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ABSTRACT

Corals are in decline worldwide due to local anthropogenic stressors, such as nutrient
loading, and global stressors, such as ocean warming. Anthropogenic nutrient
loading, which is often rich in nitrate, inhibits coral growth and worsens corals’
response to warming while natural sources of nitrogen, such as ammonium from fish
excretion, promotes coral growth. Although the effects of nutrient loading and ocean
warming have been well-studied, it remains unclear how these factors may interact
with biotic processes, such as corallivory, to alter coral health and the coral
microbiome. This study examined how nitrate vs. ammonium enrichment altered the
effects of increased seawater temperature and simulated parrotfish corallivory on
the health of Pocillopora meandrina and its microbial community. We tested the
effects of nitrogen source on the response to corallivory under contrasting
temperatures (control: 26 °C, warming: 29 °C) in a factorial mesocosm experiment in
Moorea, French Polynesia. Corals were able to maintain growth rates despite
simultaneous stressors. Seawater warming suppressed wound healing rates by nearly
66%. However, both ammonium and nitrate enrichment counteracted the effect of
higher temperatures on would healing rates. Elevated seawater temperature and
ammonium enrichment independently increased Symbiodiniaceae densities relative
to controls, yet there was no effect of nitrate enrichment on algal symbiont densities.
Microbiome variability increased with the addition of nitrate or ammonium.
Moreover, microbial indicator analysis showed that Desulfovibrionaceae Operational
taxonomic units (OTUs) are indicators of exclusively temperature stress while
Rhodobacteraceae and Saprospiraceae OTUs were indicators of high temperature,
wounding, and nitrogen enrichment. Overall, our results suggest that nitrogen source
may not alter the response of the coral host to simultaneous stressors, but that the
associated microbial community may be distinct depending on the source of
enrichment.

Subjects Ecology, Marine Biology, Microbiology
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INTRODUCTION

Corals typically thrive in ecosystems with oligotrophic waters due to tight nutrient cycling
between corals and algal symbionts (Muscatine & Porter, 1977). However, anthropogenic
nutrient pollution has increased nutrient availability on many reefs worldwide,
especially with respect to nitrogen (N) availability (D’Angelo ¢ Wiedenmann, 2014;
Fabricius, 2011). Anthropogenic-derived sources of N, often in the form of nitrate, have
deleterious consequences on coral growth and physiology (D’Angelo ¢» Wiedenmann,
2014; Shantz & Burkepile, 2014) and can make corals more susceptible to seawater
warming (Burkepile et al., 2019; Fabricius et al., 2013; Vega Thurber et al., 2014).

These patterns are concerning given that seawater warming events have been increasing
in frequency and intensity due to global climate change (Hughes et al., 2018).

Alternatively, natural sources of N (e.g., ammonium from fish excretion) can
benefit corals by increasing coral growth and calcification (Holbrook et al., 2008; Meyer ¢
Schultz, 1985; Meyer, Schultz & Helfman, 1984; Shantz ¢ Burkepile, 2014). In fact, corals
under ammonium enrichment receive more translocated carbon from Symbiodiniaceae
(formerly Symbiodinium; LaJeunesse et al., 2018) than corals enriched with nitrate
(Ezzat et al., 2015). Ammonium can even alleviate the negative impacts of seawater
warming by maintaining the response mechanisms of coral immunity at the
molecular level (Zhou et al., 2017). Indeed, anthropogenic- vs. naturally occurring
N seem to have contrasting impacts on coral physiology and susceptibility to seawater
warming (Burkepile et al., 2019). Yet these effects on physiology can vary with N
concentration (Ferrier-Pages et al., 2000; Marubini ¢ Davies, 1996; Marubini ¢
Thake, 1999), which likely influences how corals respond to other stressors (Fabricius et al.,
2013).

Coral predation (i.e., corallivory) is a common biotic process on reefs with many
corallivores removing coral mucus, tissue, and skeletal structure. Scraping and
excavating corallivory by parrotfishes and pufferfishes removes coral tissue and varying
degrees of skeletal structure, which can substantially reduce coral growth rates
(Cole, Pratchett & Jones, 2008; Rice, Ezzat & Burkepile, 2019; Rotjan ¢ Lewis, 2008).
This impact can exacerbate corals’ response to concurrent stressors and even prevent
recovery from anthropogenic perturbations (Rice, Ezzat ¢» Burkepile, 2019). For instance,
parrotfish corallivory inhibited the recovery of Orbicella spp. colonies after a bleaching
event (Rotjan et al., 2006). Nutrient loading can also interact with fish corallivory to
drive changes in coral mortality. In the Florida Keys, parrotfish corallivory increased
Porites mortality by 62% when corals were simultaneously exposed to anthropogenic
nutrient sources (Zaneveld et al., 2016). These patterns may be driven by increases
in opportunistic bacteria and wounding driving changes in the coral microbiome
directly (Zaneveld et al., 2016) or resulting from compromised host immunity and thus
inability of the coral to regulate its microbiome (Zaneveld, McMinds & Vega Thurber,
2017).

The coral microbiome is dominated by bacteria, protozoans, and archaea that perform
a multitude of functions from nutrient cycling to protecting the host against opportunistic
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bacteria (Bang et al., 2018; Bourne, Morrow ¢ Webster, 2016; Ritchie, 2006; Rohwer

et al., 2002). Some commensal microbes produce antibacterial compounds to prevent
opportunistic bacteria from colonizing the host (Bourne, Morrow ¢» Webster, 2016; Ritchie,
2006). When the microbial community is disturbed, populations of opportunistic bacteria
can become established, which can compromise the holobiont immunity and lead to
coral mortality (Glasl, Herndl ¢ Frade, 2016). This mechanism has been proposed for
Porites corals under simultaneous thermal stress and nutrient enrichment, and even
parrotfish corallivory (Zaneveld et al., 2016). Yet, commensal microbes can help corals
resist and recover from abiotic stress and are critical for enabling their host to cope
with challenging environmental conditions (Bang et al., 2018; Bourne, Morrow ¢ Webster,
2016). In a previous analysis of the coral microbiomes included in this study, we
demonstrated that stressors primarily act additively or antagonistically, not synergistically,
to alter microbial community composition with high temperature and simulated
corallivory wounding independently causing the strongest responses (Maher et al., 2019).
Additionally, we showed that changes in community structure with stress are driven by
increases in opportunistic taxa, rather than the depletion of symbionts. When considering
holobiont health, it is vital to understand how the interactions between corals and

their microbial counterparts respond to anthropogenic forcing (Rdidecker et al., 2015;

for review see McDevitt-Irwin et al., 2017).

It remains unclear how N source (nitrate vs. ammonium) may alter corals’ response to
elevated temperatures and corallivory. To that end, our study seeks to evaluate how
different N sources (nitrate vs. ammonium) may mediate changes in: (1) coral growth
rates, (2) wound healing rates, (3) Symbiodiniaceae densities, and (4) bacterial community
dynamics in response to concurrent seawater warming and corallivory. We hypothesized
that nitrogen source would differentially mediate the effects of seawater warming and
simulated corallivory. Further, we predicted that varying nitrogen source would produce
distinct microbial communities with indicator taxa that suggest potential functional
responses to multiple stressor regimes.

MATERIALS AND METHODS
Study species

We used a full factorial mesocosm experiment to test how nitrogen source (nitrate

vs. ammonium) may alter a coral’s response to seawater warming and corallivory.

The experiment was conducted at the Richard B. Gump South Pacific Research Station in
Moorea, French Polynesia (17°29'26.04"S, 149°49'35.10"W). Research was completed
under permits issued by the French Polynesian Government and the Haut-commissariat
de la République en Polynésie Francaise (Protocole d’Accueil 2005-2018). Pocillopora
meandrina was chosen as the study species because it is one of the most abundant corals
on the fore reef in Moorea (Edmunds, 2018) and is heavily preyed on by parrotfishes in
the Pacific (Cole, Pratchett ¢ Jones, 2008). We distinguished this taxon according to its
distinct morphology, although we acknowledge that definitive taxonomy of Pocillopora
spp. is challenging in this region (Edmunds et al., 2016).
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Experimental design

In September of 2016, the experiment was conducted in twelve independent 150 L
flow-through, temperature controlled mesocosms on a 12:12 light:dark cycle (Aqua
Ilumination Hydra 52 LEDS) at ~700 mmol m? s™'. Seawater was pumped from Cook’s
Bay and filtered with a 20 pm sediment filter before entering the mesocosms. A total of 10
healthy P. meandrina colonies with no observed corallivory were collected at three to
four m depth on the north shore fore reef and transported in seawater by boat to the Gump
Research Station. A total of 12 nubbins (2.7 + 0.05 cm height) were fragmented from each
colony and epoxied (using Z-spar A-788) onto one cm” plastic mesh. Nubbins were
allowed to recover for ~24 h in the mesocosms at ambient temperatures (26 + 1 °C).

After the acclimation period, half of the coral nubbins were mechanically injured on the
branch tip using eight mm snub nose pliers to mimic parrotfish bites. The pliers were
sterilized with ethanol and heat after each nubbin to prevent the transfer of microbes
across replicates. The injuries were 45.2 + 1.5 mm? and ~2 mm deep, resulting in a
single wound that removed the tissue layer and some skeletal structure. The injuries
resembled a wound similar to a scraping parrotfish bite. Coral nubbins were randomly
assigned to the following treatment tanks (n = 2 tanks per treatment combination):

(1) 26 °C, (2) 29 °C, (3) ammonium and 26 °C, (4) nitrate and 26 °C, (5) ammonium and
29 °C, and (6) nitrate and 29 °C. Five intact and five wounded coral nubbins were in
each tank (n = 10 nubbins per treatment; Fig. S1), and there were no differences in the
initial weight (29.1 £ 0.7 g) of the coral nubbins across treatments (Kruskal-Wallis;

x> =82,P=07).

After ~24 h of acclimation, half of the mesocosms were gradually raised from 26 to
29 °C, over a 24-h period (~1 °C change per 8 h), to reach temperatures observed during
summer seawater warming in Moorea (Pratchett et al., 2013). To establish the pulse
nitrogen treatments, the mesocosms assigned to nitrogen treatments were enriched every
~12h to 4 uM NOjJ or 4 uM NH{ from stock solutions of KNO; and NH,Cl, respectively.
Background nutrient concentrations in the seawater system during this time period
were 0.34 uM NOj, 0.21 pM NH;, and 0.15 pM soluble reactive phosphorus. The flow
to tanks was ceased for 1 h during the enrichment. Nubbins were haphazardly moved
within the tank every 2 days to avoid position effects. The experiment was maintained
for 21 days.

Coral growth rates, Symbiodiniaceae densities, and wound healing
rates

At the beginning and end of the experiment, coral nubbins were buoyant weighed to
determine changes in mass for growth rates (Davies, 1989; Jokiel, Maragos & Frankzisket,
1978). For measurements of wound healing rate, initial and final photos were taken using
an Olympus TG-4 camera and ruler and processed in Image] for scar area. A wound
was considered healed if there were visible polyps in the wound area. After the experiment,
coral nubbins were frozen at —40 °C for microbiome analysis. From each of the

12 treatments, six nubbins were randomly selected for microbial analysis while controlling
for parent colony and tank effects. The tip of each nubbin was clipped off using sterilized

Rice et al. (2019), Peerd, DOI 10.7717/peerj.8056 4/25



Peer/

bone cutters, and frozen at —80 °C until DNA extractions. The remaining coral tissue
was removed using 0.7 pum filtered seawater (FSW) and an air brush and collected into
Falcon tubes. The tubes were centrifuged at 3,000 rpm for 10 min. The supernatant was
removed and the Symbiodiniaceae pellet was resuspended with 10 mL of 0.7 um FSW.
Symbiodiniaceae densities were quantified using compound microscopy and a
hemocytometer (n = 4 counts per replicate). The coral skeletons were dried at 60 °C for
7 days, allowed to cool to room temperature, and wax-dipped at 60 °C to determine surface
area by regressing the difference in weight between single and double wax dippings
against the surface area of known objects (Stimson & Kinzie, 1991). Growth rates and
Symbiodiniaceae densities were normalized by the surface area of each nubbin.

16S library preparation, sequencing, and initial data processing

DNA was extracted from 72 samples (n = 6 per treatment) representing a subset of the
experiment using the MoBio Powersoil® DNA Isolation Kit. Amplicon libraries were
prepared for the V4 region of the 16S rRNA gene using the primer pair 515F (5'-GTG
CCA GCM GCC GCG GTA A-3") and 806Rb (5'-GGA CTA CHV GGG TWT CTA
AT-3’) that targets bacterial and archaeal communities (Apprill et al., 2015; Parada,
Needham & Fuhrman, 2016). Amplicons were barcoded with Schloss-indexed barcoding
primers with Nextera adapters, pooled in equal volumes for sequencing (Kozich et al,
2013) and purified with AMPure XP beads. Paired-end sequencing was performed on
the Illumina MiSeq platform, 2 x 300 bp end version 3 chemistry according to the
manufacturer’s specifications at the Oregon State University’s Center for Genome
Research and Biocomputing Core Laboratories.

QIIME (v1.9) (Caporaso et al., 2010b) was used to process all 16S sequence libraries.
Demultiplexed raw reads were trimmed and pair-end sequences merged. Chimeric
sequences and sequences with a total expected error of >1 for all bases were discarded.
97%-similarity operational taxonomic units (OTUs) were picked using USEARCH 6.1
(Edgar, 2010), QIIME’s subsampled open-reference OTU-picking protocol (Rideout et al.,
2014), and the 97% GreenGenes 13_8 reference database (McDonald et al., 2012) to create
a starting OTU table. Taxonomy was assigned using UCLUST, and reads were aligned
against the GreenGenes database using PyNAST (Caporaso et al., 2010a). The aligned
reads were then used to reconstruct a phylogenetic tree using FastTreeMP (Price, Dehal ¢
Arkin, 2010).

Operational taxonomic units were removed if their representative sequences failed to
align with PyNAST to the GreenGenes database or if they were annotated as mitochondria
or chloroplasts. After this step, the OTU table had 3,383 unique OTUs, and the
number of reads per sample ranged from 1 to 87,262 with a median of 9,742 per sample.
OTUs with less than 100 reads across the table were removed resulting in a total of 430
unique OTUs. We did not find that any low count OTUs were associated with one
particular sample. After these quality control steps, ten samples were found to
contain fewer than 1,000 reads and were thus removed from the dataset (Table S1).

In R (v3.4.0) the package phyloseq (v1.20.1) (McMurdie ¢» Holmes, 2013) was used to
rarefy the resulting table to exactly 1,070 sequences per sample, and to calculate from this
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rarefied table beta diversity metrics including Bray Curtis, Binary Jaccard, Weighted
Unifrac, and Unweighted UniFrac dissimilarities. For beta diversity metrics, the OTU
table was first log-transformed in phyloseq. Inclusion of all four distance measures allows
for a robust analysis of community dynamics including ecological and phylogenetic
changes in bacterial abundance (Bray Curtis and Weighted Unifrac) and in the presence or
absence of certain bacterial species (Binary Jaccard and Unweighted Unifrac). Also

from this rarefied table, alpha diversity metrics including Faith’s phylogenetic diversity
(Faith, 1992), Chaol statistic (Chao ¢ Chiu, 2016), and Simpson’s diversity index

(Heip, Herman ¢ Soetaert, 1998) were calculated in phyloseq.

Growth rates, wound healing, and Symbiodiniaceae densities data
analysis

All data analysis was conducted in R (v3.4.3) (R Development Core Team, 2017) and all
figures were produced using ggplot2 (Wickham ¢» Wickham, 2009). Treatment effects on
coral growth and Symbiodiniaceae densities were assessed with linear mixed-effects
models (LMMs) with the Imer function in R (Bates et al., 2015) with temperature,
nitrogen, wounding, and the interactions as fixed effects and tank and parent colony as
random effects. Wound healing rates were analyzed similarly but with temperature,
nitrogen, and their interaction as fixed effects and tank and colony as random effects.
Random effects were dropped if not significant in the model according to Chi-squared
tests, resulting in final LMMs that have the most parsimonious random effects structure
(Zuur et al., 2009). For all models, only colony was a significant random effect, thus
tank was excluded from all final models. Model residuals were visually assessed for
Gaussian distribution and homoscedasticity. The significance of fixed effects was
determined using the anova function from the ImerTest package with Kenward-Roger
correction for degrees of freedom (Zuur et al., 2009). Multiple comparisons were done with
least-squares means using the Ismeans function (Lenth, 2016). An outlier in growth rate
(6.93 mg cm™ day ') was removed from the analysis because it was >1.5 larger than the
interquartile range of the data. The removal of the outlier did not change the results or
interpretation.

Microbial community data analysis

We previously evaluated how these individual and multiple stresses affected bacterial
community taxonomic composition, evenness, and diversity (for details see Maher et al.,
2019). In this study, however, microbial analyses were focused to investigate potential
microbiome-dependent mechanisms underlying significant changes in host responses to
the treatments and the bacterial community response to differences in nitrogen regimes,
two aspects that were not explored in the previous study. Microbial community alpha
and beta diversity were evaluated for associations with host responses (i.e., growth

rates, wound healing rates, Symbiodiniaceae densities). First, alpha diversity metrics were
regressed against host responses using LMMs with host response as the fixed effect and
tank and parent colony as random effects. Next, associations between microbial
community beta diversity and host responses were assessed with a PERMANOVA using
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the adonis function in the package vegan (v2.4.3) (Oksanen et al., 2007) for each of the four
beta diversity metrics. Associations between microbial community beta diversity of
wounded corals and treatment effects of temperature, nitrogen, and the interaction

were then assessed with adonis. Homogeneity of group dispersions for wounded corals
was independently assessed for temperature, nitrogen source, colony, and tank with
PERMDISP using the betadisper function in the package vegan (Oksanen et al., 2007).
Significant results were ordinated and visualized using NMDS in phyloseq. The core
microbiome was evaluated from a relative abundance, unrarefied table with the package
microbiome (v1.5.31) and defined as those taxa present in >50% of samples (Lahti et al.,
2017).

Taxa indicative of any treatment combination (e.g., ammonium enriched and
wounded under ambient temperature) were investigated using indicator species analysis
(De Caceres ¢ Legendre, 2009; De Caceres, Legendre ¢ Moretti, 2010). Indicator species
analysis involves calculating an indicator value between a species and each group that
reflects both the exclusivity, occurring only in a single treatment group, and fidelity,
occurring in all samples of a treatment group. The rarefied OTU table was used in the
function multipatt from the package indicspecies (v1.7.6) (De Caceres ¢ Legendre, 2009;
De Caceres, Legendre & Moretti, 2010; Dufréne & Legendre, 1997). The multipatt
function identifies species that are associated with a particular treatment group by
calculating an Indicator Value index with a correction for unequal group sizes using the
function IndVal.g.

RESULTS

Growth rates, wound healing rates, and Symbiodiniaceae densities
Growth rates of individual P. meandrina nubbins ranged from 0.49 to 2.38 mg cm > day .
We did not observe main effects or interactions among seawater warming, nitrogen source,
or simulated wounding on P. meandrina growth rates (Fig. 1; Table S2). For wound
healing, there were no main effects of temperature (LMM; F = 3.57, P = 0.065) or nitrogen
enrichment (LMM; F = 2.09, P = 0.14), yet there was a significant interaction between
temperature and nitrogen enrichment (LMM; F = 6.51, P < 0.01; Fig. 2; Table 1). Pairwise
comparisons revealed that healing rates were reduced ~66% at 29 °C compared to
26 °C under ambient nutrient conditions (P < 0.01; Table S3). At 26 °C, coral nubbins
exposed to ammonium enrichment had faster wound healing rates than controls at 29 °C
(P < 0.05; Table S3), but coral nubbins exposed to nitrate at 26 °C did not (P = 0.063;
Table S3). For corals at 29 °C, nitrogen enrichment removed the negative effect of seawater
warming on healing rate regardless of nitrogen source. When comparing the wound
healing rates at 29 °C, we found that both ammonium and nitrogen enrichment increased
healing rates by ~63% compared to ambient conditions (P < 0.05; Table S3). However,
there were no differences in the wound healing rates for P. meandrina nubbins enriched
with either ammonium or nitrate across temperature treatments (P > 0.9 for all
comparisons; Table S3).

Symbiodiniaceae densities ranged from 1.03 to 10.7 x 10° cells cm™>. Seawater warming
increased Symbiodiniaceae density (LMM; F = 7.91, P < 0.01; Fig. 3; Table 2). There was
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Figure 1 The growth rates of Pocillopora meandrina corals across treatments. Growth rates (mg cm >
day™'; mean + SE) of intact (gray bars) and wounded (white bars) Pocillopora meandrina nubbins under
temperature (26 °C, 29 °C) and nutrient (control, ammonium, nitrate) treatments. The points show the
distribution of the data. Full-size k&) DOT: 10.7717/peerj.8056/fig-1
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Figure 2 Wound healing rates of Pocillopora meandrina. The wound healing rates (mm? day ';
mean + SE) of wounded Pocillopora meandrina nubbins under different temperature and nutrient

treatments. The points show the distribution of the data. Letters represent significant difference among

treatments. Full-size K&l DOT: 10.7717/peerj.8056/fig-2

also a significant effect of nitrogen source (LMM; F = 4.55, P < 0.05; Fig. 3; Table 2) with
ammonium enrichment increasing Symbiodiniaceae densities by 30% relative to control
conditions (P < 0.01; Table S4). We did not observe differences in Symbiodiniaceae
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Table 1 Linear mixed-effects model results for healing rate (mm? day ') of wounded corals with
Kenward-Roger approximation for degrees of freedom.

Fixed effects df F P

Temperature 1 3.566 0.0653

Nutrient 2 2.091 0.135

Temperature x Nutrient 2 6.505 <0.01
Note:

P-values defined as significant at a threshold of 0.05 are highlighted in bold.
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Figure 3 Symbiodiniaceae densities of Pocillopora meandrina corals across treatments. Symbiodi-
niaceae densities (10° cells cm™2; mean + SE) of intact (gray bars) and wounded (white bars) Pocillopora
meandrina nubbins under temperature (26, 29 °C) and nutrient (control, ammonium, nitrate) treat-
ments. The points show the distribution of the data. Full-size K&l DOT: 10.7717/peerj.8056/fig-3

Table 2 Linear mixed-effects model results for Symbiodiniaceae densities (10° cells cm™?) with
Kenward-Roger approximation for degrees of freedom.

Fixed effects df F P
Temperature 1 7.909 <0.01
Nutrient 2 4.545 <0.05
Wounded 1 0.0612 0.805
Temperature x Nutrient 2 2.522 0.0857
Temperature x Wounded 1 0.804 0.372
Nutrient x Wounded 2 0.346 0.708
Temperature x Nutrient x Wounded 2 0.0405 0.960

Note:
P-values defined as significant at a threshold of 0.05 are highlighted in bold.
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densities for corals enriched with nitrate relative to controls (P = 0.51; Table S4) or
nitrate relative to ammonium enrichment (P = 0.18; Table S4). Further, there was no
interaction between seawater warming and nitrogen source on Symbiodiniaceae densities
(LMM; F = 2.52, P = 0.086; Fig. 3; Table 2). Simulated corallivory had no effects on
Symbiodiniaceae densities and there also was no three-way interaction between
temperature, nitrogen, and wounded treatments on Symbiodiniaceae densities (Fig. 3;
Table 2).

Response of microbial diversity to coral treatments

In addition to measuring changes in the responses of the host and algal symbionts, we also
evaluated the coral-associated bacterial communities to fully assess the effects of these
stressors on the holobiont. In summary, there were 428 unique bacterial OTUs across the
entire rarefied dataset. On average, coral nubbins contained a low diversity of bacterial
taxa, around 48.0 * 4.0 unique OTUs. The most abundant family in the dataset was
Endozoicomonadaceae with a mean relative abundance of 67.76% + 3.51% and ranging
from 2.90% to 99.44%. Only two samples under increased seawater temperature and
ammonium enrichment, one intact and another scarred, contained less than 10% mean
relative abundance of Endozoicomonadaceae. Although the Greengenes database identifies
this family as Endozoicomonaceae, here the updated taxonomic assignment of
Endozoicomonadaceae is used (Bariz et al., 2018; Neave et al., 2016). Other abundant
families included Desulfovibrionaceae (5.51% + 1.55% and ranging from 0.00% to 59.91%),
Enterobacteriaceae (3.79% + 1.39% and ranging from 0.00% to 76.73%), Rhodobacteraceae
(5.88% * 0.89% and ranging from 0.00% to 32.71%), and Moraxellaceae (2.83% + 0.78%
and ranging from 0.00% to 41.22%). On average, coral nubbins with ambient nutrients
had a Chaol index of 68.56 * 6.06, although this did not differ with coral nubbins under
ammonium or nitrate enrichment (F = 2.053, P = 0.14) which had indices of 47.37 + 5.56
and 71.47 £ 12.51, respectively. Coral nubbins in ambient nutrient conditions also were
not significantly different (F = 0.377, P = 0.69) via Simpson’s diversity (0.472 + 0.069)
when compared to ammonium (0.386 + 0.055) or nitrate (0.446 + 0.068).

While there were no clear associations between alpha or beta diversity with
Symbiodiniaceae densities, host growth rates, or host healing rates (Tables S5 and S6) there
were differences in the microbial community structure across treatment regimes (Figs. 4
and 5). Differences in beta diversity between treatment groups were identified from the
log-transformed community data. While PERMANOVA tests for distinct communities
were significant for temperature, wounding, and nitrogen with various dissimilarity
measures, all R* values were less than 0.1 (Table S7). Therefore, these results were not
considered representative of biologically distinct communities. No treatment interactions
produced significantly distinct communities (Table S7). However, unlike community
dissimilarity measures, there were significant differences between nitrogen treatment
group dispersions for Binary Jaccard (PERMDISP, F = 4.210, P < 0.05) and Weighted
Unifrac (PERMDISP, F = 4.140, P < 0.05) measures of community dissimilarity (Fig. 4;
Table S8). Pairwise comparisons for associations showed that for the Binary Jaccard and
Weighted Unifrac measures, corals under both nitrate and ammonium treatments were
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Figure 4 NMDS plots of the microbial community associated with nutrient treatment. Both dis-
similarity measures, (A) Weighted Unifrac (F = 4.1, P < 0.05) and (B) Binary Jaccard (F = 4.2, P < 0.05),
show increased community dispersion by nutrient treatment for the log-transformed OTU table
(Table S7). Dashed ellipses designate standard errors of points with 95% confidence limit. Solid ellipses
enclose all points within a group. Full-size K&l DOI: 10.7717/peer;j.8056/fig-4

significantly more variable compared to coral microbiomes under ambient nutrients
conditions (P < 0.05 and P < 0.05, respectively), but nitrate and ammonium were not
significantly different from one another (P = 0.63 and P = 0.61, respectively). Group
dispersions were also significantly different by temperature with the Binary Jaccard
dissimilarity measures (PERMDISP, F = 6.730, P < 0.05, Fig. S2).

Prevalence and associations of microbial taxa across treatments

A total of 30 OTUs were identified as comprising the core microbiome which were present
in at least 50% of samples. Taxa in the core microbiome were evaluated for prevalence
across samples in the different treatments (Fig. 5A). A single OTU (ID: 109431) of the
family Endozoicomonadaceae was found in every sample (Fig. 5A). Eight OTUs of the
families Moraxellaceae, Enterobacteriaceae, and Endozoicomonadaceae were found in
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Figure 5 Prevalence of core and indicator microbial taxa by treatment. (A) The core microbiome consists of those OTUs that occur in at least
50% of the samples. (B) Indicator taxa were identified for treatment combinations with Indicator Species Analysis. OTUs were considered indicators
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every control sample. Nearly every coral sample at 29 °C contained an OTU in the family
Desulfovibrionaceae (ID: 2932342), whereas this OTU was less prevalent in samples at
26 °C (Fig. 5A). OTUs from the family Rhodobacteraceae were prevalent in wounded
coral samples at ambient nutrient levels, however, the specific Rhodobacteraceae species
differed based on whether the sample had been exposed to seawater at 26 or 29 °C. OTUs
in this family were also less prevalent in wounded coral samples exposed to nitrogen
enrichment (Fig. 5A).

Using a rarefied OTU table, indicator species analysis identified associations between
bacterial taxa and treatment combinations (Fig. 5B). A total of 25 OTUs were significant
indicators with a P < 0.05, however, one of these OTUs had an indicator value < 0.5
(Table S9). The control group (ambient nutrients, intact, 26 °C) had a single indicator
OTU of the family Endozoicomonadaceae. The indicator value of 0.344 for this OTU
(Table S9) is likely due to the presence of this OTU in every sample (Figs. 5A and 5B).
While this taxon dominates control corals with >95% relative abundance in all samples, it
is not exclusive to the control group. Eight taxa were indicators for high temperature only,
including an OTU of the family Desulfovibrionaceae which was also a member of the
core microbiome (Fig. 5A). OTUs of the family Rhodobacteraceae were indicators for
various treatment groups with wounding, high temperature, or with the combination
of the two with nitrogen enrichment (Fig. 5B). The treatment groups of ammonium
enrichment, ammonium or nitrate enrichment with wounding, and ammonium
enrichment with high temperature did not have any significant indicator taxa (Fig. 5B).

DISCUSSION

Our study tested the hypothesis that different nitrogen (N) sources would have contrasting
effects on P. meandrina growth, Symbiodiniaceae densities, wound healing, and the coral
microbiome in response to seawater warming and simulated parrotfish corallivory.

In contrast to our hypothesis, we observed that N source did not have divergent effects on
the impacts of seawater warming and simulated corallivory on P. meandrina growth rates.
However, N source did mediate the impacts of these stressors on Symbiodiniaceae
densities and wound healing rates. In fact, intact and wounded corals were able to
maintain growth rates under warmer temperatures and across nitrogen regimes. However,
ammonium enrichment increased Symbiodiniaceae densities across temperature
treatments. We also observed that warmer temperatures reduced tissue regeneration, but
that ammonium enrichment counteracted this effect. At the microbial scale, community
variability increased with nitrogen enrichment. We also observed distinct bacterial taxa
that were indicators of corals under seawater warming, wounding, and the combination of
these treatments with nitrogen enrichment.

Potential trade-offs between growth and wound healing under
seawater warming

Corals can experience a trade-off between metabolic processes (e.g., growth,
gametogenesis) and tissue regeneration, which is often prioritized over coral growth
(reviewed by Henry ¢» Hart, 2005). Yet our study provides evidence that these tradeoffs are
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complex and depend on the abiotic conditions. The P. meandrina nubbins in our study
maintained growth rates despite simulated corallivory under higher temperature and
nitrogen enrichment. In contrast, Cameron ¢ Edmunds (2014) found that simulated
scraper corallivory decreased P. meandrina growth rates by ~42%. The discrepancies in
results is perplexing given that our study had similar wound characteristics as those
reported by Cameron & Edmunds (2014) and a similar experiment duration (21 days), but
may be explained by differences in experimental approaches. Our experiment took place in
mesocosms while Cameron ¢ Edmunds (2014) conducted a field study in the back reef.
Disparities in species responses can arise from different experimental approaches, and a
response measured in the lab does not always translate to the field. However, the present
study and others demonstrate that P. meandrina corals are able to maintain growth

and calcification rates at ~29 °C (Medellin-Maldonado et al., 2016; Muehllehner ¢
Edmunds, 2008). Moreover, Lenihan ¢» Edmunds (2010) observed that injured P. verrucosa
corals under seawater warming (~29 °C) outgrew intact conspecifics but had reduced
tissue regeneration. These data are in agreement with our results showing that

P. meandrina nubbins under seawater warming maintained growth (Fig. 1) but had
lower wound healing rates (Fig. 2).

Wound healing for P. meandrina nubbins was ~66% lower at 29 °C than at 26 °C,
suggesting that corals at warmer temperatures are less likely to recover from predation
events. Seawater warming can reduce energy reserves in Pocillopora corals (Rodriguez-
Troncoso, Carpizo-Ituarte & Cupul-Magana, 2010), which may explain the reduction in
wound healing rates we observed. Pocilloporid corals may shift cellular resources to
growth over tissue regeneration under warm water conditions. Evidence for this pattern
has been observed in Oculina patagonica where growth is maintained with seawater
warming while wound healing is suppressed (Serrano, Ribes & Coma, 2017). These
patterns suggest that for Pocillopora spp. corals under warmer temperatures, a trade-off
may exist between growth and tissue regeneration where growth is prioritized.

Nitrogen supply alleviated this trade-off by counteracting the effects of seawater
warming on tissue regeneration rates. However, the effects of nitrogen likely depend on
the concentration of nutrients. When considering ammonium enrichment alone,
anthropogenic-driven concentrations (~20 uM) was shown to reduce coral wound healing
rates (Koop et al., 2001). Yet we showed here that at naturally-occurring concentrations
typical of fish excretion (~1-4 uM) (Holbrook et al., 2008; Meyer ¢» Schultz, 1985;
Shantz et al., 2015), ammonium supply can increase wound healing rates regardless of
temperature (Fig. 2). This pattern indicates that P. meandrina may be more robust at
recovering from predation events under warmer temperatures when nitrogen from fish
excretion is readily available. Similarly, nitrate counteracted the effects of seawater
warming on wound healing at 29 °C. In contrast, Renegar, Blackwelder & Moulding (2008)
found that nitrate enrichment (~10 uM) reduced wound healing between ~10-60%
depending on the coral species. The disparity in our findings can likely be explained by
the lower nitrate concentrations used in our study (~4 uM), which are more
environmentally relevant and thus less deleterious to corals. Altogether, our data suggest
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that P. meandrina corals prioritize growth over tissue regeneration under warm water
conditions but that nitrogen supply can neutralize this effect.

Seawater warming and nitrogen source mediate the effects on
Symbiodiniaceae densities

A priori, we reasoned that Symbiodiniaceae densities would decrease under seawater
warming and increase in response to nitrogen supply. However, under ambient nutrient
conditions, seawater warming had little effect on Symbiodiniaceae densities. The lack of
temperature effect is surprising given that Symbiodiniaceae densities tend to decline
with seawater warming. For instance, Schmidt et al. (2016) found that seawater warming
(~30 °C) reduces Symbiodiniaceae densities in P. meandrina corals. When seawater
temperatures are approximately 30 °C in Moorea, Symbiodiniaceae densities for

P. meandrina can also be reduced by upward of 35% (Putnam ¢ Edmunds, 2011).
Moreover, Pocillopora bleaching in Moorea has been observed for ~4.6 accumulated heat
stress weeks (C°-weeks) when temperatures >29.0 °C (Pratchett et al., 2013). Such effects
may not have been observed in our study due to its short duration (21 days) and that
our warm water treatment did not exceed the 29.0 °C threshold required for Pocillopora
bleaching in this region.

In regard to nitrogen supply, ammonium enrichment increased Symbiodiniaceae
densities by ~30% compared to ambient conditions. Yet we did not observe significant
changes in Symbiodiniaceae densities in response to nitrate. These results are in accordance
with several studies showing that ammonium supply increases Symbiodiniaceae
populations compared to corals without nitrogen enrichment, while nitrate enrichment
tends to lower Symbiodiniaceae densities (Chase et al., 2018; Shantz & Burkepile, 2014).
These trends may be due to the energetic costs of nitrate assimilation by Symbiodiniaceae
for photosynthesis (Grover et al., 2003; Patterson et al., 2010).

We observed no effect of simulated corallivory wounds on Symbiodiniaceae densities
compared to intact corals. This contradicts previous research showing that wounds
decrease Symbiodiniaceae densities (Rotjan et al., 2006; Shirur, Jackson & Goulet,

2016). For example, Rotjan et al. (2006) found that parrotfish corallivory reduced
Symbiodiniaceae densities of grazed Orbicella spp. in Belize. Simulated damage on
gorgonians can also reduce Symbiodiniaceae densities in recovering tissues and tissues
neighboring lesions (Shirur, Jackson & Goulet, 2016). The disparity in our observed results
is likely attributable to the degree of damage. In our study, we simulated a single parrotfish
scar on each coral nubbin while the coral colonies observed by Rotjan et al. (2006)
typically had >30 parrotfish bites per colony. Thus, the degree of corallivory damage likely
determines the impacts to Symbiodiniaceae populations.

Varying N source increases microbial community variability and
produces distinct indicator taxa

Although different nitrogen sources did not produce distinct microbial communities,
microbial community dispersion increased significantly with the addition of nitrate or
ammonium. Control corals under no stress had stable microbial communities with several
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core microbial members consistent in every sample (Fig. 5A). Similarly, corals under
ambient nutrient regimes shared a degree of stability that was lost with the addition of
ammonium or nitrate (Fig. 4). The addition of nitrogen increased sample to sample
variability, suggesting a reduction in the host’s ability to regulate its microbial associates
under stress (Zaneveld, McMinds & Vega Thurber, 2017). While our results suggest
that microbiome composition changes under nitrogen enrichment stress, these changes
are not deterministic and do not result in predictable stressed community states.

We also found that different stress regimes had indicator taxa that contribute to
nitrogen cycling and may play an important role in regulating nitrogen availability in the
host. In fact, nitrogen-fixation rates in the holobiont may moderate the hosts response to
stress (Rddecker et al., 2015). For instance, the abundance of nitrogen fixing bacteria
and total nitrogen fixation in the coral increases with higher temperatures (Cardini et al.,
2016; Santos et al., 2014). It has been suggested that under increased nitrogen availability,
nitrogen fixation rates would be reduced while nitrification and denitrification would
increase to reduce internal nitrogen levels and maintain internal nitrogen limitation
(Rddecker et al., 2015), which is necessary for a stable symbiosis with Symbiodiniaceae
(Muscatine et al., 1989; Yellowlees, Rees ¢ Leggat, 2008). However, one study found that
both nitrogen-fixing and denitrifying bacteria in the coral Acropora hemprichii increased
in response to increased nitrogen (Jessen et al., 2013). Likewise, bacteria of the order
Chroococcales, notably Cyanobacteria, are known nitrogen-fixing taxa (Lesser, 2007;
Wegley et al., 2007), and in the present study are indicators of wounded corals and corals
exposed to excess nitrogen. Bacteria of the family Pirellulaceae are ammonium-oxidizers
in sponges and may be conducting nitrification in corals (Gade et al., 2004; Kellogg,
Ross & Brooke, 2016; Mohamed et al., 2010). Counterintuitively, taxa of this family are
indicators of wounded corals and corals under high temperature and nitrate enrichment
in the present study, rather than of ammonium enriched corals. While indicator species
analysis of stress treatments identified several potential players in coral nitrogen
metabolism, further functional studies are necessary to correlate community composition
with changes in host nitrogen-cycling.

Indicator taxa are characteristic of control and disturbed
environmental regimes on reefs

Indicator taxa observed in this study support evidence of previous associations between
bacterial taxa and holobiont stress (Maher et al., 2019; McDevitt-Irwin et al., 2017).
Bacteria from the order Oceanspirillales are hypothesized to provide a beneficial function
to the coral holobiont (Pantos et al., 2015), perhaps through their contribution to sulfur
cycling (Raina et al., 2010). A single taxon from this order is an indicator of control
corals and, although it is present in every sample, the relative abundance of this taxon
decreases with stress (Maher et al., 2019). Another taxon from this order is also an
indicator for high temperature along with a taxon from the order Actinomycetales

(Fig. 5B), which is proposed to contain antibacterial properties (Mahmoud ¢ Kalendar,
2016; Nithyanand, Manju ¢ Pandian, 2011). These potentially beneficial taxa may
moderate the host response to stress. Microbes associated with coral mucus have been
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hypothesized to produce antibiotic activities that select against potentially invasive
microbes; however, antibiotic activity from these microbes is typically reduced during

a period of high temperature (Ritchie, 2006). Therefore, any potential antibacterial
properties of the coral tissue in the present study may be compromised in the high
temperature treatment we applied here, although we can cannot confirm this hypothesis
using these data alone.

Several indicator taxa also suggest increased opportunism in a community
compromised with stress. A taxon from the family Desulfovibrionaceae is an indicator for
high temperature and nearly all coral samples exposed to seawater at 29 °C contained
this taxon (Fig. 5B). Desulfovibrionaceae is a sulfate-reducing bacterium (Bourrne,
Muirhead & Sato, 2011) and has been associated with increased seawater temperature and
coral disease (Gajigan, Diaz ¢» Conaco, 2017; Webster et al., 2011). Similarly, the family
Saprospiraceae, which in the present study contains indicators of corals under nitrate
enrichment, high temperature, and wounding, has been associated with corals exposed to
fertilizer and municipal wastewater and other polluted environments (Jessen et al., 2013;
Xia et al., 2008; Ziegler et al., 2016). Several taxa from the family Rhodobacteraceae
were indicators of various treatments (Fig. 5B). These taxa are fast-growing and
opportunistic (McDevitt-Irwin et al., 2017); however, the degree to which they proliferated
with stress depends on the specific combination of stressors (Maher et al., 2019). While
indicator species analysis can elucidate important patterns in bacterial associations,
functional insights into consequences for the microbial community and host are limited.
Additionally, further investigation is required to determine whether indicator taxa in a
mesocosm experiment reflect indicator taxa on the reef. Of note, the identification of
indicator or core microbiome members are limited here by the taxonomic resolution of the
Greengenes database used here for taxonomic classification. For instance, the Greengenes
database has not been updated since May 2013 while the SILVA v128 database was
recently updated in 29/09/2016. Therefore, taxonomic classifications should utilize
updated databases so as to avoid discarding sequences not annotated by an outdated
database or with vague annotations suggesting contamination.

CONCLUSIONS

As anthropogenic perturbations become more common on reefs, it is crucial to understand
how these disturbances may change corals’ ability to cope with ongoing biotic processes.
Corallivory is a common process on reefs that can exacerbate the response of corals to
human impacts (Rice, Ezzat & Burkepile, 2019). The current study suggests that nitrogen
source can alter the effects of concurrent seawater warming and corallivory on corals, while
nitrogen enrichment can have distinct impacts on microbial community variability.
Moreover, our results suggest that coral growth may be prioritized over tissue regeneration
under warmer temperatures. However, how nitrogen availability and concentration

may interact with corallivory and concurrent warming to drive changes to the coral
microbial community warrants further research. Moreover, empirical studies are needed to
understand how coral immune pathways involved in tissue regeneration respond to
these anthropogenic stressors and across nutrient regimes. We observed increased
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microbiome variability with the addition of nitrogen and identified bacteria that are
indicators of different stress regimes. Future research may investigate the functional
capabilities of these indicator taxa, particularly in reference to nitrogen cycling, and how
their function varies with anthropogenic forcing.
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