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In small volumes, sample dimensions are known to strongly influence mechanical behavior, espe-
cially strength and crystal plasticity. This correlation fades away at the so-called mesoscale, loosely
defined at several micrometers in both experiments and simulations. However, this picture depends
on the entanglement of the initial defect configuration. In this paper, we study the effect of dis-
location topology, through the use of a novel observable for dislocation ensembles, the A-invariant,
that depends only on mutual dislocation linking: It is built on the natural vortex character of
dislocations and it has a continuum/discrete correspondence that may assist multiscale modeling
descriptions. We investigate arbitrarily complex initial dislocation microstructures in sub-micron-
sized pillars, using three-dimensional discrete dislocation dynamics simulations for finite volumes.
We demonstrate how to engineer nanoscale dislocation ensembles that are independent from sample
dimensions, either by biased-random dislocation loop deposition or by sequential mechanical loads

of compression and torsion.

Among the most remarkable aspects of forming pro-
cesses in metals is the ability to manipulate material

strength by “cold working” [1]. At the heart of this ver-
satile feature lies the ability of crystal defects, especially
dislocations [2, 3], to interact collectively, develop entan-

gled microstructures and multiply. Dislocation entangle-
ment has been notoriously believed to control a plethora
of phenomena in metallurgy, including forest and kine-
matic hardening, as well as fatigue [4]. However, the
paramount importance of dislocation entanglement only
became clear in the study of small finite volumes, by
noticing the dramatic effects of its absence [5—11]: Crys-
talline strength drastically increases when at least one di-
mension decreases below the so-called mesoscale, which
loosely refers to a few micrometers [12—16] where dislo-
cations may define their “mean-free path” [13]. Never-
theless, crystal dislocations typically form loops that may
easily extend to the volume boundaries, and thus mutual
dislocation topologies may be critical. In addition, me-
chanical yielding is a transient behavior that ought to
strongly depend on initial conditions, especially in small
volumes [17]. In this work, we show that dislocation en-
tanglement originates in dislocation loops’ topology and
not particular length scales. We investigate the possible
effects of initial conditions by constructing a topologi-
cal observable of dislocation networks, the A-invariant,
that is only dependent on mutual loop entanglement. We
show that the A-invariant can be used to generate arbi-
trarily complex microstructures in Discrete Dislocation
Dynamics (DDD) simulations [ ], either by deposi-
tion or cold-working, rendering a sub-micron volume ca-
pable of yielding akin to a bulk sample. In this way, we
may identify topological pathways to manage strength
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FIG. 1. Dislocation Loops and Topology. (a) Two
dislocation loops on different slip systems can form a
topological link with linking number 2, 4 or 6 depending on
the activation of additional latent hardening mechanisms
such as double cross-slip. (b) The linking number can be
directly calculated through a dislocation line double integral,
the Gauss integral (see text). (c) The shear strength 7y of
a submicron finite volume is typically viewed in the 7v — p
space [24] introducing the elusive concept of the dislocation
“mesoscale”, defined at a critical p.. Hereby, we propose
that a topological measure might provide a clear
understanding of why a transition takes place, from low to
high dislocation densities.

and crystal plasticity.

Crystal plasticity modeling represents an enormous
challenge of materials science despite the understand-
ing of basic interactions and mechanisms of individual
dislocations. For example, the “back-stress” in theo-
ries of kinematic and work hardening [1] does not yet



have a precise microscopic definition [25, 26]. In fact,
the great complexity of crystal plasticity theories origi-
nates in that dislocation ensembles are more akin to a
“bird’s nest”, rather than a set of separate small and
simpler elementary bodies [27]. In sub-micron-sized vol-
umes, where it becomes tough to fit such a nest, common
plasticity practically disappears, giving its place to un-
common size effects and stochasticity in the mechanical
response [9, 28, 29]. In association, prior deformation of
a micropillar before testing [30] may turn size effects into
Taylor hardening (c¢f. Fig. 1(c)), as dislocation density
increases [241]. However, another plausible interpretation
is that dislocation complexity is the key, in a small finite
volume, that may unlock common plasticity. In such a
scenario, the inflection point A, has a fundamental im-
portance in terms of topological complexity, possibly re-
vealing how many dislocation “twigs” need to intertwine
to start behaving as a bird’s nest.

We present a novel approach to characterize and en-
gineer dislocation entanglement that naturally translates
into continuum and large-deformation descriptions of dis-
location ensembles. Our basis is the construction of
a scalar volume observable, dubbed A-invariant, which
has special topological properties, thus leaping beyond
the distortion (elastic/plastic) or dislocation density ten-
sors [2]. The purpose of A is to sum the linking number
of each pair of dislocation loops in the ensemble.

The Linking Number for two dislocation loops 1
and j is defined as L;; = o fcj dQ(r;,r;) =
ﬁfc,; fcj % [31, 32], where fCi implies an in-
tegral over the loop ¢. It is a plausible way to de-
fine the mutual entanglement of a pair of dislocation
loops (c¢f. Fig. 1(b)): A linking number of 2 is typical
for crossing dislocations in different slip systems, while
higher linking numbers require additional consecutive
mechanisms such as consercutive double cross-slip events
(¢f. Fig. 1(a)). The topological character of the linking
number originates in that it does not depend on local line
distortions, thus it does not explicitly relate to disloca-
tion length density. In this way, it complements common
dislocation network observables. Numerically, L;; can be
calculated directly through counting solid angle contri-
butions around the two loops ,j [33].

The A-invariant in a crystal of Burgers vector magni-
tude b is defined as,

1

A:be

Bt (V x pE) = b%/dg’xﬂgaij (1)
where « is the Nye dislocation density tensor and the
elastic distortion ¥ combines with the plastic distortion
BT to give B + B¥ = grad(u), where u is the displace-
ment field due to deformation [1, 2], ultimately satisfying
on a closed crystal boundary I

a=VxpFf=-VxpF=6rob (2)
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FIG. 2. Statistics of two loops in a 0.5um-pillar: (a)
Initial conditions of i) two prismatic dislocation loops 1 and
2, with randomly selected Burgers vectors but finite L2, ii)

two prismatic dislocation loops 1 and 2, with randomly

selected Burgers vectors but zero Li2. (b) Probability of

forming sessile dislocation junctions through 2 randomly
placed prismatic loops with or without linking.

This defining vortex character of dislocations signifies
that dislocations maintain a loop character that may not
end within the crystal. By using this feature, one may

show (see Supplementary Information (SI) [34, 35] that
1
A= ~ Z Lijb; - b; (3)
0,J

where L;; is the linking number between loops ¢ and j,
while b; and b; are their respective Burgers vectors. The
mathematical structure of A resembles that of helicity
in theories of fluids. However, A is never a conserved
integral of the equations of motion in a limiting scenario,
in contrast to helicity.[34-30]

The primary usefulness of A is its capacity of predict-
ing the onset of dislocation multiplication through dis-
location junction formation. The connection between fi-
nite A and junction formation can be seen in two ways:
First, the absence of linking (L;; = 0) leads to a negli-
gible statistical probability for junction formation, espe-
cially in small finite volumes. Second, the dependence
of A on the linking loops’ Burgers vectors’ dot product
point directly to a junction-formation energetic connec-
tion to the Frank rule. A way to realize different possi-
bilities is to consider prismatic dislocation loops, which
have been connected to hardening effects in various cir-
cumstances [37, 38].  We consider two prismatic dislo-
cation loops randomly placed in a D = 0.5pm-diameter
pillar (see Fig. 2(a)), and we generate 10* random ini-
tializations of two dipolar prismatic loops, constrained
to either have mutual linking number L,5 zero or non-
zero, signifying initial dislocation entanglement or not.
Then, the configuration is relaxed by using DDD. Then,
the histogram of sessile dislocation junction formation
(see Fig. 2(b)) displays significant junction length forma-
tion only for finite entanglement (Lis # 0), with a wide
probability distribution that remarkably overwhelms the
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FIG. 3. Depositing & Testing Entanglement For
Various Discrete Dislocation Densities: Uniaxial
compression of sub-micron volumes. Initial sessile
junction density is always zero. (a) Random deposition and
uniaxial compression of prismatic dislocation loops in a
finite mesh of R = 0.25pm in (i) an unbiased or (ii) A-biased
manner. (shown compression to 0.01% strain for
po =2 x 10'3/m? (various po choices are studied), (b)
Nanopillar yield stress (solid symbols) and sessile dislocation
density (open symbols) at 0.4% strain as function of initial
Ao. Every point corresponds to a uniaxial compression
simulation of distinct initial conditions at a target po:
(po : {M:10"3/m?}, {»:2 x 10" /m?}, {«: 4 x 10"3/m?},
{A:8x10"%/m?}, {¥v:10"/m?}). In (c) and (d), an
excerpt of the response of three sample initial conditions are
shown in detail to demonstrate the major effect that heavily
entangled have on mechanical response. The loading stress
02z as function of the applied axial zz strain € is shown in
(c) with solid symbols. The A configurational value as
function of the applied axial zz strain € is shown in (c) with
open symbols. Analogously, in (d), the total (open) and
sessile (closed) dislocation density are shown. The sessile
dislocation density increases roughly linearly with Ao while
yield stress quickly saturates. po values are given for the
configurations used in (c) and (d): ({A : 8 x 10'?/m?},
{»:10*%/m?}, {«: 2 x 10" /m?}).

disentangled (L1 = 0) configurations. Segment-based
junction formation arguments [39, 40] (ie. nearby straight
lines) may partially explain the statistics in Fig. 2(b), but
the scenario of two intertwining dislocation loops is dif-
ferent in that all possible signs of dislocation interactions
are present in a linked dislocation pair. Thus, it is nat-
ural to expect a significantly larger statistical preference
towards sessile junction formation for linked loops than
two nearby straight lines [41, 42]

The statistical finding for the fate of two linked loops
has significant consequences for the behavior of collective
dislocation networks. By using a numerical algorithm
that explicitly tracks the evolution of dislocation loops

and segments [18-23] and their mutual linking numbers,
we are able to arbitrarily tune the complexity of the ini-
tially deposited dislocation configuration. When a junc-
tion forms, we assume that A remains unchanged, thus
A’s history is critical to its determination. We consider
the geometry of a cylindrical nanopillar finite element
mesh of diameters D x 1073 /b = 2,4, 8,16, 32 for single
crystalline Cu FCC with |b| = 0.2556nm. We generate
random prismatic loop initial conditions by depositing
prismatic dislocation loops of randomly selected Burgers
vectors in the nanopillar until a target dislocation den-
sity po is reached (see e.g. Fig. 3(a) for pg = 10'3/m?).
By biasing the deposition of prismatic loops towards col-
lectively increasing A, we acquire control on the investi-
gation of topological effects. pg is varied in the range
of 10*2 —10'4(/m?), and loading at a strain rate 103 /s is
along the cylindrical axis.
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FIG. 4. Uniaxial Compresion Size Effects and A: 4
realizations at each size with initially random dislocation
density constrained so that (a) A < 2 and (b) A > 3. Each
color corresponds to a sample size with diameter
D =0.5,1,2,4,8um. Color darkness increases with D. The
insets show the engineering yield stress (defined at 0.02%
plastic strain), with power law lines ~ D% (left) and
D7%2(right). Also, an initial configuration is shown for
D = 1um for small and large A (see also SI).

The effect of topologically rich initial conditions is
drastic in material properties such as the compressive
yield strength (cf. Fig. 3(b)), defined as the first axial zz
stress at which a large (> 1MPa) stress drop avalanche
event is observed. For large initial Ag (in this work, we
focus on A’s magnitude), in fact, the strength of the pil-
lars is dominated by the microstructure entanglement
as opposed to the sample size, leading to a linear in-
crease of the sessile dislocation density at an arbitrar-
ily chosen 0.4% finite strain (psess ~ Ap). While this
is only evidence of a scaling relation between Ay and
dislocation densities in small finite volumes, we expect
that the scaling relationship psess(€) ~ AY for § > 0
generically holds for any dislocation ensemble. Plastic
yielding in these systems is accompanied by large A-
“avalanches” (cf. Fig. 3(c)), caused by large increase in
the density of sessile junctions (cf. Fig. 3(d)), and subse-
quent multiplication to increase the total dislocation den-
sity (cf. Fig. 3(d)). Overall, this behavior should be con-
trasted to the typically observed mechanism-exhaustion-



dominated one in analogously small finite volumes [29],
which in our simulations can be seen only for A < 2,
found from an exponential fit to the data’s variance in
Figs. 3(b), 5(b). The effect of A, ~ 2 becomes evident
when size effects are found for samples with initial con-
figurations of Ag < 2 (see Fig. 4(a) and its inset), re-
sembling prior studies [5—11] with a size dependence of
strength oy ~ D~95  Characteristically, when Ay < 2
(cf. Fig. 4(a)), perfect elastic response is often observed
after the initially placed dislocations deposit on the pillar
surface. This behavior is contrasted to samples with ini-
tial Ag > 2 (see Fig. 4(b) and its inset), showing virtual
size independence (oy ~ D~%2) and relatively consistent
response (see also SI).
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FIG. 5. Engineering Entanglement By Controlling
Prior Torsion Strains: Uniaxial compression of
sub-micron volumes. (a) A protocol is followed where a
dislocation loop configuration at density po is prepared,
torsion is applied on top/bottom pillar surfaces up to
pre-chosen torsion angle 6y, and then uniaxial compression is
applied towards yield. The configurations at each step of the
process are shown for a particular configuration with
po =3 x 10'3/m?. (b) Yield stress (left y-scale/filled
symbols) and sessile dislocation density (right y-scale/open
symbols) at the yield point vs. Ag for a variety of initial
conditions and torsions pg € (5 x 10'2,2 x 10**) and
6o € {107°,0.1}. In (c,d) three characteristic cases

{p0, 00} —>(>: [10'%/m2,0.1], < [2 x 10" /m?,3 x 107%],

A:[2x10%/m? 3 x 1072]>7 are shown for (c¢) Torsion T’

(filled symbols) and A (open symbols) vs. torsion angle
and (d) subsequent loading stress o, (filled symbols) and A
(open symbols) vs. axial strain e.

Besides artificial deposition of initial dislocation con-
figurations with dramatic effects on mechanical proper-
ties, the topological character of A may guide us towards
generating large-entanglement structures through partic-

ularly efficient mechanical loading paths. These loading
paths can be also predicted through modeling of latent
hardening for particular crystalline structure [43]. The
key towards identifying such loading paths is the cal-
culation of the A-dynamics. For a large class of con-
tinuum dislocation theories that satisfy global Burgers
vector conservation and Orowan’s law of collective dislo-
cation motion, it may be shown that (see SI),

oA 1

ot = »2 /8\/ deijmBElJml (4)

where the typical assumption of overdamped dynamics
is considered and J;; = €jgmEmar;, where F, is the
Peach-Koehler force on the dislocation density aj;. The
tensorial character of the right-hand side of Eq. 4 im-
plies that only particular loading directions can increase
A, a fact well known from studies of latent hardening in
crystal plasticity [13, 44-46]. A physically intuitive ex-
ample is the uniaxial compression of pre-torsioned speci-
mens, where dislocation flow Jj; may be assumed in a pre-
strained environment to a torsion angle 6y, with induced
BE along the cylindrical @ direction (ie.d,u, and Oyu,
are non-zero) while t x v for an x-y gliding dislocation
would be along z during compression. This combination
of indices gives a concrete contribution to the right-hand-
side integral of Eq. 4. Physically, in the idealized contin-
uum cases, torsion induces geometrically imposed screw
dislocations along the torsion axis. It is expected that
torsion-induced screw dislocations along the loading axis
would tangle with horizontal-moving slip during subse-
quent compression, and this is what Eq. 4 is predicting.

To confirm the approach towards the generation of A,
we perform explicit 3D-DDD sequential-loading simula-
tions of submicron-sized pillars with various initial dis-
location densities pg. We vary pg from 5 x 10'2/m? to
3 x 101 /m?. We consider an initial configuration of ran-
domly deposited dipolar dislocation loops in a 2000b-
diameter cylindrical pillar, and then we consider the ap-
plication of a finite torsion angle on the top and bottom
surfaces as a boundary condition that we progressively
implement at a low torsion rate of 10 %rad/s. Then,
the torsion angle is fixed and, uniaxial pillar compression
along the z—axis is considered. As shown in Fig. 5(a),
the application of a finite amount of torsion (which may
not be necessarily large enough to induce plasticity) on
the top/bottom surfaces up to a target torsion angle 6y
(€ (0,0.1)), leads to a highly extended dislocation con-
figuration that generates large entanglement when it is
followed by uniaxial compression, as it is witnessed by
the increase of A. Characteristically, if one calculates the
combined-loading effective stress, then the yield stress
is remarkably size-independent (cf. Fig. 5(b)) and the
saturation level for the sessile dislocation density is eas-
ily reached, even with small initial A and initial dis-
location density. As one may see in particular exam-



ples (c¢f. Fig. 5(c),(d)), the application of torsion is fol-
lowed with a dramatic increase of A, as suspected by
our developed topological intuition. Namely, prior ap-
plied torsion at a target 6y (three distinct realizations
at 8 = 0.001,0.01,0.1 are shown in Fig. 5(c)) leads to
a large increase of A at values much larger (> 50) than
the ones observed in the highly-entangled deposition of
Fig. 3, and forming visible networks of system-spanning
screw dislocations that necessarily would form junctions
to any dominant-slip gliding dislocations during subse-
quent uniaxial zz compression.

The usefulness of A is not limited to the characteri-
zation and prediction of discrete and entangled disloca-
tion networks, but also it extends to represent a unique
discrete-continuum link that can be directly calculated
in both the discrete and the continuum worlds. In the
continuum, it is just needed to properly estimate a 3%-
dependent volume integral. Its topological origin also
allows us to write the correspondent of A for large defor-
mations. Following Ref. [47] a large deformation gener-
alization may be shown to be (see SI),

1

A/\:bf2

/JeFefl . (V % Fefl)fr . Fef'rdf/ (5)

where Fe~1 is defined by the Kroner-Lee decomposi-
tion [18, 19]: F = F°FP and J° = detF*® (see SI). In this
way, A may be instrumental for extending dislocations’
role towards modeling of large deformations.

In conclusion, we presented a topological approach
to investigate dislocation entanglement [50] and latent
hardening in crystals.  In this work, we investigated
random initial conditions composed of dipolar prismatic
loops. We find that the manipulation of initially pre-
pared dislocation configurations’ topological complexity
can generate size independent crystal plasticity even in
nanoscale volumes, that are believed to be intrinsically
size-dependent [51, 52].  This manipulation and con-
trol of dislocation networks may allow for optimization
and design of multi-axial, sequential cold-working path-
ways in metallurgy [53, 54], especially by unveiling the
connections between junction formation rate, flow stress
and A.
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In this Supplementary Information, we provide further details on the calculations discussed in the

main text.
I. A AND LINKING NUMBERS L;;

We initially discuss the proof of Eq.3 in the main text,
which forms a major cornerstone of this work. Namely,
Eq.3 of the main text states that the topological invariant
A which involves doubles integrals over all loop segments,
is directly connected to a simple sum of dot products,
something that can reduce numerical calculation burden
and also confirms the topological character of A. For
clarity, Eq.3 of the main text states that:

1
~% ZLijbi -b;
]

where L;; is the linking number between loops 7 and j,
while b; and b; are their respective Burgers vectors. In
order to prove Eq. S-1.1, we will use some identities of
dislocation theory (please see Ref. 2 in the main text for
details),
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Then, by starting with the definition of A:

A= —/d%ﬁE (VxB7) = /d%ﬁ i
(S-1.5)

It is straightforward to expand,
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II. THE A DYNAMICS

For x-y torsion g ~ 6 (primarily) in cylindrical coor-
dinates, since most dislocations (screw) are lying along
z-axis. Moreover, dynamics during compression in a tor-
sioned specimen implies that J ~ —# in cylindrical coor-



dinates. (to check it again)

In order to be careful, one needs to carefully perform
these calculations using the proper tensorial indices. In
this context, it is important to clarify that:

1. For ayy: 7 indexes the dislocation line vector t that
the dislocation is tangent to, while j indexes the
Burgers vector b.

2. For J;; and a single dislocation line moving with
velocity v, Jij = €ikmtrbjvm0(x) at some location
X. So, i labels the cross product t x v.

3. Also, for J;; (if overdamped dynamics is consid-
ered): it is written as J;; = MejpmFnoy;, where
M is an approriately defined dislocation mobility
factor and F;, is the PK force on the dislocation
density ag; (F' x o making sure that a dislocation
density moves perpendicularly to the dislocation
line vector).

4. For ,85- : ¢ labels the strain direction, while j the
component of the displacement vector.

5. We need to assume a particular dynamics law for
the elastic and plastic distortion in order to pro-
ceed. Assuming the Nye dislocation tensor,

aij = —€imOBl; = eumOiBh; (S-IL.1)
we can assume a generic conservation law for the

Burgers’ vector:

Orvij = —€itm O I m; (S-11.2)
which also implies,
81655 = —Jyj (S-11.3)

The ultimate target is to understand and predict which
loading modes can lead to a large increase of the disloca-
tion helicity, and consequently the elastic energy of the
crystal. Assuming that the volume V is fixed, with 0V a
boundary surface, then, if the helicity is defined as:

1
A= b?/‘/dvﬁlg€kmnam65 (S-II4)

or

1
A= / dV BEan (S-11.5)
\%

then the temporal variation of dislocation helicity is
derived by direct differentiation:

oA OpE Oagy
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Now we can use Eqgs. S-I1.2 and S-II.3, showing that
oA
b27 = —/ dVJklOékl — / dVﬁ,ﬁekjmaijl
(S-11.7)

Now, we may use integration by parts in the second in-
tegral:

oA
V¥ = 7/ dV g */ dS;BriexjmImi +
ot 1% ov
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v
(S-IL.8)
which is equal to:
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The first integral (volume) is identically zero for the
conservative dynamics, since Jyan = epjoaFjon =
€rijaaa Fy (zero by reversing k, i). Thus, it is proven
that dislocation helicity is conserved by volume dynam-
ics.

The second integral is equivalent to:

ds - (B x J)
ov

(S-11.11)

III. A AT LARGE DEFORMATIONS

In the deformed configuration x (also labeled by above
symbols), one can still define simply the burgers vector
as a smooth loop/surface integral:

b= / Feldx = /(v x Fe~Y)TidA (S-111.1)
oS S

where Fe~1 = (F¢)~! F = F°FP the Kroner-Lee de-
composition, F = Vy the deformation gradient, and n is
the vector normal to the area S. Also, it is important to
remember that,

0T
ox,

with respect to the orthonormal basis vectors.

(v X T)l] = €irs (S-IIIQ)



At large deformations, it is important to remember
that the deformed coordinates are connected to the ref-
erence configuration through the relation:

ndA = J°F* "ndA (S-II1.3)

Regarding the A—invariant, it is transparent how to
extend our definitions in the large deformation regime,
in the deformed coordinates. Namely, one can define,

A=t [pet A(V x Fe~H~7qV

2 (S-T11.4)

and in the reference frame:
A= b%/JeFe*1 A(V xFeYH)~T.Fe 74V
(S-TIL.5)

Eq. S-II1.5 represents the large deformation definition of
the A—invariant.

(31)
(32)

(42)
(41)

(a) (b)

FIG. 1: Calculation of the Gauss integral along
two straight segments arbitrary oriented in
space (a) The arbitrary vector ris has the beginning
and the end at the points 1 and 2, and the vector r3y
has the beginning and the end at the points 3 and 4,
respectively. (b) The quadrangle on a unit sphere is
constructed for the given pair of segments, ris and rs4.

IV. THE CALCULATION OF A IN DISCRETE
DISLOCATION DYNAMICS

In order to calculate A for a dislocation ensemble, a
procedure is followed that tracks the calculations of he-
licity in other fields of physics (see for example Ref.[28]
of the main text).

It is critical that the dislocation ensemble is origi-
nally composed of non-touching prismatic loops in the

finite pillar volume. In the simulations described in the
manuscript, these loops are created by first picking ran-
domly any node of the finite element mesh, and then the
loop dimensions are picked by using a flat random dis-
tribution from the negative (positive) mesh side length
as minimum (maximum). As DDD proceeds, loops may
end on an open surface; such loops are assumed to close
(through the open surface) in a specific way that remains
the same throughout the simulation. For each pair of
non-touching loops ¢ and j, the procedure described in
Ref.[27] can be used to calculate the pair’s linking num-
ber. The linking number is calculated through the double

integral:
1 drj x dr;)r;;
%:7//£&%ﬁ& (SIV.1)
am Je, Je, Tij

where r; and ro are the points passing along the curves
C; and Cj, r1g = ry — 11, r12 = |r12|. More succinctly,

1
Lij = 471’/01 /Cj dQ(I‘i,I‘j)

(dr; xdr;)ry;
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(S-1V.2)

where Q(r;,r;) =

i

If the loops ¢, j are discretized onto polygons of N;, N;
segments, then

N;

z

1
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where Q; /47 is the Gauss integral along the segments
kU (e = i, Qir=0, Qpx4+1 = 0). Also, for a pair of
segments k,[ arbitrary oriented in space, one may apply
a pure geometrical approach:

If points 1 and 2 are the beginning and end of the first
segment ri» and points 3 and 4 are the beginning and
end of the second segment rs4, then the absolute value
of the Gauss integral multiplied by 47 is the solid angle
Q*:

M'=a+p+y+0—27 (S-Iv.4)

where «, (3, v and & are the angles of the quadrangle
shown in Fig. 1. The angles can be found by considering
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FIG. 2: Depositing & Testing Entanglement For
Various Discrete Dislocation Densities: Uniaxial
compression of sub-micron volumes. This is a
broken-down version of Fig.4(c-d) in the main text.
Every point corresponds to a uniaxial compression
simulation of distinct initial conditions at a target pg:
(po : {M: 1013 /m?2}, {»: 2 x 1013 /m?},

{44 x 103 /m?}, {a:8x 1013 /m?}, {v:10"/m?}).
In (a) and (b), an excerpt of the response of three
sample initial conditions are shown in detail to
demonstrate the major effect that heavily entangled
have on mechanical response. The loading stress o,, as
function of the applied axial zz strain e is shown in (a)
with solid symbols. The A configurational value as
function of the applied axial zz strain € is shown in (b)
with open symbols. Analogously, in (c) and (d), the
total and sessile dislocation density are respectively
shown. The sessile dislocation density increases roughly
linearly with Ay while yield stress quickly saturates. pg
values are given for the conditions used in (a-d):
({A:8 x 1012/m?}, {»: 10'3/m?}, {«: 2 x 10*3/m?}).

and then,
a =7/2 + arcsin(nyns) (S-1V.9)
B = 7/2 + arcsin(ngns) (S-IV.10)
v = m/2+ arcsin(nzny) (S-IV.11)
0 = m/2+ arcsin(ngny) (S-IV.12)
with
0" = arcsin(ning) + arcsin(nang)
+arcsin(ngng) + arcsin(ngn;) (S-IV.13)
Finally,
Q Q.
i Emgn((rzﬂ X I12)r13) (S-1v.14)

As the simulation continues, dislocation touching may

happen that can lead to junction formation. In our cal-
culation of A, we track its evolution and we follow the
rule that once a touching/junction takes place between
two loops, then the mutual linking number remains the
same as before the touching event, until they stop touch-
ing. It is worth pointing out that tracking of dislocation
loops does not stop at any stage of the simulation, even
if junctions are present (composed of segments of prior
defined dislocation loops).
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FIG. 3: Yield stress, ps.ss and A during uniaxial
compression of sub-micron volumes. Initial sessile
junction density is always zero. This is a broken-down
version of Fig.4(b) in the main text. By repeating the
process shown in Fig. 2, we collect (a) the yield stress
value oy (MPa units) and (b) the sessile dislocation
density, as averages in the range 0.1% and 0.2% strain,
and they are shown against the initial Ag. Each point
represents a completed simulation of uniaxial
compression of a 0.5pum-diameter pillar and aspect ratio
4. Every marker’s color/type signify a target po:

(po : {M: 1013 /m2}, {»: 2 x 1013 /m?},

{€: 4 x 108 /m?}, {a: 8 x 1013 /m?}, {v:101*/m?}).

V. MORE DETAILS ON NUMERICAL
CALCULATIONS AND FIGURES OF MAIN
TEXT

In the following, we discuss further details of the fig-
ures in the main text, breaking them down and provid-
ing a number of numerical factors needed for their re-
producibility. First, in Fig. 2, we show 3 cases of uni-
axial compression and their effect on A. A can grow
quickly during an avalanche, and this is seen through
three samples at different initial dislocation densities of
dipolar prismatic loops with symbols: ({A : 8x10'2/m?},
{»: 103 /m?}, {«: 2x10'3/m?}. In addition, as it is seen
in Fig. 2(a~d), as the loading stress decreases during an
avalanche and A increases, there is an associate increase
of the total and sessile dislocation densities. Neverthe-
less, the behavior of the sessile dislocation density ap-
pears highly correlated with the A response, even though
it is virtually impossible to identify analogous signatures
on either the loading stress or the total dislocation den-
sity.

In Fig. 3, we show statistics of the uniaxial compres-
sion yield stress and the sessile dislocation density at a



(b)

T T
0.00 0.02 0.04 0.06

O(rad)

(@

o
T I 1 I
0.02 0.04 0.06 0.08 0.10

O(rad)

0z, (MPa)
2 &
——

100

80—

60—

40—

20—

-

5

0 T T T
00 01 02 03

£(%)

0.0

I I
0.1 0.2 0.3 0.4 0.5

£(%)

@) 105 E

o

(b)
e
~ 10t
n 3
S 104
= ]
> 102
5 L
K 10% g 10°4
3 5]
E| Q 10!
100 —— T T T T T T T T
0 10 15 20 0 5 10 15 20
(©) Aa d No
1e13
10005 -~
| 2.0
T 8007 » S
Ay - ~ 1.5+
S 600 N ‘
N 2 -
= ~ Si480
> 400 @ie G SWAYN
5 4 w5 0 SHR
= 200 a 9@ ‘gﬁ;
SN H o ¢ &
T T \ — Q00
0 5 10 15 20

No

FIG. 4: Engineering Entanglement By
Controlling Prior Torsion Strains. This is a
broken-down version of Fig.5(c,d) in the main text. A
2-step protocol is followed where a dislocation loop
configuration at density po is prepared, and then: (a) a
torsional load is applied on top/bottom pillar surfaces
up to pre-chosen torsion angle 6y, and (c¢) uniaxial
compression is applied towards yield. Three samples,
distinguished by 6y (0.003, 0.03, 0.1)rad, and particular

initial conditions with, {po, 00} —>(>: (1013 /m?,0.1],

< [2%10%/m2,3 x 1073, & : [2 x 1013 /m?, 3 x 10—2]),

are shown for (a) Torsion T (filled symbols) and (b) A
(open symbols) vs. torsion angle 6 in the first step of
the process, and (c) subsequent loading stress o, (filled
symbols) and (d) A (open symbols) vs. axial strain € in
the second step.

prescribed strain value 0.4% with respect to the value
of Ag. Sample size is fixed at diameter 40006 ~ 0.5um
and aspect ratio 4. The yield stress is estimated through
an average of the stress values at a prescribed range of
strains (0.1%,0.2%). Given that dipolar prismatic loops
are initially distributed at random sizes, Ay displays a
dependence on the initial dislocation density pg. As the
initial dislocation density changes, Ay is modified as well.
As it is seen in Fig. 3(a), yield stress data for Ag < 2.0
display strong size dependence and stochasticity. In ad-
dition, the sessile dislocation density at strain 0.4% dis-
plays a linear increase with Agy. Also, it is worth noting
that Ag < 2.0 coincides with py < 5 x 10'3, given the
way of preparing the initial dislocation configuration. It
is seen that configurations with Ay > 2 display bulk-like
yield stress and high sessile dislocation density.

in Fig. 4, we show 3 cases of our 2-stage protocol that
may engineer high A, while starting from low dislocation
densities. Sample size is fixed at diameter 40006 ~ 0.5um
and aspect ratio 4. The 2-stage protocol is demonstrated
in the figure. A torsional load is applied on the top and

FIG. 5: Engineering Entanglement By
Controlling Prior Torsion Strains — Statistics.
This is a broken-down version of Fig.5(b) in the main

text. (a) or (c): Yield stress (filled symbols) vs. Ay and
(a) or (c): sessile dislocation density (open symbols) at
the yield point for a variety of initial conditions and
torsions pg € (5 x 10'2,2 x 10'4) and T € {1075,0.1}.
(a) and (b) are in the log scale, demonstrating outlier
points at small Ay, while (c) and (d) are in linear scale
(as in the main text).

bottom surfaces of the samples until a prescribed tor-
sional angle 6. In Fig. 4, the torsional angle for the three
cases is 0.003 rad, 0.03 rad and 0.1 rad for left-pointing
triangles, top-pointing triangles and right-pointing trian-
gles respectively. As shown in Fig. 4(a), the torsional load
increases linearly with the torsional angle until the target
torsional angle. As shown in Fig. 4(b), A grows quickly at
the torsional angle. While torsional angle remains fixed,
the second stage of the protocol involves uniaxial com-
pression along the pillar axis, and the loading stress o,
is shown in Fig. 4(¢). During uniaxial loading, A grows
quickly as the loading strain increases beyond 0.2%.

In Fig. 5, we show statistics of the effective yield stress
(including the torsional load) and the sessile dislocation
density at a prescribed strain value 0.4% with respect to
the value of Ay at the start of the uniaxial compression,
just after torsion is completed. Sample size is fixed at
diameter 40000 ~ 0.5pum and aspect ratio 4. The yield
stress is estimated through an average of the stress val-
ues at a prescribed range of strains (0.1%,0.2%). Both
in (a), (b) linear and (c), (d) log scales, the effective
yield stress displays a fast saturation with Ay, while the
sessile dislocation density linearly increases. The simi-
larity of the behavior with the one shown in Fig. 3 is
striking, pointing again to a critical A. ~ 2, even though
the generation of topological entanglement is drastically
different. Configurations with Ay > 2 display bulk-like
yield stress and high sessile dislocation density.

In Fig. 6, we show sample initial dislocation configura-
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FIG. 6: Relatively sized images of initial
dislocation configurations at various widths with
small A. The cases are for (a): w = 0.5um,
po=2x103/m? (b): w= 1lum, py =5 x 102 /m?,
(c): w=2um, pg = 1.2 x 102/m? (d): w = 4um,
po = 3.1 x 10 /m? (e): w = 8um, py = 10! /m?
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FIG. 7: Equally-sized images of initial dislocation
configurations at various widths with small A.
The cases are for (a): w = 0.5um, py = 2 x 10'3/m?,

(b): w = 1pm, pg =5 x 102/m?, (¢): w = 2um,

po=12x102/m? (d): w = 4um, py = 3.1 x 10 /m?

(e): w=8um, py = 101 /m?

tions that have Ag < 2 collectively, at all the system sizes
studied in this work, also keeping a relative size differ-

ence to demonstrate the simulation’s difference. The pil-
lar diameters from left to right increase from w = 0.5um
to w = 1.0um, w = 2.0um, w = 4.0pm, w = 8.0um.
The upper row shows the initial dislocation configuration,
while the lower row shows the configurational evolution

(a) (b) (c) (@) (e)

w=05um w=1pm w=2um w=4pum w=8 um

FIG. 8: Equally-sized images of initial dislocation
configurations at various widths with large A.
The cases are for (a): w = 0.5um, pg = 4 x 1013 /m?2,

(b): w = 1um, pg =2 x 1013 /m?, (c): w = 2um,
po =2x 101 /m? (d): w = 4um, py = 2 x 1013/m? (e):
w = 8um, py = 2 x 103 /m?

after 1000 loading steps at 103/s.

In Fig. 7, we show sample initial dislocation configura-
tions that have Ag < 2 collectively, at all the system sizes
studied in this work, while keeping the sample size intact
and making the dislocation lines visible in each case by
thickening them. It is important to notice that disloca-
tion lines have a core size that should become relatively
less visible in larger samples. The pillar diameters and
configurations are the same as Fig. 6.

In Fig. 6, we show sample initial dislocation config-
urations that have Ag > 3 collectively, at all the sys-
tem sizes studied in this work, also keeping the sam-
ple sizes identical for better configurational visibility.
The pillar diameters from left to right increase from
w = 0.5um to w = 1.0um, w = 2.0um, w = 4.0um,
w = 8.0um. The upper row shows the initial dislocation
configuration, while the lower row shows the configura-
tional evolution after 1000 loading steps at 10710 /p(1!!).
The initial Ag from left to right in these configurations
ist Ag(w = 0.5um) = 6.0, Ag(w = 1.0um) = 13.5,
Ao(w = 2.0um) = 775, Ag(w = 4.0um) = 603.75,
Ao(w = 8um) = 128.0.



