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ABSTRACT

The imaging fidelity of the Event Horizon Telescope (EHT) is currently determined by its sparse baseline coverage. In
particular, EHT coverage is dominated by long baselines, and is highly sensitive to atmospheric conditions and loss
of sites between experiments. The limited short/mid-range baselines especially affect the imaging process, hindering
the recovery of more extended features in the image. We present an algorithmic contingency for the absence of well-
constrained short baselines in the imaging of compact sources, such as the supermassive black holes observed with the
EHT. This technique enforces a specific second moment on the reconstructed image in the form of a size constraint,
which corresponds to the curvature of the measured visibility function at zero baseline. The method enables the recovery
of information lost in gaps of the baseline coverage on short baselines and enables corrections of any systematic
amplitude offsets for the stations giving short-baseline measurements present in the observation. The regularization
can use historical source size measurements to constrain the second moment of the reconstructed image to match the
observed size. We additionally show that a characteristic size can be derived from available short-baseline measurements,
extrapolated from other wavelengths, or estimated without complementary size constraints with parameter searches.
We demonstrate the capabilities of this method for both static and movie reconstructions of variable sources.

Key words. black hole physics – techniques: high angular resolution – techniques: image processing – techniques:
interferometric

1. Introduction

Very-long-baseline interferometry (VLBI) is a technique
able to achieve high angular resolution imaging through
the use of widely separated antennas. Unfortunately, as the
observing frequency is increased, the availability of suitable
sites on Earth is greatly reduced, leading to sparse arrays
with a high angular resolution but a low spatial dynamic
range. In particular, a simple inverse Fourier transform of
the visibilities measured by an interferometer, or ‘dirty im-
age’, is dominated by artifacts introduced by sparse sam-
pling of the Fourier plane. Short baselines are particularly
important in imaging, as they anchor the flux distribution
and provide a crucial link between high-resolution small-
scale features and the large-scale extent and morphology
of the target. The sparser the array, the more challenging
it is to reconstruct images from interferometric measure-
ments. Additionally, weather and technical issues at sites
that provide short/mid-range baselines can greatly degrade
the ability to image a given data set.

Array sparsity and station-based errors can have dra-
matic effects on reconstructed images. Thus, the imag-
ing process requires further information and assumptions
beyond the visibility measurements from the interferome-
ter. The choice of imaging method imposes additional con-
straints on the reconstructed image. Here, we will focus on
extending the method of regularized maximum likelihood
(RML) that performs well under sparse sampling condi-
tions and does not involve direct inverse Fourier transforms
of the data in the imaging process.

In this paper we present an algorithmic contingency to
array sparsity and site issues in the form of a second mo-
ment regularization function. That is, the compactness of
the source can be expressed as the second moment of the
source brightness distribution (Moffet 1962; Burn & Con-
way 1976), which can be constrained to match, for example,
confident source size measurements from short baselines of
previous experiments or epochs. Enforcing this source size
constraint supplements limited short-baseline information
while fitting to long-baseline smaller scale structure from
newer observations.

The Event Horizon Telescope (EHT), observing at a fre-
quency of 230 GHz (Event Horizon Telescope Collaboration
et al. 2019a,b), is a prime example of a high-frequency VLBI
imaging experiment with image uncertainties dominated by
the effects of sparse coverage. The EHT currently has only
a single short/mid-range VLBI baseline, joining the Large
Millimeter Telescope Alfonso Serrano (LMT) in Mexico to
the Submillimeter Telescope (SMT) in Arizona. Recent ob-
servations with the EHT have shown that the LMT is dif-
ficult to calibrate, giving baselines with large measurement
uncertainties dominated by uncharacterized station behav-
ior in 2017 (Event Horizon Telescope Collaboration et al.
2019c,d).

Although the EHT observes a number of non-horizon-
scale sources in conjunction with the Atacama Large Mil-
limeter/submillimeter Array (ALMA), its primary targets
are the two supermassive black hole candidates in the
Galactic Center, Sagittarius A* (Sgr A∗), and at the center
of the radio galaxy M87. At the frequency of the EHT, these
two sources are very compact, with sizes on the sky histor-
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ically measured with three stations, in California, Arizona,
and Hawaii, in early EHT observations, and are thus ideal
imaging targets for second moment regularization (Doele-
man et al. 2008; Fish et al. 2011; Doeleman et al. 2012;
Akiyama et al. 2015; Johnson et al. 2015; Lu et al. 2018).
Near-zero closure phases on the California–Arizona–Hawaii
triangle are indicative of the source compactness and sym-
metry on scales of a few tens of µas (Akiyama et al. 2015;
Fish et al. 2016). The California–Arizona baseline provided
the short-baseline measurements needed to constrain the
compactness and size of the sources in the visibility domain.
Recent observations of M87 in 2017 also found a source size
of ∼ 40µas consistent with previous measurements (Event
Horizon Telescope Collaboration et al. 2019a,b,c,d,e,f).

For SgrA∗, the source size is also well-constrained at
lower frequencies due to its compactness and dominant
diffractive scattering (Shen et al. 2005; Bower et al. 2006;
Lu et al. 2011; Johnson et al. 2018). VLBI observations at
86 GHz taken one month apart give fitted Gaussian source
sizes for the scattered image of SgrA∗with < 10% differ-
ence (Ortiz-León et al. 2016; Brinkerink et al. 2019). At
this frequency, while the small scale structure is expected
to vary, the large-scale information, dominated by the size
of the scattering kernel, should be stable from epoch to
epoch (Johnson et al. 2018).

Second moment regularization merges the benefits of
model-fitting with the flexibility of imaging: compared to
self-calibration to a known model, it does not actually mod-
ify the measured visibilities used for the imaging process or
enforce a model-dependent solution, but instead provides
additional information to improve image quality. The reg-
ularization constrains the spread of flux density to a moti-
vated region in the image, discouraging non-physical mor-
phology driven by fits to long-baseline data and accelerating
convergence toward a plausible image. It is a natural ex-
tension of imaging tools that add source information in the
imaging process in RML methods: a total flux constraint is
in fact the zeroth moment of the image; an image centroid
specification corresponds to the first moment of the image;
and a short-baseline source size completes the picture by
constraining the image second moment. The implementa-
tion of second moment regularization can be done in con-
junction with other tools and constraints in RML, for both
static and movie reconstructions. Furthermore, as the con-
straint function acts on the image itself and does not modify
the visibility data, it can be used with any choice of data
product, including minimally-calibrated closure phases and
amplitudes.

The paper is structured as follows. We present the
mathematical background to motivate the regularization in
Sect. 2. We outline the method, assumptions, and physi-
cal motivation in Sect. 3. In Sect. 4 we demonstrate the
improvements in image quality and fidelity using the regu-
larization with or without a priori knowledge of the source
size. We present possible applications of the second moment
regularization to more sophisticated imaging techniques for
scattering mitigation and movie reconstructions in Sect. 5.
A summary is given in Sect. 6.

2. Background

By the van Cittert-Zernike theorem, an interferometer sam-
ples complex visibilities corresponding to Fourier compo-
nents of an image (van Cittert 1934; Zernike 1938). Conse-

quently, nth moments of an image correspond to nth deriva-
tives of the visibility function at the origin. Specifically, an
interferometric visibility V (u) on a baseline u can be writ-
ten as (e.g., Thompson et al. 2017)

V (u) =

∫

d2x I(x)e−2πiu·x, (1)

where I(x) is the brightness distribution on the sky, and x
is an angular unit.

From this expression, V (0) =
∫

d2x I(x) ∈ R gives the

total flux density of the image (the 0th moment). Likewise,
the phase gradient of the visibility function at zero baseline
gives a vector proportional to the centroid of the image,

∇V (u)⌋
u=0

= −2πi

∫

d2xxI(x)

= −2πiV (0)µ, (2)

where µ is the image centroid (the normalized 1st moment):

µ = (x̄x̂, ȳŷ) =

∫

d2xI(x)x
∫

d2x I(x)
. (3)

Because the image is real, the gradient ∇V (u)⌋
u=0

is
purely imaginary. For images that are positive (e.g., im-
ages in total intensity), the visibility function must take
its maximum amplitude at the origin. More generally, the
visibility function is Hermitian; thus, its amplitude must
always have a vanishing gradient at the origin because of
the conjugation symmetry V (u) = V ∗(−u).

The second derivative, or Hessian, of the visibility am-
plitude function at zero baseline gives a matrix (see Ap-
pendix A.1):

∇∇⊺|V (u)|⌋
u=0

= −4π2

∫

d2x I(x)(x− µ)(x− µ)⊺

= −4π2V (0)Σ, (4)

where Σ is the normalized second central moment (or co-
variance matrix) of the image. We show in Appendix A.1
that this expression is equivalent to the curvature of the
centered complex visibility function (see also Moffet 1962;
Burn & Conway 1976). The visibility amplitude function is
a more natural data product to use for observations with
non-astrometric VLBI arrays such as the EHT, where there
is no absolute phase information due to strong differential
atmospheric propagation effects between sources, and thus
no directly measured full complex visibilities. Therefore it
is useful for us to determine image moments directly from
the visibility amplitude function, which is measured.

The image covariance matrix Σ can be more intuitively
expressed in terms of its principal axes, corresponding to
the perpendicular axes about which the second moment
reaches its maximum (Hu 1962). The matrix has two eigen-
values λmin and λmaj, and can be diagonalized as follows:

Σ = Rφ

(

λmin 0
0 λmaj

)

R
⊺

φ, (5)

where Rφ is the rotation matrix based on the position an-
gle east of north φ of the major principal axis (Appendix
A.2). The eigenvalues of the covariance matrix are the vari-
ances of the normalized image projected along the principal
(major and minor) axes. The correspondence between λmaj,
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line. On baselines past this line, the amplitudes show very
different behavior, dominated by the smaller-scale features
in each image (or lack thereof). We can thus express the
visibility amplitude function behavior on short baselines
via the second moment of the image, defined by the total
flux and just three Gaussian parameters: the principal axes
FWHMs θmaj and θmin and the position angle φ of the
major axis east of north. In the RML imaging process, there
is an additional fifth input parameter, governing the weight
of the second moment regularization, or hyperparameter
βR, following Equation 14.

3. Method

RML focuses on pixelized reconstructions of the image, it-
eratively maximizing an “objective function”, which is anal-
ogous to a log posterior probability function. This func-
tion is a weighted (via “hyperparameters”) sum of both
χ2

D goodness-of-fit data terms, and regularization functions
SR, or “regularizers”, governing specific image properties.
In this paper, we use the RML method implemented in
the eht-imaging Python library (Chael et al. 2016, 2018),
where the objective function J(I) is minimized via gradient
descent, and can be written as:

J(I) =
∑

data terms

αDχ
2
D (I)−

∑

regularizers

βRSR (I) , (14)

where αD and βR are the input hyperparameters.
Using only five input parameters to the regularization

(V (0), θmaj, θmin, φ and βR) we can now constrain the
second moment of the reconstructed image to match the
size constraint provided by the user for RML imaging. In
Sect. 3.1 we present our implementation of the second mo-
ment regularization function within the eht-imaging li-
brary minimization framework. In Sect. 3.2 we describe the
assumptions and physical motivation for second moment
regularization using historical observational measurements,
known source properties and theoretical expectations.

3.1. Second moment regularization

Regularization functions in imaging enforce constraints on
particular properties of the image, such as image entropy
(e.g., Narayan & Nityananda 1986), smoothness (Bouman
et al. 2016; Chael et al. 2016; Kuramochi et al. 2018) and/or
sparsity (Wiaux et al. 2009a,b; Honma et al. 2014; Akiyama
et al. 2017a,b). Simple constraints, such as image positivity,
image total flux (zeroth moment) or image centering (first
moment), are often applied to the image, utilizing known
information on the behavior of the total intensity distribu-
tion of the source imaged. The implementation of a second
moment regularization, constraining the size of the source,
is thus a natural extension of common imaging tools that
add source information to the imaging process.

We define a regularization function that is minimized
when the covariance matrix of the reconstructed image Σ
matches a user-specified covariance matrix Σ′. In practice,
this latter matrix is computed using user-specified principal
axes FWHMs and position angle. We utilize the Frobenius
norm to determine a penalty function that quantifies the
difference between the user-specified and reconstructed co-
variance matrices:

RΣ ≡ Tr
[(

Σ−Σ′
)⊺ (

Σ−Σ′
)]

(15)

This regularizer is, by definition, simply the minimization of
the difference between two covariance matrices. The proce-
dure for the regularizer implementation in the eht-imaging
library via gradient descent is presented in Appendix B.

3.2. Assumptions

The second moment regularization operates under a few key
assumptions on the properties of the source observed. The
main assumption of this method is the compactness of the
source. In order to get a quadratic fall-off in the visibility
function, as shown in Sect. 2, the source must be compact
and resolved on longer baselines of the interferometer. This
method would break down for point sources or sources with
complex morphology and diffuse flux on large scales.

Another assumption concerns the stability of the source
size across multiple epochs. The input axis sizes and po-
sition angle for the regularization will only be valid if the
source does not vary significantly in size between observa-
tions. The source size input is typically derived from ob-
servations where weather conditions, coverage, and station
performance on short baselines were adequate for higher
precision model fitting. The source size can then be used
for data sets with larger uncertainties to improve the fidelity
and convergence of the imaging process. This assumption is
well-motivated for the compact sources observed with the
EHT:

– Sgr A∗ at 86 GHz, has been model-fitted with varying
precision over two decades, with little variation in the
obtained source size parameters, (Rogers et al. 1994;
Krichbaum et al. 1998; Doeleman et al. 2001; Shen et al.
2005; Lu et al. 2011; Ortiz-León et al. 2016; Brinkerink
et al. 2019)

– Sgr A∗ at 230GHz has been measured to be compact
and stable in size between 2007 and 2013 (Doeleman
et al. 2008; Lu et al. 2018; Johnson et al. 2018),

– M87 at 230GHz has been measured to be compact and
stable in size over a decade (Doeleman et al. 2012;
Akiyama et al. 2015; Event Horizon Telescope Collabo-
ration et al. 2019a,b,c,d,e,f).

It is worth noting that this assumption breaks down for
sources with multiple bright components moving relative
to each other, as is common for multi-epoch images of
bright jet sources. An overall size measurement from a sin-
gle epoch would not translate to other observations due
to components appearing or moving outward, changing the
source morphology significantly between observations. The
quadratic fall-off approximation until the 1/e point would
also not hold for two separated point sources, which do show
a quadratic fall-off in the visibility amplitudes but the am-
plitudes would quickly evolve to more complex structure
on longer baselines that could be identified as the behav-
ior of two point sources interfering. The method is most
effective whenever the emission is confined within a single
compact region or on multiple scales that are substantially
separated, and particularly if the scale of the emission in
the image is comparable to the resolution of the array.

We also assume that the extent of the source does not
significantly vary within a single epoch. For static imaging
of slow-varying sources, it suffices to assume that the aver-
age size of the source matches the input, but this has further
implications on reconstructions of variable sources within a
single epoch. The structural variability on short timescales

Article number, page 4 of 14











S. Issaoun et al.: VLBI imaging of black holes via second moment regularization

Fig. 8, due to the higher weight associated with large er-
rors in the computation of the NRMSE. For that reason,
we have selected NRMSE to score comparisons between the
reconstructed images themselves. For this test, we assume
that the true image and true FWHM are unknown, as is
the case for real experiments. We instead focus on the mor-
phological characteristics that appear in the images based
on the underlying data, and how the inputs to RΣ affect
the correspondence between reconstructed images. We re-
structure the metric into a symmetrically-normalized root-
mean-square error (SNRMSE; Hanna et al. 1985; Mentaschi
et al. 2013) to render the NRMSE independent of the input
and comparison image choice:

SNRMSE =

√

√

√

√

√

∑

k

(I ′1,i − I ′2,i)
2

∑

k

I ′1,iI
′

2,i

. (19)

Here I ′1 and I ′2 are the two reconstructed images to be
compared. In Fig. 9, we show an SNRMSE grid comparing
each reconstructed image to all others, where the diagonal
squares correspond to each image compared with itself. We
have marked with dashed lines where the mean FWHM of
the true image lies. We find that images with input FWHMs
near the true FWHM of the source have a better SNRMSE
with each other than all other combinations of images. This
test enables the user to find a range of characteristic sizes
minimizing SNRMSE via a size parameter search. For com-
pact sources that are distinctly elliptical, a one-dimensional
size parameter search is useful to quickly sweep through a
wide range of sizes and determine a range of plausible sizes
for the source extent. A search within that range, varying
parameters in two dimensions (θmaj, θmin, and φ), can then
be carried out to refine the source size estimate for the
imaging process.

We find that the use of the regularizer improves the
quality of the resulting image even if the input parameters
deviate by 20% from the true values. We also find that
the strong use of the regularization, when combined with a
size parameter search, is able to converge toward the true
FWHM values, even when the true source dimensions are
unknown. The use of SNRMSE and χ2 statistics serve well
to score individual images and parameters without a priori
knowledge of the source extent.

5. Applications

In addition to simple static imaging, second moment regu-
larization can easily be coupled to more sophisticated and
complex imaging techniques. In Sect. 5.1 we present an ex-
ample of the use of second moment regularization for scat-
tering mitigation imaging of Sgr A∗ at longer wavelengths.
In Sect. 5.2 we demonstrate how second moment regular-
ization in individual sparse snapshots improves the quality
of dynamical reconstructions of variable sources, such as a
movie of an orbiting "hot spot" in SgrA∗’s accretion flow.

5.1. Scattering mitigation

The second moment constraint in imaging can both be
used for data sets where short baselines are lacking, as
demonstrated in Sect. 4, and for data sets where short-
baseline measurements have large uncertainties due to dif-
ficult observing conditions. An example of the latter case

is presented in Issaoun et al. (2019), where observations of
Sgr A∗ at 86 GHz with the Global Millimeter VLBI Array
and ALMA (project code MB007) yielded high signal-to-
noise (SNR) detections on long baselines but bad weather
at select Very Long Baseline Array (VLBA) stations led
to poorly constrained short-baseline measurements. Imag-
ing of the source with RML would not have been feasible
with these measurements alone, as the large uncertainties
in the short-baseline measurements caused flux to spread
nonphysically across the reconstructed images. Since the
size of Sgr A∗ on the sky is well studied and known to be af-
fected by anisotropic scatter-broadening from the interstel-
lar medium (Davies et al. 1976; van Langevelde et al. 1992;
Frail et al. 1994; Bower et al. 2004; Shen et al. 2005; Bower
et al. 2006; Psaltis et al. 2018; Johnson et al. 2018), previ-
ous size measurements (Ortiz-León et al. 2016; Brinkerink
et al. 2019) were used to constrain the extent of SgrA∗ in
the imaging process with RΣ. In this manner, we obtained
an image that was able to fit new long-baseline detections to
ALMA, likely refractive noise from scattering substructure.

The second moment regularization was also imple-
mented in the scattering mitigation code stochastic optics
developed by Johnson (2016). Stochastic optics aims to mit-
igate the effects of scattering to derive an intrinsic (un-
scattered) image of the source. The code solves for the un-
scattered image by separating and mitigating the two main
components of the Sgr A∗ scattering screen: the diffractive
scattering that causes the image to become a convolution
of the true image and the scattering kernel; and the re-
fractive scattering that introduces stochastic ripples that
further distort the image. The stochastic optics framework
therefore simultaneously solves for the unscattered image
and the scattering screen assuming a given model for the
diffractive blurring kernel and the time-averaged refractive
properties. The model assumed here is the Johnson et al.
(2018) scattering model, the best-fitting model to Sgr A∗

observations to date (Issaoun et al. 2019).
The implementation of RΣ in stochastic optics only

constrains the size of the scattered source (SgrA∗ as we
see it on the sky) based on historical measurements from
model fitting, such that the technique can more accurately
mitigate the effects of interstellar scattering to obtain a
physically motivated intrinsic image of the accretion flow
of Sgr A∗ (for further details, see Issaoun et al. 2019). The
intrinsic image itself is not directly constrained by the sec-
ond moment regularization, but is derived from the com-
bination of the constrained scattered image and knowledge
of the interstellar scattering.

Here we illustrate the use of RΣ within stochastic op-
tics using a lower frequency data set. Observations of SgrA∗

at 22GHz with the VLBA+GBT (project code BG221A)
showed clear long-baseline detections of refractive noise
from interstellar scattering (Gwinn et al. 2014; Johnson
et al. 2018). These long-baseline detections should trans-
late to substructure in the image, distorting the intensity
pattern seen for Sgr A∗ away from the scatter-broadened
smooth elongated Gaussian-like morphology. While the
scattering substructure is very apparent in the data set,
it is a non-trivial task to successfully show its effects on the
image itself and obtain an intrinsic image of the source. This
is due to the imaging process being driven predominantly
by the abundance of intra-VLBA short-baseline measure-
ments in comparison to the few VLBA–GBT long-baseline
detections. We therefore test the addition of RΣ on this
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art GRMHD simulations and long-term observational stud-
ies. For well-studied sources, this method allows for contin-
gency against weather, a major deterrent for high frequency
VLBI, and gives more flexibility for triggering decisions if
key short baselines yield poorly constrained measurements
or become unavailable during or between observations.

We have shown that RΣ successfully informs the source
behavior on short baselines and is defined only by three
Gaussian parameters and the regularization hyperparame-
ter. Imaging with RΣ is able to reconstruct high fidelity
images fitting to the data products even if the input source
dimensions deviate from the true values by up to 20%.
The regularization therefore gives a larger flexibility than
needed to account for changes in size from, for exam-
ple, GRMHD simulations of highly variable sources such
as Sgr A∗. We have also shown that parameter searches
over a range of isotropic FWHMs using RΣ in conjunc-
tion with goodness-of-fit statistics to data products and
symmetrically-normalized root-mean-square error of image
comparisons help determine high-fidelity source extent even
if the exact size and morphology are unknown.

The regularization can be used to image with any choice
of data products and any choice of feature-driven regulariz-
ers within the framework of the eht-imaging library (Chael
et al. 2016, 2018) and is easily transferable to other tools or
other RML imaging packages (e.g., SMILI; Akiyama et al.
2017a,b). We have shown that the RΣ implementation com-
plements other techniques tackling source properties that
add difficulty and complexity to the imaging process, such
as time variability (via dynamical imaging; Johnson et al.
2017; Bouman et al. 2018) and interstellar scattering (John-
son 2016; Issaoun et al. 2019). Source parameter inputs can
either be obtained from model fitting to abundant short-
baseline measurements, historical measurements from ob-
servations with short baselines present, extrapolated from
other wavelengths based on achromatic features, or esti-
mated via parameter searches. The second moment regular-
ization could prove particularly useful in future work with
the EHT, both for dynamical reconstructions of variable
sources such as Sgr A∗ and for upcoming imaging observa-
tions at 345GHz (Event Horizon Telescope Collaboration
et al. 2019b; Doeleman et al. 2019).
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Appendix A: Properties of the visibility function

Appendix A.1: Visibility derivatives and image moments

Non-astrometric VLBI experiments such as the EHT mea-
sure visibility amplitudes directly but do not provide abso-
lute phase information. Nevertheless, the zeroth and second
image moments are determined from visibility amplitudes
alone (i.e., they do not depend on the measured phase; Mof-
fet 1962; Burn & Conway 1976). For instance, the total
flux density

∫

I(x)d2x = V (0) = |V (0)| because the zero-
baseline visibility is real and positive, and therefore equal
to its modulus.

More generally, we can express the visibility function as
a Taylor expansion of its derivatives:

V (u) =

∫

d2x I(x)

[

1− 2iπu · x−
(2πu · x)2

2

+
i(2πu · x)3

6
+

(2πu · x)4

24
+ · · ·

]

. (A.1)

The visibility amplitude function is image-translation in-
variant. To obtain a Taylor expansion for visibility ampli-
tudes, we choose the image centroid to be at the origin.
The first derivative of the visibility function (thus the sec-
ond term of the Taylor expansion) then vanishes, giving

V (u) ≃

∫

d2x I(x)

[

1−
(2πu · x)2

2

]

≃ V (0)− 2π2

∫

d2x (u · x)2I(x). (A.2)

On short baselines (i.e., those with u ·x ≪ 1), the visibility
function is then positive and real, so |V (u)| ≃ V (u). Since

u =

(

u
v

)

and x =

(

x
y

)

, we can expand the inner product

of the two vectors:

(u · x)2 = u2x2 + v2y2 + 2uvxy

= (u v)

(

x2 xy
xy y2

)(

u
v

)

. (A.3)

Combining these results with the definition of the covari-
ance matrix Σ (see Appendix A.2), we obtain:

|V (u)| ≃ V (0)− 2π2

∫

d2x (u · x)2I(x)

≃ V (0)− 2π2 (u v)

∫

d2x I(x)

(

x2 xy
xy y2

)(

u
v

)

≃ V (0)− 2π2V (0)u⊺Σu. (A.4)

The downward curvature of the amplitude function at zero
baseline is thus related to the image covariance by:

∇∇⊺|V (u)|⌋
u=0

= ∇∇⊺V (u)⌋
u=0

= −4π2V (0)Σ. (A.5)

Appendix A.2: Image principal axes and visibility curvature

From Equation A.5, the curvature of the visibility function
on short baselines is proportional to the second central mo-
ment of the image projected along the baseline direction.

The second central moment of the image is naturally ex-
pressed as a covariance matrix:

Σ ≡

∫

d2xI(x)(x− µ)(x− µ)⊺
∫

d2x I(x)
=

(

Σxx Σxy

Σyx Σyy

)

, (A.6)

Σxx =

∫

d2x I(x)(x− x̄)2
∫

d2x I(x)
,

Σyy =

∫

d2x I(x)(y − ȳ)2
∫

d2x I(x)
,

Σxy =

∫

d2x I(x)(x− x̄)(y − ȳ)
∫

d2x I(x)
= Σyx.

To put the covariance matrix in a more intuitive form, we
express it in terms of its principal axes. The image covari-
ance matrix has two eigenvalues, and can be diagonalized
as follows:

Σ = Rφ

(

λmin 0
0 λmaj

)

R
⊺

φ, (A.7)

where the rotation matrix Rφ, based on the position angle
φ (East of North) of the major principal axis, is given by:

Rφ =

(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)

. (A.8)

The eigenvalues are derived from the quadratic equation:

λmaj =
Σxx +Σyy

2
+

√

4(Σxy)2 + (Σxx − Σyy)2

2
, (A.9)

λmin =
Σxx +Σyy

2
−

√

4(Σxy)2 + (Σxx − Σyy)2

2
. (A.10)

We can also express each term of the covariance matrix in
terms of the eigenvalues and position angle φ:

Σxx = cos2(φ)λmin + sin2(φ)λmaj, (A.11)

Σyy = sin2(φ)λmin + cos2(φ)λmaj, (A.12)

Σxy = (λmaj − λmin) cos(φ) sin(φ). (A.13)

The eigenvalues of the covariance matrix are the variances
along the principal axes (major and minor axes).

Appendix B: Implementation via gradient descent

Appendix B.1: Pixel-based derivation of principal axes

Here we present the computation of the covariance matrix
for the pixel-based reconstructions from RML. The centroid
of an n × n pixel-based image is given by the following
parameters:

x̄ =

∑

k

xiIi
∑

k

Ii
and ȳ =

∑

k

yiIi
∑

k

Ii
, (B.1)

where i is the pixel number (from 1 to k), Ii is the intensity
at that pixel, xi is the x-position and yi is the y-position of
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the pixel in the image. The second moment of the image is
given by the covariance matrix

Σ =

(

Σxx Σxy

Σxy Σyy

)

, (B.2)

where (B.3)

Σxx =

∑

k

(xi − x̄)2Ii
∑

k

Ii
, (B.4)

Σyy =

∑

k

(yi − ȳ)2Ii
∑

k

Ii
, (B.5)

Σxy =

∑

k

(xi − x̄)(yi − ȳ)Ii
∑

k

Ii
. (B.6)

As in Appendix A.2, the image covariance matrix has two
eigenvalues and can be diagonalized to obtain the principal
axes FWHMs.

Appendix B.2: Gradient Descent Implementation

We have defined our regularization function via the Frobe-
nius norm:

RΣ = (Σxx − Σ′

xx)
2 + (Σyy − Σ′

yy)
2 + 2(Σxy − Σ′

xy)
2.

(B.7)

Within the framework of the eht-imaging library, the ob-
jective function is minimized via gradient descent. There-
fore, the regularization functions must also individually be
minimized via gradient descent. The gradients for the quan-
tities describing the properties of the image introduced thus
far, for a given pixel j, are given below:

δx̄

δIj
=

xj

∑

k

Ii −
∑

k

(xiIi)

(
∑

k

Ii
)2

=
xj − x̄
(
∑

k

Ii
) ,

δȳ

δIj
=

yj
∑

k

Ii −
∑

k

(yiIi)

(
∑

k

Ii
)2

=
yj − ȳ
(
∑

k

Ii
) , (B.8)

δΣxx

δIj
=

[(xj − x̄)2 − 2(xj − x̄) δx̄
δIj

Ij]
∑

k

Ii −
∑

k

[(xi − x̄)2Ii]

(
∑

k

Ii
)2

=
[(xj − x̄)2 − 2(xj − x̄) δx̄

δIj
Ij]− Σxx

∑

k

Ii
, (B.9)

δΣyy

δIj
=

[(yj − ȳ)2 − 2(yj − ȳ) δȳ
δIj

Ij]
∑

k

Ii −
∑

k

[(yi − ȳ)2Ii]

(
∑

k

Ii
)2

=
[(yj − ȳ)2 − 2(yj − ȳ) δȳ

δIj
Ij]− Σyy

∑

k

Ii
, (B.10)

δΣxy

δIj
=

[(xj − x̄)(yj − ȳ)− (yj − ȳ) δx̄
δIj

Ij]
∑

k

Ii

(
∑

k

Ii
)2

−

[(xj − x̄) δȳ
δIj

Ij]
∑

k

Ii

(
∑

k

Ii
)2

−

∑

k

[(xi − x̄)(yi − ȳ)Ii]

(
∑

k

Ii
)2

=
[(xj − x̄)(yj − ȳ)− (yj − ȳ) δx̄

δIj
Ij − (xj − x̄) δȳ

δIj
Ij]− Σxy

∑

k

Ii

(B.11)

We can now compute the gradient of the second moment
regularization within the minimization framework of the
eht-imaging library:

δRΣ

δIj
= 2(Σxx − Σ′

xx)
δΣxx

δIj
+ 2(Σyy − Σ′

yy)
δΣyy

δIj

+4(Σxy − Σ′

xy)
δΣxy

δIj
. (B.12)

Note that these equations correspond to regularization
of the normalized second central moment of an image. In
cases where the total flux density of an image is constrained
or regularized, it would be advantageous to instead regu-
larize the unnormalized second central moment, giving a
substantially simplified and convex optimization problem.
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