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Corallivory is the predation of coral mucus, tissue, and skeleton by fishes and
invertebrates, and a source of chronic stress for many reef-building coral species.
Corallivores often prey on corals repeatedly, and this predation induces wounds that
require extensive cellular resources to heal. The effects of corallivory on coral growth,
reproduction, and community dynamics are well-documented, and often result in
reduced growth rates and fitness. Given the degree of anthropogenic pressures that
threaten coral reefs, it is now imperative to focus on understanding how corallivory
interacts with anthropogenic forces to alter coral health and community dynamics. For
example, coral bleaching events that stem from global climate change often reduce
preferred corals species for many corallivorous fishes. These reductions in preferred
prey may result in declines in populations of more specialized corallivores while more
generalist corallivores may increase. Corallivory may also make corals more susceptible
to thermal stress and exacerbate bleaching. At local scales, overfishing depletes
corallivorous fish stocks, reducing fish corallivory and bioerosion, whilst removing
invertivorous fishes and allowing population increases in invertebrate corallivores (e.g.,
urchins, Drupella spp.). Interactive effects of local stressors, such as overfishing and
nutrient pollution, can alter the effect of corallivory by increasing coral-algal competition
and destabilizing the coral microbiome, subsequently leading to coral disease and
mortality. Here, we synthesize recent literature of how global climate change and local
stressors affect corallivore populations and shape the patterns and effect of corallivory.
Our review indicates that the combined effects of corallivory and anthropogenic
pressures may be underappreciated and that these interactions often drive changes
in coral reefs on scales from ecosystems to microbes. Understanding the ecology of
coral reefs in the Anthropocene will require an increased focus on how anthropogenic
forcing alters biotic interactions, such as corallivory, and the resulting cascading effects
on corals and reef ecosystems.

Keywords: corallivory, overfishing, nutrient pollution, global climate change, parrotfishes, butterflyfishes,
Acanthaster spp.
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INTRODUCTION

Reef-building corals are declining at an unprecedented rate
worldwide as a result of anthropogenic forcing (Hughes et al.,
2017a). From local impacts including overfishing and terrestrial
runoff to global-scale phenomena such as ocean acidification
and rising sea surface temperatures (Fabricius, 2011; Mora et al.,
2011; Hoegh-Guldberg et al., 2017; Hughes et al., 2017a, 2018),
anthropogenic stressors cause coral mortality and alter coral
reef communities (Jackson et al.,, 2014; Hughes et al., 2017b).
These shifts in coral density and reef community compromise
both the resilience of coral reefs (Hughes et al., 2003; Putnam
et al,, 2017) and the ecological goods and services they provide
(Moberg and Folke, 1999). The effects of individual human
stressors on corals, such as warming-induced bleaching, are
often well-documented (Fabricius, 2005; Mumby and Steneck,
2008; Mora et al.,, 2011; Hoegh-Guldberg et al., 2017; Hughes
et al., 2018). However, it is also critical to understand how
anthropogenic stressors alter important biotic interactions, such
as predation by coral consumers (e.g., corallivory), that further
impact coral growth and fitness and shape coral community
dynamics.

Predation on tropical reef corals is common, with corallivores
consuming coral mucus, tissue, and/or skeleton. Corallivores
encompass a wide range of taxa including fishes, echinoids,
crustaceans, mollusks, and annelids. The diversity of corallivore
taxa is reflected in the diverse foraging behaviors and strategies
(Figure 1), including: (1) mucus feeders, such as Trapezia
and Tetralia crabs, that use specialized feeding appendages to
consume mostly coral mucus along with some coral tissue while
leaving the skeleton intact, (2) browsers that remove only coral
tissue (e.g., butterflyfishes and Acanthaster spp.), (3) scrapers
such as parrotfishes, that scrape live tissue from the surface
of corals while also removing a thin layer of skeleton, and
(4) excavators (bioeroders) that remove large amounts of coral
skeleton while removing coral tissue (e.g., pufferfishes and some
parrotfishes) [reviewed by Rotjan and Lewis (2008a)].

Corallivory is an important determinant of health and
fitness for individual corals and can impact coral community
dynamics. Predation on corals can inhibit coral growth and
sexual reproduction through tissue and/or skeleton removal
(Henry and Hart, 2005) and can even cause widespread mortality
of corals (Turner, 1994; Kayal et al., 2012; Saponari et al., 2018).
For example, predation by crown-of-thorns starfish (Acanthaster
spp.) was identified as the second largest contributor of coral
mortality on the Great Barrier Reef between 1985 and 2012
(De’ath et al., 2012). Yet, corallivores play an integral role in coral
communities since they can mediate coral-coral and coral-algal
competition (Cox, 1986; Miller and Hay, 1998; Kayal et al., 2011;
Johnston and Miller, 2014), foster asexual reproduction in corals
(Enochs and Glynn, 2017), and even deter more efficient coral
predators (Glynn, 1976). Given that the impacts of corallivory
on corals and community dynamics can be diverse in direction
and magnitude of effect (Mumby, 2009), there is a critical need
to understand how, when, and to what extent predation on corals
may interact with the changing biotic and abiotic template of reefs
in the Anthropocene.

A number of reviews have documented corallivore feeding
behavior and their impacts on coral growth, fitness, and
community dynamics (e.g., Robertson, 1970; Cole et al., 2008;
Rotjan and Lewis, 2008a; Enochs and Glynn, 2017; Rotjan
and Bonaldo, 2018). However, our goal is to synthesize more
recent work examining how anthropogenic stressors shape
the consequences of corallivory. This topic is timely due to
pervasive anthropogenic effects on both the abundance of
corallivores and how corals respond to predation. Specifically, we
synthesize recent information about how global (i.e., increasing
sea surface temperatures and ocean acidification) and local
stressors (i.e., overfishing, terrestrial runoff, nutrient pollution)
alter the relationship between corals and their predators. These
impacts span scales ranging from coral communities down to
coral microbiomes. Additionally, we identify key gaps in our
knowledge that may help guide future work on corallivory in the
Anthropocene.

EFFECTS OF CORALLIVORY ON THE
INDIVIDUAL

The impact of corallivory on the wound healing, growth, and
fitness of individual corals is well-documented (Henry and Hart,
2005; Cole et al., 2008; Rotjan and Lewis, 2008a). Here, we
briefly discuss the effects of corallivory on individual corals in
order to set the stage for the interactions between corallivory
and anthropogenic forcing. We focus on more recent research to
highlight current advances where possible.

Wound Healing Mechanisms

Corallivores can inflict damage to coral that initiate the
host's immune responses involved in wound healing. Upon
injury, several immune pathways are activated: (1) the TOLL-
like pathway to fight pathogens and recolonize commensal
bacteria, (2) melanin synthesis for tissue regeneration, (3)
the complement system resulting in apoptosis of damaged
cells and tissue regeneration, and (4) cell activation to move
amoebocytes to the wound (reviewed by Toledo-Hernandez
and Ruiz-Diaz, 2014). Amoebocytes, cells responsible for
phagocytosis, are involved in cnidarian tissue regeneration
(Toledo-Hernandez and Ruiz-Diaz, 2014) and melanin synthesis
(i.e., production of new tissue) (Palmer and Traylor-Knowles,
2012). Tissue regeneration and its associated immune pathways
require extensive cellular resources (e.g., carbon products and
amoebocytes) to be translocated to the wound (Henry and Hart,
2005).

Corals that are better able to transfer these resources
from healthy tissue to lesions will fare better in response to
predation. For example, wound healing for imperforate corals
(e.g., pocilloporids) is restrained to polyps adjacent to the
wound (Henry and Hart, 2005). Yet, perforate corals with deep
tissue (e.g., poritids, fungids, and acroporids) can translocate
resources across the colony to wounds (Jokiel et al, 1993;
Edmunds, 2008). In either case, polyps bordering wounds are
essential to translocating cellular resources for tissue regeneration
(Henry and Hart, 2005). Yet this can drain neighboring polyps
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skeleton in the Florida Keys (image by Corinne Fuchs).

FIGURE 1 | Common corallivores that exhibit a broad range of foraging behaviors. (A) Trapezia crab within the branches of a Pocillopora coral feeding on coral
mucus and tissue (image by Corinne Fuchs). (B) Substantial tissue removal by Acanthaster spp. on an Acropora colony in Fiji (image by Cody Clements).

(C) Corallivorous snail Coralliophila violacea removing massive Porites tissue and inducing an immune response (note the pink margin on the feeding scar) (image by
Cody Clements). (D) The filefish Oxymonacanthus longirostris removing coral mucus and tissue from an Acropora sp. (image by Cody Clements). (E) The facultative
butterflyfish Chaetodon capistratus consuming coral polyps (image by Cody Clements). (F) An excavating terminal phase Sparisoma viride removes chunks of coral

of metabolites and amoebocytes, directly affecting growth and
reproduction.

Growth

The extent of damage often mediates the effects of corallivory
on coral growth. Cameron and Edmunds (2014) observed that
massive Porites and Pocillopora meandrina growth rates declined
with more damaging modes of simulated fish corallivory (growth
rates: browsed > scraped > excavated). Yet protection from
corallivores with various foraging strategies can increase coral

growth (Cox, 1986; Lenihan et al., 2011; Shantz et al., 2011),
suggesting that even browsing corallivory has observable effects
on coral growth (Shaver et al., 2017; Clements and Hay, 2018;
Hamman, 2018). In fact, the gastropod Coralliophila violacea
creates energy sinks as neighboring polyps translocate carbon
products to the site of injury, allowing these snails to feed for
extended periods of time (Oren et al., 1998). These energy sinks
decrease coral growth rates as C. violacea size (Clements and
Hay, 2018) and density increases (Hamman, 2018). Furthermore,
mucus and tissue feeding Trapezia ectosymbionts can reduce
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coral calcification (Doo et al., 2018), potentially decreasing coral
growth. Thus, different corallivore foraging strategies can directly
alter coral growth, yet the degree of damage can mediate these
effects.

Reproduction

Corals use the same finite cellular resources for both tissue
regeneration and reproduction (Henry and Hart, 2005), creating
a tradeoff between these metabolic processes (Rinkevich, 1996).
Immediately following damage, polyps neighboring lesions
experience a limited supply of cellular resources, reducing local
reproductive output within the colony as resources are shunted
toward wound healing (Kojis and Quinn, 1981; Van Veghel and
Bak, 1994; Rotjan and Lewis, 2008b). Neighboring polyps likely
exhaust resources on wound healing, ultimately reducing their
reproductive potential and creating within-colony heterogeneity
in reproductive output.

Yet the effects of corallivory on coral reproductive potential
may depend on corals reproductive methods (i.e., asexual vs.
sexual reproduction). For example, the pufferfish Arothron
meleagris feeds intensively on Pocillopora damicornis, often
resulting in fragmented branches (Guzman and Lopez, 1991;
Palacios et al, 2014) that may result in propagules that
disperse across the reef and grow into new colonies via asexual
reproduction (Enochs and Glynn, 2017). However, fragmentation
by corallivores can also have detrimental effects on coral sexual
reproduction. For instance, ~55% of regenerating fragmented
Stylophora pistillata colonies resembling pufferfish predation
were sterile during the reproductive season and had an order
magnitude less larvae released compared to intact colonies
(Rinkevich and Loya, 1989). Moreover, parrotfish in Belize
selectively preyed on Montastrea annularis polyps containing
more gonads, which reduced coral reproductive effort (Rotjan
and Lewis, 2008b). Thus, the mode of reproduction mediates the
influence of corallivory on coral reproductive output.

GLOBAL STRESSORS AND THEIR
INTERACTIONS WITH CORALLIVORY

Rising Sea Surface Temperatures

Global ocean warming has been occurring the past >40 years
due to increased human activities (Allen et al, 2014). As
a consequence, the frequency and severity of regional-scale
mass bleaching events has been increasing the past several
decades (Hughes et al, 2018). These thermal anomalies have
dire consequences for reef communities as it induces thermal
stress and can result in massive coral mortality (Hughes et al.,
2018). Thermal stress can drain coral energy reserves (Schoepf
et al,, 2015), likely compromising corals’ ability to meet the
energy demands required to heal corallivory wounds. However,
there are no clear patterns in how elevated temperatures
affect tissue regeneration in scleractinians. For instance, warmer
temperatures have little effect on tissue regeneration in Porites
and Pocillopora (Edmunds and Lenihan, 2010; Lenihan and
Edmunds, 2010; Traylor-Knowles, 2016) while increasing wound
healing rates in cold water corals (Burmester et al., 2017). Yet

elevated temperatures reduce wound healing in Indo-Pacific
Acropora spp. (Denis et al., 2013; Bonesso et al., 2017) and
mounding Caribbean corals (Meesters and Bak, 1993). However,
the mechanisms behind why there appear to be taxa-specific
impacts of temperature stress on wound healing are currently
unclear.

The depletion of cellular resources due to chronic corallivory
wounds may also affect corals’ ability to withstand or recover
from thermal stress. In Caribbean brain corals, corallivorous
snails increased coral bleaching severity as compared to corals
without snails, with the densest snail aggregations causing corals
to bleach completely (Shaver et al., 2018). Further, the highest
densities of snails also led to less recovery from bleaching
and complete colony mortality in many corals. Similarly,
chronic corallivory by parrotfishes hindered the recovery of
Symbiodinium populations in Orbicella spp. following bleaching
events and also resulted in a change in the community
composition of Symbiodinium within the corals (Rotjan et al.,
2006). Moreover, some corallivores may transmit the bacterium
Vibrio shiloi, which causes bleaching in a narrow range of coral
taxa (Sussman et al., 2003; Moreira et al., 2014). Thus, chronic
predation may exacerbate stress from thermal anomalies and
reduce the resilience to and recovery from coral bleaching.

Coral bleaching also affects corallivore ecology with the
response to bleaching depending on the degree of dietary
specialization of the corallivore. If preferred corals become rare
then specialized corallivores (e.g., butterflyfishes) often increase
feeding on remaining healthy conspecifics (Cole et al., 2009).
Conversely, generalist predators (e.g., wrasses and muricid snails)
tend to prey more intensely on bleached colonies (Cole et al.,
2009; Tsang and Ang, 2014) or other healthy coral species
(Pratchett et al., 2004; Hoeksema et al., 2013; Zambre and
Arthur, 2018). These alterations to feeding behavior have indirect
effects on corallivorous fish populations. For instance, specialized
butterflyfishes are projected to disappear from reefs as preferred
prey species decline in response to bleaching whilst generalist
butterflyfish populations are expected to remain stable (Berumen
and Pratchett, 2006; Graham, 2007; Graham et al., 2009; Emslie
et al,, 2011; Wilson et al., 2014). However, diet plasticity in some
specialized corallivores (e.g., Chaetodon trifasciatus) in response
to bleaching may allow local populations to persist (Zambre
and Arthur, 2018). Altogether, these data suggest that bleaching
events can reduce population sizes of specialized corallivorous
fishes but also concentrate corallivory on the remaining corals
after a bleaching event, potentially slowing coral recovery.

Ocean Acidification

Ocean acidification (OA) reduces coral calcification rates, and
consequently, coral growth (Kroeker et al, 2013). In fact,
decreasing pH has already slowed coral growth on some reefs
(Albright et al., 2018). To maintain growth rates under low
pH conditions, corals can decrease skeletal density, which
can promote destruction by bioeroders, like parrotfishes, that
favor lower-density substrates (Hoegh-Guldberg et al., 2007).
Corals prone to bioerosion will experience increased energy
expenditures to repair skeletal damage, which is energetically
costlier under low pH conditions (Doney et al., 2009). Yet this
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response may depend on coral life history strategies and the
degree of damage. For example, end-of-century pH conditions
(~7.6) compromise wound healing rates for some mounding and
branching corals more than faster-growing corals (Renegar et al.,
2008; Horwitz and Fine, 2014; Hall et al., 2015; Edmunds and
Yarid, 2017), although these effects appear variable depending on
taxa. As pH continues to decline, there might be clear “losers”
and “winners” for coral species under future OA conditions and
concurrent corallivory (Renegar et al., 2008; Horwitz and Fine,
2014; Hall et al., 2015; Edmunds and Yarid, 2017). Research
investigating the interactive effects of low pH and the different
modes of corallivory (i.e., browser, scraper, and excavator) on
corals with varying life history strategies would be especially
valuable given that one would expect OA to compromise recovery
from scraping and excavating corallivores much more than for
browsing corallivores.

Some corallivores may also be subject to the effects of OA.
Recent work suggests that the effects of OA on Acanthaster spp.
may differ across life history stages. Low pH conditions (~7.6)
have dire effects during the early life history stages by hindering
Acanthaster spp. fertilization, larval development, and settlement
rates (Uthicke et al., 2013). However, juvenile Acanthaster spp.
may maintain growth under projected OA scenarios, which is
likely due to increased grazing rates on crustose coralline algae
(Kamya et al., 2016, 2017). Thus, the magnitude of Acanthaster
predation under future ocean conditions is likely to be governed
by this taxas response during the developmental and juvenile
stages.

LOCAL STRESSORS AND THEIR
INTERACTIONS WITH CORALLIVORY

Overfishing

Coral reef fishes play essential roles in reef community dynamics
as predators, herbivores, and recyclers of nutrients (Sale, 2013).
However, the overexploitation of reef fishes can significantly
affect these ecological processes. For example, overfishing directly
affects corallivory by reducing the biomass and species richness
of corallivorous fishes (Guillemot et al., 2014), particularly larger
parrotfish species (Bellwood et al., 2011). Parrotfishes are key
herbivores, corallivores, and bioeroders on coral reefs worldwide
(Hoey and Bonaldo, 2018). Yet, they are also a prime target of
fisheries with some populations clearly threatened according to
the IUCN Red List (i.e., Bolbometopon muricatum: vulnerable,
Scarus guacamaia: near threatened, and Scarus trispinosus:
endangered) (Chan and Donaldson, 2012; Choat et al., 2012;
Padovani-Ferreira et al., 2012). The removal of these critically
important fishes substantially reduces bioerosion and corallivory
on fished reefs (Hoey and Bellwood, 2008; Bellwood et al., 2011).
In fact, even at low densities B. muricatum is responsible for
~88% of the corallivory and bioerosion on outer-shelf reefs in
the Great Barrier Reef (Hoey and Bellwood, 2008). However,
it disappears from reefs even at relatively low human densities
and modest fishing pressure (Figure 2), drastically reducing
bioerosion and corallivory rates (Dulvy and Polunin, 2004;
Bellwood et al., 2011). Despite this dramatic example, the effect

: — -
w Corglllis\?ores ~ Invertebrate
@ Corallivores

Population Size

Fishing Pressure

FIGURE 2 | As fishing pressure increases, the population of large
corallivorous fishes (e.g., parrotfishes) often show a steep initial decline
followed by marginal decreases in population size. Conversely, fishing
pressure may release invertebrate corallivores from predation allowing these
corallivores to increase logistically up to fivefold on fished reefs.

of overfishing corallivorous fishes on coral communities has
received little attention (Bellwood et al., 2011).

In addition, the depletion of predatory fishes alters corallivory
indirectly by releasing invertebrate corallivores from top-
down control, resulting in increased invertebrate corallivore
populations that cause widespread coral mortality (Figure 2;
McClanahan, 1994; Dulvy et al.,, 2004; Sweatman, 2008). For
example, densities of the gastropods Drupella cornus and
Coralliophila violacea, as well as the crown-of-thorns sea star
Acanthaster spp. and the sea urchin Echinometra mathaei, were
greater on heavily fished reefs with low predator densities
compared to marine protected areas (MPAs) with higher predator
densities (McClanahan and Muthiga, 1989; McClanahan, 1994;
Sweatman, 2008; Clements and Hay, 2017). Similarly, densities
of Acanthaster spp. throughout Fiji’s Lau Islands were lower
on islands with minimal fishing pressure (Dulvy et al., 2004).
However, warmer temperatures and nutrient pollution that
increase phytoplankton concentrations likely also facilitate
Acanthaster outbreaks by benefitting larval and juvenile success
(Pratchett et al., 2014; Uthicke et al., 2015; Brodie et al,
2017; Kamya et al, 2018). Thus, overfishing and nutrient
pollution may work in concert to facilitate Acanthaster outbreaks.
Indirect effects of overfishing on coral-corallivore interactions
can also lead to changes in corallivore behavior. In Fiji, small,
coral-dominated MPAs had ~2-3.4 times greater densities
of Acanthaster spp. than adjacent fished reefs dominated by
macroalgae - likely due to migration of Acanthaster spp. from
fished reefs into MPAs (Clements and Hay, 2017).

One consequence of overfishing on reefs is the rise of
macroalgae as large herbivorous fishes are removed (Hughes
et al, 2007; Mumby and Steneck, 2008; Holbrook et al,
2016). Competition with macroalgae may modify the effect of
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corallivory in corals several ways. In some cases, macroalgae can
exacerbate predation. For example, the green calcareous alga,
Halimeda opuntia, can facilitate corallivory by the fireworm,
Hermodice carunculata (Wolf and Nugues, 2013). The alga
creates sites of mortality on corals that attracts H. carunculata,
which may also vector coral disease and further exacerbate coral
mortality (Wolf and Nugues, 2013).

Conversely, macroalgae may benefit corals by providing an
associational refuge from corallivorous invertebrates (Clements
and Hay, 2015) and fishes (Venera-Ponton et al., 2011; Bulleri
2013; Brooker et al., 2016, 2017). For instance, dense
stands of the brown alga Sargassum polycystum significantly
reduced growth of Montipora hispida, but also hindered
attacks by crown-of-thorns sea star (Clements and Hay, 2015).
Additionally, coral-feeding butterflyfishes and the obligate
corallivore, Oxymonacanthus longirostris, avoided preying on
corals that had been in physical contact with macroalgae (Brooker
et al., 2013, 2017). Thus, some coral-algal interactions create a
trade-off where corals are protected against predation yet may
experience reduced growth as a consequence (Venera-Ponton
et al,, 2011; Clements and Hay, 2015). Given the rise of algae
on many reefs due to anthropogenic forcing, it is increasingly
important to examine how these algae will modify existing
interactions between corals and corallivores.

et al.,

Nutrient Pollution

The global use of phosphate- and nitrogen-rich fertilizers has
increased by over 300 and 800%, respectively, since 1961 (Food
and Agriculture Organization of the United Nations, 2014),
resulting in a drastic increase of nutrient inputs into coral
reefs and other coastal ecosystems (Fabricius, 2005). Increased
nitrogen and phosphorus (P) loading has direct and indirect
negative effects on coral fitness and physiology from suppressing
growth rates to increasing susceptibility to bleaching and disease
(D’Angelo and Wiedenmann, 2014; Shantz and Burkepile, 2014).
Some of these effects may compound the negative effects of
corallivory. For instance, corals exposed to nutrients from river
discharge have more porous skeletons (Mwachireya et al., 2016),
likely due to P enrichment increasing coral skeleton porosity
(Koop et al,, 2001; Dunn et al., 2012) and weakening the skeletal
matrix (Caroselli et al., 2011). These effects on coral skeletons
could exacerbate the effects of corallivores as elevated nutrients
magnify the damage of microborers and parrotfishes on calcium
carbonate blocks, possibly due to weakened skeletal structure
(Chazottes et al., 2017). By extension, corals subjected to nutrient
enrichment may be more susceptible to mechanical damage
from predation and may experience reduced wound healing as
a consequence (Koop et al., 2001; Renegar et al., 2008). However,
these questions have received little attention so far.

The interaction between corallivory and nutrients may depend
on the type of corallivore and the degree of damage to the
coral. For example, Zaneveld et al. (2016) showed that corallivory
by scraping and excavating parrotfish interacted with nutrient
exposure to increase Porites mortality by 62% as compared to
corals that were preyed on under nutrient poor conditions.
Changes in the coral microbiome may have driven this increase
in mortality as opportunistic Proteobacteria increased on corals

bitten under nutrient replete conditions as compared to corals
bitten under nutrient poor conditions (Figure 3). Conversely,
predation by the snail, Coralliophila abbreviata, resulted in
~33% mortality in Acropora cervicornis while nutrient exposure
did not affect mortality but did increase the abundance of
opportunistic bacteria in the coral microbiome (Shaver et al.,
2017). Yet, the interaction between predation and nutrient
exposure did not affect A. cervicornis mortality rates or coral
microbiomes (Figure 3; Shaver et al, 2017). These results
suggest that bioeroding corallivory may interact with nutrients
in fundamentally different ways than browsing corallivory.
Bioeroders remove significant amounts of skeletal material
that may provide more area for colonization by opportunistic
bacteria. More direct comparisons investigating the response of
corals to various modes of corallivory (i.e., tissue removal vs.
skeletal damage) and the potential interactions with nutrient
exposure are needed to better understand the effects on coral
condition and associated microbial communities.

Sedimentation

Coastal development, agriculture, and dredging are some of
the leading contributors of sediment accumulation on reefs
(Rogers, 1990; Fabricius, 2005). Sediment increases turbidity,
resulting in suppressed photosynthesis and growth in corals
that ultimately results in lower fecundity and survivorship

Nutrient Enrichment

s %%

opportunistic  ———)
bacteria

symbiotic
microbes

FIGURE 3 | Schematic of how different modes of corallivory interact with
nutrient enrichment to affect the coral microbiome. Under ambient nutrient
conditions, the microbiome of healthy corals is dominated by symbiotic
microbes (blue portion of pie chart) with few opportunistic bacteria (red
portion of pie chart). Upon nutrient enrichment (gray box), more opportunistic
bacteria colonize the microbial community of corals. In this scenario, host
corals have less stable microbiomes and are more prone to concurrent
stressors. The microbiome of corals experiencing nutrient enrichment and
simultaneous parrotfish corallivory becomes dominated by opportunistic
bacteria. Conversely, there is no shift in the microbial community of corals
exposed to nutrients and snail corallivory.
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(Rogers, 1990; Fabricius, 2005). Sediment accumulation also
depletes lipid and energy reserves in corals due to the energy
expended to shed particles via mucus production (Sheridan et al.,
2014). These energetically compromised corals may be more
susceptible to other stressors, such as corallivory. In fact, wounds
caused by corallivorous fishes healed slower at sites characterized
by high sediment compared to low sediment sites (Croquer
et al, 2002). Importantly, sedimentation and high turbidity
suppressed the recovery of simulated parrotfish bites more
than simulated butterflyfish corallivory (Croquer et al., 2002).
Corallivore feeding mode and the degree of structural damage
induced by corallivores, in this case excavated vs. browsed bites,
appears to determine the extent to which sedimentation hinders
wound healing.

Some small invertebrate corallivores benefit corals by
removing sediments from their host corals. Acropora and
Pocillopora corals housing corallivorous ectosymbionts that feed
on coral tissue and mucus (i.e., trapeziid crabs and alpheid
shrimps) are less likely to be smothered by sediment and have
higher survival rates (Stewart et al., 2006, 2013; Stier et al,
2012). In fact, housing Trapezia crabs makes juvenile Pocillopora
corals five times less likely to be smothered by sediment and
increases juvenile coral survival by ~35% at sites with high
sedimentation (Stewart et al., 2013). Moreover, trapeziid crabs
and alpheid shrimps also help coral hosts maintain growth rates
when hosts are covered with vermetid gastropod mucus nets
(Stier et al., 2010) and protect hosts from Acanthaster spp.
and Drupella predation (Glynn, 1976; Samsuri et al., 2018).
Although these small corallivores do feed directly on coral
tissue, these symbionts can increase coral growth (Stewart et al.,
2006), demonstrating a net overall benefit to corals hosting these
corallivorous ectosymbionts.

One area of research that has received little attention is
how sediment type (i.e., fine vs. coarse-grained sediments) may
mediate both the response of corals to predation and corallivore
feeding behavior. Terrigenous fine sediments composed of clay
and silt have higher organic content and smaller grain sizes,
resulting in higher turbidity and greater reduction in light
availability that invokes more physiological stress in corals
compared to larger, coarser sediments (Fabricius, 2005; Weber
et al., 2006; Erftemeijer et al., 2012). Although corals are able to
shed smaller grain sizes (Stewart et al., 2006), doing so drastically
depletes energy reserves (Sheridan et al., 2014), likely leaving
corals ill-equipped to heal wounds following corallivory. Thus,
corals’ response to corallivory may be fundamentally different in
the presence of finer vs. coarser sediments.

In regard to the relationship between sediment type and
corallivore feeding behavior, we know relatively little. Coarse
sediments reduce herbivory rates for Scarus rivulatus, a
facultative corallivore, more than fine sediments (Gordon et al.,
2016). Similar trends may be observed for corallivory rates, but
this has not been tested. Conversely, it seems plausible that finer
sediments may deter invertebrate predators because smaller grain
sizes may interfere with the proboscis feeding structure used
by muricid gastropods. For example, the freshwater gastropod
Potamopyrgus antipodarum is nearly four times more likely to
be found on clean surfaces than surfaces with fine sediment

(Suren, 2005). The same may hold true for reef gastropods but no
data currently exist on this topic. The effects of different sediment
types on corallivory, corallivore behavior, and coral condition is
clearly an important area of research that needs attention.

Sewage Output

Human sewage is the largest contributor of global coastal
pollution with most wastewater entering tropical coastal waters
without prior treatment (Islam and Tanaka, 2004; Wear
and Thurber, 2015). Sewage contains high concentrations of
inorganic compounds, toxins, heavy metals, and pathogens,
all of which can increase coral bleaching and mortality rates,
reduce fecundity, and induce coral disease (Pantsar-Kallio et al.,
1999). Pathogens from human sewage can destabilize the coral
holobiont, providing invasive microbes the opportunity to
colonize and potentially facilitate the vectoring of pathogens to
corals by corallivores (Sutherland et al., 2010, 2011).

Sutherland et al. (2010) found that the enterobacterium
strain Serratia marcescens PDR60, which is found in sewage,
is also found in the obligate corallivorous snail Coralliophila
abbreviata. Anthropogenic sources of sewage wastewater input
this strain into the Florida Keys reef tract (Sutherland et al.,
2011), infecting Acropora palmata with white pox disease.
Moreover, C. abbreviata is a reservoir for S. marcescens because
it preferentially consumes A. palmata (Miller, 2001) and can
transmit the strain, and thus coral disease, to uninfected
Acropora colonies (Sutherland et al., 2010). The propagation of
this disease decreases live coral tissue and concentrates snail
predators on remaining live coral, creating a positive feedback
loop between muricid snail density and Acropora spp. predation
(see Figure 6 in Williams and Miller, 2005). The interactions
among sewage, corallivores, and coral disease is likely not
exclusive to the Florida Keys as many tropical regions have
little to no treatment of sewage and many species of corallivores
may serve as vectors for pathogens that propagate disease.
Examining how widespread these interactions are could be
critical for understanding the full effects of sewage on coral reef
communities.

FUTURE DIRECTIONS FOR
CORALLIVORY RESEARCH

How Does Anthropogenic Forcing Affect
Coral Dynamics?

Much of the existing literature on the interactions of corallivory
and anthropogenic stressors focuses on the impact on individual
corals. There has been much less focus on how these stressors
may change the impact of corallivory at the level of reef
communities. For example, there has been a strong effort to
understand how MPAs help maintain herbivory and the direct
effects on algae and indirect effects on corals (Mumby et al,
2006, 2007; MacNeil et al.,, 2015), yet there has been little focus
on the consequences to corallivory. We know the processes that
parrotfishes strongly influence (e.g., bioerosion and corallivory)
decline with increasing fishing pressure in Indo-Pacific reefs
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(Bellwood et al., 2011). Yet it is unclear if these patterns hold
true in other regions where fewer corallivore species occur (i.e.,
Eastern Pacific, Caribbean). Conversely, we also know relatively
little about how robust populations of these large corallivores
impact coral populations and communities, especially on reefs
where corals are declining. For example, parrotfishes in the
Florida Keys, United States switch to preying on less favored coral
species as preferred prey species become rare, which ultimately
increases corallivory rates overall when coral cover is low and
parrotfish density is high (Burkepile, 2012). This trend is a
concerning one and understanding if it is a general phenomenon
is important.

There is also limited knowledge on how corallivory interacts
with local and/or global stressors to alter benthic community
composition on reefs. The presence of select corallivores
can reverse the competitive dominance amongst corals (Cox,
1986; Colgan, 1987; Kayal et al, 2011), altering community
composition. For instance, when the corallivore Chaetodon
unimaculatus is present, the competitive dominance shifts from
Montipora verrucosa to Porites compressa because M. verrucosa
is preferentially preyed upon (Cox, 1986). This reversed
competitive hierarchy may be reinforced under different
anthropogenic regimes. For example, Acropora and Pocillopora
corals are preferred prey in the Indo-Pacific (Cole et al,
2008) and compete for space on the benthos. Under future
ocean acidification scenarios, the competitive dominance shifts
from Pocillopora to Acropora (Horwitz et al, 2017). Rapid
Acropora growth rates (Anderson et al., 2017) may allow
Acropora to outcompete Pocillopora, further reinforcing the
reversed competitive hierarchy under low pH. Understanding
these complex feedbacks will require both time series data of
coral community dynamics as well as targeted experimentation
to understand the mechanisms of interspecific interactions and
predation patterns.

What Are the Interactions of Different
Corallivore Feeding Modes and

Anthropogenic Forcing?

The effects of corallivory can differ in magnitude depending
on anthropogenic stressors. For example, browsing corallivory
(e.g., tissue removal) does not exacerbate the effects of nutrient
enrichment or sedimentation while excavating corallivory
clearly does (Créquer et al, 2002; Zaneveld et al, 2016;
Shaver et al., 2017). Conversely, prudent gastropods that exert
chronic predation and act as photosynthate energy sinks
(e.g., Coralliophila spp.) (Oren et al., 1998) may exacerbate
thermal stress, bleaching, and post-bleaching mortality (Shaver
et al., 2018) more so than excavating corallivores that likely
have more ephemeral effects on individual colonies (e.g., spot
biting). Given that corallivore feeding mode has contrasting
effects on corals under different anthropogenic templates, we
need to better understand how these foraging strategies affect
coral survivorship and energy budgets under both present-day
conditions and future ocean scenarios. This question is especially
important as corallivores with different feeding modes may have
fundamentally different population trajectories under increasing

anthropogenic forcing (Figure 2), potentially resulting in very
different corallivore regimes in future oceans.

Both corallivory and anthropogenic stressors often have
independent negative effects on coral fecundity (Van Veghel and
Bak, 1994; Rotjan and Lewis, 2008b; Jones et al., 2015). However,
how these forces interact to modulate reproductive potential in
corals remains largely unknown. Tissue regeneration occurs at
the expense of somatic growth and gametogenesis because these
processes compete for the same cellular resources (Henry and
Hart, 2005). Thus, the suppression of fitness likely scales with the
degree of corallivory and the need for tissue regeneration. Yet it is
unclear if anthropogenic stressors act additively or synergistically
with various modes of corallivory to further reduce coral fitness.
These interactions could serve as crucial negative effects on coral
reproduction that lower the resilience of reefs in the face of
increasing disturbances.

What Are the Effects of Corallivory at

Molecular and Microbial Scales?
Anthropogenic pressures (e.g., sedimentation and seawater
warming) often cause corals to upregulate immune response
pathways, suggesting that corals may be robust to extrinsic
stressors (Sheridan et al., 2014; van de Water et al., 2015b) and
maintain the ability to regenerate tissue during thermal stress
(van de Water et al., 2015a,c; Bonesso et al., 2017). However,
research investigating the cellular mechanisms that govern tissue
regeneration under other anthropogenic regimes (e.g., nutrient
pollution) is surprisingly lacking. Studies that quantify the
upregulation of enzymes and genes involved in immune response
pathways are necessary to better understand host defense in
response to these extrinsic factors and assess if local and global
stressors act additively or synergistically.

Beyond affecting corals through mechanical damage,
corallivores provide entry points for opportunistic bacteria
(e.g., coral diseases) and can aid in parasite transmission
on the reef. For instance, the coral-feeding butterflyfish
Chaetodon multicinctus plays an implicit role in the dynamics of
trematodiasis infection in some Porites spp., by serving as a final
host in the life cycle of the trematode Podocotyloides stenometra
(Aeby, 1998, 2002). Similarly, some corallivores can transmit
disease pathogens to corals, and four invertebrate corallivores
have been empirically linked to coral disease transmission (see
Table 1 in Nicolet et al., 2018a). It is likely that this mechanism
of disease transmission may be more common than currently
appreciated. Similarly, butterflyfishes prey on diseased coral
tissue (Aeby and Santavy, 2006; Chong-Seng et al., 2011; Nicolet
et al., 2013, 2018b) with coral disease correlating positively with
butterflyfish abundance (Raymundo et al., 2009). Corallivorous
fishes may transmit disease pathogens orally or through feces
(Aeby and Santavy, 2006), however, more research is needed
to demonstrate if there is a causal link between corallivorous
fishes (e.g., butterflyfishes and parrotfishes) and coral disease
transmission (Nicolet et al., 2018a). Fish acting as vectors may
be an important driver structuring coral-microbial communities,
particularly for excavating corallivores, like parrotfishes, that
create larger wounds in corals. Thus, there is a significant need
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for studies that examine the causal link between corallivores,
coral microbiome dynamics, and coral disease propagation.

In the context of anthropogenic forcing, corallivory may
act synergistically to destabilize the coral microbiome, leading
to compromised host immunity (Zaneveld et al, 2017) and
increased mortality (Zaneveld et al., 2016). Moreover, compared
to MPAs, overfished reefs have a higher prevalence of coral
disease (Raymundo et al, 2009) and larger populations of
invertebrate corallivores capable of transmitting opportunistic
bacteria (McClanahan, 1994; Dulvy et al., 2004; Sweatman, 2008;
Nicolet et al,, 2018a). These local processes may further fuel
coral disease propagation via corallivory. Understanding how
anthropogenic pressures might shape the effects of corallivores
on coral microbiomes will be a fruitful and important area of
research.

CONCLUSION

In the Anthropocene, the convergence of multiple interacting
stressors is altering the natural interactions among corals
and corallivores. Although a small suite of corallivores have
beneficial effects on corals, the negative effects of most
corallivores appear to be exacerbated by anthropogenic stressors.
As anthropogenic forcing strengthens, the rich biodiversity
characterized by pristine reefs will decline (Figure 4A). Global
stressors, such as ocean warming, will continue to induce
bleaching and mortality in thermally sensitive coral species while
local stressors, such as nutrient pollution and sedimentation,
exacerbate coral disease, fundamentally altering coral community
composition. Concurrently, local stressors such as overfishing
is removing both large corallivorous fishes that impact coral
community composition as well as the predators of corallivorous
invertebrates, relaxing top-down control on these corallivores
(Figure 4B).

As the pressure from anthropogenic forcing accumulates,
thermally sensitive coral species will likely disappear from
reefs along with their specialized corallivores (Figure 4C). The
corals that remain will likely have compromised wound healing,
growth, and fecundity due to chronic thermal stress and the
increasingly unfavorable energetics under declining ocean pH.
The cumulative effects of local stressors, such as overfishing and
nutrient pollution, will lower corallivorous fish biomass on reefs,
reduce average parrotfish size, and fuel invertebrate corallivore
population growth that may prevent coral recovery. The increase
in nutrient pollution, sedimentation, and algal abundance on
these future reefs will likely contribute to corallivore-mediated
propagation of coral diseases.

However, the mechanisms underlying many of the
interactions between corallivory and anthropogenic stressors
are still unclear. As coral cover continues to decline globally,
the effect of corallivory on coral health and reef community
dynamics will become more imperative to understand. Given
that ~60% of global coral reef management agencies are
controlling corallivore populations to some extent (Shaver
et al, 2018), investigating the feedbacks between corallivory
and increasing stressors is a high priority for informing coral

FIGURE 4 | Modern scleractinian reefs with progressive anthropogenic
pressure will experience a shift from (A) pristine reefs with a high biodiversity
of reef-building corals and fishes to degraded reefs. (B) Under moderate
anthropogenic forcing, temperature-sensitive corals (e.g., Acropora and
Pocillopora) experience bleaching, inducing obligate butterflyfishes and
corallivorous gastropods, Drupella spp., to shift prey preferences to massive
Porites and fungiid corals, respectively. The large excavating parrotfish
Bolbometopon muricatum is removed due to fishing pressure, reducing the
overall corallivorous fish biomass on the reef. (C) As anthropogenic pressures
increase, coral composition shifts to more tolerant coral species, like massive
Porites. Specialized, obligate corallivorous fishes disappear from the reef
because preferred coral species die out. Overfishing removes larger fishes,
including invertivores and terminal phase parrotfishes, resulting in smaller
average sized parrotfishes and giving way for increased macroalgae
colonization. Moreover, overfishing may release invertebrate corallivores from
predation pressure, increasing corallivorous gastropod and Acanthaster spp.
populations that may hinder remaining coral recovery and compromise reef
resilience to these synergistic stressors.

reef conservation and management. Moving forward, we need
to improve our understanding of how anthropogenic forcing
changes coral-corallivore trophic interactions across scales from
coral community dynamics down to coral microbiomes.
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