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ABSTRACT

1. Introduction

E\fery—long—baseline interferometry (VLBI) is a technique
able to achieve high angular resolution imaging through
— the use of widely separated antennas. Unfortunately, as the
> observing frequency is increased, the availability of suitable
\O sites on Earth is greatly reduced, leading to sparse arrays
ON with a high angular resolution but a low spatial dynamic
range. In particular, a simple inverse Fourier transform of
the visibilities measured by an interferometer, or ‘dirty im-
O, age’, is dominated by artifacts introduced by sparse sam-
OO pling of the Fourier plane. Short baselines are particularly
O important in imaging, as they anchor the flux distribution
ON and provide a crucial link between high-resolution small-
‘._j scale features and the large-scale extent and morphology
> of the target. The sparser the array, the more challenging
¢ it is to reconstruct images from interferometric measure-
>< ments. Additionally, weather and technical issues at sites
E that provide short/mid-range baselines can greatly degrade
the ability to image a given data set.

—

Array sparsity and station-based errors can have dra-
matic effects on reconstructed images. Thus, the imag-
ing process requires further information and assumptions
beyond the visibility measurements from the interferome-
ter. The choice of imaging method imposes additional con-
straints on the reconstructed image. Here, we will focus on
extending the method of regularized maximum likelihood
(RML) that performs well under sparse sampling condi-
tions and does not involve direct inverse Fourier transforms
of the data in the imaging process.

The imaging fidelity of the Event Horizon Telescope (EHT) is currently determined by its sparse baseline coverage. In

black hole physics — techniques: high angular resolution — techniques: image processing — techniques:

In this paper we present an algorithmic contingency to
array sparsity and site issues in the form of a second mo-
ment regularization function. That is, the compactness of
the source can be expressed as the second moment of the
source brightness distribution (Moffet 1962; Burn & Con-
way 1976), which can be constrained to match, for example,
confident source size measurements from short baselines of
previous experiments or epochs. Enforcing this source size
constraint supplements limited short-baseline information
while fitting to long-baseline smaller scale structure from
newer observations.

The Event Horizon Telescope (EHT), observing at a fre-
quency of 230 GHz (Event Horizon Telescope Collaboration
et al. 2019a,b), is a prime example of a high-frequency VLBI
imaging experiment with image uncertainties dominated by
the effects of sparse coverage. The EHT currently has only
a single short/mid-range VLBI baseline, joining the Large
Millimeter Telescope Alfonso Serrano (LMT) in Mexico to
the Submillimeter Telescope (SMT) in Arizona. Recent ob-
servations with the EHT have shown that the LMT is dif-
ficult to calibrate, giving baselines with large measurement
uncertainties dominated by uncharacterized station behav-
ior in 2017 (Event Horizon Telescope Collaboration et al.
2019¢,d).

Although the EHT observes a number of non-horizon-
scale sources in conjunction with the Atacama Large Mil-
limeter /submillimeter Array (ALMA), its primary targets
are the two supermassive black hole candidates in the
Galactic Center, Sagittarius A* (Sgr A*), and at the center
of the radio galaxy M87. At the frequency of the EHT, these
two sources are very compact, with sizes on the sky histor-

o)) particular, EHT coverage is dominated by long baselines, and is highly sensitive to atmospheric conditions and loss
— of sites between experiments. The limited short/mid-range baselines especially affect the imaging process, hindering
- the recovery of more extended features in the image. We present an algorithmic contingency for the absence of well-
(Q\ constrained short baselines in the imaging of compact sources, such as the supermassive black holes observed with the
o) EHT. This technique enforces a specific second moment on the reconstructed image in the form of a size constraint,
= which corresponds to the curvature of the measured visibility function at zero baseline. The method enables the recovery
<E of information lost in gaps of the baseline coverage on short baselines and enables corrections of any systematic
amplitude offsets for the stations giving short-baseline measurements present in the observation. The regularization
ANE can use historical source size measurements to constrain the second moment of the reconstructed image to match the
observed size. We additionally show that a characteristic size can be derived from available short-baseline measurements,
— extrapolated from other wavelengths, or estimated without complementary size constraints with parameter searches.
2 We demonstrate the capabilities of this method for both static and movie reconstructions of variable sources.
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ically measured with three stations, in California, Arizona,
and Hawaii, in early EHT observations, and are thus ideal
imaging targets for second moment regularization (Doele-
man et al. 2008; Fish et al. 2011; Doeleman et al. 2012;
Akiyama et al. 2015; Johnson et al. 2015; Lu et al. 2018).
Near-zero closure phases on the California—Arizona—Hawaii
triangle are indicative of the source compactness and sym-
metry on scales of a few tens of pas (Akiyama et al. 2015;
Fish et al. 2016). The California—Arizona baseline provided
the short-baseline measurements needed to constrain the
compactness and size of the sources in the visibility domain.
Recent observations of M87 in 2017 also found a source size
of ~ 40 pas consistent with previous measurements (Event
Horizon Telescope Collaboration et al. 2019a,b,c,d,e,f).

For Sgr A*, the source size is also well-constrained at
lower frequencies due to its compactness and dominant
diffractive scattering (Shen et al. 2005; Bower et al. 2006;
Lu et al. 2011; Johnson et al. 2018). VLBI observations at
86 GHz taken one month apart give fitted Gaussian source
sizes for the scattered image of Sgr A*with < 10% differ-
ence (Ortiz-Leon et al. 2016; Brinkerink et al. 2019). At
this frequency, while the small scale structure is expected
to vary, the large-scale information, dominated by the size
of the scattering kernel, should be stable from epoch to
epoch (Johnson et al. 2018).

Second moment regularization merges the benefits of
model-fitting with the flexibility of imaging: compared to
self-calibration to a known model, it does not actually mod-
ify the measured visibilities used for the imaging process or
enforce a model-dependent solution, but instead provides
additional information to improve image quality. The reg-
ularization constrains the spread of flux density to a moti-
vated region in the image, discouraging non-physical mor-
phology driven by fits to long-baseline data and accelerating
convergence toward a plausible image. It is a natural ex-
tension of imaging tools that add source information in the
imaging process in RML methods: a total flux constraint is
in fact the zeroth moment of the image; an image centroid
specification corresponds to the first moment of the image;
and a short-baseline source size completes the picture by
constraining the image second moment. The implementa-
tion of second moment regularization can be done in con-
junction with other tools and constraints in RML, for both
static and movie reconstructions. Furthermore, as the con-
straint function acts on the image itself and does not modify
the visibility data, it can be used with any choice of data
product, including minimally-calibrated closure phases and
amplitudes.

The paper is structured as follows. We present the
mathematical background to motivate the regularization in
Sect. 2. We outline the method, assumptions, and physi-
cal motivation in Sect. 3. In Sect. 4 we demonstrate the
improvements in image quality and fidelity using the regu-
larization with or without a priori knowledge of the source
size. We present possible applications of the second moment
regularization to more sophisticated imaging techniques for
scattering mitigation and movie reconstructions in Sect. 5.
A summary is given in Sect. 6.

2. Background

By the van Cittert-Zernike theorem, an interferometer sam-
ples complex visibilities corresponding to Fourier compo-
nents of an image (van Cittert 1934; Zernike 1938). Conse-
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quently, n'* moments of an image correspond to n'** deriva-

tives of the visibility function at the origin. Specifically, an
interferometric visibility V' (u) on a baseline u can be writ-
ten as (e.g., Thompson et al. 2017)

V(u) = /d2xI(x)6_2m“'x, (1)

where I(x) is the brightness distribution on the sky, and x
is an angular unit.

From this expression, V(0) = [ d?*x1(x) € R gives the
total flux density of the image (the 0® moment). Likewise,
the phase gradient of the visibility function at zero baseline
gives a vector proportional to the centroid of the image,

—27ri/d2xxI(x)
= 21V (0)p, 2)

VV(u)l,—o

where p is the image centroid (the normalized 15° moment):

2X X)X
= (22,99) = m 3)

Because the image is real, the gradient VV(u)|,_, is
purely imaginary. For images that are positive (e.g., im-
ages in total intensity), the visibility function must take
its maximum amplitude at the origin. More generally, the
visibility function is Hermitian; thus, its amplitude must
always have a vanishing gradient at the origin because of
the conjugation symmetry V(u) = V*(—u).

The second derivative, or Hessian, of the visibility am-
plitude function at zero baseline gives a matrix (see Ap-
pendix A.1):

VYTV (W)} yg = 7 [ @I x - p)ox - )T

= —47%V(0)%, (4)

where ¥ is the normalized second central moment (or co-
variance matrix) of the image. We show in Appendix A.1
that this expression is equivalent to the curvature of the
centered complex visibility function (see also Moffet 1962;
Burn & Conway 1976). The visibility amplitude function is
a more natural data product to use for observations with
non-astrometric VLBI arrays such as the EHT, where there
is no absolute phase information due to strong differential
atmospheric propagation effects between sources, and thus
no directly measured full complex visibilities. Therefore it
is useful for us to determine image moments directly from
the visibility amplitude function, which is measured.

The image covariance matrix 3 can be more intuitively
expressed in terms of its principal axes, corresponding to
the perpendicular axes about which the second moment
reaches its maximum (Hu 1962). The matrix has two eigen-
values Amin and Amaj, and can be diagonalized as follows:

)\min 0
=Ry ( 5 /\maj> R}, (5)

where Ry is the rotation matrix based on the position an-
gle east of north ¢ of the major principal axis (Appendix
A.2). The eigenvalues of the covariance matrix are the vari-
ances of the normalized image projected along the principal
(major and minor) axes. The correspondence between Ayaj,
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Table 1. Correspondence of the mass, center of mass and moment of inertia in the image and visibility domains.

Physical Analog Image Domain

Visibility Domain

I
(
(

Mass
Center of Mass
Moment of Inertia

Total Flux Ii
Centroid (u) |4
Covariance (X) V

x)d*x

(()) b xI(x)d*x
0) ! [ xxTI(x)d*x

Peak Visibility
Phase Gradient
Amplitude Curvature

V(0)
(27iV(0))* VV(u) ], g
(—472V(0)"L VYTV (w)],

=0

Amin, ¢ and the individual terms of X is given in Appendix
A.2.

Following Equation 1, we can fully express the visibil-
ity function as a Taylor expansion in its derivatives. Each
n+ 1*" term of the Taylor expansion is proportional to the
n'™ moment of the visibility function (see Table 1). At zero
baseline, only the zeroth moment remains. We choose the
coordinate system such that the centroid of the image is
at the origin, and the first moment of the visibility func-
tion (the second term of the Taylor expansion) vanishes.
At short baseline, the centered complex visibility function
is therefore dominated by the quadratic term. The Taylor
expansion of the visibility function at short baseline be-
comes:

V(u) ~V(0) — 27r2/d2x (u-x)%I(x)

~ V(0) — 27V (0)uTZu. (6)

Equation 6 describes the visibility function behavior on
short baselines entirely in terms of the total flux V(0) and
the second moment covariance matrix ¥ projected along
the baseline direction. These parameters also describe a
unique visibility function of a Gaussian source with total
flux V(0), and major/minor axes sizes and orientation pre-
scribed by the same covariance matrix. We show this by
comparing the general complex visibility function to that
for a Gaussian source. For the simplest case of an isotropic
Gaussian source of standard deviation o with the same to-
tal flux V(0), we have the following intensity pattern on
the sky and corresponding visibility function:

VO) —ix2/20
— e Ix|”/207 (7)

(8)

More generally, an anisotropic Gaussian with a covariance
matrix X gives:

V(O) efxTZ_l
21/ 2] ’

Vgauss (u) = V(O)e_Qﬂ-QUT Eu‘

Igauss (X) = oo

Vyauss (1) = V(0)e 27 lul*e®

(9)

(10)

Igauss (X) =

Taking the Taylor expansion of the anisotropic Gaussian
visibility function at short baselines, the first two terms
dominate:

Vaauss(1) = V(0) — 27%V (0)uT Zu. (11)

We thus obtain an equivalence of the behavior of the gen-
eral visibility function (Equation 6) and the Gaussian visi-
bility function (Equation 11) at short baselines. This rela-
tion allows us to translate the second moment covariance
matrix of the general visibility function to the covariance
matrix of an anisotropic Gaussian, which provides a simple
parametrization to describe the second moment in terms
of the characteristic source extent. The sizes of the major
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Fig. 1. Three images with equal extent along their respec-

tive major axis, from left to right: a Gaussian; a crescent
model; a ray-traced image from a general relativistic magneto-
hydrodynamics (GRMHD) simulation of a black hole shadow
and accretion disk. Model visibility amplitudes along the major
axis of each source as a function of (u,v) distance, after flux
and size normalization, show identical behavior at short base-
line length but diverge at longer baseline length: the Gaussian
in black; the crescent in blue; and the GRMHD simulation in
red.

and minor axes Omaj; and Oy are simply the full widths
at half-maximum (FWHMSs) of the equivalent Gaussian de-
rived from the variances projected along each principal axis:

811(2) Aaj,
81n(2))\mm.

(12)
(13)

emaj =
Hmin =

The equivalence to the Gaussian also gives a natural
break-off point where the characteristic source size con-
straint from the second moment ceases to be a good ap-
proximation to the full visibility function: the 1/e point
determining the resolvability of a Gaussian translates to
the baseline length at which the visibility amplitude reaches
V(0)/e. Baseline lengths longer than the 1/e point will lead
to higher order terms of the Taylor expansion dominating
the behavior and sampling finer structure in the image. We
employ the 1/e point as a conceptual and visual limit for
the source size constraint applied via the second moment
regularization. It is not a hard cut-off enforced by the imag-
ing process.

In Fig. 1, we demonstrate the behavior of the normalized
visibility amplitudes sampled along the source major axis
as a function of projected baseline length for three images
with distinctly different structure but an identical second
moment. The behavior on short baselines aligns well for
all three images, the amplitudes start to diverge at longer
baselines. We denote the 1/e limit, corresponding to the
resolvability of the Gaussian image, with a magenta vertical
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line. On baselines past this line, the amplitudes show very
different behavior, dominated by the smaller-scale features
in each image (or lack thereof). We can thus express the
visibility amplitude function behavior on short baselines
via the second moment of the image, defined by the total
flux and just three Gaussian parameters: the principal axes
FWHMSs 0,5 and 6nin and the position angle ¢ of the
major axis east of north. In the RML imaging process, there
is an additional fifth input parameter, governing the weight
of the second moment regularization, or hyperparameter
Br, following Equation 14.

3. Method

RML focuses on pixelized reconstructions of the image, it-
eratively maximizing an “objective function”, which is anal-
ogous to a log posterior probability function. This func-
tion is a weighted (via “hyperparameters”) sum of both
X% goodness-of-fit data terms, and regularization functions
SR, or “regularizers”, governing specific image properties.
In this paper, we use the RML method implemented in
the eht-imaging Python library (Chael et al. 2016, 2018),
where the objective function J(I) is minimized via gradient
descent, and can be written as:

J(I) = apxp (1) = > _BrSe (1),

data terms

(14)
regularizers

where ap and g are the input hyperparameters.

Using only five input parameters to the regularization
(V(0), Omaj, Omin, ¢ and Pr) we can now constrain the
second moment of the reconstructed image to match the
size constraint provided by the user for RML imaging. In
Sect. 3.1 we present our implementation of the second mo-
ment regularization function within the eht-imaging li-
brary minimization framework. In Sect. 3.2 we describe the
assumptions and physical motivation for second moment
regularization using historical observational measurements,
known source properties and theoretical expectations.

3.1. Second moment regularization

Regularization functions in imaging enforce constraints on
particular properties of the image, such as image entropy
(e.g., Narayan & Nityananda 1986), smoothness (Bouman
et al. 2016; Chael et al. 2016; Kuramochi et al. 2018) and /or
sparsity (Wiaux et al. 2009a,b; Honma et al. 2014; Akiyama
et al. 2017a,b). Simple constraints, such as image positivity,
image total flux (zeroth moment) or image centering (first
moment), are often applied to the image, utilizing known
information on the behavior of the total intensity distribu-
tion of the source imaged. The implementation of a second
moment regularization, constraining the size of the source,
is thus a natural extension of common imaging tools that
add source information to the imaging process.

We define a regularization function that is minimized
when the covariance matrix of the reconstructed image X
matches a user-specified covariance matrix X’. In practice,
this latter matrix is computed using user-specified principal
axes FWHMs and position angle. We utilize the Frobenius
norm to determine a penalty function that quantifies the
difference between the user-specified and reconstructed co-
variance matrices:

Re=Tr[(Z-%)(Z-%] (15)
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This regularizer is, by definition, simply the minimization of
the difference between two covariance matrices. The proce-
dure for the regularizer implementation in the eht-imaging
library via gradient descent is presented in Appendix B.

3.2. Assumptions

The second moment regularization operates under a few key
assumptions on the properties of the source observed. The
main assumption of this method is the compactness of the
source. In order to get a quadratic fall-off in the visibility
function, as shown in Sect. 2, the source must be compact
and resolved on longer baselines of the interferometer. This
method would break down for point sources or sources with
complex morphology and diffuse flux on large scales.

Another assumption concerns the stability of the source
size across multiple epochs. The input axis sizes and po-
sition angle for the regularization will only be valid if the
source does not vary significantly in size between observa-
tions. The source size input is typically derived from ob-
servations where weather conditions, coverage, and station
performance on short baselines were adequate for higher
precision model fitting. The source size can then be used
for data sets with larger uncertainties to improve the fidelity
and convergence of the imaging process. This assumption is
well-motivated for the compact sources observed with the
EHT:

— SgrA* at 86 GHz, has been model-fitted with varying
precision over two decades, with little variation in the
obtained source size parameters, (Rogers et al. 1994;
Krichbaum et al. 1998; Doeleman et al. 2001; Shen et al.
2005; Lu et al. 2011; Ortiz-Leoén et al. 2016; Brinkerink
et al. 2019)

— SgrA* at 230 GHz has been measured to be compact
and stable in size between 2007 and 2013 (Doeleman
et al. 2008; Lu et al. 2018; Johnson et al. 2018),

— MBS&7 at 230 GHz has been measured to be compact and
stable in size over a decade (Doeleman et al. 2012;
Akiyama et al. 2015; Event Horizon Telescope Collabo-
ration et al. 2019a,b,c,d,e,f).

It is worth noting that this assumption breaks down for
sources with multiple bright components moving relative
to each other, as is common for multi-epoch images of
bright jet sources. An overall size measurement from a sin-
gle epoch would not translate to other observations due
to components appearing or moving outward, changing the
source morphology significantly between observations. The
quadratic fall-off approximation until the 1/e point would
also not hold for two separated point sources, which do show
a quadratic fall-off in the visibility amplitudes but the am-
plitudes would quickly evolve to more complex structure
on longer baselines that could be identified as the behav-
ior of two point sources interfering. The method is most
effective whenever the emission is confined within a single
compact region or on multiple scales that are substantially
separated, and particularly if the scale of the emission in
the image is comparable to the resolution of the array.

We also assume that the extent of the source does not
significantly vary within a single epoch. For static imaging
of slow-varying sources, it suffices to assume that the aver-
age size of the source matches the input, but this has further
implications on reconstructions of variable sources within a
single epoch. The structural variability on short timescales
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Fig. 2. Left: 230 GHz GRMHD simulation of SgrA* (Mosci-
brodzka & Gammie 2018). Right: Same simulation including the
effects of interstellar scattering (Johnson 2016; Johnson et al.
2018).
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Fig. 3. Principal axes FWHMs as a function of time for the sim-
ulation of Sgr A* in Fig. 2 (Moscibrodzka & Gammie 2018). The
solid lines show sizes for the simulation, the dotted lines show
sizes for the simulation including the effects of interstellar scat-
tering (Johnson 2016; Johnson et al. 2018). The scattering major
axis is aligned with the source minor axis, and thus the scatter-
ing kernel slightly dominates the minor axis size, which stabilizes
the minor axis FWHM time series. The sizes were obtained from
measurements of the image second moment per frame. For all
four size trends, the deviation about the mean size is < 10%.

should be contained within the region constrained by the
second moment. This is an issue particularly for imaging
Sgr A*, as the source is known to vary on timescales of
minutes, much shorter than the length of a single observing
epoch. We assess the degree of variability of the source ex-
tent in quiescent (non-flaring) models of Sgr A* using gen-
eral relativistic magnetohydrodynamic (GRMHD) simula-
tions of variable emission on horizon scales (Fig. 2; Mosci-
brodzka & Gammie 2018). In Fig. 3, we show the variation
in the principal axes FWHMs for a typical GRMHD sim-
ulation of the accretion flow of Sgr A* at 230 GHz, both
excluding and including the effects of scattering due to
the interstellar medium in our line of sight (Johnson 2016;
Johnson et al. 2018). Although the simulation shows struc-
tural changes in the source morphology, deviations about
the mean FWHM remain below 10% for both the model
and scattered simulation principal axes.

Furthermore, the emitting gas around supermassive
black holes in low-luminosity active galactic nuclei becomes
optically thin as we increase the observing frequency. The

140

—— GRMHD Model
— Scattered

120

—~

%2100

80

Mean FWHM (uas

400 600
Frequency (GHz)

200 800 1000

Fig. 4. Geometric mean FWHM of principal axes as a function
of frequency for the ray-traced simulation of SgrA* in Fig. 2
(Moscibrodzka & Gammie 2018). The blue curve shows size
evolution for the simulation, the red curve shows size evolution
for the simulation including the effects of interstellar scattering
(Johnson 2016; Johnson et al. 2018). The sizes were obtained
from measurements of the image second moment per frequency
bin of 20 GHz. The change in size with increasing frequency be-
comes greatly reduced at frequencies above 300 GHz, where the
size of the source is dominated by the achromatic black hole
shadow and the Doppler boosted features (Falcke et al. 2000).

source extent is therefore dominated by the black hole
shadow and Doppler-boosted features at higher frequen-
cies (Falcke et al. 2000). This behavior is shown in Fig. 4 for
the GRMHD simulation of the quiescent accretion flow of
Sgr A* observed at frequencies from 80 GHz to 1 THz (Mos-
cibrodzka & Gammie 2018). At frequencies of ~300 GHz
and above, the source size changes very little with increas-
ing frequency. These achromatic properties motivate the
extrapolation of a source size from lower-frequency obser-
vations with short baselines, such as the EHT at 230 GHz,
to higher-frequency imaging experiments such as the up-
coming EHT at 345 GHz (Event Horizon Telescope Collab-
oration et al. 2019b; Doeleman et al. 2019).

4. Demonstration

The second moment regularization can be used with
informed size constraints from previous experiments,
GRMHD simulations, or achromatic features from other
observing frequencies. In this section, we demonstrate how
the second moment regularization adds information to the
imaging process if the data set to be imaged has no short
baselines. For all following tests, we use a high fr = 10,
such that the input source size is strongly constrained in
the imaging process. To put this value into perspective,
Br = 10° would cause a ~10% difference between the input
and reconstructed source sizes to be penalized equivalently
to a change in reduced y? of ~1 in our imaging procedure.
This regularization weight tends to drive the second mo-
ment of reconstructed images to be within 20% of the input
values, therefore allowing some flexibility for the imaging
process to deviate from the input second moment toward
morphology favored by the available data.

In Sect. 4.1 we show improvements to the reconstruc-
tions when the source size is known. In Sect. 4.2 we study
the image quality and fidelity dependence on the assumed
size in the regularization. Finally in Sect. 4.3 we demon-

Article number, page 5 of 14



A& A proofs: manuscript no. main

10.0
75l /-\’\
5.0
2.5
— l ,L1m1t \
< { of 4
3 o0f (( ; )
] : )
—2.5/
—5.00
—7.5] \—-/\’
—L00FETTE 0 25 00 25 50 7.5
u (GA)

Fig. 5. (u,v) coverage for simulated observations of Sgr A* with
the EHT 2017 array at 230 GHz. The magenta disk represents
the range of (u,v) constrained by the second moment regulariza-
tion, with the boundary at the 1/e point of the corresponding
visibility amplitude function for Sgr A* assuming an isotropic
source of 60 pas FWHM (Johnson et al. 2018).
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Fig. 6. Visibility amplitudes for a model image of a semi-
analytic advection-dominated accretion flow (ADAF) model of
Sgr A* (Broderick et al. 2011) with a FWHM of ~ 60 pas as a
function of (u,v) distance sampled by the EHT in 2017 with
and without the LMT (affecting mid-range baselines). The reg-
ularizer Rs governs the visibility amplitude behavior at short
baselines until the 1/e point. This allows us to constrain and
correct limitations and uncertainties in LMT calibration based
on the expected behavior of the LMT-SMT mid-range baseline.

strate that high fidelity images can be obtained without a
priori knowledge of the source extent via input parameter
searches.
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4.1. Imaging with complementary size constraints

In Fig. 5, we illustrate the domain in which the second
moment regularization (Rx) operates. The (u,v) coverage
is that of a typical observation of Sgr A* with the EHT at
230 GHz. Assuming a source extent of 60 pas from previous
observations (Johnson et al. 2018), the 1/e boundary of
the visibility function for a source with that characteristic
size is shown as a disk on the (u,v) coverage. The only EHT
baselines that lie within the Rs disk are intra-site baselines
and the LMT-SMT short VLBI baseline. A single short
VLBI baseline is very limited in constraining the overall
extent of the source even assuming optimal performance of
the telescopes.

We selected a ray-traced image of a semi-analytic
advection-dominated accretion flow (ADAF) model of
Sgr A* (Broderick et al. 2011) with a similar character-
istic size to the Sgr A* observations to assess the perfor-
mance of the regularizer and to test the robustness of the
imaging process as a function of the input parameters 0p,a;,
Omin, and ¢. We sample the image with EHT 2017 cov-
erage (Fig. 5), where we have total flux density estimates
from intra-site baselines and a valuable mid-range baseline
(SMT-LMT) describing the extent of the source on the sky,
as shown in Fig. 6. We chose to discard all LMT baselines to
limit the coverage and remove the constraining mid-range
baseline for the regularizer tests. The extent of the source
will then solely be enforced by the user-defined 04, Omin,
and ¢ input parameters for Ry in the imaging process. It
should be noted that imaging without the LMT not only re-
moves short-baseline information on source extent but also
long-baseline information on finer features, creating further
differences in reconstructed images. The LMT, due to its
size and central location, holds a strong weight in trigger-
ing decisions, while the SMT is a smaller and well-exercised
station and is fairly flexible to various observing conditions.
The choice to discard the LMT is thus mainly motivated by
the known difficulties, to date, for the station to observe in
a wide range of observing conditions and obtain adequate
calibration information (Event Horizon Telescope Collabo-
ration et al. 2019¢,d). Removing the SMT instead, for the
purposes of these tests, would give similar results due to
the lack of short-baseline information.

In Fig. 7, we show the model crescent image in the left
panel, and example reconstructions for four different sce-
narios in the right panel. The first scenario is a reconstruc-
tion of the full EHT observations of the crescent, using clo-
sure quantities and visibility amplitudes, and maximizing
simple image entropy. In that case, we obtain a good fit
to the visibility amplitudes, and we recover an image very
similar to the model image. Then, we reconstruct the same
observations constraining the image to match the true sec-
ond moment, as measured on the true image. With this
method, we obtain a marginally improved fit to the am-
plitudes, but visibly less diffuse flux outside the crescent
due to the constraint of Rx. Once we remove the LMT
however, the simple imaging with maximum entropy is not
able to reconstruct the morphology of the source, although
some compact features are reconstructed that enable a de-
cent fit to the visibility amplitudes. When adding Ry to
the process, the second moment constraint is able to offset
the absence of short baselines and reconstructs an image
of improved quality in terms of both image morphology
and goodness-of-fit to the amplitudes. This demonstration



S. Issaoun et al.: VLBI imaging of black

Gmaj =71yuas, O, =54uas, ¢=31°

5 10 15 20
Brightness Temperature (10° K)

Qmaj =93 uas, O, = 79uas, ¢ =4°

50

holes via second moment regularization

Simple, full array

7)
Xamp

Simple + Ry, full array

=1.057 Xemp=1.04

Qmaj =58 uas, O, =52uas, ¢ =177°

Simple, no LMT
Xgmp= 1.105

Simple + R3, no LMT
)(azmpzl.058

v

Qmaj =38uas, O, =52uas, ¢ =178°

0 -50

Fig. 7. Left: Model image of a semi-analytic ADAF model of Sgr A*(Broderick et al. 2011), contours of 25, 50, and 75% of the
peak flux density are shown in white. Right: Tests of the second moment regularizer using the true image parameters as input

(Oma; = 58 pas, Omin = H2puas, ¢ = 177° as measured directly

from the model image), x* values are calculated for the data

set without the LMT. We additionally give the resulting source size parameters for each reconstruction. Imaging of the example
data set with full EHT 2017 coverage shows little difference between the imaging process with and without the second moment
regularizer. When the LMT is removed, and thus the mid-range baseline no longer constrains the source size, Rx greatly improves

the imaging. It should be noted that differences in finer features
some long-baseline information from the removal of the LMT.

shows that Ry successfully adds additional information to
reconstruct a more physically plausible image even when
mid-range baselines are lacking in the underlying data set.
The improvement in the amplitude x? also shows that Ry
is a useful tool to aid convergence in imaging.

4.2. Dependence of reconstructed images on assumed size

In the demonstration of Rx we constrained the second mo-
ment to the true size of the source, to enable an accurate
reconstruction of the image. However, in practice, the true
size of the source is unknown, and is instead approximated
from Gaussian model fitting to closure quantities and/or
short-baseline visibility amplitudes and extrapolated from
historical measurements. We therefore investigate the ro-
bustness of the image reconstructions when the input Gaus-
sian parameters are strongly enforced in the imaging pro-
cess, corresponding to a strong weight of the Ry hyperpa-
rameter, while changing input principal axes FWHMs. We
demonstrate this dependence by imaging the data set of the
crescent model sampled by the EHT 2017 coverage without
the LMT, such that the extent of the source is only enforced
by the varying inputs to Ryx. For simplicity, we use a sin-
gle common imaging script varying only the input principal
axes FWHMs. We assume an isotropic source size such that

imaged with and without LMT are expected due to the loss of

Omaj= Omin and ¢ = 0°, and a range of input FWHMs of
5 — 90 pas.

We utilize two metrics to compare the quality of the re-
constructed image to the true model image. The normalized
root-mean-square error (NRMSE) of each image is given by:

NRMSE = (16)

where I’ is the intensity of the reconstructed image and I is
that of the true image (e.g., Chael et al. 2018). If the recon-
structed image is identical to the true image, the NRMSE
is zero. Therefore, the input FWHM for the reconstruction
resulting in the minimum NRMSE in comparison to the
true image gives the best fit.

The normalized cross-correlation (NXCORR) is a slid-
ing inner-product of two normalized functions. For fast nu-
merical computation, we determine the cross-correlation of
the Fourier transforms of the normalized intensity patterns
of the true image I;orm and the reconstructed image I
at different relative shifts d across the extent of the images.
For each pixel i in the image, we normalize the intensity
via:

I — pr

Inorm,i = )
ar

(17)
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Fig. 8. Quality of the images obtained with different input
FWHM (major and minor axes equal, position angle is zero).
The image quality is measured in three ways: (1) the normalized
cross-correlation against the true image, or NXCORR; (2) the
normalized root-mean-square error against the true image, or
NRMSE, shown in the top panel; and (3) reduced x* goodness-
of-fits to the three data products used in the reconstructions
(visibility amplitudes, closure amplitudes and phases) shown in
the bottom panel. NRMSE is more sensitive to subtle differ-
ences in the images than NXCORR due to the higher weight
associated with large pixel-by-pixel errors and is minimized in
a comparable range of input FWHMs to the reduced data x2.
The narrow range of FWHMSs encompasses the true mean source
FWHM (magenta vertical line).

where p; and oy are the mean and standard deviation of the
intensity distribution in the image. The cross-correlation for
a given shift  is then given by:

NXCORR(8) = [~ H{F{Lorm(3)} - F{ Lo (x + 5)}}|(. )
18

The shift at which the cross-correlation is maximized is then
used to output the final NXCORR value for the two images.
This method is less sensitive to individual features in the
reconstructed image than NRMSE as it compares the bulks
of each intensity pattern as opposed to the NRMSE pixel-
to-pixel comparison. The x? statistics follow the equations
presented in Sect. 2.1 of Event Horizon Telescope Collabo-
ration et al. (2019d).

In Fig. 8, we show the NRMSE and NXCORR metric
scores for the reconstructed images compared against the
true image (left panel of Fig. 7), and the reduced data x?
goodness-of-fits to the imaged data set (Fig. 6, no LMT).
The NXCORR is maximized at an input FWHM of 55 pas,
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Fig. 9. Cross-comparisons of reconstructed images with vary-
ing isotropic input FWHMSs using symmetrically normalized
root-mean-square error (SNRMSE). The SNRMSE grid shows a
greater correspondence of images with input FWHMSs near the
true mean FWHM of 55 pas, marked by the dashed black lines.
The reconstructed images with varying input size (5-90 pas) are
all compared to each other, where image 1 and image 2 are the
two images to be compared (I and I3 respectively in Equa-
tion 19). The diagonal is each image compared to itself. The
SNRMSE grid gives a range of plausible input FWHMs for R
that result in high fidelity images even when the true source size
is unknown.

and the NRMSE is minimized at the same input FWHM.
This value corresponds to the mean FWHM (average of
Omaj= 58 pas and Opin= 52 pas) of the true image. With
this test, we find an excellent correspondence between the
reconstructed image with the highest quality (highest NX-
CORR, lowest NRMSE, and lowest reduced data x?) and
the image with the input Ry FWHM closest to the true
value. Images with input FWHMSs close to the optimal value
are of similarly good quality. We thus show a good perfor-
mance of Ry in the imaging process even with input sizes
inaccurate to within 20% of the true size. The reduction in
data y? values as we approach the true source size also in-
dicates that Ry gives a convergence boost toward a higher
fidelity image. This behavior is caused by R rapidly reduc-
ing the favored set of images to only those that constrain
flux within a given region. The region limits that best rep-
resent the flux distribution in the true image allow the min-
imizing process to focus more quickly on the data terms and
achieve better reduced x2 values within the given imaging
conditions. This property also allows us to survey the re-
sponse of the imaging process and goodness-of-fits to the
available data via parameter searches over different favored
second moments (and thus favored flux regions) and deter-
mine optimal parameters that best represent properties of
the data set.

4.3. Imaging without complementary size constraints

The NRMSE metric proves to be more sensitive to differ-
ences in the image structure than NXCORR, as shown in
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Fig. 8, due to the higher weight associated with large er-
rors in the computation of the NRMSE. For that reason,
we have selected NRMSE to score comparisons between the
reconstructed images themselves. For this test, we assume
that the true image and true FWHM are unknown, as is
the case for real experiments. We instead focus on the mor-
phological characteristics that appear in the images based
on the underlying data, and how the inputs to Ry affect
the correspondence between reconstructed images. We re-
structure the metric into a symmetrically-normalized root-
mean-square error (SNRMSE; Hanna et al. 1985; Mentaschi
et al. 2013) to render the NRMSE independent of the input
and comparison image choice:

p )
’ )

SNRMSE = (19)

Here I{ and I} are the two reconstructed images to be
compared. In Fig. 9, we show an SNRMSE grid comparing
each reconstructed image to all others, where the diagonal
squares correspond to each image compared with itself. We
have marked with dashed lines where the mean FWHM of
the true image lies. We find that images with input FWHMSs
near the true FWHM of the source have a better SNRMSE
with each other than all other combinations of images. This
test enables the user to find a range of characteristic sizes
minimizing SNRMSE via a size parameter search. For com-
pact sources that are distinctly elliptical, a one-dimensional
size parameter search is useful to quickly sweep through a
wide range of sizes and determine a range of plausible sizes
for the source extent. A search within that range, varying
parameters in two dimensions (6maj, Omin, and ¢), can then
be carried out to refine the source size estimate for the
imaging process.

We find that the use of the regularizer improves the
quality of the resulting image even if the input parameters
deviate by 20% from the true values. We also find that
the strong use of the regularization, when combined with a
size parameter search, is able to converge toward the true
FWHM values, even when the true source dimensions are
unknown. The use of SNRMSE and y? statistics serve well
to score individual images and parameters without a priori
knowledge of the source extent.

5. Applications

In addition to simple static imaging, second moment regu-
larization can easily be coupled to more sophisticated and
complex imaging techniques. In Sect. 5.1 we present an ex-
ample of the use of second moment regularization for scat-
tering mitigation imaging of Sgr A* at longer wavelengths.
In Sect. 5.2 we demonstrate how second moment regular-
ization in individual sparse snapshots improves the quality
of dynamical reconstructions of variable sources, such as a
movie of an orbiting "hot spot" in Sgr A*’s accretion flow.

5.1. Scattering mitigation

The second moment constraint in imaging can both be
used for data sets where short baselines are lacking, as
demonstrated in Sect. 4, and for data sets where short-
baseline measurements have large uncertainties due to dif-
ficult observing conditions. An example of the latter case

is presented in Issaoun et al. (2019), where observations of
Sgr A* at 86 GHz with the Global Millimeter VLBI Array
and ALMA (project code MB007) yielded high signal-to-
noise (SNR) detections on long baselines but bad weather
at select Very Long Baseline Array (VLBA) stations led
to poorly constrained short-baseline measurements. Imag-
ing of the source with RML would not have been feasible
with these measurements alone, as the large uncertainties
in the short-baseline measurements caused flux to spread
nonphysically across the reconstructed images. Since the
size of Sgr A* on the sky is well studied and known to be af-
fected by anisotropic scatter-broadening from the interstel-
lar medium (Davies et al. 1976; van Langevelde et al. 1992;
Frail et al. 1994; Bower et al. 2004; Shen et al. 2005; Bower
et al. 2006; Psaltis et al. 2018; Johnson et al. 2018), previ-
ous size measurements (Ortiz-Leon et al. 2016; Brinkerink
et al. 2019) were used to constrain the extent of Sgr A* in
the imaging process with Ry . In this manner, we obtained
an image that was able to fit new long-baseline detections to
ALMA, likely refractive noise from scattering substructure.

The second moment regularization was also imple-
mented in the scattering mitigation code stochastic optics
developed by Johnson (2016). Stochastic optics aims to mit-
igate the effects of scattering to derive an intrinsic (un-
scattered) image of the source. The code solves for the un-
scattered image by separating and mitigating the two main
components of the Sgr A* scattering screen: the diffractive
scattering that causes the image to become a convolution
of the true image and the scattering kernel; and the re-
fractive scattering that introduces stochastic ripples that
further distort the image. The stochastic optics framework
therefore simultaneously solves for the unscattered image
and the scattering screen assuming a given model for the
diffractive blurring kernel and the time-averaged refractive
properties. The model assumed here is the Johnson et al.
(2018) scattering model, the best-fitting model to Sgr A*
observations to date (Issaoun et al. 2019).

The implementation of Ryx in stochastic optics only
constrains the size of the scattered source (SgrA* as we
see it on the sky) based on historical measurements from
model fitting, such that the technique can more accurately
mitigate the effects of interstellar scattering to obtain a
physically motivated intrinsic image of the accretion flow
of Sgr A* (for further details, see Issaoun et al. 2019). The
intrinsic image itself is not directly constrained by the sec-
ond moment regularization, but is derived from the com-
bination of the constrained scattered image and knowledge
of the interstellar scattering.

Here we illustrate the use of Rs within stochastic op-
tics using a lower frequency data set. Observations of Sgr A*
at 22 GHz with the VLBA+GBT (project code BG221A)
showed clear long-baseline detections of refractive noise
from interstellar scattering (Gwinn et al. 2014; Johnson
et al. 2018). These long-baseline detections should trans-
late to substructure in the image, distorting the intensity
pattern seen for Sgr A* away from the scatter-broadened
smooth elongated Gaussian-like morphology. While the
scattering substructure is very apparent in the data set,
it is a non-trivial task to successfully show its effects on the
image itself and obtain an intrinsic image of the source. This
is due to the imaging process being driven predominantly
by the abundance of intra-VLBA short-baseline measure-
ments in comparison to the few VLBA-GBT long-baseline
detections. We therefore test the addition of Rs on this
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Fig. 10. Reconstructions of 22 GHz VLBA+GBT observations and their resulting source extents. MK and SC have no detections,
and HN and NL are flagged due to their very low sensitivity in this experiment. Left: a simple reconstruction of the scattered
image without Rx. Center: a reconstruction of the scattered image via stochastic optics (Johnson 2016), using the scattering
model by Johnson et al. 2018. Right: a reconstruction with stochastic optics, using Rs and the input source size as determined by
Johnson et al. 2018 from high-precision Gaussian model fitting: Omaj; = 2255 & 61 pas, Omin = 1243 + 39 pas, ¢ = 81.9 £ 0.2°. The
reconstruction with Rs; helps constrain the extent of the source in the north—south direction, where measurements are lacking due
to the predominantly east—west configuration of the VLBA+GBT.

data set, using the source dimensions in Table 1 of Johnson
et al. (2018) from elliptical Gaussian model fitting.

In Fig. 10, we show three separate reconstructions of
the 22 GHz data set. A standard RML reconstruction of the
data set (Fig. 10 left panel) shows some distortions in the
scattered image, but the morphology remains fairly smooth
and elongated. Standard RML imaging cannot solve for the
scattering properties, therefore the procedure is solely fo-
cused on obtaining the highest fidelity scattered image pos-
sible from the data set. We will thus treat this image as our
comparison image for this data set. When using stochastic
optics however, the imaging process is more complex, as it
is simultaneously imaging the scattered source and solving
for the scattering properties to disentangle scattering from
intrinsic source structure. This process derives a scattered
image that is not well-constrained in the north—south direc-
tion due to the configuration of the VLBA+GBT, resulting
in a large source image that is not fully converged to the
image obtained from standard RML (Fig. 10 center panel).
Since the scattered image does not match our expectations
of the physical morphology of the source, the derived intrin-
sic image should also not be trusted. The challenge is then
to improve the convergence of the imaging component of
stochastic optics to quickly obtain a physically motivated
scattered image and therefore undergo a higher-fidelity sep-
aration of the scattering and intrinsic structure. When us-
ing Ry, where the scattered image is constrained to remain
within the size obtained by Johnson et al. (2018) using el-
liptical Gaussian model fitting, the resulting scattered im-
age is more elongated in the east-west direction (Fig. 10
right panel) and showing distortions similar to those of the
standard RML reconstruction This shows that the use of
Rs helps the convergence of the scattered image through
stochastic optics to a more physically motivated reconstruc-
tion, and thus will give a more realistic underlying unscat-
tered image of the source.
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5.2. Dynamical imaging

There are additional applications for the second moment
regularization in movie reconstructions of variable sources
where single snapshots have very sparse coverage. We can
test the robustness of movie reconstructions with the loss of
short baselines using a simulated flare (model B of Doele-
man et al. 2009) with an orbiting period of 27 minutes
around the same crescent model as in Sect. 4. We recon-
struct movies of the orbiting “hot spot” using dynamical
imaging, enforcing temporal continuity between individual
frames (for further details, see Johnson et al. 2017). We re-
construct a movie of the orbiting hot spot for four different
scenarios: (1) we use the EHT 2017 array without the LMT,
no short baselines are present in the individual snapshots
to constrain the source extent; (2) we use the data set with-
out the LMT, but constrain the extent of the source (the
dimensions of the crescent model) with Ry, (3) we use the
full EHT 2017 to reconstruct the orbit; (4) we use the full
EHT 2017 and Ry to reconstruct the orbit. In Fig. 11, we
show individual frames of the true simulation and of the
reconstructed movies for the four different scenarios. The
reconstructions without Ry either yield unphysical source
structure dominated by the dirty image (due to the lack
of information without LMT) or contain imaging artifacts
from flux spreading due to the sparse coverage of individual
snapshots. In particular, even with the full EHT2017 ar-
ray, dynamical imaging without Ry shows north—east and
south—west artifacts from the dirty image that persist due
to the sparse snapshot coverage. The reconstructions with
Rs, even without the LMT, are significantly cleaner and
more accurately reconstruct the motion and morphology of
the simulation, as shown by NXCORR results when com-
pared to the truth simulated images.

6. Summary

In summary, we have developed a regularization function
Ry, for use in a regularized maximum likelihood frame-
work for interferometric imaging, that constrains the spread
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Fig. 11. Reconstruction of a simulated flare using dynamical imaging (Johnson et al. 2017). From top to bottom: simulated images
of a flare with a period of 27 minutes (model B of Doeleman et al. 2009); simple dynamical imaging without the LMT (no short-
baseline points constraining the source extent); dynamical imaging using Rs without the LMT (the second moment regularization
offsets the lack of short-baseline constraints mnple dynamical imaging with full EHT2017 sampling; dynamical imaging using Rx
with EHT2017 sampling. Using R sig ntly improved the quality of dynamical reconstructions both with the full array and
without the LMT. NXCORR values against the model images a own in the top left corner for each reconstructed snapshot.
The variations in the resulting FWHMs of the reconstructed images are visually evident.

of flux in reconstructed images to match input parameters
defined by the user. The second moment regularization is a
natural extension of common imaging tools, such as image
total flux and image centroid constraints (zeroth and first
moment respectively), that help to mitigate the missing in-

formation problem in high frequency VLBI. The regulariza-
tion assumes that the source is compact, with a stable size,
and is resolved on longer baselines of the interferometer.
The validity of these assumptions for the EHT’s primary
targets, Sgr A* and M87, are well-motivated by state-of-the-
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art GRMHD simulations and long-term observational stud-
ies. For well-studied sources, this method allows for contin-
gency against weather, a major deterrent for high frequency
VLBI, and gives more flexibility for triggering decisions if
key short baselines yield poorly constrained measurements
or become unavailable during or between observations.

We have shown that Ry successfully informs the source
behavior on short baselines and is defined only by three
Gaussian parameters and the regularization hyperparame-
ter. Imaging with Ryx is able to reconstruct high fidelity
images fitting to the data products even if the input source
dimensions deviate from the true values by up to 20%.
The regularization therefore gives a larger flexibility than
needed to account for changes in size from, for exam-
ple, GRMHD simulations of highly variable sources such
as Sgr A*. We have also shown that parameter searches
over a range of isotropic FWHMs using Ry in conjunc-
tion with goodness-of-fit statistics to data products and
symmetrically-normalized root-mean-square error of image
comparisons help determine high-fidelity source extent even
if the exact size and morphology are unknown.

The regularization can be used to image with any choice
of data products and any choice of feature-driven regulariz-
ers within the framework of the eht-imaging library (Chael
et al. 2016, 2018) and is easily transferable to other tools or
other RML imaging packages (e.g., SMILI; Akiyama et al.
2017a,b). We have shown that the Ry implementation com-
plements other techniques tackling source properties that
add difficulty and complexity to the imaging process, such
as time variability (via dynamical imaging; Johnson et al.
2017; Bouman et al. 2018) and interstellar scattering (John-
son 2016; Issaoun et al. 2019). Source parameter inputs can
either be obtained from model fitting to abundant short-
baseline measurements, historical measurements from ob-
servations with short baselines present, extrapolated from
other wavelengths based on achromatic features, or esti-
mated via parameter searches. The second moment regular-
ization could prove particularly useful in future work with
the EHT, both for dynamical reconstructions of variable
sources such as Sgr A* and for upcoming imaging observa-
tions at 345 GHz (Event Horizon Telescope Collaboration
et al. 2019b; Doeleman et al. 2019).
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Appendix A: Properties of the visibility function
Appendix A.1: Visibility derivatives and image moments

Non-astrometric VLBI experiments such as the EHT mea-
sure visibility amplitudes directly but do not provide abso-
lute phase information. Nevertheless, the zeroth and second
image moments are determined from visibility amplitudes
alone (i.e., they do not depend on the measured phase; Mof-
fet 1962; Burn & Conway 1976). For instance, the total
flux density [ I(x)d*x = V(0) = |V (0)| because the zero-
baseline visibility is real and positive, and therefore equal
to its modulus.

More generally, we can express the visibility function as
a Taylor expansion of its derivatives:

2

:/dQXI(x) [1_21,#11.)(_(271'112')()
i(2ru - x)? n (27u - x)*
6 24

(A1)

The visibility amplitude function is image-translation in-
variant. To obtain a Taylor expansion for visibility ampli-
tudes, we choose the image centroid to be at the origin.
The first derivative of the visibility function (thus the sec-
ond term of the Taylor expansion) then vanishes, giving

u) ~ /dzx I(x) [1 _ (27“12X)2}

~ V(0) — 2772/d2x (u-x)%I(x). (A.2)

On short baselines (i.e., those with u-x < 1), the visibility
function is then positive and real, so |V (u)| =~ V(u). Since
u= and x = (5), we can expand the inner product
of the two vectors:

2 = w?2? + 0%y? + 2uvy

o W)

Combining these results with the definition of the covari-
ance matrix X (see Appendix A.2), we obtain:

(u-x)

(A.3)

|V (u)| =~ V(0) — 2772/d2x(u -x)21(x)

~V(0)—2n%(u v) / d*x I(x) (;::Z ?) <Z)

~ V(0) — 272V (0)uZu.

The downward curvature of the amplitude function at zero
baseline is thus related to the image covariance by:
VVTIV(w)ll,

0= VVIV()],_o=—47V(0)E. (A.5)

Appendix A.2: Image principal axes and visibility curvature

From Equation A.5, the curvature of the visibility function
on short baselines is proportional to the second central mo-
ment of the image projected along the baseline direction.

VLBI imaging of black holes via second moment regularization

The second central moment of the image is naturally ex-
pressed as a covariance matrix:

_ [ PxIx)(x — p)(x —
J Px1(x)
[ PxI(x)(z — z)*

J&@xI(x)
XTI - 97
vy J #xI(x) ’
[ X1 - D=5) _

J PxI(x) v

Yxy
by

= ). o)

Yy

Exx =

by

Yy =

To put the covariance matrix in a more intuitive form, we
express it in terms of its principal axes. The image covari-
ance matrix has two eigenvalues, and can be diagonalized
as follows:

_ )\min 0 T
¥=Ry ( 0 Amaj> Ry,

where the rotation matrix Ry, based on the position angle
¢ (East of North) of the major principal axis, is given by:

R~ (S5l )

(A7)

(A.8)

The eigenvalues are derived from the quadratic equation:

Yex + X 4(3gy )2 4+ (Bxx — 2y )2

A aj 5 yy \/ ( y) 2( yy) ’ (A.9)
Yx + X 4(X4)2 4+ (Bex — 2y )?

Ammin XX . vy \/ ( y) 2( yy) . (AIO)

We can also express each term of the covariance matrix in
terms of the eigenvalues and position angle ¢:

Yx = €082 () Amin + st(cﬁ))\md], (A.11)
Yyy = sin®(¢) Amin + €05% () Amaj, (A.12)
Ty = (mnaj = Amin) c08(@) sn(6). (A.13)

The eigenvalues of the covariance matrix are the variances
along the principal axes (major and minor axes).

Appendix B: Implementation via gradient descent
Appendix B.1: Pixel-based derivation of principal axes

Here we present the computation of the covariance matrix
for the pixel-based reconstructions from RML. The centroid
of an n x n pixel-based image is given by the following
parameters:

>l Xk:yili

L and §y =
> 1 YL
K K

T =

(B.1)

where i is the pixel number (from 1 to k), [; is the intensity
at that pixel, z; is the x-position and y; is the y-position of
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the pixel in the image. The second moment of the image is
given by the covariance matrix

(% ). ®2
where (B.3)
zk:(xi — )%
Z)(x = ZL ) <B4)
k
%(yi - y)QL
Yyy = ST, ) (B.5)
K
Ek:(xi —Z)(yi — y) L
Tiy = ST, (B.6)

As in Appendix A.2, the image covariance matrix has two
eigenvalues and can be diagonalized to obtain the principal
axes FWHMs.

Appendix B.2: Gradient Descent Implementation

We have defined our regularization function via the Frobe-
nius norm:

RE = (EXX - Z;x)2 + (Eyy - Eg'y)2 + 2(EXY - E;(y)2'
(B.7)

Within the framework of the eht-imaging library, the ob-
jective function is minimized via gradient descent. There-
fore, the regularization functions must also individually be
minimized via gradient descent. The gradients for the quan-
tities describing the properties of the image introduced thus
far, for a given pixel j, are given below:

sz i Yo L= (xilh) o
0 _ % K _m—x
ol; (> n)° (%LV
k
sp vl
e — =AY (B.8)
oI; (;L)Z (;L)

0k

[y = 9)% = 20y = D57 L] — Syy
- ST, , (B.10)
k
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> 1
k
(B.11)

We can now compute the gradient of the second moment
regularization within the minimization framework of the
eht-imaging library:

0Rs 0% 0x
= 2Ty — D)= 4 (B — )
5IJ ( xx) (SIJ + ( yy yy) 5[]
0
5 xy
+A(S — TL) T (B.12)

Note that these equations correspond to regularization
of the normalized second central moment of an image. In
cases where the total flux density of an image is constrained
or regularized, it would be advantageous to instead regu-
larize the unnormalized second central moment, giving a
substantially simplified and convex optimization problem.



