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ABSTRACT: Coral reefs have long attracted attention because of their biological and economic
importance, but this interest now has turned to examining the possibility of functional extirpation.
Widespread declines in coral abundances have fueled the shift in motivation for studying reefs
and catalyzed the proliferation of monitoring to record the changes underway. Despite apprecia-
tion of monitoring as a scientific endeavor, its primary use has continued to be the quantification
of cover of coral, macroalgae, and a few other space holders. The limitations of coral cover in eval-
uating the consequences of changing coral abundance were highlighted decades ago. Yet neglect
of the tools most appropriate for this task (demographic approaches) and continuing emphasis on
a tool (coral cover) that is not ideal, indicates that these limitations are not widely appreciated.
Reef monitoring therefore continues to underperform with respect to its potential, thus depriving
scientists of the approaches necessary to project the fate of coral reefs and test hypotheses focused
on the proximal causes of declining coral cover. We make the case that the coral reef crisis creates
a need for coral demography that is more acute now than 4 decades ago. Modern demographic
approaches are well suited to meet this need, but to realize their potential, consideration will need
to be given to the possibility of expanding ecological monitoring of coral reefs to provide the data

necessary for demographic analyses of their foundation taxon, the Scleractinia.
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1. INTRODUCTION
1.1. Present-day coral populations

The size of the scientific community studying coral
reefs and the number of people visiting them for
recreation and business have dramatically increased
in the last few decades. Simultaneously, much fund-
ing is allocated to promote the understanding and
conservation of coral reefs (GBRMPA 2018, NOAA
2018). Much of this attention is in response to the
coral reef crisis (Bellwood et al. 2004, Hughes et al.
2010), which is a product of centuries of human
exploitation and pollution, as well as globally warm-

*Corresponding author: peter.,edmunds@csun.edu

ing seawater and declining ocean pH (Hoegh-Guld-
berg et al. 2007). This crisis is defined by large and
globally distributed reductions in coral cover (Bell-
wood et al. 2004, Hughes et al. 2010), and it now
threatens the ability of coral reefs to persist as calci-
fying ecosystems (Eyre et al. 2014).

There is a long and very successful history of
describing the ecological condition of present-day
coral communities based on the quantity of live coral
on a reef system, as measured by planar cover
(Hughes 1994, Connell et al. 1997, Bruno & Selig
2007, Jackson et al. 2014). Relative to the capacity of
corals to deliver the ecological goods and services
with which they have been associated (Moberg &
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Folke 1999, Wild et al. 2011), declining coral cover is
considered undesirable, while stable or increasing
cover is considered desirable (De'ath et al. 2012).
High coral cover is consequently associated with pos-
itive reef 'health’ (McField & Kramer 2007). Prior to
the 1980s, it was assumed (with empirical support)
that declines in coral cover on tropical reefs would be
followed by increases to levels similar to those occur-
ring before the disturbance (i.e. reef recovery; Pear-
son 1981). By the close of the 20" century, however,
recovery following declines in cover became less
common, and it is now routine to consider that dam-
aged reefs will not recover (Hughes et al. 2017, Perry
et al. 2018). This change in expectations has favored
the widely held opinion that ongoing declines in
coral cover will culminate in local extirpation of coral
species, and perhaps, entire coral reefs (Carpenter et
al. 2008, van Hooidonk et al. 2014).

Most present-day coral reef biologists effectively
study coral populations characterized by low cover
and low densities of coral colonies (Edmunds 2018,
Hughes et al. 2018, Riegl et al. 2018). Now that the
cover of many corals, as well as the abundances of
their colonies, is greatly reduced compared to only a
few decades ago, it is valuable to consider whether
the dynamics of these emerging small populations
can be effectively measured through coral cover
alone. As noted decades ago for corals (Loya 1978,
Pichon 1978) and more recently for terrestrial plants
(Elzinga et al. 2009), the planar coverage of the sub-
stratum by sessile taxa provides limited resolution in
evaluating trajectories of changing abundance, par-
ticularly when population sizes are small. In this opin-
ion piece, we make the case that it is timely to revisit
the recommendations of Connell (1973) and Hughes
(1984), who appealed for demographic approaches to
understand the mechanisms underlying changes in
coral cover. The importance of coral cover in quantify-
ing the coral reef crisis, and for contextualizing
decades of hypothesis-driven investigations of coral
reef biology, cannot be overstated. However, we con-
tend that there is an urgent need to augment meas-
urements of coral cover with demographic approaches
in order to fully understand the significance of the
coral reef crisis, and to transition to a new era of solu-
tion-oriented science with the potential to prolong the
survival of coral populations (van Oppen et al. 2015).
Modern demographic approaches provide tools suit-
able for augmenting ongoing studies of coral cover,
and they have the capacity to deliver statistically
bounded projections of coral population structure into
the future. They can also be used to test hypotheses
regarding the demographic causes of changing coral

cover, and ‘what if' scenarios addressing future popu-
lation trajectories. Such prospective analyses offer the
potential to inform the design of conservation strate-
gies intended to enhance (or restore) the structure
and ecological functions of coral communities.

1.2. Strengths and limitations of coral cover
measures

Coral cover refers to the summed incidences of
corals within a sampling area, where ‘incidences’ are
defined by the methods employed to evaluate abun-
dance (Loya 1978). They can refer to points falling on
coral colonies encountered in point-count surveys
along a transect (English et al. 1997), in quantitative
planar images of coral reefs (Kohler & Gill 2006), or in-
tercept lengths along a transect that correspond to
coral colonies upon which the transect is placed (Loya
1978). Coral cover can also describe the projected
area of a colony on a belt- or photo-transect (Aronson
et al. 1994, English et al. 1997), or the 3-dimensional
area in a survey processed with structure-from-
motion software (Storlazzi et al. 2016). When these
data are expressed as a percentage of the dot popula-
tion used in the survey, the transect length, or the
sample area (respectively), they provide a measure of
relative coral cover. Other combinations of approaches
have been used to measure coral cover, and their
strengths are discussed elsewhere (Dodge et al. 1982,
Edmunds et al. 1998, Riegl 1999, Rogers & Miller
2001, Lam et al. 2006, Pante & Dustan 2012).

While coral cover has served as a critical state vari-
able that has fueled decades of scientific advances in
understanding coral reefs (Bruno & Selig 2007, Jack-
son et al. 2014), as a summative statistic it cannot
evaluate several critical properties of coral popula-
tions (Fig. 1). First, it cannot reveal how cover is allo-
cated among colonies of different size (e.g. many
small, versus few large). Second, it provides no infor-
mation on the processes driving variation in cover
(e.g. settlement versus colony persistence), and as a
result, third, changes in cover do not allow accurate
projection of how coral cover will change in the
future. These limitations were described decades ago
(Connell 1973, Hughes 1984), but they have not re-
sulted in widespread adoption of demographic
approaches in the study of coral populations. Coral
cover remains an effective tool to capture the severity
of the coral reef crisis (Hughes et al. 2018), and to
publicize the dire implications of the losses that are
underway (Morton 2019), but demography has much
to offer in testing the roles of various mechanisms
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Fig. 1. (A) Coral cover is effective at measuring coral abun-
dance (for example, in Moorea, French Polynesia, in 2018),
but it has limited capacity to identify the causal processes of
changing abundances. (B) The utility of coral cover in meas-
uring abundance declines when cover is depleted (as in St.
John, US Virgin Islands, in 2018), as it cannot evaluate how
coral biomass is distributed among coral colonies. (C) This
problem is acute for corals that undergo fission, like the Ca-
ribbean coral Orbicella annularis

(e.g. adult mortality vs. poor recruitment) in causing
declining coral cover, and in objectively evaluating
the likelihood of population recovery (or extirpation).

Expanding the types of variables used to quantify
coral populations is more important now than it was
35 yr ago (cf. Hughes 1984), because many coral pop-
ulations are transitioning to low abundance states
(Edmunds 2018, Riegl et al. 2018), in which the risks
of extirpation intensify (Riegl et al. 2017, 2018), and
the limitations of coral cover as a state variable are
highlighted. As we describe in Section 2, the demo-
graphic approaches available for the analysis of coral
populations have evolved statistically and mathemat-
ically from those advocated in the 1980s and 1990s

(Hughes 1984, Bak & Meesters 1998). Moreover,
computational advances allow these approaches to
be easily applied to appropriate data and, therefore,
they are poised to deliver timely advances in under-
standing of the dynamics of coral populations and
communities. Existing monitoring projects can sup-
ply much of the data necessary to achieve this poten-
tial, but some may require modification (described
below) to deliver the detail required to harness the
full potential of demography. A demographic under-
standing of the causes of historic variation in sizes of
coral populations is necessary to project the popula-
tion structure into the future and test hypotheses
regarding the effects of intensifying environmental
stressors and possibilities of alternative outcomes.
Demographic approaches require the measurement
of vital rates (probabilities of growth, survival, fecun-
dity) causing population sizes to change. Individuals in
populations are often subdivided by size, age, or life
stage, and vital rates between or within these states
are calculated. In corals, ‘individual’ usually refers to
autonomous tissue areas (sensu Connell 1973) that are
typically also colonies, or sometimes polyps, as in soli-
tary corals (e.g. Fungia and Balanophyllia; Fadlallah
1983, Goffredo & Chadwick-Furman 2003, Goffredo et
al. 2004, Elahi et al. 2016), but the genetic identity of
‘individual’ colonies is usually not addressed. Genetic
identity can be important due to fragmentation and
other asexual reproduction (Highsmith 1982, McFad-
den 1991), which are common in corals and can create
systems of genets (genetically unique individuals) and
ramets (replicates of a single genet). Within genets,
ramets share genetically identical host tissue, and they
may not share common demographic fates.
Partitioning of individuals within the population (i-
states) can be on continuous (e.g. smoothly changing
biomass or colony sizes) or discrete (grouping of col-
onies into size classes) scales, as can their responses to
environmental conditions (e.g. through changes in fe-
cundity and/or growth). The structure of populations
determines the type of demographic model most suit-
able for modeling changes in population size. Al-
though coral population dynamics are made complex
by colony growth, shrinkage, fission, and fusion, these
effects should not deter the application of demo-
graphic models that are applied in other ecosystems
to populations that arguably are more complex than
those of scleractinians (Caswell 2001). Some of the
best known methods for quantifying vital rates, and
using them for projection, are life tables (Fadlallah
1983, Bramanti et al. 2015), matrix projection models
(Hughes & Jackson 1985, Gotelli 1991, Fong & Glynn
1998), coupled ordinary differential and difference
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equations (Sebens 1982), partial differential equations,
delay differential equations (Metz & Diekmann 1986,
Nisbet 1997), integral projection models (Tuljarpurkar
& Caswell 1997, Easterling et al. 2000, Hastings &
Gross 2012), or cellular automata (Mumby 2006).

2. DATA NEEDS AND LOGISTICAL IMPLICA-
TIONS OF DEMOGRAPHIC MODELS

Whatever their mathematical basis, demographic
approaches can leverage data typically provided
through monitoring of coral reefs, and we contend

results in ‘horizontal’ LTs), or a sub-sample of the
population (for which measurements of birth and
death results in 'vertical’ LTs). Age- or stage-specific
survival rates (growth, stasis, shrinkage) can be esti-
mated using data organized in LTs (Williams et al.
2002, Skalski et al. 2005). LTs usually also report
maternity (i.e. fertility) schedules that indicate the
proportion of the population that reproduces, as well
as the fecundity of mature individuals. As a common
objective of demographic approaches is to increase
the accuracy with which populations can be pro-
jected into the future, survival and maternity sched-
ules from LTs are used to parameterize cohort-based

that there is much to be gained by more
fully integrating demography into co-
ral monitoring (Fig. 2). The data re-
quirements for demographic models,
relative to those required to evaluate
abundances through measurements of
cover, range from modest to burden-
some depending on the approach. The
simplest of demographic information is
provided by measuring colony sizes,
which can be harnessed to test for vari-
ation in colony size-frequency structure
across space or time (Bak & Meesters
1998, 1999). While surveys conducted
at a single time cannot address trajec-
tories of change (Condit et al. 1998),
they reveal the effects of disturbances
through unequal representation of col-
ony sizes (Bak & Meesters 1998, 1999).
To quantify trajectories of change, re-
peated measurements of the same
colonies, or population, are required.
These measurements are obtained by
retaining the continuously distributed
nature of colony size or by assigning
colonies to size classes, such that
growth increases colony size, and pro-
motes transitions among size classes.
Below we summarize the strengths
and limitations of 5 demographic ap-
proaches that have been applied to reef
corals.

2.1. Life tables (LTs)

LTs estimate rates of growth, re-
production (including recruitment), and
mortality for a cohort of individuals
(tracking individuals from birth to death
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Fig. 2. Strengths and limitations of monitoring coral communities by measur-
ing coral cover versus coral colony abundance. Monitoring over the Past
(Years 1-3) supports projections into the Future (Years 4-6) for multiple spe-
cies (Species A, B, and C). Projections by cover tend to be inaccurate and
have limited ability to test mechanistic hypotheses; demography better ad-
dresses mechanisms of change by tracking the fates of colonies (circles) and
their size distributions (bar graphs). Demographic models (see Section 2
for details) support accurate population projections and have a strong ability
to test hypotheses regarding the causes and consequences of changing pop-
ulation abundances
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models, such as matrix projection models (see Sec-
tion 2.2). Both horizontal and vertical LTs have been
used to model coral populations (Edmunds & Elahi
2007, Doropoulos et al. 2015, Edmunds 2015, Riegl &
Purkis 2015, Riegl et al. 2017, 2018, Soto-Santiago et
al. 2017). The strengths of LTs are their easy applica-
tion and their wide distribution throughout the litera-
ture. The limitations of LTs are that they tend to serve
as repositories for the information required to de-
velop more sophisticated demographic models.
Therefore, LTs should be considered a required step,
but not the ultimate goal, of a demographic analysis.

2.2. Matrix projection models (MPMs)

MPMs (Hughes 1984, Gotelli 1991, Caswell 1997,
2001, Rees & Ellner 2009) consist of matrices with col-
umn entries reporting transition probabilities of
colonies among classes. In MPMs, corals are usually
grouped by size rather than age, because size is a
poor predictor of coral age (Hughes & Jackson 1980,
Hughes 1984, Hughes & Connell 1987). The matrix
defines the probabilities of growing or remaining in
the same size classes, reproducing, or dying. Back-
ward class-transitions are possible by partial mortal-
ity or fragmentation. When prepared as Markov
chains, MPMs describe life-event probabilities with-
in populations until (and including) death (Tanner et
al. 1996, Caswell 2001, 2019, Lowe et al. 2011), and
when prepared as Leslie or Lefkovich matrices
(Caswell 2001), they describe variation in population
structure and include the effects of fecundity. Sur-
vival and fertility probabilities in MPMs are fixed,
and the same survival, death, and reproductive re-
gimes repeat throughout the projection (i.e. the
Leslie matrix is invariant). Diverse life histories that
include elements like inter-annual variability in life-
history parameters, or the influence of changing
environment, are modeled using several matrices
that are alternated to represent sequences of good
and bad years (Hughes 1984, Fong & Glynn 2001,
Vardi et al. 2012, Riegl et al. 2017, 2018).

The strengths of MPMs lie in their inherent mathe-
matical simplicity that reduces the burden of supply-
ing the data they require, and their computational
requirements can be satisfied by PCs and spread-
sheet software. MPMs have limitations, however,
notably requiring continuously distributed size to be
discretized into size classes. The boundaries of these
classes, as well as the number of replicates in each
class, affect the model predictions and sensitivities
(Caswell 2019).

2.3. Integral projection models (IPMs)

IPMs consider demographic rates influenced by
continuously varying measures of size (Ellner & Rees
2006, Merow et al. 2014, Rees et al. 2014), and they
evaluate the transitions of individuals between times
using a kernel that has a flexible mathematical defi-
nition. Fecundity, growth, and mortality typically
have unique kernels, with each expressed as a con-
tinuous function of size and having the capacity to
quantify the effects of the environment. Each rela-
tionship captures ecological reality, as size-depen-
dency can adopt a variety of forms and can be based
on empirical data, or predictive models like dynamic
energy budgets (Kooijman 2009, Smallegange et al.
2017) or the metabolic theory of ecology (Brown et al.
2004).

To date, only a few studies have applied IPMs to
scleractinians (Edmunds et al. 2014, Elahi et al. 2016,
Kayal et al. 2018) or octocorals (Bruno et al. 2011), but
these applications, together with examples in the ter-
restrial vertebrate literature (Coulson et al. 2011),
illustrate their analytical power relative to other
demographic approaches. The strength of IPMs lies
in their ability to capture ecological realism through
the treatment of size as a continuously distributed
variable, and the effects of varying environmental
conditions through empirical and mathematical
approaches. Consideration of environmental effects
in IPMs has great appeal in addressing the effects of
global climate change (warming) and ocean acidifi-
cation through first principles (e.g. the Arrhenius
function) and empirical data (e.g. seawater pH). The
advantages of IPMs also compose their chief limi-
tations, which arise from their demands for large
quantities of data (including fecundity, which is
logistically challenging to obtain) and computatio-
nal complexity.

2.4. Differential and difference equation models
(DEMs)

DEMs employ equations to account for demo-
graphic processes. These can be linear or non-linear
differential equations if the variable of interest is
continuously changing, or difference equations (DE)
if discrete time-steps can be rationalized based on
the variable of interest (growth in corals is continu-
ous, but reproduction in many species is discrete).
Most frequently, ordinary, autonomous differential
equations (i.e. ODEs) are employed (Wolanski et al.
2004, Mumby et al. 2007, Riegl & Purkis 2009, Bas-
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kett et al. 2010, Melbourne-Thomas et al. 2011, van
Woesik et al. 2018).

Delay differential equations, in which derivatives
of the unknown function are written in terms of the
values of the function at a preceding time, can be
employed when present-day growth is dependent on
historic growth (Kuang 1993, Gurney & Nisbet 1998,
Li et al. 2014, Fattahpour et al. 2019). Across several
equations, rates of graduation of individuals (most
frequently, a fraction of the entire population) from
one size class to the next, can be made continuous.
DEMs are mathematically related to MPMs by a
matrix being used as shorthand for a system of equa-
tions. Hence, equivalent models can be expressed in
either format (i.e. DEMs or MPMs). While ODEs and
DEs have been widely used in the analysis of coral
cover (Mumby et al. 2007, van Woesik et al. 2018),
only a few applications address coral size distribu-
tions (Sebens 1982, Riegl & Purkis 2009, Riegl et al.
2013, Baskett et al. 2014). The strengths of DEMs are
their flexibility in allowing precise statements with
regards to the population variables of interest.
Colony sizes can be treated as discrete classes or as
continuous variables, the structure of DEMs is inher-
ently flexible, and modeling results can be contextu-
alized by previous applications in other systems (e.g.
Caswell 1997). Also, once a problem is formulated as
equations, simulation can be implemented while
remaining within the defined mathematical struc-
ture. The limitations are that equations must be pre-
cisely defined (i.e. dimensional analysis is important)
and that mathematical elegance (i.e. compact equa-
tions with clear-cut dynamic properties) can come at
the cost of ecological realism.

2.5. Individual-based models (IBMs)

These models focus on individual organisms and
local interactions, and they typically capture a diver-
sity of functions that are unique to individuals and
are often variable among them. IBMs have been
widely applied in multiple branches of ecological and
evolutionary biology, where they have been devel-
oped to consider variation among individuals ex-
pressed at functional levels of space, ontogeny, phe-
notype, cognition, and genotype (DeAngelis & Mooij
2005). Through these functional levels, it is possible
to evaluate how system-level properties arise from
the summation of individual performance. The model
design can be codified in an overview, design con-
cept, and details protocol (Grimm et al. 2006), within
which the mathematical equations relating model

elements are defined through theoretical and em-
pirical relationships.

Despite the apparent suitability of IBMs for model-
ing complex populations of colonial scleractinians,
applications of this type of modeling in the coral sys-
tem remain rare. Muko et al. (2014) applied IBMs to
scleractinians for population viability analysis. While
IBMs can provide attractive tools that are well
matched to modeling the complex fates of individual
coral colonies, their reliance on rich detail of individ-
ual performance creates substantial challenges to
coral reef monitoring programs limited by time and
money.

3. WHAT DEMOGRAPHY CAN (AND CANNOT)
DO FOR CORAL REEF SCIENCE

While coral cover provides limited insights into the
mechanisms causing it to decline, or whether the
trends are likely to vary in the future (Hughes 1984),
these limitations can be addressed with demographic
approaches. Demographic models do not provide
crystal balls to forecast the future, but they employ
the empirical relationships between population and
environment to project likely or plausible future
dynamics. Critically, projections (as opposed to fore-
casts) anticipate future changes in population size
assuming a very carefully prescribed set of future
environmental conditions whose effects have been
established with historic empirical research (Caswell
2001). Through such mechanisms, it is possible to
identify future population trajectories (i.e. to antici-
pate change) given specific conditions, and to test
hypotheses in a ‘'what if' context. Statistical rigor can
be added through sensitivity analyses (Saltelli et al.
2004, Caswell 2019), which evaluate the changes in
magnitude of outcomes (such as population growth
rate) in response to explicit changes in demographic
parameters (such as survival rates, fertility). With
sensitivity analysis providing forward-looking capac-
ity, and LT response experiments (Caswell 2001,
2019) a related, backward-looking approach, demo-
graphic models can offer insight into why popula-
tions change, and assist in the identification of likely
life stage targets (e.g. recruits vs. adults) for conser-
vation action.

4. APPEAL FOR ACTION

To address the need for solution-oriented science in
response to the coral reef crisis, and to better inform
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reef management decisions with the potential to at-
tenuate local coral mortality, there is an urgent need
to improve the predictive capacity for future changes
in coral population sizes. The challenges of imple-
menting demographic approaches are modest relative
to the great effort required to accurately record
changes in coral reefs over time, and they offer the po-
tential to leverage existing data already being gener-
ated from biological monitoring of coral reefs. In addi-
tion to emphasizing the importance of long-term
measurements of coral abundance, the gravity of the
coral reef crisis demands a rigorous treatment of pro-
cesses causing coral populations to change in size.
There also is a pressing need to improve the accuracy
with which projections of future changes in coral pop-
ulation size can be made, including providing objec-
tive evaluations of the likelihood of local extirpation
(and whether this can be avoided). The resources now
allocated to monitoring coral reefs are greater than
ever before, but there remains much competition
among specific tasks for which this support might be
used: we contend that there is much to be gained by
increasing the priority accorded to the measurement
and book-keeping of coral colony size over time.

Many data remain to be mined from existing time
series analyses of coral reef communities to advance
the goal of effective use of demography, particularly
where legacy image-based data are available. How-
ever, adjustments of existing (and new) projects will
facilitate the future development of demographic
approaches in coral reef science, and we suggest
these efforts might judiciously be focused on 4 tasks:

(1) Establish the capacity for repeated sampling of
the same areas of reef, particularly to allow identical
populations and coral colonies to be surveyed over
multiple years. While repeated sampling of fixed
areas of reef already is routinely accomplished in
many monitoring programs, unique numbering and
relocation of specific colonies is likely to remain a
time-consuming task for some time to come. This
challenge might find a solution in emerging image-
based approaches (described below).

(2) As demography strictly is the study of popula-
tions (sensu stricto, Lawrence 2005) the tools of this
discipline are most effective when applied at the spe-
cies level. Unfortunately, the resolution of many coral
species continues to be challenging, particularly
underwater (Edmunds et al. 2016), and, therefore,
the choice of taxa for demographic analyses must be
made with close attention to the ease with which
colonies can be identified to species underwater. For
the time being, this may mean that some taxa will
remain intractable to traditional demographic ap-

proaches, although the increasing ease with which
coral host genotypes can be identified with genetic
approaches is shifting the notion of genetically iden-
tifying members of a study population from specula-
tion to reality (Sheets et al. 2018).

(3) Exploit image-based techniques to record coral
communities along belts, quadrats, or plots (rather
than line-intercept approaches), with images scaled
to capture the planar extent of individual colonies.
Such images preserve the opportunity for retrospec-
tive analysis of coral colony sizes and basic demo-
graphic properties, even if these features are not
integral to the immediate sampling regime. Fine-
grained spatially referenced photomosaics and struc-
ture-from-motion imagery (Pedersen et al. 2019,
Rossi et al. 2019) offer the greatest promise in in-
creasing the ease with which coral colonies can be
measured and tracked over time, particularly when it
becomes possible to pair the images with fully auto-
mated analytical tools.

(4) Wherever resources of time and money are
available, coral reef monitoring programs should
consider expanding their inclusion of state variables
from coral cover to measures of coral colony abun-
dance and size. This task will require defining coral
colonies by size and consideration of the best means
to count coral colonies along the boundaries of the
sampling units (Zvuloni et al. 2008). Management of
these data in parallel with coral cover will create the
opportunity for flexible demographic approaches in
which size can be treated categorically (e.g. MPMs,
Edmunds 2015) or as a continuous variable (e.g.
[PMs, Edmunds et al. 2014).
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