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Inelastic mechanical responses in solids, such as plasticity, damage and crack initiation, are typ-
ically modeled in constitutive ways that display microstructural and loading dependence. Never-
theless, linear elasticity at infinitesimal deformations is used for microstructural properties. We
demonstrate a framework that builds on sequences of microstructural images to develop fingerprints
of inelastic tendencies, and then use them for data-rich predictions of mechanical responses up to
failure. In analogy to common fingerprints, we show that these two-dimensional instability-precursor
signatures may be used to reconstruct the full mechanical response of unknown sample microstruc-
tures; this feat is achieved by reconstructing appropriate average behaviors with the assistance of
a deep convolutional neural network that is fine-tuned for image recognition. We demonstrate ba-
sic aspects of microstructural fingerprinting in a toy model of dislocation plasticity and then, we
illustrate the method’s scalability and robustness in phase field simulations of model binary alloys
under mode-I fracture loading.

A. Introduction

A critical bottleneck in the systematic material dis-
covery, optimization and deployment is the lack of con-
sistent and robust microstructure-property relationships
that hold across environmental conditions and material
classes. A major reason for this deficiency lies in the fact
that the inelastic mechanical response of solids does not
always originate in visible defects of the microstructure,
but requires additional dynamical insights, not always
accessible or/and comprehensible [1].

Consequently, available modeling approaches for me-
chanical applications, such as discrete or continuum mod-
els of molecular or continuum microstructural dynam-
ics [1–3] require robust and multi-scale physical under-
standing and associated constitutive laws, with applica-
bility in technology-relevant extreme conditions, such as
high temperatures, pressures and strain-rates. In con-
trast, in a very wide range of mechanical applications
in solids at infinitesimal deformations (ie. less than 2%
strain), elastic moduli are found to be consistent and ro-
bust, defining critical aspects of material behavior [4, 5].
Moreover, the so-called deformation superposition prin-
ciple [6], stating that elastic deformations may be super-
posed to deformations of other origin (plastic, damage),
has led to the development of consistent defect theories
and methods (eg. dislocation mechanics) [1, 7].

In this paper, we propose that small-deformation total
strain image sequences (up to 2% strain), readily pro-
duced experimentally [8], may be used as input towards
calculating “microstructural fingerprints” in the form of
dynamical modes of inelasticity, which we label as Elastic
Instability Modes (EIM). EIMs are produced by analyz-
ing surface strain image sequences on a loaded sample,
and consist of physically predominant perturbations to
the elastic mechanical response. EIMs may be considered

as a dimensional hyper-reduction of the surface strain im-
age sequence towards a characteristic image that captures
the surface strain evolution under loading. We develop
the theory for the calculation of EIMs from image se-
quences, and we demonstrate it for monotonic loading,
in a toy model of dislocation plasticity, as well as a re-
alistic phase-field model of damage and fracture. While
the primary tool for calculating EIMs is Singular Value
Decomposition (SVD) which has been used extensively
in the past for analyzing strain information [9], the tech-
nique is used in this work for unveiling critical instability
dynamical features. Finally, we demonstrate that the
combination of these microstructural fingerprints with
deep convolutional neural networks (that can be used to
classify and distinguish EIMs) can lead to detailed me-
chanical response predictions for unknown microstruc-
tures and samples. In this way, we display a robust pro-
tocol for the characterization and understanding of un-
known microstructures, using only inexpensive, surface
data at small deformations, that may be produced only
once. Nonetheless, the method requires also the pres-
ence of complete library data that may be rather costly
to produce, especially in the case of arbitrary loading
paths that may lead to plasticity and fracture. The over-
all approach is labeled as “Stability of Elasticity Anal-
ysis” (SEA) (see Fig. 1) and may complement available
multiscale microstructural modeling approaches [1].

The role of SEA is two-fold: First, to characterize in
a concrete way the progression of local mechanical insta-
bilities in a material by the understanding of EIMs in ex-
periments and modeling. Second, to store EIMs as clas-
sification tools in a data library, labeled as libΨ, together
with any tested mechanical responses of interest (eg. uni-
axial loading data at 30% strain), and then use them as
microstructural “fingerprints” for producing mechanical
predictions by reconstructing them through deep convo-
lutional neural networks (dCNN) [10]. The use of dCNNs
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FIG. 1. Process diagram of main steps towards equation-free prediction for plasticity and damage. The field φ

typically is a strain field, invariant under frame rotations, that can be accurately measured through image correlation techniques.
The applied strain ǫ corresponds to the externally-controlled loading steps.

is not SEA’s requirement, but may be ideal for physically
permissible input data superpositions. For example, as
shown by Li et al. [11], one could alternatively build anal-
ogous predictions by using material databases of mecha-
nistic equations instead of input data superpositions, and
unsupervised learning instead of supervised CNNs.

The usefulness of SEA lies in the development of ma-
terial design strategies [5]. In the large multidimensional
parameter space of possible compositions and loading
conditions, a natural bottleneck has been the consistent
prediction of mechanical behaviors of new compounds by
testing single-dimensional parameter lines. A multitude
of data science [12] and machine learning [13–18] ap-
proaches have been recently proposed for materials and
mechanics [11, 19–22]. In particular, image recognition
methods have been efficiently used for the identification
of “flaws” in materials and structures [23–27], and work
remarkably well when the flaw’s mechanical effects are
well understood [28–30]. In this context, SEA aims to
complement these efforts with physical insights and un-
derstanding into promoting studies and predictions with
direct experimental connections. This method tack-
les one of the biggest issues in data-driven strategies: the
computational cost of doing nonlinear simulations to cre-
ate enough data that may be used by machine learning;
SEA’s focus on the use of small-strain information, and
avoiding large strains, promotes one the strongest points
in favor of a strategy as presented by this work, or al-
ternative dimensional reduction strategies [11, 20]. Nev-
ertheless, it is important to notice that a major limiting

factor of the approach is the available size for library
storage of EIM high resolution images for each and every
microstructural class and variable loading paths.

The physical key to the dimensional hyper-reduction
method presented in this work is the understanding that
in many practical situations, solids can be considered
as initially stable elastic media that are then, mechan-
ically loaded. If the loading scale is perceived as time
(ie. assuming that viscous solid effects are negligible [31]),
then this problem can be phrased in the context of non-
linear dynamical systems [32]: A loaded solid can be
thought of near a stable fixed point, that of elasticity. In
general, an N -dimensional non-linear dynamical system
consists of a list of variables xi(t) i = 1, 2, · · · , N , their
dynamics ẋi = fi(x), and their initial conditions xi(0) =
x0 = 0. In such systems, the characterization of a fixed
point (ie. fi(x0) = 0) is controlled by the growth rates of
generic perturbations which are given by the spectrum of
Lyapunov exponents (LE) [33–36] {λ1, λ2, . . . , λn} . LEs
are the real parts of the eigenvalues of theN×N Jacobian

matrix J ≡ Jij(t) =
dfi(x)
dxj

∣

∣

∣

x(t)
, which provides the fixed-

point dynamical evolution Ẋ = JX where X = {xi}.
Away from the stable elasticity fixed point, a solid may
be unstable to necking, buckling, plasticity, crack initia-
tion, damage [6], and while these instabilities do not need
to be elastic in origin, they always do have an elastic foot-
print which may be identifiable at small loads. It is use-
ful to consider these instabilities of elasticity as spatially
dependent bifurcations [37–39] that could be captured
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by identifying the system’s predominant LEs. In gen-
eral, the complete dynamical characterization possibly
requires the investigation of variable loading paths and
the associated LEs. While this work will not address how
to efficiently include complex variable loading paths such
as cyclic plasticity, it is worth noting that there are ana-
lytically tractable elastic instability models [40, 41], that
point towards only two independent loading paths being
required for a complete dynamical characterization.

In practical situations, LEs’ calculation is numerical,
with various available approaches [42–49]. However, it
has been difficult to achieve significant accuracy with
limited experimental data. In this work, we propose
a method that is efficient and focuses on the predom-
inant LEs of this loading evolution. In what follows,
we present the general framework of SEA in Section B.
Then, we demonstrate examples of monotonic loading:
First, we show how SEA works in an exactly solvable
toy example of edge dislocation gliding and nucleation
in Section C. Then, in Section D, we explore its appli-
cability in a model binary alloy that is simulated using
phase-field modeling for elasticity, plasticity and damage
in a quite realistic scenario. Finally, in Section E, we
demonstrate how to use dCNNs for mechanical predic-
tions of fracture, based on the classification and under-
standing of microstructural fingerprint EIMs, for a sim-
ple model with a single inclusion that can be located at
multiple locations and can have a shape of a disk or an
ellipsoid. In Section F we demonstrate how to use dC-
NNs for mechanical predictions of fracture, based on the
classification and understanding of microstructural fin-
gerprint EIMs, for the model binary alloy of Section D.
We conclude with a discussion of future plans and mod-
eling/experimentation applications in Section G.

B. General framework of microstructural
fingerprinting based on inelastic signatures

The core principle behind this work lies in the ability
to characterize defected microstructures in terms of the
elastic fields generated when small, consecutive loads are
applied on them. This principle has been traditionally
used towards qualitative insights and understanding of
mechanical failure in materials. Possible examples could
be the insightful calculation of size effects in notched and
disordered specimens [50] [51] or the elastic fields around
dislocations [52] that may influence various mechanical
properties [53], especially at small scales [54].

Here, without loss of generality, we consider a scalar
field φ̃ǫ(r) at applied strain ǫ(t), that will represent an ob-
servable field of interest on N2 possible surface locations
(φǫ

j), assumed to have a spatial resolution down to a char-
acteristic scale that defines a square N×N grid [55], con-
trolled either by practical means (eg. image/camera res-
olution) or theoretical ones (eg. interatomic distances).

The field φ̃ǫ may either be a direct elastic field, such as
elastic strain or stress, or a field that is strongly corre-

lated to elastic fields, such as the plastic distortion or
damage [56]. In this paper, we will be focusing on φ̃ be-
ing either the first strain invariant Iǫ = εxx + εyy + εzz
or the damage field d, which is defined through the par-

ent material’s elasticity properties d =
√

1− Cijkl/C0
ijkl

with C0 corresponding to the undamaged elastic coeffi-
cients [57].
Assuming the loading of a sample location through an

imposed strain profile ǫ(t), then φ̃’s evolution infinitesi-
mally away from the initially elastic fixed point ought to
resemble the equation:

dΦ̃

dt
= C (1)

where Φ̃ = {φ̃ǫ
j}, and C represents a function of the

elastic coefficients. As loading progresses, it is natural
to assume a generic leading-order perturbation JΦ̃ to
the right side of Eq. 1, with J a N2 × N2 matrix. If
one also proceeds with subtracting the mean response
φ ≡ φ̃− Ct [58], then one has the normal form:

dΦ

dt
= JΦ , (2)

where J is typically an unknown matrix. J is a matrix
that controls the most singular LEs. Analogous consid-
erations may be made for other observables such as dam-
age, stress or strain fields.
The pursuit in understanding instabilities of elasticity

requires the precise identification of J (see also Fig. 1).
J is understood for exactly solvable cases, such as a dis-
location pile-up at a precipitate under shear, an ellip-
tical notch under lateral load, or an Eshelby inclusion
in an elastic matrix [6]: It can be directly shown that
J captures the long-range stress changes during sub-
tle movements of inelastic defects (dislocations/micro-
cracks/damage/inclusions). [2, 6]. Here, we develop an
automatic framework (SEA) that calculates instability
growth exponents and eigenmodes Ψ of Eq. 2. SEA iden-
tifies elastic instability modes (EIM) Ψ through spatially
resolved in-situ image sequences, which solve the eigen-
problem of Eq. 2 in a least-squares sense. The set of
modesΨ of a sample may be considered as its microstruc-
tural fingerprints for mechanical behavior.
The method of calculating SEA modes is principally

based on the hypothesis of small residual deformations
around the hyperbolic equilibrium fixed point of elasticity
when samples are unloaded, so that analytic expansion
becomes possible:

dΦ

dt
≃ Φt=0 +D(Φ)t (3)

where D ≡ J is the Jacobian of the fixed point dynam-
ics.
The numerical estimation of modes that solve Eq. 2

proceeds by identifying a sequence of images at T con-
secutive equidistant strains ǫ0, ǫ1, ǫ2, · · · , ǫn · · · ǫt, with
∆ǫ ≡ ǫ2 − ǫ1. The testing strain ǫt is assumed to be less
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than 2% and defines the maximum deformation imposed
on a sample for SEA testing and identification purposes.
In the case of equidistant strains in the sequence, Eq. 2
may be rewritten in its discrete form:

Φn+1 = J̃Φn (4)

with J̃ ≡ J∆ǫ + I. Then, the predominant EIMs may
be identified by solving Eq. 4 for J̃ by using the Arnoldi
algorithm [59]. Field φ [T×N2]-dimensional matrices are
defined, where rows define time/strain evolution while
columns define spatial locations:

X = {φǫ0
j , φǫ1

j · · ·φǫn
j · · ·φ

ǫt−1

j } (5)

and

Y = {φǫ1
j , φǫ2

j · · ·φ
ǫn+1

j · · ·φǫt
j }. (6)

Then, the optimal solution for J̃ is [32, 48, 59, 60]

J̃N = YX
† (7)

where X
† is the Moore-Penrose pseudo-inverse of X.

The numerically identified operator J̃N is the least-
squares/minimum-norm solution to the potentially over

or under-constrained problem J̃X = Y. That is, the
choice JN minimizes the Frobenius norm ||J̃NX − Y||.

The eigenvectors and eigenvalues of J̃N can be calculated
exactly through an exact diagonalization [61]. Neverthe-
less, given the possibility of memory issues, one would be
primarily interested only on the most predominant eigen-
values and eigenmodes that correspond to the predomi-
nant perturbations to elasticity. The most predominant
eigenvalues and eigenmodes may be estimated by taking
the reduced Singular Value Decomposition (SVD) of X:

X = UΣV
∗ (8)

where U ∈ C
N2×r, Σ ∈ C

r×r and V ∈ C
T×r with r the

rank of X. In this work, we maintain r = 8. Clearly, the
singular value amplitudes ςj of the SVD modes capture
the variability in the microstructural evolution, as it is
seen through the spatial correlations of the Φ-field. The
eigen-decomposition of U∗

YVΣ
−1 can be then exactly

calculated, giving a set of eigenvectors w and eigenvalues
µ. Then, the operator J̃ has eigenvalues µ and eigenvec-
tors

Ψ =
1

λ
YVΣ

−1
w (9)

labeled as EIMs. This low-rank approximation of eigen-
values and eigenvectors of J allows for the approximate
reconstruction of the time evolution as:

φ̃(ǫ) =
r

∑

k=1

bk(0)ψk(ǫ)e
lnµkǫ/∆ǫ (10)

with the coefficients bk(0) characterize the initial condi-
tion φ0 and b = Ψ

†φ0. The quantity λk ≡ lnµk/∆ǫ has
a real part, which if larger than 0 signifies a finite insta-

bility growth rate, dominated by mode k. An imaginary
part signifies additional oscillatory response.

The resolution scale of the φ-field shall be at the char-
acteristic scale of the elastic fluctuations (eg. at the scale
of a Representative Volume Element (RVE)) [1] and thus,
the dimensions of J are necessarily finite.

The analogy of eigenmodes Ψ to fingerprints is insight-
ful: The sought experimentally relevant strain deforma-
tion data sets [8]are typically two-dimensional (2D) and
only capture small surface strains. However, in the same
way that 3D humans are being recognized by 2D finger-
prints, it is quite plausible that material microstructures
may be recognizable by the load-dependent elastic defect
signatures in the small strain regime.

Here, SVD is used for dimensional reduction purposes
and not to reconstruct the actual dynamics of the sys-
tem. The identification of the appropriate mechanical
responses is done through the use of a neural network,
but there is no explicit or implicit reconstruction of the
dynamics (which obviously is difficult). In that sense,
this work differs significantly from Liu et al.’s work [20].
Clearly, it is possible to construct a predictive algorithm
of the actual microstructural dynamics through a scheme
like in Ref. [20]. However, this lies beyond the purpose
of the current work.

C. Microstructural fingerprints for a toy model of
dislocation dynamics

In order to demonstrate how microstructural finger-
printing applies in crystal plasticity, we consider a toy
example of edge dislocation dynamics. We consider the
case of a single slip system, with cores along the z-axis

and the Burgers’ vector in the positive x-direction,~b = bx̂
with dislocations solely gliding under shear stress along
the x-direction [62–65]. Here, we consider a periodic sys-
tem of size N×N (N = 40b), with only two dislocations,
which may either be i) pinned at obstacles, i) glide in the
same direction or ii) nucleate as a positive-negative dis-
location pair at a location r0 = (x0, y0). This model is
exactly solvable, and provides a way to understand the
basic character of the calculations we are considering.

Dislocation motion is assumed to be overdamped, so
equation of motion of discrete dislocations can be written
as:

ẋi(t) = si



τext +
N
∑

j=1,j 6=i

sjτind(ri − rj)



 ; ẏi(t) = 0,

(11)
where τext is the externally applied shear stress and τind
denotes the stress field of an individual positive (si = +1)
dislocation. The latter is calculated for periodic systems
by considering an infinite amount of image dislocations
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FIG. 2. Microstructural Fingerprinting in a Toy Model
of Plasticity: (a) Strain ε(t) follows a non-linear evolution,
controlled by the increase of stress. Two same-sign edge dislo-
cations are pinned at respective obstacles in A, are depinned
in B, and glide along their slip-plane along the x-direction in
C. Insets A, B, C display the corresponding strain invariant
images discussed in text. Hyper-reduction leads to well de-
fined modes, the most dominant of which is shown in (c). This
solution is analytically confirmed. Analogously, (b, d, f) cor-
respond to the case of dislocation pair nucleation at a specific
location (opposite-signed dislocations). Notice the character-
istic difference between the calculated modes. The differences
are explained in the text.

both in the x and y directions:

τind(x, y) =
∞
∑

i,j=−∞

τ ibcind(x− iN, y − jN), (12)

where

τ ibcind(x, y) =
x(x2 − y2)

(x2 + y2)2
(13)

is the solution for infinite boundary conditions [52]. The
equation of motion (11) is solved by a 4.5th order Runge-
Kutta scheme.

Analytically, for an independent dislocation at (0,0),
and given D = Gb/(2π(1 − ν)) one has, σxx =

−Dy 3x2+y2

(x2+y2)2 , σyy = Dy x2−y2

(x2+y2)2 , σzz = ν · (σxx + σyy),

and the dislocation pressure is:

p =
σxx + σyy + σzz

3
=

2(1 + ν)D

3

y

x2 + y2
=

=
(1 + ν)Gb

3π(1− ν)

y

x2 + y2
(14)

If one tracks the strain components of this 2D system,
then the first strain invariant of an edge dislocation is
just, Iǫ(r) =

∑

i ǫii(r). Since ǫzz = 0 in a 2D system
dominated by edge dislocations, then we can use the fact
that for isotropic solids we have σzz = 2Gǫzz + λ

∑

i ǫii
(with λ = 2

1−2νG), thus giving:

I+ǫ (r) =
1

λ
σzz = −b

(1− 2ν)ν

2π(1− ν)

y

x2 + y2
(15)

where + denotes the result for a positive dislocation (~b =
bx̂).
For a dislocation pinned at an obstacle that starts glid-

ing after the external stress increases beyond a threshold
σthr in a non-linear, but differentiable manner (so that
ǫ(t) = f(t)), it is straightforward to estimate the evolu-
tion of the strain invariant I±ǫ (r):

dI±ǫ (r)

dt
= ∓

2f ′(t)(x− x0 + f(t))

(y − y0)2 + (x− x0 + f(t))2
Iǫ(r) (16)

Given the simplicity of the problem, the J̃ operator is di-
agonal, thus it is straightforward to infer its properties.
It is worth noting that it is non-zero only when disloca-
tions are in motion, and it has a characteristic left-right
asymmetry, with respect to the original pinning point lo-
cation. For a negative dislocation [52], from Eq. 16, J̃ is
exactly negative, leading to a very drastic difference in
the fingerprint of a nucleating dislocation pair compared
to a pair of gliding dislocations (cf. Fig. 2).
SEA manifests its usefulness in identifying distinguish-

able signatures of characteristic events (dislocation glide
vs. pair nucleation) through a parameter-free, experi-
mentally tractable and automatic manner.

D. Microstructural Fingerprints and Data-Rich
Predictions: Plasticity and Damage in a Model

Binary Alloy

While toy examples are insightful in showing the origin
and potential usefulness of SEA, it is natural to inquire
its applicability in realistic situations where plasticity,
damage, as well as fracture are plausible instabilities. In
such complex cases, there are strong spatial and tempo-
ral correlations that make analytical calculations of the
J matrix impossible. However, SEA may efficiently esti-
mate the predominant EIMs in numerical fashion.
To explicitly illustrate the method, we consider an ex-

emplary test case [6, 50, 57, 66] by laterally loading a
notched thin-film specimen in contact with air in the
horizontal direction, with sample dimensions: 0.25cm2
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(b) (c) (d) (e)(a)

FIG. 3. Model binary alloy demonstration & modeling: Two-phase material of FCC crystalline structure, that can
deform plastically and has brittle fracture characteristics. (a) Texture of notched specimen with 30 inclusions of length 240µ m.
Arrows point the loading direction. (b) Phase field of damage 〈d〉 across the sample at a late deformation stage, (c) Uniaxial
stress snapshot along the loading axis at an early deformation stage, (d) Uniaxial strain along the loading z axis at a late
deformation stage (same as in (b)), (e) Evolution of stress and damage field vs. imposed loading strain. Thick lines indicate
the testing strain (see text).

FIG. 4. Demonstration of Single-Sample Mode (SSM) Identification & Prediction using φ ≡ 1 − d. (a) Selected
(3) EIMs emerging from considering the consecutive damage images until close to failure. (b) real and imaginary parts of lnλk

for each kept k-mode. (c) Singular value ςj for the j-th SVD-mode. (d) Predicted damage evolution snapshots using only the
identified modes.

and a resolution at 40µm in the loading direction, 20µm
the horizontal, and 40µm in thickness – RVE’s size
(20×40×40µm3)).The notch facilitates crack growth and
it has width 0.15mm and height 0.3mm, with an ellipti-
cal shape. The crystalline structure of the matrix mate-
rial is FCC, with elastic coefficients of the material are

Czz = 150GPa, Czy = 120GPa, Cxx = 80GPa (with
x being the film thickness direction). The importance
of this example is that its dimensions can be efficiently
achieved by current experimentation procedures [8]. The
sample also contains needle-like inclusions with width
80µm and fixed length that could be either 80, 160, 240,
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FIG. 5. Demonstration of Single-Sample Mode (SSM) Identification & Prediction using φ ≡ I
(ǫ)
1 . (a) Selected (3)

EIMs emerging from considering the consecutive damage images until close to failure. (b) real and imaginary parts of lnλk

for each kept k-mode. (c) Singular value ςj for the j-th SVD-mode. (d) Predicted damage evolution snapshots using only the
identified modes.

320 µm with FCC crystalline structure but distinct ma-
terial properties (Cincl

zz = 180GPa) from the matrix and
there is also imposed microscale damage at the inclusion
tips. The inclusions are placed randomly in the sample
and their number can be either 0, 2, 5, 10, 15, 20, 25, 30,
leading to total 32 possible microstructures (a texture is
shown in Fig. 3(a)). Cases of different microstructures
can be thought of as binary alloys with different aging
conditions or compositions. Cases of different initial re-
alizations can be thought of different samples at the same
nominal composition and processing history.

We utilize a phase field model [67] in the continuum to
solve for material deformation due to elasticity, plasticity
and damage evolution within the sample. Details of the
model’s hardening and damage dynamics can be found
in Refs. [57, 66]. In summary, the model captures finite
deformations in a cubic grid, which are used to calculate
constitutively plastic distortion rates along all 12 FCC
slip systems, as well as damage evolution. The model is
solved using a spectral approach which promotes numer-
ical stability for highly disordered microstructures [66].
As shown characteristically in Fig. 3, the model pre-
dicts the damage of the sample due to a noisy crack
that emanates from the notch and the sharp inclusion
tips. In the model, fracture takes place at a loading
stress ∼ 100MPa, controlled by both Linear Elastic Frac-
ture Mechanics [68], as well as quasi-brittle fracture in-

duced by the inclusions [50, 66]. Damage/stress/strain
profiles generated in our simulations (Fig. 3(b-d)) can
be easily resembled to profiles that may be generated
by Digital Image Correlation (DIC) techniques [8]. For
the implementation of SEA, we consider as φ fields, the
phase-field damage field d and the first strain invariant
Iǫ1 ≡ ǫxx+ ǫyy+ ǫzz. An important parameter is the test-
ing strain ǫt, which is set at 0.04% strain in the example
of Fig. 3 but it is varied from 0 to 0.07%.

If SEA is applied on the data shown in Fig. 3, then
EIMs can be estimated. The results for φ ≡ d are shown
in Figs. 4(a), while the results for φ ≡ Iǫ1 are shown in
Figs. 5(a), using ǫt = 0.07% and 30 inclusions of length
240µm. As one can see in Figs. 4(b), 5(b), the modes
have eigenvalues µ that denote positive LEs (Re(µ) > 1),
while they also have an oscillating component. Charac-
teristically, though, the strain deformation is primarily
dominated by one mode (cf. Figs. 4(c), 5(c)) which essen-
tially corresponds to the damage instability at the notch
location.

By using the EIMs’ information, one may try to
partially reconstruct the damage evolution in the sam-
ple (cf. Fig. 4(d)) or the strain-invariant evolution
(cf. Fig. 5(d)). This reconstruction consists of the Sin-
gle Sample Mode (SSM) prediction (cf. Eq. 10), that is
promoted by considering the formal mode expansion into
modes and then extrapolating the modes into the future,
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as in any non-linear dynamical system [32, 69]. The SSM
is able to capture the incipient instability, even though
equation-free predictions of average quantities typically
miss the details of the true response (for example, com-
pare Fig. 4(d) with Fig. 3(b)). This is naturally ex-
pected for investigations of precursors in bifurcation dy-
namics [39]. Nevertheless, it is quite promising that the 8
captured EIMs can predict the onset of damage and pro-
vide a simplified damage evolution. This is a signature
of EIMs being appropriate microstructural fingerprints of
the structural response.

The main idea behind microstructural fingerprinting
is that the EIMs (irrespective of which φ-field they are
based on) may be directly compared to any superposition
of other modes Ψi that have been similarly calculated
from other microstructures. The EIMs Ψi are stored
in the library libΨ, together with all tested mechani-
cal responses for the sample in question (φi = Hi(ǫ))
(cf. Fig. 1). In principle, eigen-decomposition of Ψ0

allows for the existence of probability weights wi that
should satisfy: Ψ0 =

∑

wiΨi [61]. Then, we conjecture
that if all other pre-existing library samples have been
tested to failure, then we also have that,

〈φ0〉 =

Ns
∑

i=1

wiHi(ǫ) (17)

Namely, various different microstructures, tested at
total strain ǫ0 ≤ 2% with identical boundary condi-
tions may exactly model the mechanical response of an
unknown microstructure, using appropriately weighted
sums. For making accurate, data-rich predictions of dam-
age and plasticity we utilize a library of EIMs Ψi and
complete responses up to failure Hi(ǫ). Major under-
standing of elastic instabilities originates in the funda-
mental works by Eshelby [70]. Here, we propose a sys-
tematic capture of a scalable set of defects in a consis-
tently tracked manner that extend those studies and un-
derstanding. Thus, it is assumed that r modesΨi ≡ {ψj}
for j ∈ [1, r] are precisely known for sample i that
were previously tested up to complete failure for de-
sired loading conditions, each providing a functional form
φi = Hi(ǫ) where φi denotes the loading response of in-
terest (σ, τ , etc.) while ǫ provides the loading probe of
interest (eg. loading strain in a particular direction).

E. Deep Convolutional Neural Networks and
General Framework For Using Microstructural

Fingerprinting Towards Mechanical Predictions Up
to Failure For a Single Inclusion Model

The application of the SEA method for prediction pur-
poses in models of plasticity and damage requires distinct
steps that follow the flow of Fig.1): a. Multiple Tests
and Data Collection for each microstructural class (su-
pervised learning), b. Data reduction to SEA modes, c.
Selection of predominant SEA modes as microstructural

(a) (b)

(f)(e)(d)

(c)

(g) (h)

FIG. 6. Single Inclusion Example of Microstructural
Predictions With Discrete Class Possibilities: (a,d)
Texture of possible samples include a single inclusion of two
shapes and three possible locations in a two dimensional pe-
riodic profile of 128x128 microstructural nodes. (b,e) Sim-
ulation of loading along the vertical direction leads to char-
acteristic strain profiles (0.1% shown), (c,f) SEA application
for strain profiles up to 0.008% strain leads to the dominant
SEA mode having a characteristic profile that defines the mi-
crostructure, (g,h) SEA modes are used by the dCNN to pre-
dict the response of a test ellipsoid microstructure for the
stress (g) and damage (h) response of the tested microstruc-
ture until failure. Solid lines show predictions while points
show the actual test response.

fingerprints for each class, d. Storage of the responses of
each class into the library libΨ, that may include any
responses known for the particular known samples, e.
Training of a dCNN using the SEA modes selected in (c),
f. Prediction of weights for developing statistical predic-
tions (see Fig.1), d. Estimate of predicted response for
unknown samples using Eq. 17. In the following, we de-
scribe the basic steps and their integration for a single
inclusion model.

1. Data Collection

In order to demonstrate the approach described in
Fig.1, we first utilize a relatively simple model of quasi-
two dimensional microstructures that are periodic in
both directions (resembling bulk) and only a single elas-
tic inclusion is considered. While the matrix is assumed
to have the same elasticity/plasticity/damage properties
as those described in Section D, the elastic inclusion dif-
fers in the elastic moduli being 10% larger. We allow also
only for a discrete set of options for the location (3 differ-
ent ones) and shape (disks, ellipsoids of fixed diameter of
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50µm) of the inclusion. In this way, the maximum num-
ber of possible classes is 6. While one could classify every
different inclusion location and shape, it is also possible
to just classify in terms of the inclusion shape (ellipsoid
or disk), constraining the number of classes in only 2. In
the following, we use the latter classification. For each
inclusion location and shape, 5 different samples are pro-
duced, with a total of 30 samples tested. Each sample
contains 128x128 nodes, and a complete simulation re-
quired approximately 3 hours. A characteristic image of
the strain norm on the image at 0.1% strain is shown in
Fig. 6(b,e).

2. Dimensional Hyper-Reduction

The first step in the SEA method presented in Fig.1
is the generation of characteristic eigenmodes by solv-
ing Eq. 2, that shall represent microstructural finger-
prints. In this case, we utilize the Frobenius strain norm
ǫ(x) =

∑9
i=1

∑9
j=i ǫ

2
ij as the tracked quantity (profiles

are shown in Fig. 6(b,e)). For the estimation of SEA
eigenmodes, we utilize the method in Sec. B until the
loading strain reaches ε = 0.08% strain along the verti-
cal loading direction. The dominant eigenmode (in terms
of its singular value s (see Fig. 2 for an example)) is con-
sidered as the microstructural fingerprint and the profile
(see examples in Fig. 6(c,f)) characterizes the microstruc-
ture towards predictions using the dCNN. For the appli-
cation discussed in Fig. 6, each 128x128 fingerprint image
is produced in less than 2 minutes on a single computing
processing core. The microstructural fingerprint can be
thought of a residual, dominant contribution to the mi-
crostructural eigenstrains, if the sample is unloaded [53].

3. Library Storage

For every sample produced in the training stage, SEA
modes are stored as images (see Fig. 6c,f), but also me-
chanical responses of various observables are stored as
timeseries text files (see Fig. 6g,h) or images in libΨ.
Each sample response is stored as a training member
of the particular class it belongs to which needs to be
decided in the step of dimensional hyper-reduction. In
the application discussed in this section (see Fig. 6), two
classes (disks/ellipsoids) are defined. For each class, an
average response is defined for each observable which may
be used for predictive purposes.

4. Deep Convolutional Neural Network

For promoting predictions, Eq. 17 will be used. The
identification of probability weights wi requires a projec-
tion of the library EIMs on the new EIMΨ0. For estimat-
ing the probability weights wi, we utilize a dCNN. The

implementation is straight-forward in that mode identi-
fication is treated as a face-recognition problem. While
there are multiple approaches towards identifying appro-
priate mode projections on the emerging basis [71], we
find that dCNNs are efficient and robust. CNNs were
originally suggested for handling two dimensional inputs
(e.g. image), in which features learning were achieved
by stacking convolutional layers and pooling layers.[72]
dCNNs (dCNN) were introduced [10], for improving per-
formance in image recognition. CNNs and dCNNs are
well fit for automated defect identification in surface in-
tegration inspection, and their optimization is based on
backpropagation and stochastic gradient descent algo-
rithms. [23–26] We apply a standard deep convolutional
neural net for image recognition of similar resolution to
our images, by using the TensorFlow software [73].

5. Predictions Per Sample

For each testing sample, the dCNN produces a normal-
ized probability weight for each of the assigned classes.
In the case of Fig. 6, two classes have been defined, so
there are two possible weights wdisk and wellipsoid. Anal-
ogously, from averaging all samples in the library for each
class, one can produce a predicted mechanical response
for each class, for example the Von Mises stress σdisk and
σellipsoid at the tracked strains. The predictions for the
Von Mises stress and damage (see Fig. 6(g,h)) are shown.
The success of the method is clearly connected to the fact
that the library of pre-existing data libΨ contained simi-
lar microstructures to the ones tested. However, we wish
to emphasize that the process is fundamentally not inter-
polation, but instead an identification of proper statisti-
cal averaging, as expected in such far-from-equilibrium
systems.

F. Deep Convolutional Neural Networks and
General Framework For Using Microstructural

Fingerprinting Towards Mechanical Predictions Up
to Failure in a binary alloy

The numerically approximate character of SEA en-
forces the use of advanced approaches that may efficiently
compare, classify and reconstruct fingerprints. The data
sets {Ψ,H} are produced for different microstructures
but same loading and boundary conditions for precise
comparison purposes, so that weights can be used to also
provide the following equality for images,

Ψ
(unknown)
0 ≃

∑

i∈libΨ

wiΨi (18)

The predictions of the SEA method for the damage
profiles, using the above equation are provided in Fig. 7
for the application discussed in Sec. D. The method be-
comes more successful as the number of classes increases.
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(a)

(c)

(b)

FIG. 7. Comparison of prediction results from dif-
ferent number of possible classes (identical number
of samples per class) in the binary alloy model of
Sec. D: (a) Damage profile for 8 classes of possible mi-
crostructures, selected across training samples, (b) Damage
profile for 16 classes of possible microstructures, (c) Differ-
ence in axial stress (left) and average sample damage (right)
predictions (solid lines) for 8 and 16 classes of possible mi-
crostructures.

The Elastic Mode Convolutional Neural Network (EM-
CNN) approach for the average field φ (either damage
field 〈d〉 or first strain invariant Iǫ1) and loading stress
field average 〈σzz〉 are shown in Figs. 8 and 9 (16 classes),
whereas true mechanical response (cf. Fig. 3(e)) is over-
layed. The EM-CNN results are efficient and robust,
agreeing with the true mechanical response.

In this application, the interpretation of the weights wi

should be made in terms of the identification of an appro-
priate combined set of defects that provide similar modes
to the sample of interest. Testing a large variety of mi-
crostructures in advance, may allow for the identification
of EIMs for a completely unknown microstructure that
may include completely different compounds through co-
operation of different types of microstructures.

The success of SEA for predictions of mechanical prop-
erties can be estimated by the accuracy (fraction of cor-

rectly classified samples) for different number of avail-
able classes of library microstructures (different num-
ber/length of inclusions in sample), number of initial
random realizations but with same qualitative behav-
ior (same number of inclusions, different random loca-
tions/orientations), different small deformation testing
strain (where EIMs are calculated). The results are sum-
marized in Fig. 10. The behavior consistently points
to perfect predictions when the number of available mi-
crostructures is larger than 15 and the testing strain is
larger than 0.02%. In this work, we did not focus on op-
timizing the performance of the dCNN used [73], a topic
that will be the focus of forthcoming publications.

FIG. 8. Equation-Free Predictions with φ ≡ 1− d: The
SSM prediction extends only to the behavior of the damage
field. EM-CNN uses the library of prior samples and modes
libΨ to reconstruct a predicted behavior that is very accurate
for the currently modeled stochastic microstructures.

FIG. 9. Equation-Free Predictions with φ ≡ I
(ǫ)
1 : The

SSM prediction extends only to the behavior of the damage
field. EM-CNN uses the library of prior samples and modes
libΨ to reconstruct a predicted behavior that is very accurate
for the currently modeled stochastic microstructures.
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FIG. 10. Accuracy: Effect of the number of initial conditions
and the number of possible microstructures (various inclusion
lengths) used in the synthetic data for producing data such
as in Fig.ccc. The accuracy quickly grows beyond 90% for
> 10 initial realizations for each of > 10 available library
microstructures. The inset shows the effect of the testing
strain, displaying that the accuracy is beyond 90% for testing
strain > 0.1%

The numerical cost of the method is concentrated in
generating simulations up to failure for a variety of ini-
tial realizations and also the training of the dCNN. Each
complete simulation of the model binary alloy requires a
run of 4 days on a single cpu. The dimensional reduc-
tion process requires a few minutes on a single cpu. The
neural network training for 20 distinct microstructural
classes requires 2 days on a single cpu.

It is important to note that the microstructure recogni-
tion in this work is performed through a particular load-
ing condition. The extension to multiple loading condi-
tions might become useful for other applications, as in the
work of Ref. [20]. However, the SEA method provides an
access to dynamical features and microstructural eigen-
strains, which should be –in principle– independent of
the loading conditions.

G. Conclusions

In this work, we demonstrated a parameter-free ap-
proach, labeled as SEA, that is focused on characterizing
the stability of elasticity, towards understanding and pre-
dicting mechanical properties of solids that may deform
towards plasticity or/and damage. The main outcome
of this analysis are dynamical modes (EIMs) that char-
acterize spatial instabilities of elasticity. EIMs can be
considered as microstructural fingerprints. We presented
the theory of the approach and then we demonstrated it

in toy examples of crystal plasticity that provided ana-
lytical insights for EIMs’ origin and character. Using the
developed methodology, we applied SEA to a realistic
model of plasticity and damage for a model binary alloy.
Through this investigation, and with help from dCNNs,
we showed that the use of EIMs as fingerprints can lead
to successful mechanical predictions for microstructures
that are only tested at small deformations.
We concentrated only on simple examples of mono-

tonic loading, assuming the supervised learning of a large
variety of known microstructures under monotonic load-
ing. Nevertheless, a complete microstructural characteri-
zation requires the understanding of variable loading and
more specifically, cyclic loadings [20, 21]. It is expected
that the efficient application of the SEA method requires
a physical understanding of the relation between distinct
loading paths and the storage of a finite characteristic set
of EIMs, which may become, in practice, prohibitively
large. The current work does not address the issue of
variable loading paths and unsupervised microstructural
learning. It is nevertheless plausible, as simpler exam-
ples show [40, 41], that only a few, independent loading
paths may be adequate for a complete dynamical char-
acterization of an unknown microstructure. We plan to
investigate such possibilities in future works.
The focus of this work has been on microstructures

that have a concrete two dimensional (2D) character.
However, the ability of the method can extend either
to 3D microstructures with surface data reduction and
machine learning or 3D microstructures with 3D volume
data reduction and machine learning. The ability of the
method to generalize to three dimensions is seamless and
constrained only by the computational ability to store
large amounts of data.
The usefulness of SEA can be either towards a sup-

plementation multiscale materials modeling or for pro-
ducing data-rich predictions of mechanical properties in
untested microstructures. Multiscale materials modeling
requires a variety of signatures/tests that may provide
verifiable links across scales towards modeling accuracy;
EIMs may provide such signatures. In addition, SEA’s
implementation may be solely focused on experimental
settings, where microscopy may contribute spatially re-
solved information that may be used towards identifying
and classifying EIMs. Future studies will explore SEA’s
efficacy in both experimental and modeling fronts.
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[60] C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and
D.S. Henningson, “Spectral analysis of nonlinear flows,”
Journal of fluid mechanics 641, 115–127 (2009).

[61] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vet-
terling, and P.B. Kramer, Numerical recipes: The Art

of Scientific Computing (Cambridge University Press,
1986).

[62] R.J. Amodeo and N.M. Ghoniem, “Dislocation dynam-
ics. I. A proposed methodology for deformation microme-
chanics,” Physical Review B 41, 6958 (1990).

[63] I. Groma, F.F. Csikor, and M. Zaiser, “Spatial corre-
lations and higher-order gradient terms in a continuum
description of dislocation dynamics,” Acta Materialia 51,
1271–1281 (2003).

[64] M. Zaiser, M-C. Miguel, and I. Groma, “Statisti-
cal dynamics of dislocation systems: the influence of
dislocation-dislocation correlations,” Physical Review B
64, 224102 (2001).

[65] E. Van der Giessen and A. Needleman, “Discrete disloca-
tion plasticity: A simple planar model,” Modelling and
Simulation in Materials Science and Engineering 3, 689
(1995).

[66] S. Papanikolaou, P. Shanthraj, J. Thibault, C. Wood-
ward, and F. Roters, “Brittle to quasi-brittle transition
and crack initiation precursors in crystals with structural
Inhomogeneities,” Materials Theory 3, 5 (2019).

[67] M. Ambati, T. Gerasimov, and L. De Lorenzis, “A re-
view on phase-field models of brittle fracture and a new
fast hybrid formulation,” Computational Mechanics 55,
383–405 (2015).

[68] R.J. Sanford, Principles of Fracture Mechanics (Pearson,
2002).

[69] S. Strogatz, M. Friedman, A.J. Mallinckrodt, and
S. McKay, “Nonlinear dynamics and chaos: With appli-
cations to physics, biology, chemistry, and engineering,”

13



Computers in Physics 8, 532–532 (1994).
[70] J.D. Eshelby, “The determination of the elastic field of an

ellipsoidal inclusion, and related problems,” Proceedings
of the Royal Society of London. Series A. Mathematical
and Physical Sciences 241, 376–396 (1957).

[71] G. Cariolaro, “Vector and hilbert spaces,” in Quantum

Communications (Springer, 2015) pp. 21–75.
[72] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE 86, 2278–2324 (1998).

[73] “Google TensorFlow. https://www.tensorflow.org/

2019,”.

14

https://www.tensorflow.org/2019
https://www.tensorflow.org/2019

	Microstructural Inelastic Fingerprints And Data-Rich Predictions of Plasticity and Damage in Solids
	Abstract
	Introduction
	General framework of microstructural fingerprinting based on inelastic signatures
	Microstructural fingerprints for a toy model of dislocation dynamics
	Microstructural Fingerprints and Data-Rich Predictions: Plasticity and Damage in a Model Binary Alloy
	Deep Convolutional Neural Networks and General Framework For Using Microstructural Fingerprinting Towards Mechanical Predictions Up to Failure For a Single Inclusion Model
	Data Collection
	Dimensional Hyper-Reduction
	Library Storage
	Deep Convolutional Neural Network
	Predictions Per Sample

	Deep Convolutional Neural Networks and General Framework For Using Microstructural Fingerprinting Towards Mechanical Predictions Up to Failure in a binary alloy
	Conclusions

	Acknowledgments
	References


