1.1 and hence this ideal
is unmixed of codimension u according to Proposition 3.2 because / satisfies the Standard
Hypothesis with respect to u. In either case, K, is unmixed of codimension u# and / is not
contained in any of the minimal primes of K.

Let P be any of these minimal primes. To show that R,, is reduced, it suffices to prove that
the ring (Ry,) p is regular. Since codim(J : /) > s > u = codim P and P does not contain /,

it follows that P cannot contain J either. Since the elements ay, ..., a, are general in J, the
local Bertini theorems [12, 4.6] show that (R /(ay, ..., ay))p is regular. But this ring is (Ry) p,
again since P does not contain /. O

4. Connecting the canonical module with powers of

We next explain the maps that connect powers of / with the canonical module, refining
Theorem 3.1. As we shall see, these maps are defined under a certain assumption that is satisfied
under the Standard Hypothesis, but also in some cases of geometric residual intersections.
Unless stated otherwise, the general assumptions of Section 3 are still in effect.

Theorem 4.1. Let ay,...,as be generators of J and, for every u with 0 <u <,
let Jy, = (ay,...,ay) and K,y = Jy, : 1. Assume that codim((Ky,—1,ay) : I) = u whenever
1 <u < sandthatcodim(I + Ky) > u + 1 whenever 0 < u < s. Foreveryu with0 <u <s
one has codim K;, = u. Set Ry, = R/K,, and R,, = R/K], where K], denotes the unmixed
part of Ky, of codimension u. For every u with g < u < s, there are maps

Ju—8&tl 4

Jul¥—8

u—g
— > WR

u

defined inductively:

(1) Foru = g, o is the map induced by the inclusion of I into the double annihilator

(Jg: (Jg : 1)) W

I/Jg — Ty R, -
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(2) Fors > u > g, [ly—g is the map obtained from [1y—g 1 and an embedding
log,_, /aywRr, , = ©OR,
obtained from the diagram of homomorphisms of rings

T 2

R, Ry, _1/(au)

4

Ry—1/(ay) == Ry—1/((ay) : IRy—1)

]

Ry

Ru—l

as explained in the proof.

If I satisfies the Standard Hypothesis with respect to s, then the map [Ls—g is an injection,
while if I satisfies the Strong Hypothesis with respect to s, then [Ls—g is an isomorphism.

Proof.  We first show that codim K;, = u for 0 < u < s and we compute the codimen-
sions of all the rings in the diagram.

Since the codimension of the ideal Kg is obviously 0, we assume that 1 < u <. By
Lemma 4.2, the codimension of K, is at least u. As K,, C (Ky,—1,ay) : I and the second
ideal has codimension u by hypothesis, we see that the codimensions of the two ideals are
exactly u. Thus, the rings Ry, and R),_, have codimension u — 1 in R, and the rings R, and
Ry —1/((ay) : I Ry—1) have codimension u.

We now claim that a,, is not in any codimension ¥ — 1 prime P containing K;,—j. Since
I + K;—1 has codimension > u by hypothesis, we have I ¢ P, and since K, has codimen-
sion u, we see that Ip = (J,,)p and therefore J,, ¢ P. As Jy,—1 C P, it follows that a,, ¢ P.
From this we see that the rings Ry, —1/(ay) and R],_, /(ay) have codimension u, and moreover
ay is a nonzerodivisor on R, _,.

We take the map o to be the natural inclusion. Moreover, this map is an isomorphism if
the Strong Hypothesis holds since then R/ is Cohen—Macaulay. Therefore we assume from
now on that u > g.

The map 1 induces an isomorphism

(ﬂf/)_l P WR,_, = R

/

Since ay is a nonzerodivisor on R;,_;,

to the exact sequence

the connecting homomorphism of Extg (—, wg) applied
0— Ry = Ry > Rl /() — 0
yields an embedding 03 : @ R, Jayw R,_, > OR._ [(ay)- The map w3 induces an embedding
T3 LOR, | fa) T DRy /(@)
For simplicity of notation we set

W= WR, /(ay) and H :=(ay):IRy—1 C Ry—1.
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Multiplying by 7, we see that the maps (1’ )~1, 05 and 5 together induce an embed-
ding
log,_,/auwRr, , = lo.

On the other hand,
loC0:y H= WR,_1/H >

and combining these two embeddings, we obtain
(1) loR,_,/aywR,_; > OR,_,/H-

Finally, the map 75 induces an embedding 7y’ : wg,_ /g <> ®R,,, Which together with
the map in (1) gives an embedding

2) Iwgr,_,/aywR,_, < OR,.
By induction, we may assume that the process just explained induces a map
- —g—1
I8/ 1" 87 > wr, .
and thus we obtain a map

Iu—g-i—l +Ju_11u—g—l
ayl¥=8 4+ Jy,_I1¥—8-1

— WR,,-

The left-hand side is obviously a homomorphic image of 71¥~¢+1/J, 1¥~& and this gives the
desired homomorphism
Pu—g 2 18TV 178 — wp .

We now show by induction on u > g that if I satisfies the Standard Hypothesis or the
Strong Hypothesis, then j,—g is an injection or an isomorphism, respectively. In either case,
[ satisfies the Strong Hypothesis with respect to u — 1, so in particular

is an isomorphism by the induction hypothesis. Multiplying by / and factoring out a, /%%,
we get an induced isomorphism

Iu—g—i—l N Ia)Ru—l
— .
ayl¥=8 + (Jy—I¥—8-1 N [u—g+l) aywR,

By (2), the right-hand side embeds in wg,,. So to prove the injectivity of i, —g it suffices
to show that
a8 + (Jy_ 1" 8 tnu=s+tly = j, %8,

The right-hand side is obviously contained in the left-hand side, so it remains to prove the
opposite inclusion. We trivially have

Jy I8 tnu—8+l c pv=g+tlng, 4,

and Proposition 3.3 (5) gives /¥ 8+t N K, | = J,_11*78. This concludes the proof that
Mu—g 18 an injection.
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We now show that if / satisfies the Strong Hypothesis, then 11, is a surjection. To this
end, it suffices to prove that the map in (2) is a surjection. Since 75 is an isomorphism according
to Proposition 3.3 (1), it remains to show that the map in (1) is surjective. We summarize the
argument in the proof of [31, 2.9 (b)]. Recall that R,,_; is Cohen—Macaulay by Theorem 3.1.

We first prove that Jwg,,_, is wg,,_, -reflexive. By induction,

R, = I"78 )y IV 871,
Proposition 3.3 (5) shows that J,,_1 /%81 = [¥~8 N K,,_1 and therefore
I8/ Jy_ 1" 8 1 = [""8R, .
It follows that /og,, |, = T¥=8+1R, . But again by Proposition 3.3 (5),
[UmEHIR, o qumEFLl g pu-g
Putting this together, we obtain
log, , =T8T ], 1"78.

By Proposition 3.3 (3), I*78+1/J,_1 %78 is a maximal Cohen-Macaulay R,,—;-module and

thus Jwg, , is wg,_, -reflexive, which we write as Iog, , = (Iwg,_,)"".
We deduce that
VvV
Ia)Rufl/aua)Rufl = (Ia)Rufl) /auCURufl = WR,,_{/H>

where the last identification holds according to [31, 2.1 (a)]. Therefore the map in (1) is surjec-
tive. This concludes the proof. |

Lemma 4.2. Let R be a Noetherian ring, let J C I be ideals, and let a € R be an

element. If
codim(J : [,a): I >u and codim (I + ((J,a): 1)) > u,
then
codim(J,a) : I > u.
Proof. One sees that
((J:Lay: 1) I+ ((J,a):))c(J:1L,a)+((J,a): ) C (J,a): I

as desired. m]

For future use we record the following statements, proved in the course of the proof of
Theorem 4.1.

Corollary 4.3. With the notation and assumptions of Theorem 4.1, assume that I sat-
isfies the Strong Hypothesis. For 0 < g < u < the rings Ry—1/(ay) and R, are Cohen—
Macaulay of dimension d — u, and the surjection Ry—_1/(ay) —> Ry, induces an inclusion of
canonical modules

18T I8 > wp, = or, @) = 18 Ru—1/(@ul™ % Ry—1)

that is compatible with the natural inclusion I*~8+t1 C 478,
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Remark 4.4 (The graded case). Suppose that R is a standard graded polynomial ring
k[x1,...,xq], that the ideal I is homogeneous and that the generators a1, ..., as of J are ho-
mogeneous of degrees §1, ..., ds. In this setting the construction of Theorem 4.1 yields a ho-
mogeneous map

u
sty g, e B e (d — 28,-).
j=1

5. Proofs of the duality theorems from Section 2

We follow a suggestion of the referee, and include the statement of each theorem from
Section 2 before its proof. Theorems from Section 2 retain the numbering that they had there.
Unless specified otherwise, I will again denote an ideal of codimension g in a local Gorenstein
ring R, the ideal K = J : I is assumed to be an s-residual intersection, and we sett = s — g.

Theorem 2.1. Suppose that the ring R/ I is Cohen—Macaulay of codimension g and
J =(ai,...,agy1) C 1 issuchthat K := J : I has codimension g+1. Then the R / K-module
1/J is self-dual, that is,
I/J =Homg(I/J,wr/K).

Proof (Huneke). We may suppose that J = (ay,...,ag,b), where ay,...,ag form
aregular sequence. Factoring out ay, ..., ag, we may assume g = 0.
Let L = 0 : b, and consider the short exact sequence

0 R/LY R— R/(b) — 0.

Dualizing into R, we obtain an exact sequence

R0 Extp(R/(b), R) — 0.

The image of f is the ideal generated by b. Also, we claim that 0 : L = I. Because R is
Gorenstein, theideal 0 : L = 0: (0 : b) is the unmixed part of (b), which is equal to [ because /
is unmixed of codimension 0 and () : [ has positive codimension in R. Putting these two
observations together, we get

1/(b) = ExtL(R/(b). R).

On the other hand, because R// is a maximal Cohen—Macaulay R-module, and R is
Gorenstein, we have
Extip(R/I, R) = Ext3(R/I, R) = 0,
so from the short exact sequence

0 1/(b)— R/(b) — R/I — 0

we get
Extyp(R/(b), R) = Extk(1/(b), R).
Since K is an ideal of codimension 1 in the Gorenstein ring R and K annihilates 1 /(b),

it follows that Ext}e (1/(b), R) = Homg(I/(b),wr k), and since we already showed that
1/(b) = Ext}a (R/(b), R), we conclude that I /(b) = Homg(//(b), wg k) as required. O
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For the proof of Theorem 2.2 we will need the following.

Lemma 5.1. In addition to the Standard Hypothesis assume that the residue field k
is infinite. Write d for the dimension of R and let x1,...,Xx4_g be general elements in the
maximal ideal. For any 1 < u <t one has:

(1) The elements x1, ..., Xxq_g form a regular sequence on R and on R/I".
(2) The image I of I in R/(x1,...,x4_s) satisfies the condition Gy.

(3) We adopt the notation of Theorem 2.2. The image J defines an s-residual intersection
J:TinR/(x1,...,xq—s). If m(I,u,t) is a perfect pairing, then so are m(I,u,t) and
wrom(l,u,t).

Proof. (1) By the Standard Hypothesis,
depth(R/I*) > dim(R/I) —u+1>dim(R/I)—t+1=d —s + L.

In particular, the elements x1, ..., x;_, form a regular sequence on R and on R/I".

(2) The condition Gy is equivalent to the condition that the codimension of I +Fitt; 1 (/)
is at least i for 1 <i < s. The Fitting ideals of the image 7 of I in R/(xy,...,x4_s) contain
the image of the Fitting ideals, and so the codimensions of I + Fitt;_;(I) satisfy the same
inequalities because the elements x1, ..., x;_, are general and dim R/(x1,...,X4_5) = S.

(3) By Proposition 3.2, the codimension of K is exactly s. Let yq,..., ys be a regular
sequence inside K, and set A = R/(y1,..., ys). Note that x1, ..., x;7_, is a regular sequence
on A.

We recall the map pu; of Theorem 4.1, which in an embedding under the present assump-
tions. The maps

m(1,u,t)
_

Iu/JIu—l ®R It+1—u/JIt—u It+1/JIt(L)a)R/K;)wA

induce maps
]t+1—u/J]l—u ﬁ) HomR(]u/JIu—l’ 1t+1/”t)
i Homg(7"/JT* ', wgr/k)
= Hompg(I*/J17, wy),

where the last map is an isomorphism by Hom-tensor adjointness. We must show that under
our hypothesis @ and 8 are both isomorphisms.

By Proposition 3.3 (3), the module /*/J 1%~ is a maximal Cohen—-Macaulay A-module.
As A is Cohen—Macaulay, we infer that Homg (1% /J1%~!, w,) is a maximal Cohen—Macaulay
A-module too. Thus x1, ..., x;_, form a regular sequence on this module.

LetA=A/(x1,....x4_g)and R = R/(x1,...,x4_s); we write I, J, K for the images
of I,J, K in R, respectively. We will show that (Ba) ® g R is an isomorphism. This implies
that B is surjective, and thus B is surjective and consequently § is an isomorphism. It follows
that « is also surjective, and x1,..., X _g is a regular sequence on the image of «. Because
o ®g R is an injection and X1, ..., x4_, is a regular sequence on the image of «, it follows
that o is 2 monomorphism.

It remains to show that (Ba) ® g R is an isomorphism. The ideal / satisfies the Standard
Hypothesis by items (1) and (2). Since s = dim R, the Standard Hypothesis is the same as the
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Strong Hypothesis in this case. The ideal K has codimension s and is contained in J : 7, hence
J : I is an s-residual intersection. Arguing as above, there are maps

Tt—i-l—u/ﬁt—u & Homﬁ(Tu/ﬁu—1’7t+l/ﬁt)
B Fu Fu-1
= Homﬁ(T” JIT* L, w5).
induced by m (1, u,t) and p;. By assumption, & is an isomorphism. Moreover, since 1 satisfies
the Strong Hypothesis, § is an isomorphism by Theorem 4.1.
Because x1,...,x4_s form a regular sequence on R/I"* by item (1), it follows that
T4 /JI¥ 1 = [%/JI*"! ®pg R. Further,
Homf(T"/ﬁ“_l,a)Z) o~ Homﬁ(l"/JI”_1 ®r R, w4 ®r R)
~ Homg(I%/JI* ', w4) ®r R,
where the second isomorphism holds because 7%/JI%~! is a maximal Cohen—Macaulay

A-module.
In the commutative diagram

(B)®RR
— "

[P/ g @p R Hompg(1"/JI"™", w4) ®r R

~ ~

Tt—l—l—u/ﬁt—u = Homi(ju /ﬁu—l’ (‘)Z)

we can take the vertical maps and the bottom horizontal map to be the isomorphisms established
above. Thus (Ba) @ g R is an isomorphism as required. m]

Theorem 2.3. Under the Standard Hypothesis, Theorem 4.1 applies to give an injective
map g IV JI — wgr/k- For 1 <u <t, both the multiplication map
mult

m(l’u’t):Iu/JIu_1®It+1—u/JIt—u S It+1/JIZ

and the composition iy o m(1,u,t) are perfect pairings.

Proof. The injectivity of w; was proven in Theorem 4.1, so it suffices to prove the
duality statements. We proceed by induction on ¢ > 0, the case t = 0 being vacuous.

We may assume that the residue field k is infinite. We may harmlessly replace R by R[x]]
and replace /, J by (/,x), (J, x). In this new setting we have g > 0. After proving the result
in this new setting, the original result is recovered by taking the degree O part with respect to x.
By Lemma 5.1, we may further assume that d = s.

In this case the extra strength of the Strong Hypothesis is vacuous. Thus we may apply
Theorem 3.1 to deduce that I T1/JI* ~ wp sk - Further, 1 /J has finite length, and it follows
that the lengths of the modules 7*/JI1*~! and Hom(I*/JI%~1, I'*1/JI") are equal. We
will prove that

3) JI' M c gt
forall 1 <wu <. It will follow that the map
It+1—u/JIt—u —>H0m(lu/.][u_l,1t+1/.]]t)
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induced by multiplication is injective, and thus

length(7*T17%/ J1"™%) < length Hom(I¥*/JI¥ ™', I'T1/J1%)
= length(7¥/JI*7Y).

Since this set of inequalities is symmetric under interchanging u and ¢ + 1 — u, it follows that
length(/%/JI1%~1) = length(/*T17%/JI*~%), and thus the injective map above is an isomor-
phism.

It remains to prove equation (3). We use Lemma 1.1 with a = J, and we adopt the nota-
tions Jy—_1, ag and Ks_; from that lemma. We write R = R/K;_1 and I =1IR. By Propo-
sition 3.3(5), 1% = I*/Js_11¥~1. By the induction hypothesis, m(I,u,t — 1) is a perfect
pairing. That is, for 1 <u <t — 1 the natural maps

I'™ — Homg(I*, ")

are isomorphisms, and this condition holds also for u = ¢ because R is Cohen—-Macaulay with
canonical module 77, by Theorem 3.1 and Proposition 3.3 (5). Recall that JR = agR C I. By
Proposition 3.3 (1), ay is regular on R. Since the ideal I contains a nonzerodivisor, there is
a natural isomorphism Homg (7%, ") =~ I' 0®) T*, where Q(R) denotes the total ring of
quotients of R. Therefore

Tt R Tu _ Tt—u

OR) T T :
Since J R is generated by the nonzerodivisor ag, it follows that
(JTt) Q(F) Tu - (asTt) Q(ﬁ) Tu = as(Tt Q(F) Tu) - asjt_u.

In particular,

JIY) m I CJI'™,
and hence

4) (JINY g 1" CJI"™ + K.

On the other hand, our assumptions on / imply that locally on the punctured spectrum
of R, the associated graded ring gr;(R) is Cohen—-Macaulay (Theorem 3.1, [17, 3.4], and
[16, 6.1]). Since g > 0, it follows that locally on the punctured spectrum of R, the irrelevant
ideal of gr; (R) has positive grade and therefore 771 : [* = [?T17% Since by the Standard
Hypothesis the maximal ideal is not an associated prime of R/I**17% we conclude that
'L ¥ = ['+17% olobally in R. In particular, JI? : I1* C I*T17% so equation (4) gives

JIT 1M C I+ K n 1T
Finally, by Proposition 3.3 (5),
Keoy NI = gy 17,

which completes the proof of (3). |

Corollary 2.4. Under the Strong Hypothesis, the following ring is Gorenstein:

R:=R/K&l/J®I*/JI&---dI'"T )JI' = R[Iz]/(K.,Jz,(Iz)'?).
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Proof. As a graded R-algebra R is generated in degree 1 and concentrated in degrees
0,...,t + 1, so the Gorenstein property is equivalent to the statements:

(1) R is a maximal Cohen—Macaulay module over .
() <(Rt+l = WR-

(3) Foru =1,...,t, the pairings Ry, ® R;+1—y — Rs+1 induced by multiplication are
perfect.

Here items (2) and (3) are equivalent to the existence of an isomorphism of graded R-modules
Homg,(R,wg,)(—t —1) = R.

Item (1) follows from Theorem 3.1 and Proposition 3.3 (3). Item (2) follows from Theorem 3.1,
while item (3) is the conclusion of Theorem 2.2. D

For the proof of Theorem 2.5 we will use the following general result:

Proposition 5.2. Let R be a local Cohen—Macaulay ring, let I C R be an ideal of
positive codimension, and let t > 0 be an integer. If the truncated Rees ring R(1)/R(I)>t+2
is Gorenstein, then so is the truncated associated graded ring gry(R)/gr;(R)>t+1 and the
ring R/I'+1.

Proof. We may assume that / # R. Write d = dim R and set

A=RI)/R(Dsi42=R®IH--- I'T],
B:=gr;(R)/gr;(R)siv1=R/ISI/I* - @I/

Since A is a Cohen-Macaulay ring, finite over R, the ideal I/ is a maximal Cohen-Macaulay
module for j <t 4+ 1, and it follows that R/I/ is a Cohen—Macaulay ring of dimension d — 1
for j <t 4+ 1. From this we see that 7/ /I/*! is a maximal Cohen-Macaulay R/I-module
for j <t. Thus B is a Cohen—Macaulay ring of dimension d — 1.

To prove that the ring B is Gorenstein, we will show that wp = Ext}2 (B, wpR) is cyclic
as a B-module by showing that there is a surjection of A-modules from the cyclic A-module
w4(—1) to wp. The exact sequence of A-modules

0—>A4>1—>A—-R—-0
is split as a sequence of R-modules, so there is a surjection of A-modules
w4 = Hompg(A, wg) = Hompg(A>1,wR).
On the other hand, from the exact sequence of A-modules
0— A>1(1) > A/At+1 > B —0

we get a map
Hompg(A>1,wRr)(—1) — Ext}Q(B,wR) = wp

that is surjective because A/A;+1 is a maximal Cohen—Macaulay R-module.
Finally, since B is Gorenstein and B is the associated graded ring of R /I*+1 with respect
to the ideal 7/1°T1, it follows that R/I**! is Gorenstein as well. o
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Theorem 2.5. [n addition to the Strong Hypothesis, suppose that K = J : I is a geo-
metric s-residual intersection.

(1) Let I C R := R/K be the image of 1. The truncated Rees algebra
Relol?a. ..ol
is Gorenstein. In particular, 1' 1 =~ wg and the multiplication maps
Tu ® Tt-i—l—u _ TH-I
are perfect pairings for0 < u <t + 1.

(2) Let I' C R' := R/(K + I'"Y) be the image of 1. The associated graded ring gry,(R’)
is Gorenstein.

Proof. Recall that R is Cohen-Macaulay according to Theorem 3.1. By assumption,
the residual intersection is geometric, so I has positive codimension in R by Proposition 3.2.
The truncated Rees algebra R(1)/R(I)>+2 is equal to R[Iz]/(K, Jz, (I1z)"T2) by Proposi-
tion 3.3 (5). From Corollary 2.4 we see that this ring is Gorenstein. Thus, by Proposition 5.2, the
truncated associated graded ring grj(ﬁ) / grj(E)Z,H is Gorenstein. Since R’ = R/I1'T1, the
associated graded ring gr,(R’) is equal to gr7(R)/gr7(R)>;+1, completing the argument. O

Theorem 2.6. Suppose that (R, I) has a deformation (R, I) such that I satisfies the
condition G and the Koszul homology H;i(I) is Cohen-Macaulay for 0 <i <t = s — g.
Assume further that 1 satisfies the condition Ggyy for some ’21 <v <t Let J be a lift-
ing of J to an ideal with s generators contained in I. The ideal K = J : I is an s-residual
intersection of I. Our hypothesis implies that Theorem 4.1 holds with K in place of K and
gives an isomorphism [i;. The inverse ¢ @ wp ) e [ttt / JIt of |t induces a map

¢ orx — ' JT".
We have:

(1) @' is a surjection, and is an isomorphism if K is a geometric s-residual intersection.

(2) There are perfect pairings
m: I I T 5 wpk
for

t—v<u<v+1

or, equivalently, for

r+1 - <Z+1+
— — €& u — &,
2 -2

where ¢ = v — %

(3) If the perfect pairing m is chosen as in Figure 1 in the proof below, then ¢’ o m is the
map induced by multiplication 1* @ ['T17% — [i+1

Proof.  We first show that K = J : I is an s-residual intersection of [ , that is, we have
codim K > s. To this end, note that KR C K and, by [20, 4.1], K C v KR. Thus we obtain
codim K R = codim K > s. Since codim K > codim K R, we see that codim K > s as required.
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The ideal I satisfies the Strong Hypothesis, by the discussion in Section 1. If we had
assumed that the residue field was infinite, Lemma 1.1 would give the appropriate lower bounds
for codimensions of ideals in the assumptions of Theorem 4.1. The lower bounds follow even
without an infinite residue field from the references in the proof of Lemma 1.1. On the other
hand, the necessary upper bounds follow from Proposition 3.3 (1) and Proposition 3.2. Hence
Theorem 4.1 gives an isomorphism jt; I~’+1/J~I~t - OR/g-

Since I satisfies the Strong Hypothesis, we also know from Theorem 3.1 and Proposi-
tion 3.2 that R /K is Cohen-Macaulay and K has codimension exactly s. It follows that

codim K = codim KR = codim K.

Thus (R K) is a deformation of (R, KR) and WRp/ER = PR/ Bf R. From the surjection
R/KR — R/K and the equality of dimensions, we get an inclusion

WR/K > @p/RR %wk/ﬁ ®1§R

that identifies wg, g with the set of elements of w JRR that are annihilated by K. From this
inclusion and the isomorphism

¢rogg— 1"TJT

of Theorem 4.1 we derive a map ¢ : wg/x — I It

Next we will show that /¥ ®p R = I"forallu < v+1.Because (R, 1) is a deformation
of (R,I), we may write R = R / (x), where x is a regular sequence on R and on R/[. It
suffices to show x is a regular sequence modulo T* for u in the given range. Since we know
this for u = 1, we may do induction on u, and it is enough to show that x is a regular sequence
on [*~1/]u.

Fix a set of generators of I, and their images in /. Using these generators, we define
surjective maps from free modules F—>Tad F:=FQ # R — I and compute Koszul
homology modules H; := H;(I) and H; := H;(I).

We now form the approximation complexes (see [15, p.470])

0— Hy_: ®Sym015—>---—>I:IO®Symu_117"—>I~”_1/I~”—>O,
0— Hy—1 ® Symy F — ---— Ho® Sym,,_; F — I*"1/I" - 0.

Since u — 1 < v < t, our hypothesis shows that the modules I:Il- are either O or are maximal
Cohen—Macaulay R / [-modules whenever 0 < i < u — 1. This implies, in the given range, that
X is a regular sequence on the nonzero I:Ii, that H; =~ I:Ii ® R, and that the latter modules
are Cohen—Macaulay R/[-modules.

Sinceu — 1 < v, both  and I satisfy Gg4y—1, and it follows from [15, the proofs of 2.5
and 2.3] that both approximation complexes are exact. Since x is a regular sequence on all the
nontrivial H; that appear, and H; = H Q3 # R, the exactness of the complexes implies that x
is a regular sequence on 7%~/ [%.

This completes the argument that /% ® g R = 1" forallu <v + 1. From this isomor-
phism, we see that

MyJjm'egs R=1"/Jr "

Now let

t+1 t+1
——8§u§T+8.

Brought to you by | provisional account
Unauthenticated
Download Date | 12/21/19 10:54 PM



Eisenbud and Ulrich, Duality and socle generators for residual intersections 203

WR/K
-7 I
mo
®r/g O R
. |= ,
Ju ? JrH1—u 2 R 7 m(I,u,t)®R jr+1 25 R ¢
Tt @ Frima RN 770 ©R
Ju Ji+1—u m(l,u,t) Ji+1
Jruv—1 JIt—u TI7

Figure 1. Definition of m.

Note thatu < v+ landf 4+ 1 —u < v + 1 so, by what we have just proven,
MyJjrm'teg R=1"/Jr,
I"t+1—u/j1"t—u ®§ R ~ It-l—l—u/JIt—u.

Theorem 3.1 shows that w IR = It+! / JIt. By the argument at the beginning of this proof,
wR/k can be identified with the submodule of w 5 Ik OF R consisting of all elements annihi-
lated by K. Thus we obtain the commutative diagram of solid arrows as shown in Figure 1.
From the left-hand vertical isomorphism we see that the source of the map m(I ,u, 1)®p Ris
annihilated by K. Hence its image in ft+1/fft ®p R= OrE DR R is contained in wg/ g,
yielding a map m indicated by the dotted arrow in the diagram.

By our assumption on v, there exists u with % —e<u=< % + &, and then the sur-
jectivity of m([I,u,t) implies that ¢’ is surjective. To prove that the surjection ¢’ is an iso-
morphism if K is a geometric s-residual intersection, it suffices to verify that the source and
target of ¢’ are isomorphic locally at every associated prime P of the R-module wg/k. But
we have seen before that K has codimension s, hence every such P has codimension s, and
therefore cannot contain 7. It follows that the source and target of (¢')p are both isomorphic
to the Gorenstein ring (R/J)p.

To prove that m is a perfect pairing, recall that m(I~ ,u,t) is a perfect pairing by Theo-
rem 2.2. According to Theorem 3.1 and Proposition 3.3 (3), the module 7%/J ¥~ is a max-
imal Cohen—Macaulay module over the Cohen—Macaulay ring R / K. We proved above that x
is a regular sequence on R/ K, so it is also a regular sequence on [%/J I*~!. It follows that

Homﬁ(f”/ff"_l,a)ﬁ/g) ®p R = Hompg(/%/J %! ®p Roog g ®k R).
The right-hand module is isomorphic to
Homg(I"/JI" ™\ wg g ® R),
and because /% /JI*~! is annihilated by K, this is isomorphic to

Homg(I"/JI1" ', wg/k).
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Since
Homz(1"/J 1" wg ) @ R= T/ JT M @p R 1'HI74 /g1,
there is a composite isomorphism
I 1 S Homg (1) 1Y wg k).

The commutativity of the diagram in Figure 1 shows that this isomorphism is induced by m, so
we are done. O

6. Examples and counterexamples on duality
Residual intersections of codimension 2 ideals.

Example 6.1 (Explicit duality). Let R be a local Gorenstein ring and suppose that C
is an (n + 1) x (n 4+ 5) matrix with entries in R, where n > 1 and s > 2. Suppose that the
maximal minors of C generate an ideal K of codimension s, the generic value. Set ¢ := 5 — 2
and M := coker C. Buchsbaum and Eisenbud [4] (see also [9, Appendix A.2.6]) computed
minimal free R-resolutions of the first # + 1 symmetric powers of M, and observed that,
for 0 <u <t + 1, these are perfect R-modules of codimension s, and that the resolutions
of Sym,, (M) and Sym, , ; _,, (M) are dual to one another; that is,

Symy 41, (M) = Extyx(Sym, (M), R) = Homg(Sym, (M), wg/k)-

If we assume that the entries of C are in the maximal ideal and the residue field of R is
infinite, then, possibly after column operations, we may suppose the (n + 1) x n submatrix A
consisting of the first n columns of C has the property that the n x n minors of A generate an
ideal I of codimension 2. (Reason: Since K has codimension s, we see that N := coker(C*) is
locally free of rank s — 1 in codimension < s in R. It follows from the theory of basic elements
that after factoring out s general generators of N we obtain a module of codimension > 2. This
is the module presented by A*.)

In this situation, the ideal / is strongly Cohen—Macaulay. Huneke [19] showed that K
is an s-residual intersection of 7, see also Theorem 6.2. In [7] the duality statement above is
generalized to residual intersections of any strongly Cohen—Macaulay ideal.

In addition, Andy Kustin and the second author observed (unpublished) that for geometric
residual intersections of codimension 2 perfect ideals, the symmetric power Sym,, (1//J) is
isomorphic to /% /JI*~! in the range of u that we consider, and we reprove this in Theorem 6.2
below. This gives a concrete example of our theory.

Let B be the (n 4+ 1) x s matrix made from the last s columns of C, so that C = (A|B).
Let J be the image of the composite map

s B n+1 A n+1x% /\”A* A nx*
RS = R g/\R —>/\R ~ R.

By the Hilbert—Burch Theorem,

n
coker A =~ image/\A* ~ ],

and thus
M = coker(A|B) = 1/J.
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Theorem 6.2. With notation and hypotheses as above, K = J : I and thus K is an
s-residual intersection of I. Let I be the image of I in the ring R := R/K. If I + K has
codimension > s + 1 (so that K is a geometric s-residual intersection of I ), then

1"/J1""1 >~ T" =~ Sym, (coker C)

for 0 <u <t + 1 (interpreting I*/JI*~ as R when u = 0). In particular, I*/JI*~" and
117 ) T 1% have dual, finite free R-resolutions.

Note that this does not require the condition Gy.

Proof. By assumption, the codimension of the ideal K of (n + 1) x (n + 1) minors
of C is s, so by [5], ann(coker C) = K. Butann(cokerC) = ann(//J) = J : I.
There are natural surjections

Sym, (I/J) — I"/JI¥"1 — T*

Recall that the determinantal ideal K is perfect of codimension s. Thus, if K is a geometric
s-residual intersection, then 7* has grade > 1, and both ¥ and Sym,,(1/J) are locally free
of rank 1 at the associated primes of R. Since Sym,,(//J) is a maximal Cohen—Macaulay
R-module, it is torsion free, and thus the two epimorphisms are isomorphisms. |

There are two kinds of hypotheses on the ideal / in Theorem 2.6: the condition Gg 4
on I itself and the existence of a good deformation /. We will show in Example 6.3 that the
first cannot be weakened and, in Examples 6.5 and 6.6, that the second cannot be dropped.
Here we write w := g + v.

Example 6.3 (A codimension 2 perfect ideal satisfying G,,—; but not G,). The fol-
lowing examples show that, even for licci ideals, the condition G, in Theorem 2.6 cannot be
replaced by the condition G,—;. They are based on the construction explained in Example 6.1.

By the Hilbert—Burch Theorem, any perfect codimension 2 ideal / with n + 1 generators
is the ideal of n x n minors of an (n + 1) X n matrix. Such ideals satisfy the deformation
assumption: they are specializations of the generic ideal of minors, which satisfies the condition
G, for every s, and all their Koszul homology modules are Cohen—Macaulay ([2]). (These are
the original examples of the licci ideals mentioned in the introduction.)

Let2 < w < s,let R be a power series ring k[[x1, ..., Xs], and let M be the s x (25 — 1)
“Macaulay matrix”’, where the i -th principal diagonal entries are x; and the other entries are 0
(we illustrate with the case s = 5):

X1 X2 X3 X4 X50 0 0
X1 X2 X3 x4 x5 0 O

X1 X2 X3 X4 Xj5 0

o o o O

0 x1 X2 X3 X4 X5
0 O x1 X2 X3 X4 X5

We define the ideal I 4, to be the ideal of (s — 1) x (s — 1) minors of the matrix Ny, made
from columns 2 through s of M by replacing the entry x, of the (s — w + 1) row with O; for
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example /s 3 is the ideal of 4 x 4 minors of

X2 X3 X4 Xs5
X1 X2 X3 X4
N5 3 = 0 X1 X2 0
0 0 X1 X2
0 0 0 x;

It is easy to see that I 4, is a perfect ideal of codimension 2, and by computing the codimen-
sions of the ideals of lower order minors of Ny 4, one sees that /sy, satisfies Gy, —1 but not Gy,.
We consider the cases 4 < s < 7, and we construct an s-residual intersection

Ks,w = Js,w : Is,w

of I, as follows:

Let M s”w be the matrix constructed from My by replacing columns 2 up to s with the
matrix Nj, ), and adding the variable x,, to the entries in the (s — w + 1) row and both the first
and (2s — w + 1) columns. Thus

X1 X2 X3 X4 X5 0 0 0
0 X1 X2 X3 X4 Xs5

M§,3= x3 0 x1 x2 0 x4 x5 X3

S O o O

0 0 O Xx1 X2 X3 X4 X5

0O 0 O O x1 Xxp X3 X4 X5

Macaulay2 computations show that for s < 7 and any 2 < w < s, the ideal K, generated by
the maximal minors of M S/’w has the generic codimension, s, and we conjecture that this is true
in general.

Assuming that K ,, has codimension s, we can use Theorem 6.2 to show that Ky ,, is an
s-residual intersection of Iy ,,. Explicitly, let Ps 5, be the submatrix of M s”w consisting of the
columns not in Ny 4, ; for example if s = 5, w = 3, then

x1 0 0 O O

0 xs 0 0 O
Psw=1x3 x4 x5 x3 0
0 x3 x4 x5 O

0 X2 X3 X4 Xs5

After rearranging the columns of M, we may write M ,, = (Nsw|Psw). Thus we may
apply Theorem 6.2 to conclude that, if we take J 4, to be the ideal generated by the entries
of the matrix obtained by multiplying P; ,, by the row of signed maximal minors of Ny ,,, we
will have Ky = Js, : 15w, an s-residual intersection of Iy ,. For example Js 3 is generated
by the entries of the row vector

(Al —Az A3 —A4 AS)'PS,?n

where A; is the determinant of the matrix obtained from N5 3 by omitting the i-th row.
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We now consider Theorem 2.6 in the cases of the ideals /4, and Jy,, with 4 <s < 7.
We have g = 2, and we consider values of v in the range specified in the theorem, so that
w = g + v = 2+ v lies in the range % < w < s. Asexplained above, the ideal I ,, satisfies
the deformation hypothesis of the theorem, and satisfies Gg+y—1 = Gy—1 but not Gg 1. This
has the effect of adding 1 to the lower bound, and subtracting 1 from the upper bound, for u in

Theorem 2.6. Thus for the triples (s, w, u) in the list
(4’ 37 1)’ (5’ 3’ 2)’ (5’ 47 1)9 (69 49 2)9 (69 59 1)9 (79 49 3)9 (79 57 2)9 (77 6’ 1)7

the theorem does not guarantee duality. Of course the same goes for the “dual” triples
(s,w,s — 1 —u).

Computations in Macaulay2 show that, indeed, duality does not hold in these cases. To
check this, we compute resolutions of 7%/JI%~1 and I5~17%/JI5=27% When the total Betti
numbers in the minimal resolutions over R of these two modules are not dual to one another,
the duality clearly does not hold. It turns out that this occurs in each case. (We note that in
other cases, where these have the same graded Betti numbers as in the generic case, they must
be reductions from the generic case, and thus dual to one another.)

Consider, as an example, the case (s, w,u) = (5,4, 1): According to Macaulay?2, the
Betti table of the minimal graded free resolution of 1%/ JI%*~1 = 1/J is

total: 5 9 84 180 135 35
4: 59

~N O O

8: . . 84 180 135 35
while the Betti table of the minimal graded free resolution of 75~17¥#/J[5727% = [3 /]2 is

total: 35 136 188 106 28 9
12: 35 136 183 87 1 .

13:

14: . . . L.
15: . . 5 19 27 8
16: . . . R |

By local duality, the dual, Hom(/ /J,wg /(1)) of 1/J is isomorphic, up to a shift in grading,
to Ext?2 (I/J, R). From the first resolution we see that the presentation of this module (as
a graded module or over the power series ring) has 35 generators and 135 relations, whereas
from the second Betti table we see that the minimal presentation of 73/J 2 has 35 generators
and 136 relations; thus //J is not dual to 13/J 2.

Example 6.4 (Duality not given by multiplication). Let R = k[[x, y,z] D I = (x,y)>?,
where k is an infinite field. The pair (R, /) admits a deformation (R, '), where
R = k[[Zl’l, <05 22,3, Z]],

the ideal 7 is generated by the 2 x 2 minors of the generic matrix
Z1,1 712 713
Z = )
72,1 222 Z2;3
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and the specialization R — R sends Z to the matrix

x y 0
Oxy'

If J is generated by three sufficiently general homogeneous polynomials of degree 3 in 7, then
the ideal K = J : I is a 3-residual intersection, so by Theorem 2.1 or Theorem 2.6, 1 /J is
self-dual.

Computation shows that K = (x, y, z)>. Thus wg sk = Homy (R/K, k) has Hilbert func-
tion 6,3, 1. The surjection ¢’ : wg/x — I 2/JI described in Theorem 2.6 is, in this case, the
dual of the inclusion (x, y)(R/K) < R/K. Thus the Hilbert function of /2/JI is 5,2. We
see that, unlike in Theorem 2.2, there is no injection /2/JI — wg /K because the socle of the
first module is 2-dimensional.

We also claim that, unlike in the situation of Theorem 2.2, the self-duality map of 7/J
is not given by multiplication. Indeed, there can be no perfect pairing 1/J ® 1/J — I%/JI
because the target is annihilated by (x, y, z)? while 7/J is not.

By Theorem 2.6, there is a duality map / /J ® I/J — wpg/ g, and the multiplication map
1/J ®1/J — I1?/JI is the composite of this map with the surjection ¢’ : WR/K —> 12/J1
described in the same Theorem. Moreover, the duality map is a symmetric surjection, induced
by the corresponding duality map in the generic case. Thus R/K & I /J ® wg/ g is a commu-
tative standard graded Gorenstein algebra over R/K and R/K @ I/J @ I?/J1 is a proper
homomorphic image.

It is shown in [7] that, for residual intersections of strongly Cohen—Macaulay ideals,
such as the one in this example, the duality between symmetric powers is always induced by
multiplication.

Residual intersections of codimension 3 ideals. Even when [ itself satisfies the con-
dition Gy, the conclusion of Theorem 2.6 may fail if / does not have a deformation whose
Koszul homology modules are Cohen—Macaulay.

Example 6.5 (No surjection wg/ g —> 12/JI). Let R = k[xy,...,xs], where k is an
infinite field, and let / be the ideal of 2 x 2 minors of the matrix

X1 X2 X3 X4

X2 X3 X4 Xs5 ‘
If we take J to be the ideal generated by four sufficiently general cubic forms in 7, then by
Theorem 2.2, the multiplication map 1/J ® I/J — 1%/J1 is a perfect pairing. We claim
that, unlike in the situation of Theorem 2.6, there is no surjection wg, g —> 1 2/JI: compu-
tation shows that /2/J I requires twenty generators, whereas wg /K requires only sixteen. Of
course by Theorem 2.2, there is a natural injection /12/JI < wg sk such that the compos-
ite pairing is also a perfect pairing. However, unlike the situation in [7], the multiplication
I1/J ®1/J — Sym,(I/J) is not a perfect pairing.

Could there be some “mystery module” X and maps

CL)R/K<—X—>12/JI

that explains both Examples 6.4 and 6.5?
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Example 6.6 (No perfect pairing). Let s = 5 and take / to be the ideal of the nonde-
generate rational quartic curve in P4 or of the Veronese surface in P> that is, the ideal of 2 x 2

minors of either
Xo X1 X2
X0 X1 X2 X3
or X1 X3 X4

X1 X2 X3 X4
X2 X4 X5

These ideals satisfy G5 and admit a 5-residual intersection K = J : I, where J is generated by
five general cubic forms in . For each of the two ideals I above, all Koszul homology modules
are Cohen—Macaulay except the first, and they satisfy the sliding depth condition for Koszul
homology. Nevertheless, Macaulay2 computation shows that the modules //.J and 12/J1 are
not dual to one another.

Computation shows that there is no useful duality among the first three symmetric powers
either: Syms(//J) % wgr/k.,

Hom(Symy(1/J), wr/k) % I/J, Hom(I/J,wgr k) % Symy(I/J),

and likewise for dualizing into Syms(//J).
Residual intersections of a codimension 5 ideal.

Example 6.7. Let R = k[x1,...,X10,¥1,--.,Ys], where k is an infinite field, and
let I be the ideal generated by the 4 x 4 Pfaffians of the generic skew symmetric matrix

0 x1 x2 x3 x4
—X1 0 X5 X6 X7
M = —X2 —X5 0 X8 X9

—X3 —Xg —Xg 0 X0

—X4 —X7 —X9 —X10 0

together with the entries of the vector

(31 y2 »3 ya ys)M.

This is a prime ideal of codimension 5, and is a complete intersection locally on the punctured
spectrum, so I satisfied G15. Mark Johnson found this ideal as an example where each of
R/I,R/1? and R/I3 is Cohen-Macaulay (and thus of depth 10), while R/I* has depth 6.
The ideal [ thus satisfies the Strong Hypothesis with s = 7, but not s = 8.

Let J C I be generated by seven general quadrics in /, and let K = J : [. As in the
previous example, computation shows that there is no useful duality among the first three sym-
metric powers: Syms(//J) % wgr/k.

Hom(Symy(1/J), wr/k) % 1/J. Hom(I/J.wgr k) % Symy(I/J),

and likewise for dualizing into Syms(//J).
However, by Theorems 2.2 and 3.1, the multiplication map does give a perfect pairing

1/J@I1%/J1 - I°)JI* =~ wg/k.
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7. Complementary module and socle

We begin by reminding the reader of the classic description of the socle of a com-
plete intersection of equicharacteristic 0. Recall that if k is a field and R is a complete local
k-algebra, then the Kdhler different Dg(R/k) C R is the 0-th Fitting ideal of the universally
finite module of differentials Qg /x; for example, if R = k[x1....,x4]/(a1....,aq), then
Dk (R/ k) is the ideal generated by the Jacobian determinant

day ogay

0x] Tt 0xg
A = det

%aq 9aq

0x1 Tt 0xg

Theorem 7.1. If k is a field of characteristic 0 and R is a complete local k-algebra,
then Dk (R/k) is nonzero if and only if R is a 0-dimensional complete intersection, and in
this case Dg (R/ k) is the socle of R.

This result was proven by Scheja and Storch [29] (see also Kunz [21]). The basic ideas
are due to Tate [25, Appendix]. For the reader’s convenience we give the classic arguments in
Appendix A.

Throughout this section we suppose that R is a local Gorenstein ring of dimension d
with maximal ideal n, that / C R is an ideal of codimension g, and K = J : [ is an s-residual
intersection, and we sett = s — g. If T is any ring we write Q(7") for the total ring of quotients
obtained by inverting every nonzerodivisor in 7.

We want to identify the socle of wg, in the case dim R/K = d — s = 0. We will show
that, under suitable hypotheses, the socle of wg/x = I’ +1/J1" is generated by the image of
the Jacobian determinant of generators of J (Theorems 7.8 and 7.10).

We begin with the following general result about the socle of the local cohomology
module HS™S(R/JIY).

Theorem 7.2. If I satisfies the Strong Hypothesis with respect to s, then an_s (R/JIY)
has a simple socle and the natural map

HE S (wgy k) = HETS(I'F /g 1Y) — HETS(R/JTY)

is injective. In particular, the two modules have the same socle.

Proof. Recall that I'*!/JI" = wg, g has dimension d — s by Theorem 3.1. Hence
HE=S(1'+1/J1%) # 0. This module embeds into HE—S(R/JI') since depth R/I*T! > d —s.
Thus it remains to show that the socle of an_s (R/JI")is simple.

If = 0, the result is the usual duality for complete intersections, so we assume that
t > 0. We may harmlessly suppose that k is infinite and that the generators ay, ..., as of J are
general. Set J; = (ay,...,a;)and K; = J; : [. By Lemma 1.1, the ideal J; : I is a geometric
i -residual intersection for g <i <s — 1.

From Proposition 3.3 (2) we have an exact sequence

1! as R R
0— — — — 0.
Js—1 1171 Js—11? JgI?t

The module in the middle has depth at least d — s + 1 according to Proposition 3.3 (4). Hence
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the long exact sequence of local cohomology gives an embedding
HITS(R/JI') C HETSHN (I [Ty 117,
Now the theorem follows because by Theorem 3.1,
It/Js_llt_l = WR/K,_,

and R/K;_; is Cohen-Macaulay, thus HE=S+1 (1% /J;_; I'~1) has simple socle. O

If k is a field of characteristic 0 and 7 is a local finite-dimensional k-algebra, then the
trace homomorphism Trr, is nonzero and annihilates the maximal ideal, since the maximal
ideal consists of nilpotent elements. Thus Trz,; generates the socle of wr = Homy (T’ k).

From this point on we will assume that R = k[[x1,...,x,] is a power series ring in d
variables over a field k of characteristic 0. To identify the socle of /**1/J I with the Jacobian
determinant A of a given set of generators of J in the case s = d (Theorem 7.8), we begin by
making explicit the composite isomorphism

'/ JI" ~ wg/x =~ Homy (R/K k).

We show that if A is in 7?71, then, under this isomorphism, A corresponds to the trace homo-
morphism Tr(g/ ),k This is accomplished in Theorem 7.4. In order to do this, we establish a
result about the Dedekind complementary module of R/ K that requires R/ K to be reduced,
and holds for s < d.

Lemma 7.3. Let k be a field of characteristic 0 and R = k[[x1,...,x4]. Let T = R/L
be a reduced Cohen—Macaulay factor ring of R with codim L = s — 1. Let ay,...,a5s—1 be
elements of L that generate L generically, and let ag € m be a nonzerodivisor modulo L. Let
X1,...,Xq be general variables of R. Set

Ai = k[[xi,...,xq],

/

A - k[[as,xS+1, e ,.xd]],
day day
ox; T 0x;

A; =det] :
ga; 9a;
oxp T 0x;

We have:
(1) Qoery/a,q, = O(T) 1 Q7y4,., is afree Q(T)-module of rank I generated by d xs.
For any differential form df we write 5[_9{1 Jfor the ratio as elements of 2q(T)/ 4
(2) Ay = Ziﬁ Ag_q.

(3) C(T/As) = §6(T/A").

s+1°

Proof. The Q(T)-module Q29 (7,4, , is presented by the transpose of the (s — 1) x s

+1
matrix
day day
0x1 T 0xg
O = . .
o0as—1 Oas—1
0x1 T 0xyg
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212 Eisenbud and Ulrich, Duality and socle generators for residual intersections

We write ®; for (—1)’ times the determinant of the (s — 1) x (s — 1) submatrix of ® omitting
the i-th column. Note that A;_; = (—1)°Q;.

(1) Because xp,...,xyg are general, the ring Ay = k[[xs, ..., x4] is a Noether normal-
ization of the reduced, equidimensional ring 7', so Qg(7)/k := Q(T) ®7 Q7 is free of rank
d—s+1 withbasis dx, ..., dxg. Thus Qg(1)/4,,, is free of rank 1 with basis d x; as claimed.

(2) It follows that ® has rank s — 1. Moreover, the vector

dx;
dxg
dxs
dxg
is in ker ®. Of course, ® also annihilates the vector
G}
Oy
and so, because the entries of either vector generate the unit ideal in Q(7'),
ch i
: and :
O 2
are proportional. Since gij = 1, we get
dx;
;=06
i K dx,

fori =1,...,s. By the chain rule,

dag ° . dag dx;

dxg ‘ ox; dxg’
1=

SO
S
dag dag
K = I Y
dxg = ox;

in Q(T). Expanding A along the last row we get

’ oda da da
Ay = (1)) 0;— = (-1)’O5— = Ay_1—
s ();laxi ()des slde
as required.
(3) Since ag € m is regular on T and x1,...,xg are general, the ring A’ is another
Noether normalization of 7'. By [22, 9.2],

C(T/Ag)dxg A+ Ndxg =C(T/A Ydas N -+ A dxy

in /\“7_erl Qo)/k- Since Qo(1)/k is a free Q(T)-module with basis dxs,...,dxg, we

have i
dag Ndxsy1 A+ Ndxg = das

dxg Ndxs41 A+ ANdxy
S

as desired. D
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The next theorem is one of our main results. It gives an explicit description of the com-
plementary module of residual intersections.

Theorem 7.4. Let k be a field of characteristic 0, and let R = k[x1,...,x4]. Let
I C R be an ideal satisfying the Strong Hypothesis for some s < d, and let J : I be a geom-

etric s-residual intersection such that R = R/(J : I) is reduced. Let a1, ...,as be general
elements in J. Let X1, ...,xq be general variables in R and write A = k[xs41,...,x4]. We
have

I""'R = AG(R/A),

where A is the Jacobian determinant

day day

ox; " Oxg
A = det

oas das

ox; " Oxg

Proof. Since R is a domain we must have g > 0. Fori > g — 1 we set
Ji = (ay,....a;) C 1,
Ri = R/(Ji : I),
Ai = k[xig1,....x4],
Ai = klai 11, xi42..... x4

and
9a; oay
0xX1 o 0X;g
Aj :=det| : :
da;. 9a;
ox; T 0x;

Ifi = g—1,then J; : I = J; is generated by the regular sequence ay, ..., a;.Ifi > g, then by
Lemma 1.1, the ideal J; : I is a geometric i -residual intersection. By Theorem 3.1, the ring R;
is Cohen—-Macaulay of dimension d —i. It follows that the geometric i-residual intersection
Ji I is generically generated by ay,...,a;. Moreover, by Proposition 3.3 (1), the element
a;j+1 is regular on R; for i < s — 1. Proposition 3.4 shows that the ring R; is reduced. Finally,
Theorem 3.1 and Proposition 3.3 (5) give wg, = Ji=8+1R; for any i.

Since the x1,...,x, are general, the ring A; is a Noether normalization of R;. Since
a;+1 € m is a nonzerodivisor on R;, the ring A; is also a Noether normalization of R;.

By inductiononi = g —1,...,s, we prove that

I'78FTIR, = A;G(R;/A)).

The case i = s is the statement of the theorem.
Ifi = g — 1, the assertion is that

R; = AiC(R;/A;),

or equivalently that €(R; /A;) = Ai_l R;. This is classically known since R; = R/(ay,...,d;)
and ay,...,a; is a regular sequence; we will give a self-contained proof of this fact in Sec-
tion A, see Corollary A.4.
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214 Eisenbud and Ulrich, Duality and socle generators for residual intersections

Now take i > g and assume the result is known for i — 1. Consider the following diagram
that will be explained below:

. ind. hyp. 3 o~
I8 Ry === Ai1G(Ri—1/Aim1) 22 A C(Ri—1/A]_) = MiC(Ri—1/Aj_) Trr,_,ar_,
A; HomA;_l(Ri_l,A;_l)
mod a; =
HomA§_| (R,'_l,A;_l)
mod a;
. . [
I"8Ri_1/ail" ™ 8Rj_] ———--------------------------—o >H0mA,-(Ri—l/(ai)vAi)
&
Homy, (R;, A;)
) " -
Ji—8+IR, - ---- » AiC(R; /A;)) —— A;C(R;/A;) Trg, /4, == A; Homy, (R;, 4;).

By the induction hypothesis and Lemma 7.3, we have
I'"8Ri—1 = Ai—16(Ri—1/Ai—1) = AiC(Ri—1/A}_)).

By Proposition 3.3 (1), the ideal [ =8 R;_4 has positive grade, so A; is a nonzerodivisor
in R;_;. The arrow marked mod a; on the right in the diagram is surjective because R;_
is a free A;_-module.

The isomorphism ¢ is induced by the first row. In the inclusion of 7' =8 1 R; = WR;
in " 8R;_1/a;jl1' "8 R;_; = WR;_,/(a;) the first module is the annihilator of

L :=ker(R;—1/(a;) = R;);
see Corollary 4.3. Similarly, we take
e :Homy, (R;, A;) — Homy, (R;—1/(a;i), A;)

to be the map induced by the surjection R;_1/(a;) —> R;, so the source of ¢ is the annihilator
of L in the target of €. Since R; is generically a finite separable extension of A; defined by
the vanishing of ayp,...,a;, the element A; is a nonzerodivisor of R;. Thus ¢ induces an
isomorphism v in the diagram.

We next will show that, regarded as a map of subsets of Q(R;), the map ¥ is the identity.
The source of ¥ contains a nonzerodivisor by Proposition 3.3 (1). We may write it as the image
of an element v € I "8% ! Since A; is a nonzerodivisor on R;, both source and target of Y are
fractional ideals containing nonzerodivisors, so ¥ is multiplication by some element in Q (R;).
To show that i is the identity, it suffices to show that ¥ (1) = u for some nonzerodivisor
u e I'"8+t1R; We take u to be the image of A;vin [' "8 +1R;.

Recall that L C R;_1/(a;). Since I' 8+ c IL = 0, we have vL = 0. Since

L =ker(R;_1/(a;) = R;)

and both R;_1/(a;) and R; are Cohen—Macaulay rings with Noether normalization A;, it fol-
lows that they are free A;-modules, and thus R;_1/(a;) = R; & L as A;-modules.
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Eisenbud and Ulrich, Duality and socle generators for residual intersections 215

From v = 0 one sees that

e(TrR;/4;,) = VTrR;_ /(ap))/A; -

Following the maps in the diagram, we now see that ¥ (A;v) = A;v as required. ]

Example 7.5. The following example illustrates a subtlety in the inductive proof above.
The conclusion of Theorem 7.4 shows that the image of Ay := A in R := R is contained
in /**1R;. The following example shows that Ay itself may not be contained in /7!, and,
moreover, the image of Ay in 7?1 Ry is not necessarily mapped under the inclusion

I'"M Ry <> I'"Rg_y/asI'Rs_y

to the image of Ay in the target. Take s = 2 and let R = k[x, y,z], I = (z —x — y), and
J = (ai,az), wherea; = xz —x%> —xy,a> = yz — yx — y2. We have

(a1) : I = (x),
J: I =(x,y)=K.

Computation shows that A, ¢ [ 2 and the map of canonical modules [/ 2Ry <> IR, JazI Ry
does not send the image of A, to the image of A».

From Theorem 7.4 we derive a formula for the Dedekind complementary module of
certain determinantal rings:

Corollary 7.6. Let k be a field of characteristic 0, and let R = k[x1,...,x4]. Let C
be an (n + 1) x (n + s) matrix with entries in the maximal ideal of R, wheren > 1 and s > 2,
and assume that the maximal minors of C generate an ideal K of height s, the generic value.
Suppose that the ring R = R/K is reduced. Let D be an (n + 1) x n matrix consisting of n

columns of C, let I be the ideal generated by the n x n minors of D, and let ay,...,as be
the (n + 1) x (n + 1) minors of C that involve the n columns of D. Let x1, ..., x4 be general
variables in R, so that R is module finite over A = k[[xg11,...,x4]. We have

I’"'R = AG(R/A),

where A is the Jacobian determinant

day day

0x1 tCt OXy
A = det

das gas

0x1 tCt OXxg

Moreover, after suitable column operations on C, the submatrix D may be chosen so that
the ideal I R has positive grade, and in this case A is a nonzerodivisor on R.

Proof.  Suppose that C = (yi,j) is an (n + 1) x (n + s) matrix of variables, and write
S = R[{yi,j}] and B = A[{y;,;}]. Let D, K, I, ay,...,ds, and A be the same objects as
defined in the statement of the corollary, using the matrix C instead of C. Write S = S/ K.
Specializing C to C, these objects specialize to the ones defined in the corollary. The ideal I

Brought to you by | provisional account
Unauthenticated
Download Date | 12/21/19 10:54 PM



216 Eisenbud and Ulrich, Duality and socle generators for residual intersections

is perfect of codimension 2 and satisfies the Strong Hypothesis for s, a,...,ds are generic
elements of /7, and K = (dy,...,ds) : I is a geometric s-residual intersection of /, by Theo-
rem 6.2 or [19]. Theorem 7.4 and its proof show that

fs_IETrg/B = AHomg (S, B).

Since S is a free B-module of finite rank, we have Homp (S, B) ® g A = Homy (R, A). After
taking images in this module, the equality above gives

Is_lﬁTrF/A = AHomy(R, A),

and hence the main assertion of the corollary.

Since R is reduced, the ideal K is generically a complete intersection, so the 7 X n minors
of C generate an ideal of positive grade in R. It follows that after suitable column operations
on C we may choose the submatrix D so that I R has positive grade in R. (Reason: the column
space of the matrix C over the ring R has rank 7, and thus the same is true for a general choice
of n columns.) O

In the next results we apply our theory to certain O-dimensional residual intersections.
Our goal is to give formulas for the socles of their canonical modules as Jacobian determinants.

Corollary 7.7. Let k be a field of characteristic 0, and let R = k[x1,...,x4]. Let
I C R be an ideal satisfying the Standard Hypothesis with respect to s = d, let J : I be
a d-residual intersection, and set t = d — g. Let ay,...,aq be general elements in J, and
let A be the Jacobian determinant of ay,...,aq. If R = R/((a1,...,ag_1) : 1), then the
image of A in R is in I'R. Further, the image of A generates the socle of

Itﬁ/(adltﬁ) = a)k/(ad)

Proof. Lemma 1.1 and Proposition 3.4 show that (aj,...,az_1) : I is a geometric
(d — 1)-residual intersection and that R is reduced. Moreover, by Theorem 3.1 and Propo-
sition 3.3, parts (5) and (1), the module /?R/ayzI' R is isomorphic to DR (ay):

The hypothesis of the corollary is sufficient to justify the upper half of the diagram in
the proof of Theorem 7.4 for the case i = d. The first row of the diagram shows that the
image of A = Ay in R lies in IR, and hence gives an element of /*R/agzI*R. The iso-
morphisnl ¢ maps this element to Tt ®R/au))) 447 which generates the socle of the module
Homy, (R/(aq), Aa)- o

Theorem 7.8. Let k be a field of characteristic 0, and let R = k[x1,...,x4]. Let
I C R be an ideal satisfying the Standard Hypothesis with respect to s = d, and let J : I be
a d-residual intersection. Let ay, .. .,aq be general elements in J, and let A be the Jacobian
determinant of ay, ..., aq. There is an element p € (ay,...,aq_1) such that

AN:=A+pelth
and the image of A" generates the socle of
It—H/JIt = WR/(J:I)-

Moreover, if A € 1'T1, then the image of A generates this socle.
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Eisenbud and Ulrich, Duality and socle generators for residual intersections 217

By Theorem 7.2, the socles of 7°*1/JI* and R/JI" are the same, so Theorem 7.8 can
also be interpreted as a result on the socle of R/JI*.

Proof. Recall that
"I = wgyan)
by Theorem 3.1. Let Ky = (ay....,ag—1) : I and write R = R/K4_;. We will first prove
that we can take p € K;_;. As a consequence of the first statement of Corollary 7.7, there is
an element p; € K _; such that A + p; € I'. By Corollary 4.3, there is a natural inclusion

'Y J1t < I"R/(agI'R).

From the second statement of Corollary 7.7 it follows that the image of A + p; generates the
socle of I*R/azI'R, and thus lies in the submodule /?T!/JI* and generates its socle. In
particular, there are an element p, € K;_; and an element ¢ € ay I’ so that

A4pr+prt+qel™,

and the image of this element generates the socle of 7:*1/JI?. Since g € JI?, we may take
p=p1+p2ekKq.

By Theorem 7.1, we have A € J ift > 0, while A € J : mift = 0, in which case R/J
is Gorenstein, and therefore in either case A € /. Thus p € I N K;_. By Proposition 3.3 (5),
p € (ai,...,agz—1) as claimed.

If A € 1" to begin with, we could take p; = p, = 0 proving the last statement. O

In the graded case, Remark 4.4 identifies the socle up to homogeneous isomorphism,

1t+1

d d
S0¢ — = (SOCCUR/(J:[))<— Z(Sj - 1)) o~ k(—Z(gj — 1)),
J=1 j=1

so the socle has the same degree as the Jacobian determinant of d homogeneous generators
of J.
Motivated by Theorem 7.8, we try to find conditions when A € I7+1,

Proposition 7.9. Let k be a perfect field, let R = k[x1,...,xq4] be a standard graded
polynomial ring in d variables, and let J C R be an ideal. Set ¢ equal to the maximum of the
codimensions of the minimal primes of J. If J is generated by forms of the same degree > 1,
then the d x d minors of the Jacobian matrix of these forms are contained in the symbolic

power (/J)d—e+D),

Proof. Sett =d —e.Ift = 0, the result is trivial, so we may assume ¢ > 0. Since k is
perfect, we may assume that k is algebraically closed. In this case +/J is the intersection of the
I-dimensional linear ideals that contain it. By inverting a linear form not in any minimal prime
of J and taking the degree O part, these become maximal ideals. By Zariski’s Main Lemma on
Holomorphic Functions (see for example [11, Corollary 1]), the (¢ + 1)-st symbolic power of
V/J in the dehomogenized ring is the intersection of the (¢ + 1)-st powers of these maximal
ideals, and thus in R the ideal («/7 )(’ +1) contains, hence is equal to, the intersection of the
(t + 1)-st powers of the 1-dimensional linear ideals that contain it.

After changing notation, it is thus sufficient to prove that if J is contained in the ideal
L =(x1,...,xq_1) and fi,..., fg are forms in J of degree § > 1, then detJac( f1,..., fq)
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218 Eisenbud and Ulrich, Duality and socle generators for residual intersections

is in L1, where Jac denotes the Jacobian matrix. Write

for some d x d — 1 matrix A with homogeneous entries of degree § — 1.
We may write 4 in the form A = B + xfl_l C, where B = (b; ;) has entries in L and C
is a matrix of scalars. By the product rule,

d—1 0
Jac(fl,...,fd)=ZXjJac(bl,j,...,bd’j)+ B
Jj=1 0
d—1 €1,j 0
+ (6 — l)xff2 Z xilo |+ xfi_l C
J=1 Cd,j 0

Let D be the sum of the first two terms on the right-hand side of this expression, and let E be
the sum of the two remaining terms. These matrices have the following properties:

(1) Each column of D has entries in L.

(2) The last column of D has entries in L2. This is because the last column of the Jacobian
matrix is defined by differentiating with respect to x.

On the other hand the rank of the scalar matrix C is at most the codimension of J localized
at L, which is at most e. The last column of E is a linear combination of columns of C with
coefficients in L. Thus:

(3) The rank of E is at most e.
(4) The last column of E has entries in L.

These properties of D and E imply that det(D + E) € L'*! as required. O

Theorem 7.10. Let k be a field of characteristic 0, and let R = k([x1,...,xg4]. Let | CR
be a homogeneous ideal satisfying the Standard Hypothesis with s = d, and let J C I be an
ideal generated by d forms of a single degree § > 1 such that J : I is a d-residual intersection.
If I is reduced and u(Ip) < codim P — 1 for all prime ideals P D I with g < codim P < d,
then the Jacobian determinant of any d homogeneous generators of J of degree § is in I'T1
and thus, by Theorem 7.8, generates the socle of I'™1/JI' = wg(J.1)-

Proof. 'We may assume that / # R. In this case +/J = I. Since I is Cohen—Macaulay,
all minimal primes of / and hence of J have the same codimension g. By Proposition 7.9,
the Jacobian determinant is contained in 7¢+1). By the assumption on the pu(/p), the pow-
ers and symbolic powers of / coincide on the punctured spectrum ([31, 4.9 (d)]). Therefore,
@D /JI' is contained in the finite length part of R /JI". The latter has a simple socle gener-
ated in the same degree d (6 — 1) as the Jacobian determinant by Theorem 7.2 and Remark 4.4.
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Thus the image of the Jacobian determinant lies in soc ¢+ /JI* = soc I**1/JI*. In partic-
ular, the Jacobian determinant is in 7?71, o

Theorem 7.10 can also be understood in terms of primary decompositions, rather than
residual intersections; in this formulation, the result is a natural generalization of Theorem 7.1.

To explain this, let R be a local Gorenstein ring of dimension d and J any ideal of codi-
mension g generated by d elements. For our purpose we may assume that R/J has depth 0.
Consider a decomposition J = I N L, where L is the 0O-dimensional primary component in
any shortest primary decomposition of J and [ is the intersection of the primary compo-
nents of positive dimension. Notice that L is contained in the ideal K = J : I, which gives an
embedding wg /g <> wg/ L. Also observe that K is a d -residual intersection of /.

Now assume that / satisfies the Standard Hypothesis with s = d, sett = d — g, and let
E D I'1/JI" be an injective envelope of 1?71/ JI* as a module over R/L. Since I*T1/JI*
is a canonical module of R/ K, we may choose wg,, to be equal to E.

Corollary 7.11. [In addition to the assumptions of the preceding two paragraphs sup-
pose that R = k[x1,...,xg] is a power series ring in d variables over a field of characteristic
zero and that J is generated by homogeneous polynomials f1, ..., fg of a single degree > 1.
If I is reduced and u(Ip) < codim P — 1 for all prime ideals P O I with g < codim P < d,
then the socle of wg/ is generated by the image in 1 t+1/ ]I of the Jacobian determinant

Offl,...,fd.

From examples it would seem that the formula for the socle as a Jacobian holds without
the reduced hypothesis and without the assumptions on the local numbers of generators beyond
the G condition of our Standard Hypothesis. We can at least prove this for g = 1.

Proposition 7.12. Let k be a field, and let R = k[x1,...,x4]. Let I = (G) C R be
a principal ideal generated by a nonzero form of degree y and let F = f1,..., f4 be a regular
sequence of forms of the same degree 8. Assume that neither § nor § + y is 0 in k, and let J
be the ideal generated by the sequence of forms GF. The socle of R/ J I d=1" hence the socle
of 14 /J1 d=1 s generated by the Jacobian determinant det Jac(GF ).

Proof. By Theorem A.5, the socle of R/(F') is generated by detJac(F), so the socle of
R/JI?~Y = R/(G?F) is generated by G? detJac(F). By Lemma 7.13, this is

)
—— detJac(GF). ]
S+vy

Lemma 7.13. Let R = k[x1,...,x4]. If G is a form of degree y and F = f1,..., fyq
is a sequence of forms of the same degree §, then

§ detJac(GF) = (§ 4+ y) G? detJac(F).

Proof. Write G; for % and f; ; for %. By the product rule,
N
Jac(GF) = Glac(F) + | : | (G1 --- Gy).
fa
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The second summand has rank 1, so by the multilinearity of the determinant we have

d
detJac(GF) = G? detJac(F) + Ga1 Z det J;.
i=1
Here J; is the matrix obtained from Jac(F') by replacing the i -th row by therow f;(G1 --- Gyg).
Expansion along the first column shows that this sum is equal to

G4 Gd—lG1 Gd_lGd

-1 fi1 o fld
det ] ] )

—fa  fax 0 Jda

We multiply the first column by &, add x; times the (i + 1)-st column to the first column for
all 7, and use Euler’s formula. From this we see that

((S-i—)/)Gd Gd—lG1 Gd—lGd
0 f1, o Jid
ddetJac(GF) = det ) 1 1 1
0 Jaqg o Jfaa
= (8 + y)G¥ detJac(F). =

Example 7.14. If we do not assume the forms generating J have the same degree,
then the Jacobian need not be well-defined modulo J/?, and in particular its image may not
generate the socle, as the following example shows. Let k be a field of characteristic # 2, 3, and
let R = k[x, y]. Let F be the regular sequence x> + y2, x + y and set I = (G) with G = x,
and J = (GF). We have

JI :detJac(GF) = (G?F) : detJac(GF) = (x),

so detJac(GF) is not in the socle modulo JI. Moreover, detJac(GF) is not even contained
in 12. However, we can replace F by a different sequence of generators F’ = x2 — xy,x + y
for (F), and then the Jacobian determinant of GF’ does generate the socle modulo J1.

Example 7.15. Over a field of characteristic 0, the polynomial
f=06?=2)xz-y?)

is the product of two of the quasihomogeneous generators of the ideal of the space curve C with
parametrization ¢ — (¢2,¢3,t*). The Jacobian ideal J of f has codimension 2. The scheme
defined by J has an isolated singularity, so J is generically reduced, and thus also its unmixed
part [ is reduced. In fact, I = (x? — z, xz — y?) is a prime complete intersection.

Nevertheless, one can compute that the Hessian determinant of f is not even contained
in /2. Thus f violates Conjecture (3) of van Straten and Warmt [32, 7.1].

In the case s = g (sot = 0), when R is regular local and s = d, there is another famous
(and easier) formula for the socle of R/J — it is generated by the image of the determinant of
any “transition” matrix expressing the generators of J as linear combinations of the generators
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of the maximal ideal of R. The following examples show that in Proposition 7.12 with ¢ > 0
we cannot replace the Jacobian by such a transition matrix: the determinant could be outside

the ideal JI? : mt and could also be in JI? (it could even be 0).

Example 7.16. (a) Let R = k[x1,...,x4], let G € (x1,...,x4) be nonzero, and let

Fy...., F; be aregular sequence in R. Writing G = ) ; a;x;, we see that
GF; Fi X1
. = E (al oo ad)
GFy Fy Xd

We may take the rank 1 matrix

A:=1": (a1 ad)

as transition matrix, and we have det A = 0 as soon as d > 2.

(b) Let R = k[x, y], where k is a field of characteristic # 3, and take I = (G) with
G = x? 4+ y?,and J = (GF) with F = x, y. If we replace the Jacobian matrix Jac(GF) by

1 _
A::_Jac(GF)—i—( Y x)’
3 -y X

(0) - (68

and det A is in /, but det A4 is not in the socle of 1 /J 1.

then

(c) If in example (b) we change G to xy leaving everything else the same, then det A4 is
noteven in /.

(d) If Fy, F> is a regular sequence of forms of degree 2 in k[x, y] and G = a1x + azy
is a nonzero form, then there are examples with det A # O but det A € JI = G?(F}, F»). For
instance, take

’

A= a1F1 —yG axF1 + xG
B a1F, —yG axyF; + xG

the determinant in this case is G2 (F) — F>).

A. Differents and socles for Gorenstein rings

In this section we provide self-contained expositions of the classical results on differents
and socles that we have used, mostly for complete intersections in characteristic 0. More gen-
erally than is usually stated, these yield a formula for the socle of a 0-dimensional Gorenstein
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ring. The results of this section are known, some in greater generality, but not easily available.
Classic references are by Noether [26], Berger [3], Tate [25, Appendix], Scheja and Storch
[28,29], and Kunz [21,22].

Let A be a Noetherian ring, let R be an A-algebra that is essentially of finite type, and
write R® = R ®4 R. Let D be the kernel of the multiplication map i : R® — R, so that we
have an exact sequence

0
0—-D—> R*— R—0.
We want to compare three measures of ramification:

 The Kdhler different D (R/A), introduced in a different case in Section 7, is defined to
be FittX (g, 4)-

» The Noether different Dy (R/A) is defined to be u(annge D).

* The Dedekind different D p(R/A) is defined, for instance, when A C R is a ring exten-
sion, A is a Noetherian normal domain, R is reduced and a finitely generated torsion free
A-module, and R/ A is separable. The complementary module €(R/A) is the fractional
R-ideal such that

Homy (R, A) = C€(R/A) Try k.,

where K = Q(A) and L = Q(R) are the total rings of quotients of A and R, respec-
tively. The Dedekind different is defined to be the inverse of the complementary module,
Dp(R/4) = C(R/A).

Because Qp/4 = D ®pge R and Fitt(lfe (D) C annge D, it follows that
Dk (R/A) C DN (R/A).

The Dedekind different is an ideal because A is normal. We also have
ON(R/A) C Dp(R/A),

which implies that
DN (R/A)Homy (R, A) C RTrg ;4.

For a short proof see [24, formula (3.3) proved in Lemma 3.4]. The last containment can be an
equality even when the Dedekind different is not defined:

Theorem A.1. Let A be a Noetherian ring and let R be an A-algebra that is finitely
generated and free as an A-module. If Homy (R, A) is cyclic as an R-module, then

ON(R/A)Homy(R,A) = RTrg/4 .
Proof. 'We will divide the proof into several parts:
Step (1). Because R is a free A-module, the natural map
®: R®4 R — Homy(Homy (R, A), R)

given by
s®t > (¢ @()1)
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is an isomorphism of R-R-bimodules. The annihilator of D is the unique largest R- R-submod-
ule of R ®4 R on which the left and the right R-module structures coincide, and the subset
Hompg(Homy (R, A), R) has the same property in Homy4 (Homy4 (R, A), R). It follows that ®
carries the annihilator of D onto Homg (Homy4 (R, A), R).

Since R is a finitely generated free A-module and Homy4 (R, A) is cyclic as an R-module,
we have Homy (R, A) = R. It follows that annge D is cyclic as an R-module.

Step (2). Let I be a generator of annge ). As ®(I") generates Homg (Homy4 (R, A), R)
and Homy (R, A) = R, we see that ®(I") is an R-isomorphism. Let

o = &)~ 1(1) € Homy(R, A).

It follows that ot : R ® 4 R — A is a symmetric, nonsingular A-bilinear form.

Step (3). Let {v;} be an A-basis of R, and suppose that ' = Zl- vlf ® v;. We claim that
o(viv;) = §;,; — thatis, {v]} is the dual basis of {v; } with respect to o/1. Indeed, since ®(T")
is R-linear, we have ®(I")(ro) = r for every r € R. Thus, for each j,

v; = &) (vjo) = @(Zvl{ ® vi)(vja) = Z(vjo)(vl{)vi = Za(vjv;)vi.

Since the v; form an A-basis, we see that a(vlfvj) = §;,; as required.

Step (4). Finally, we claim that Trg, 4 = u(I')o. Let r be an element of R, regarded as
an A-endomorphism of R by multiplication. We have

w(D)o(r) = o(u(T)r) = U(Zv;rvi).

Since {v;} and {v;} are dual bases with respect to o, this sum is equal to Trg,4(r). Since
DN (R/A) = p(annge D) = Ru(T), we see that

DN (R/A)Homy (R, A) = Dn(R/A)o = Ru(I')o = RTrg 4

as required. ]

Theorem A.2. [In addition to the assumptions in the definition of the Dedekind different
above, suppose that A is a regular local ring. If R is Gorenstein, then Dp(R/A) = Dy (R/A).

Proof. We first verify that the assumptions of Theorem A.1 are satisfied. Recall that
A C R and R is a finitely generated A-module. For all maximal ideals mt of R, the rings Ry
have the same dimension as A, as can be seen for instance by tensoring with the completion of
A, so that R splits as a product of local rings, and using the torsion freeness of R over A. Thus,
since the rings Ry, are Cohen—Macaulay, it follows that R is a maximal Cohen—Macaulay
A-module, hence a free A-module. Moreover, as the rings Ry, are Gorenstein and have the
same dimension as A, the R-module Homy4 (R, A) is locally free of rank 1. Therefore we have
Homy (R, A) = R because R is semilocal.

Thus we may apply Theorem A.1. Since Hom4 (R, A) = €(R/A) Trg,4 by the defini-
tion of the complementary module, the theorem shows that © y(R/A) €(R/A) = R, which
gives Dy (R/A) = €(R/A)~! = Dp(R/A). o
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Theorem A.3. Let A C R be a ring extension, where A is regular local and R is finitely
generated and torsion free as an A-module. If R is locally a complete intersection, then

R =~ A[xl,...,xn]W/(Fl,...,Fn)

for some regular sequence Fy, ..., Fy of length n in the polynomial ring Alx1,...,X,] and
some multiplicatively closed subset W. Write A for the image in R of the Jacobian determinant
of F1, ..., F, with respect to x1, ..., Xn. One has

DN(R/A) = D (R/A) = RA.

Proof. Write R = A[xq,...,Xxs]/$- As R is a finitely generated torsion free A-module,
it follows as in the previous proof that every maximal ideal m of R has the same codimension
d := dim A. Since m must contain the maximal ideal of A, its preimage 9N in A[x1,..., X,]
has codimension d 4 n. Hence the ideal fgp has codimension n. Thus it is generated by
n elements because R is locally a complete intersection. Write W for the complement in

A[x1,...,Xn] of the union of the finitely many maximal ideals 9)t. By basic element theory,
Jw 1s again generated by n elements F1q, ..., F; that can be chosen to form a regular sequence
in A[xy,...,Xxn].

To prove the claim about differents, first notice that R is a Cohen—Macaulay ring and
hence a free A-module, as shown in the previous proof. As before, let D be the kernel of the
multiplication map i : R = R ®4 R — R. The preimage D of D in A[x1,....x,]w ®4 R
is the kernel of the natural map to R, so it is generated by a regular sequence G = G1,..., Gy
of length n. The ideal D also contains the sequence F ® 1 :=F; ®1,...,F, ® 1, which is
still a regular sequence because R is flat over A.

Notice that D = D/(F ® 1) = (G)/(F ® 1). The preimage in A[x1,...,Xs]w ®4 R
of the annihilator of ) may thus be written as (F ® 1) : (G). This ideal quotient is generated
by F ® 1 and the determinant of any matrix ® expressing the elements of F ® 1 as linear
combinations of the elements of G, see [35] or [6]. It follows that D (R/A) is generated by
the image in R of det ®.

On the other hand, since G is a regular sequence and since

D ®ge R=D/D? = Qp/a.
the image in R of © is a presentation matrix of £ g/ 4. Thus the image of det ® also generates

the ideal ©g(R/A) = RA. O

Corollary A.4. If the assumptions in the definition of the Dedekind different and the
hypotheses of Theorem A.3 are satisfied, then

C(R/A) = Dg(R/A)~! = RA™L.

Proof. One uses Theorem A.2, Theorem A.3, and the fact that the fractional ideal
€(R/A) is invertible, hence reflexive. m]

Theorem A.5. If R is a local Gorenstein algebra over a field k with dimy, R finite and
not divisible by the characteristic of k, then D N (R / k) is equal to the socle of R. If, moreover,
R is a complete intersection, then the socle of R is generated by the Jacobian determinant.
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Proof.  Since the trace of any nilpotent element is 0, it follows that the trace lies in the
socle of Homy (R, k) and generates it if the characteristic of & does not divide dimy R. Thus
Proposition A.1 implies that D (R/k) Homy (R, k) is the socle of Homg (R, k). Therefore
DN (R/ k) is the socle of R since Homg (R, k) = R as R-modules.

Finally, if R is a complete intersection, then Dy (R/k) = Dg(R/k) is generated by
the Jacobian determinant, by Theorem A.3. o

Proof of Theorem 7.1.  One implication is a special case of Theorem A.5. To prove the
opposite implication, we must show that the Kéhler different ®g (R/k) is 0 when the ring
R = k[x1,...,x4]/(a1,...,as) is not a 0-dimensional complete intersection.

First suppose that R is O-dimensional and not a complete intersection. Replacing the a;
by general linear combinations, we may assume that any d of the a; form a regular sequence.
By the previous theorem, the Jacobian determinant of a;,, ..., a;, generates the socle modulo
(aiy,...,a;,) and is thus contained in (a1, ..., ays) as required.

Now suppose that R is not O-dimensional. To simplify the notation, set mt = (x1,...,Xxg)
and § = (ay,...,as) and suppose that s is the minimal number of generators of §. We may
assume that R is not a complete intersection since otherwise D g (R/k) = 0. For any suffi-
ciently large integer n, the Artin—Rees Lemma and the Principal Ideal Theorem together imply
that § +m” requires at least s+dim g generators. Thus, R /m" R is not a complete intersection.

We conclude from the 0-dimensional argument that, for any n > 0,

Dk ((R/m"R)/k) = 0.
In particular, D (R/k) is in m” R. By the Krull Intersection Theorem, Dx(R/k) =0. O
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