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ABSTRACT

Radio images of the Galactic Center supermassive black hole, Sagittarius A∗ (Sgr A∗), are dominated
by interstellar scattering. Previous studies of Sgr A∗ have adopted an anisotropic Gaussian model
for both the intrinsic source and the scattering, and they have extrapolated the scattering using a
purely λ2 scaling to estimate intrinsic properties. However, physically motivated source and scattering
models break all three of these assumptions. They also predict that refractive scattering effects will
be significant, which have been ignored in standard model fitting procedures. We analyze radio
observations of Sgr A∗ using a physically motivated scattering model, and we develop a prescription
to incorporate refractive scattering uncertainties when model fitting. We show that an anisotropic
Gaussian scattering kernel is an excellent approximation for Sgr A∗ at wavelengths longer than 1 cm,
with an angular size of (1.380 ± 0.013)λ2

cm mas along the major axis, (0.703 ± 0.013)λ2
cm mas along

the minor axis, and a position angle of 81.9◦ ± 0.2◦. We estimate that the turbulent dissipation scale
is at least 600 km, with tentative support for rin = 800 ± 200 km, suggesting that the ion Larmor
radius defines the dissipation scale. We find that the power-law index for density fluctuations in the
scattering material is β < 3.47, shallower than expected for a Kolmogorov spectrum (β = 11/3), and
we estimate β = 3.38+0.08

−0.04 in the case of rin = 800 km. We find that the intrinsic structure of Sgr A∗

is nearly isotropic over wavelengths from 1.3mm to 1.3 cm, with a size that is roughly proportional
to wavelength: θsrc ∼ (0.4mas) × λcm. We discuss implications for models of Sgr A∗, for theories of
interstellar turbulence, and for imaging Sgr A∗ with the Event Horizon Telescope.
Keywords: radio continuum: ISM – scattering – ISM: structure – Galaxy: nucleus – techniques:

interferometric — turbulence

mjohnson@cfa.harvard.edu
1 Harvard-Smithsonian Center for Astrophysics, 60 Garden

Street, Cambridge, MA 02138, USA
2 Astronomy Department, University of Arizona, 933 N.

Cherry Ave, Tucson, AZ 85721
3 Astro Space Center of Lebedev Physical Institute, Profsoyuz-

naya 84/32, 117997 Moscow, Russia
4 Moscow Institute of Physics and Technology, Institutsky

per. 9, Dolgoprudny 141700, Russia
5 Max-Planck-Institut für Radioastronomie, Auf dem Hügel
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1. INTRODUCTION

The compact radio source at the Galactic Center,
Sagittarius A∗ (Sgr A∗), was discovered in 1974 (Bal-
ick & Brown 1974). Within two years, observers had
deduced that the radio image was dominated by scat-
ter broadening caused by the ionized interstellar medium
(ISM) based on an observed scaling of image size with
the squared observing wavelength, θ ∝ λ2 (Davies et al.
1976). In the decades since the initial discovery of
Sgr A∗, knowledge of its scattering properties has contin-
ually improved, but scattering uncertainties remain the
primary limitation in determining the intrinsic structure
of Sgr A∗ at wavelengths longer than a few millimeters.
Motivated by the θ ∝ λ2 scaling and approximately

Gaussian image, many observers have sought to accu-
rately measure the image of Sgr A∗ at a wide range
of radio wavelengths, seeking to constrain the scatter-
ing law at long wavelengths (where the scattering domi-
nates) and then to deconvolve its effects at shorter wave-
lengths to estimate the intrinsic source parameters. An
advantage of treating both the source and the scatter-
ing as Gaussian is that the scattered image is then also
a Gaussian because the time-averaged scattering acts as
a convolution (see, e.g., Coles et al. 1987; Goodman &
Narayan 1989; Johnson & Gwinn 2015). Consequently,
many techniques have been developed to accurately esti-
mate Gaussian image parameters for Sgr A∗ from inter-
ferometric data, including image-domain parameter es-
timation (Bower et al. 2006), model fitting using only
closure quantities (Bower et al. 2004; Shen et al. 2005;
Bower et al. 2014b; Ortiz-León et al. 2016; Brinkerink
et al. 2016), and self-calibration (Doeleman et al. 2001;
Lu et al. 2011; Ortiz-León et al. 2016). In addition, many
techniques have been applied to ensure conservative es-
timates of parameter uncertainty, including standard ex-
ploration of the chi-squared hypersurface (e.g., Bower
et al. 2014b), Monte Carlo approaches (Ortiz-León et al.
2016), and bootstrap approaches using multi-epoch data
(e.g., Lu et al. 2011). Nevertheless, the reported sizes
and position angles still have significant unresolved dis-
crepancies (see Psaltis et al. 2015b).
In addition to the simplified scattering model, a major

missing component from all these previous studies has
been refractive scattering effects. Refractive scattering
will distort the instantaneous image, giving systematic
departures from the ensemble-average image that are in-
dependent of observing quality (Blandford & Narayan
1985). Refractive scattering also introduces substructure
in the image, which contributes additional “refractive
noise” to interferometric measurements on baselines that
resolve the image (Narayan & Goodman 1989; Good-
man & Narayan 1989; Johnson & Gwinn 2015). Re-
cently, refractive noise was discovered in 1.3 cm obser-
vations of Sgr A∗ (Gwinn et al. 2014), suggesting that
it may contribute significantly to the error budget when
fitting Gaussian models. Refractive noise is especially
problematic because the longer baselines, which are most
affected, are also the most sensitive to compact struc-
ture; their measurements are what dominate Gaussian
model fits. Because refractive noise tends to bias long-
baseline visibility amplitudes upward, detections inter-
preted without a noise budget for refractive substructure
will tend to imply artificially compact structure (see, e.g.,

Johnson et al. 2016; Pilipenko et al. 2018). Thus, refrac-
tive scattering effects are essential to include when fit-
ting models to interferometric data, and they contribute
in multiple ways, both by modulating the “true” instan-
taneous image size and orientation and by adding a new
type of “noise” to interferometric measurements.
Here, we analyze archival observations of Sgr A∗ at

wavelengths from 1.3mm (EHT) to 30 cm (VLA). We
develop a framework to efficiently incorporate refractive
noise into parametric model fitting, and we show how to
isolate components of the refractive noise that may be ab-
sorbed into fitted model parameters (e.g., refractive flux
modulation and image wander). We constrain a phys-
ically motivated scattering model (Psaltis et al. 2018),
which generically produces Gaussian scatter-broadening
that scales as λ2 in the limit λ → ∞, but which differs
at short wavelengths because of a finite inner scale rin of
the interstellar turbulence with an associated power-law
index α. In addition to these two parameters, the scatter-
ing model depends on the Gaussian scatter broadening in
the long-wavelength limit, which we parameterize via the
major axis full width at half maximum (FWHM) θmaj,0,
minor axis FWHM θmin,0, and major axis position angle
φPA, all specified at a reference wavelength λ0 (we use
λ0 ≡ 1 cm).
We estimate uncertainties in our parameter estimates

by fitting representative ensembles of synthetic datasets
that match the baseline coverage and sensitivity of the
observations. These synthetic datasets are created using
numerical simulations of the scattering and also include
wavelength-dependent systematic gain calibration uncer-
tainties to simulate imperfect amplitude and phase cali-
bration. This approach allows us to incorporate thermal
noise, refractive uncertainties, and systematic calibration
errors in the overall error budget, and to verify that our
model fitting is not biased by any of these effects or by
the anisotropic baseline coverage. Using our estimated
scattering model, we compute the wavelength-dependent
intrinsic size of Sgr A∗.
We begin, in §2, with a brief review of scattering the-

ory. Next, in §3, we describe our procedure to fit in-
dividual observations and motivate how we can use the
full set of observations to constrain the scattering model.
In §4, we provide details about the observations used to
constrain the scattering model and give the results of
Gaussian fits to each. In §5, we derive our parameter
estimates and uncertainties for the scattering model, de-
scribe the expected scattering properties, and estimate
the intrinsic source size of Sgr A∗. In §6, we discuss im-
plications for models of Sgr A∗, implications for theories
of interstellar turbulence, consequence of unmet assump-
tions in our approach, and prospects for continued study
of Sgr A∗. We summarize our findings in §7.

2. SCATTERING MODEL

2.1. Background

The basic properties of interstellar scattering have
been summarized in several reviews (e.g., Rickett 1990;
Narayan 1992; Thompson et al. 2017), and our specific
scattering model is derived and discussed in detail in a
companion paper (Psaltis et al. 2018). Here, we will only
briefly summarize the key properties that are of immedi-
ate relevance for the remainder of this paper.
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Interstellar scattering and scintillation at radio wave-
lengths is caused by density inhomogeneities in the ion-
ized ISM. Neglecting a weak birefringence from the mag-
netic field (which is negligible for the observing wave-
lengths we consider), the local index of refraction of the

ISM is given by n ≈ 1 − 1
2

( νp

ν

)2
, where ν is the wave

frequency, νp ≈ 9.0 ×
√

ne

1 cm−3 kHz is the plasma fre-
quency, and ne is the electron density (see, e.g., Thomp-
son et al. 2017). A density fluctuation δne along a path
length dz then introduces a corresponding phase change
δφ = −reλ× dz × δne, where re ≈ 2.8× 10−13 cm is the
classical electron radius and λ is the wavelength. Note
that this dispersion relation is quite general and is inde-
pendent of a specific ISM scattering model or geometry.
Along many lines of sight, the effects of scattering can

be approximated via a single thin phase screen φ(r),
where r is a two-dimensional vector transverse to the
line of sight. Electron density fluctuations imprint their
spectrum on the power spectrum Q(q) of phase fluctua-
tions, which are typically characterized by a single, un-
broken power law between some outer (rout) and inner

(rin) scales: Q(q) ∝ |q|−β
. This description is expected

for a top-down turbulent cascade between an injection
scale and a dissipation scale, and a Kolmogorov spec-
trum of density fluctuations gives β = 11/3 (Goldreich
& Sridhar 1995).
The effects of scattering on interferometric measure-

ments are conveniently characterized using the phase
structure function of the scattering screen, Dφ(r) ≡
〈

[φ(r′ + r)− φ(r′)]2
〉

∝ λ2. In the ensemble-average

scattering limit (see Narayan & Goodman 1989; Good-
man & Narayan 1989), the effects of scattering are to
convolve an unscattered image with a scattering ker-
nel or, equivalently, to multiply unscattered interfero-
metric visibilities by the appropriate Fourier-conjugate
kernel. The Fourier-conjugate kernel is given by
exp

[

− 1
2Dφ (b/(1 +M))

]

, where b is the vector base-
line of the interferometer and M = D/R is the “mag-
nification” of the scattering screen (D is the observer-
screen distance; R is the source-screen distance). For
spatial displacements smaller than rin, the phase fluctu-
ations will be smooth, φ(r′ + r) ≈ φ(r′) + r · ∇φ(r′). In
this limit, Dφ(r) ∝ r2λ2 (Tatarskii 1971). This expres-
sion – which makes no assumptions other than the cold
plasma dispersion relation and smoothness of phase fluc-
tuations below some scale – shows that ensemble-average
scatter-broadening should act as a (possibly anisotropic)
Gaussian blurring that scales as θscatt ∝ λ2 for baselines
b <∼ (1+M)rin (i.e., on angular scales θ >∼ λ/((1+M)rin).
Moreover, because the time-averaged scattering kernel
from an ensemble of thin screens is determined by the
cumulative convolution of all the individual screens, this
generic asymptotic behavior is not limited to thin-screen
scattering. At longer baselines, Dφ(r) ∝ |r|α, where
α ≡ β − 2, and the corresponding image becomes non-
Gaussian. In this regime, the angular broadening scales
as θscatt ∝ λ1+ 2

α and the interferometric scattering kernel
falls as e−|b|α . However, note that Dφ(r) ∝ λ2 regardless
of α or the scattering model.
While scatter broadening is produced by phase fluctu-

ations on the diffractive scale17 rdiff ∼ λ/((1+M)θscatt),
refractive scintillation is dominated by modes that are
comparable to the refractive scale (i.e., the projected
size of angular broadening on the scattering screen):

rref ∼ θscattD. The Fresnel scale rF ≡
√

DR
D+R

λ
2π , which

is defined entirely by geometrical parameters of the scat-
tering, corresponds to the geometric mean of the diffrac-
tive and refractive scales. When rref > rF > rdiff , the
scattering is said to be “strong” (e.g., the scattering of
Sgr A∗ is strong for all frequencies lower than a few
THz). In this case, refractive effects are most naturally
described using the power spectrum of phase fluctua-
tions: Q(q) ≡ (2π)2λ−2

∫

d2r 〈φ(r′ + r)φ(r)〉 e−iq·r. In
this expression, the prefactor renders Q(q) independent
of wavelength.
To describe a full scattering model then requires six

parameters. Three are needed to characterize the long-
wavelength behavior (Gaussian scatter broadening with a
λ2 dependence). As described before, we use the FWHM
along the major and minor axes at a reference wavelength
and the major axis position angle: θmaj,0, θmin,0, and
φPA. In addition, the power-law index α, inner scale rin,
and outer scale rout are needed. Psaltis et al. (2018) show
how to compute the phase structure function, power
spectrum, and scattering properties once these param-
eters are specified.
We caution that the exact specification of these param-

eters is not unique, and the radio scattering literature
is particularly inconsistent in defining the inner scale.
For example, Rickett (1990) and Smirnova & Shishov

(2010) taper the power spectrum by e−q2r2in , Coles et al.

(1987) and Armstrong et al. (1995) use e−q2r2in/2, Lam-

bert & Rickett (1999) use e−q2r2in/4, and Spangler &
Gwinn (1990) use e−qrin/(2π). We use a power spectrum

taper of the form e−q2r2in .

2.2. Refractive Noise

Refractive scattering modes introduce many types of
stochastic effects. They modulate the total flux density
of an image, displace its centroid, and distort the overall
image. They also introduce image substructure, even on
scales for which the unscattered source was smooth. All
of these effects introduce a new type of “noise” for in-
terferometric measurements. This refractive noise has a
fractional bandwidth of order unity and varies slowly,
on the refractive timescale tref = rref/V⊥, where V⊥
is the characteristic relative transverse velocity of the
observer, scattering, and source. At centimeter wave-
lengths, Sgr A∗ has rref ≈ (2 × 1013 cm) × λ2

cm. Taking
V⊥ ∼ 50 km/s gives tref ∼ (50 days)× λ2

cm.
Johnson & Gwinn (2015) and Johnson & Narayan

(2016) provide expressions for how to compute proper-
ties of refractive noise, including the variance of refrac-
tive fluctuations of a complex visibility measured on a

vector baseline b: σ2
ref(b) ≡

〈

|∆V (b)|2
〉

. However, for

short baselines, this variance is not the correct quantity
to apply to standard VLBI analyses. Namely, part of
the variance is due to variations in the total flux density,
caused by refractive focusing, and part is due to image

17 Formally, the diffractive scale is defined by Dφ(rdiff) ≡ 1.
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wander, caused by refractive deflections. Both of these
effects would be eliminated in a typical VLBI analysis.
The flux variations would be absorbed into the estimated
total source flux density, and the image wander would
be eliminated by centering the image (since VLBI has
no concept of absolute position without absolute phase
referencing).
Appendix A shows how to compute a renormalized vis-

ibility variance, σ̂ref(b), that eliminates these contribu-
tions. For example, the renormalized refractive noise is
zero in the limit of zero baseline. On short baselines, it
is dominated by changes in the overall image size from
scattering – a property that we utilize in §5.2.2. We will
include renormalized refractive noise in the error budget
for our model fitting.

2.3. Assumed Scattering Properties of Sgr A*

We will use a few supplementary measurements and as-
sumptions about the scattering of Sgr A∗. The first is for
the scattering geometry of Sgr A∗. Because the Galactic
Center magnetar lies only 2.4′′ from Sgr A∗ (Bower et al.
2015b), its radio pulsations permit an estimate of tem-
poral broadening associated with the scattering toward
Sgr A∗. This measurement can be combined with the
angular broadening to estimate the location of the scat-
tering material (Gwinn et al. 1993). For instance, if the
scattering is isotropic, then the pulse broadening function
is exponential: g(t) = e−t/τ . This expression follows by
relating a radial distance r on the scattering screen to its

corresponding geometric delay, t(r) ≈ r2

2c

(

1
D + 1

R

)

, and
then expressing the brightness distribution on the sky in
terms of t. The 1/e scale of the temporal broadening,
τ , is related to the FWHM angular size of the scattered
image, θscatt, via (e.g., Cordes & Lazio 1997)

cτ =
Mdsrc
8 ln(2)

θ2scatt, (1)

where dsrc = D +R is the distance from the observer to
the source, and M = D/R. Because the magnetar shows
angular broadening comparable to Sgr A∗, the same scat-
tering material is thought to dominate the angular broad-
ening of each (Bower et al. 2014a, 2015b). The temporal
broadening of the magnetar can then be combined with
the angular broadening and distance to Sgr A∗ to es-
timate the location of the scattering material for both
objects.
For anisotropic scattering, the pulse broadening func-

tion is monotonically decreasing but not exponential. For
a scattered image with FWHM θmaj and θmin along the
major and minor axes, the pulse broadening function
takes the form18

g(t) = I0

(

4 ln(2)ct

Mdsrcθ2−

)

e
− 4 ln(2)ct

Mdsrcθ
2
+ , (2)

θ± ≡ θmajθmin
√

θ2maj ± θ2min

.

18 Rickett et al. (2009) and Gwinn et al. (2016) derive similar
expressions for g(t). However, note that Rickett et al. (2009) ex-
press their results in terms of the scattering angle of the screen θs
rather than the observed scattering angle θ = R(D + R)−1θs =
(1 +M)−1θs.

In this case, determining τ (i.e., solving g(τ) = g(0)/e)
must be done numerically.
We will assume a distance to Sgr A∗ of 8.1 kpc (Gravity

Collaboration et al. 2018). Using our estimated scat-
tering kernel parameters (see, e.g., Table 2), we ob-
tain τ1GHz/(1 s) ≈ 2.47M . Using the measured value
τ1GHz = 1.3± 0.2 s (Spitler et al. 2014) then gives M =
0.53± 0.08. Note that this estimate differs slightly from
the simpler approach of using the isotropic scattering
result with the geometric mean of the major and minor
scattering axes, which gives τ1GHz/(1 s) ≈ 2.77M (Bower
et al. 2014a). Using the exact expression for anisotropic
scattering, we obtain D = 2.7 kpc and R = 5.4 kpc.
There is now compelling evidence that at least some

of the temporal broadening of the magnetar is local to
the Galactic Center region (see, e.g., Dexter et al. 2017;
Desvignes et al. 2018). Because angular broadening is
more sensitive to scattering material closer to the ob-
server, it is likely that the angular broadening and refrac-
tive effects are dominated by the scattering region that
is distant from the Galactic Center. Because the tempo-
ral broadening caused by this material may be smaller
than the value used above, the corresponding M for the
scattering responsible for the angular broadening may be
somewhat lower and the scattering material somewhat
further from the Galactic center. However, our later re-
sults are insensitive to changes in M . Refractive noise
scales as σref ∝ M−1+α

2 (e.g., σref ∝ M−1/6 for a Kol-
mogorov spectrum), while our later inner scale constraint
is proportional to (1 + M)−1. Thus, even a change in
our assumed temporal broadening by a factor of 2 would
not strongly affect our conclusions, and so we will work
within the single-screen framework for the remainder of
this paper.
Our second assumption is that the outer scale for the

scattering of Sgr A∗ is sufficiently large to be irrele-
vant for our calculations (specifically, we require rout ≫
10AU). We will discuss the validity of this assumption
in §6.2.1.

3. SCATTERING MODEL FITTING PROCEDURE

We now describe our procedure to fit observations, con-
strain the full scattering model, and estimate parameter
uncertainties. Our fitting strategies are guided by syn-
thetic datasets. We generated datasets with identical
baseline coverage and sensitivity to our actual observa-
tions of Sgr A∗, but with visibilities generated from simu-
lated scattered images. We use a Monte Carlo approach
to determine our uncertainties, fitting an ensemble of
synthetic observations of scattered images. Thus, our
reported uncertainties account for thermal noise, limita-
tions of the fitting procedure, and systematic uncertain-
ties from refractive scattering.

3.1. Anisotropic Gaussian Model Assumption

One significant simplification in our model fitting ap-
proach is that we model the brightness distribution of the
source on the sky as a wavelength-dependent anisotropic
Gaussian. In §2, we demonstrated that this assumption
is well motivated for the shape of the scatter broaden-
ing because it corresponds to universal scattering behav-
ior in the limit of long wavelength. Moreover, our ap-
proach to estimate parameter uncertainties uses the full,
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non-Gaussian scattering model, so our final error budget
accounts for limitations in the assumption of Gaussian
scatter broadening. However, the intrinsic source may
be non-Gaussian, especially when the emission region be-
comes optically thin. Nevertheless, even in this regime,
the Gaussian source assumption is well motivated for
model fitting and has a meaningful associated FWHM,
as we will now demonstrate.
Specifically, the interferometric visibility Ĩ(u) on a

short baseline u can be approximated as

Ĩ(u) =

∫

d2x I(x) e−2πiu·x

≈
∫

d2x I(x)
[

1− 2πiu · x− 2π2 (u · x)2
]

, (3)

where I(x) denotes the image, with x an angular coor-
dinate on the sky (Thompson et al. 2017). The term
that is linear in u reflects an interferometric phase that
is proportional to the image centroid projected along the
baseline direction (from the Fourier shift theorem). Stan-
dard VLBI observations (including all those used in this
paper) do not have absolute phase information, so we
can set this term to zero (i.e., we use the image cen-
troid to define the origin of the sky coordinates). The
remaining terms in Eq. 3 show that the visibility am-
plitude decreases quadratically with baseline length for
short baselines. The quadratic coefficient is proportional
to the second moment of the image projected along the
baseline direction. This second moment can then be used
to define a characteristic image FWHM, using the rela-
tionship corresponding to a perfectly Gaussian image.
For example, the major axis FWHM θmaj is given by

θmaj =

√

− 2 ln(2)

π2Ĩ(0)
∇2

ûmaj
Ĩ(u)

⌋

u=0
, (4)

where Ĩ(0) is the total flux density of the image, and
∇2

ûmaj
is the second directional derivative along the major

axis direction. The three characteristic Gaussian param-
eters {θmaj, θmin, φ} can be determined by diagonalizing
the image covariance matrix.
For this universal Gaussian behavior for the source

visibility function to be applicable, the baselines must
only marginally resolve the unscattered source. For
Sgr A∗, this assumption can be assessed post hoc using
the inferred intrinsic size. Using the characteristic size
θsrc ∼ (0.4mas) × λcm that we derive later (see §5.3),
we estimate that projected baselines must have a length
of approximately 3000 km for the normalized visibility
function of the intrinsic source to fall to 1/e (this length
is independent of wavelength because the source grows
linearly with wavelength while angular resolution scales
inversely with wavelength). For all observations we ana-
lyze other than 1.3mm and 3.5mm, the longest baselines
are significantly shorter than this limit (because longer
baselines heavily resolve the scattered source). Thus, for
the wavelengths we analyze to estimate the scattering
kernel (λ ≥ 7mm), the quadratic expansion of Eq. 3
and Gaussian approximation are well motivated for the
intrinsic structure of Sgr A∗.

3.2. Anisotropic Gaussian Fitting Procedure

To estimate the scattering kernel of Sgr A∗, we in-
dependently fit anisotropic Gaussian models to observa-
tions of Sgr A∗ at wavelengths from 1.3mm to 30 cm.
In principle, fitting a Gaussian to interferometric data is
quite simple. In practice, the fitting is subtle and subject
to many sources of noise and bias. These include thermal
noise, station-based systematic errors in amplitude and
phase, and refractive noise. We developed a simplified
prescription for Gaussian model fitting that accounts for
all these errors. Our prescription is motivated by tests
on synthetic datasets (see §3.3); it sacrifices some exact-
ness for the sake of computational efficiency. Neverthe-
less, our approach provides a reliable error budget despite
shortcomings in the model fitting procedure.
For each observation, we began with complex visibili-

ties that had a priori amplitude calibration applied but
no self calibration. We first flagged all visibilities for
which the elevation at either station was below 5◦. Next,
on a scan-by-scan basis, we flagged all stations that did
not have a signal-to-noise (snr) of at least 12 on any base-
line. Thus, at each time, a station was only included if
it had at least one strong fringe detection. This station-
based cut was chosen to avoid including visibilities with
a noise bias from the fringe search; a baseline-based cut
would also avoid spurious fringes but would potentially
bias the set of unflagged, low-snr visibility amplitudes
upward. Next, we computed the expected renormalized
refractive noise (see §2.2) for each point, and we elimi-
nated all visibilities for which the ensemble-average visi-
bility function was less than four times the renormalized
refractive noise. This cut eliminates visibilities that are
dominated by refractive noise from the Gaussian model
fits (we only performed this final cut for the Gaussian
model fitting and include these visibilities for estimates
of the long-baseline refractive noise).
Next, we jointly fit for complex, time-dependent sta-

tion gains at every site and the Gaussian image pa-
rameters (i.e., self-calibration to a model), seeking the
maximum a posteriori estimate of all parameters. For
this estimate, we used flat priors on the station phases
and Gaussian priors on the logarithm of the gain ampli-
tude, centered on a gain of amplitude of unity and with
wavelength- and array-dependent spread. We used 5%
uncertainty for VLA data at 15-30 cm, 5% uncertainty
at 3.6 cm for VLBA data, and 10% uncertainty at 1.3 cm
(VLBA) and 7mm (KaVA). At 3.5mm, the a priori cal-
ibration is sufficiently poor that we do not constrain the
gain amplitudes (similar to an analysis using only closure
quantities). These values can be validated after fitting
the actual data and were guided by the expected perfor-
mance for each wavelength/array combination. We as-
sumed that the visibilities had complex Gaussian random
noise, with standard deviation that was the quadrature
sum of the measured thermal noise and the renormal-
ized refractive noise. In this way, we included additional
tolerance for visibility errors from refractive noise.

3.3. Synthetic Observations for Monte Carlo
Uncertainty Estimates

To estimate uncertainties for the fitted parameters,
we used a Monte Carlo approach. Namely, for each
dataset analyzed, we generated a representative ensem-
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ble of synthetic datasets and analyzed each using our
procedure for the actual data. To create synthetic
datasets, we scattered Gaussian source images using the
stochastic-optics module of the eht-imaging library
(Chael et al. 2016; Johnson 2016). The source and scat-
tering parameters were chosen to match the current best-
estimates in our iterative fitting procedure (see §3.4). We
then sampled each scattered image on the observed (u, v)
coordinates and added complex Gaussian noise that was
equal to the measured thermal noise. Next, we injected
two types of gain uncertainty to the measurements: 1.)
fluctuations of the station gains that were uncorrelated
from scan to scan, and 2.) an overall uncertainty in each
station gain that was constant over the entire observa-
tion but different among the different synthetic datasets.
Each of these gain errors was a Gaussian random variable
with unit mean and wavelength-dependent uncertainty,
matching the values given §3.2.
As a concrete example, a single realization of the sim-

ulated 1.3 cm VLBA data would have rapid jitter from
thermal noise that was uncorrelated among all baselines
and times, rapid station-based jitter from the gain errors
(rms of

√
2×10% of each visibility amplitude), and a con-

stant station-based error (rms of
√
2× 10% of each visi-

bility amplitude). For instance, all baselines to a particu-
lar antenna might be systematically underestimating the
true flux density in one realization and over-estimating
in another. Each realization also produced an image
with FWHM fluctuations from refractive image distor-
tions and with additional noise on long baselines from
refractive substructure.
To estimate our parameter uncertainties, we compute

the rms of the parameter estimates from each simulated
data set with respect to the true, ensemble-average pa-
rameter. Thus, our uncertainties account for thermal
scatter in the model fitting, for systematic scatter from
the refractive scattering, and for systematic errors and
bias in the model fitting procedure.
Real data have additional imperfections that our sim-

plified prescription does not capture, including bandpass
errors, polarimetric leakage, and gain errors that are el-
evation dependent. However, the polarization of Sgr A∗

is negligible at cm wavelengths, and residual bandpass
errors are small. As we will demonstrate, the dominant
source of uncertainty for many of our measurements is re-
fractive scattering, and our Monte Carlo approach fully
accounts for this uncertainty.

3.4. Overall Fitting Strategy

As described in the previous sections, we indepen-
dently fit Gaussian models to data at multiple frequen-
cies. However, these fits used refractive noise correspond-
ing to the scattering properties that are estimated using
the full multi-frequency dataset. Thus, our overall fitting
procedure is iterative:

1. We fit Gaussian models to the 1.3 cm and 3.6 cm
data. These fits require estimates of rin and α
to determine the refractive noise to include in the
model fitting procedure and in the Monte Carlo
uncertainty estimation via synthetic data. We as-
sume that the scattering dominates the intrinsic
size at these wavelengths (as is supported by the λ2

scaling), so we use these fits to estimate the three

parameters that characterize the long-wavelength
scattering behavior: θmaj,0, θmin,0, φPA.

2. Keeping θmin,0 and φPA fixed at the values obtained
in step 1, we fit the 15−30 cm VLA data to obtain
a tighter constraint on θmaj,0.

3. Having determined the three parameters of the
long-wavelength ensemble-average image in steps
1 and 2, we use four additional pieces of evidence
to constrain rin and α:

(a) The nearly perfect scaling of image size as
λ2 down to 1.3 cm and across the observ-
ing bandwidth at 1.3 cm, combined with con-
stancy of position angle and image anisotropy
over this frequency range. These properties
suggest that scattering must dominate over
intrinsic structure at all wavelengths longer
than 1.3 cm and that the inner scale must ex-
ceed the diffractive scale at 1.3 cm.

(b) The Gaussian scaling of visibility amplitude
with baseline length at 1.3 cm and tentative
non-Gaussian scaling of visibility amplitude
with baseline length at 7mm.

(c) The magnitude of refractive visibility noise us-
ing long-baseline measurements at 1.3 cm and
3.6 cm, where the Gaussian image contribu-
tion is negligible.

(d) An upper limit of 3% on image size fluctu-
ations at 7mm, as determined by historical
data.

4. We then repeat steps 1-3 using the full scattering
model (θmaj,0, θmin,0, φPA, α, rin) estimated in the
previous pass to estimate a new set of scattering
parameters.

4. OBSERVATIONS AND GAUSSIAN FITS

We now provide details on the specific observations
that we use to constrain our scattering model. While
previous scattering studies have generally relied on com-
piling large sets of observations and then averaging across
multiple epochs to reduce parameter uncertainties, we
instead consider a small number of high-quality observa-
tions and analyze each with a full scattering error budget.

4.1. VLA Observations at 20cm

The longest wavelength observations we examine are
with the Karl G. Jansky Very Large Array (VLA). These
observations span wavelengths from 15 − 29 cm. The
recorded bandwidth was divided into 16 spectral win-
dows, each 64MHz. Of the 16 original windows, 4 were
flagged by the VLA calibration pipeline in CASA. We an-
alyzed each spectral window independently. For each, we
averaged in frequency and in 1-minute intervals. Figure 1
shows representative baseline coverage for one spectral
window.
The long-wavelength data are subject to a challenge

for Gaussian model fitting that does not affect our other
observations. Namely, short baselines measure signifi-
cant flux density that is not associated with Sgr A∗; it
is diffuse emission from the local Galactic Center envi-
ronment. To eliminate contributions from this emission,
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5.1. Constraining the Asymptotic Gaussian Parameters

The three asymptotic parameters of our scattering
model can be estimated directly from the Gaussian fits
to long-wavelength data. These parameters can also be
directly compared with the results of previous studies.
For the major axis normalization, our analysis of the

VLA data from 15 − 30 cm gives θmaj,0 = 1.380 ±
0.013 mas. For comparison, our fits to the 3.6 cm VLBA
observation gives θmaj,0 = 1.412± 0.024 mas. Thus, the
two estimates are consistent to within their stated un-
certainties. We will adopt the VLA estimate and uncer-
tainty for our constraint on θmaj,0.
Because we could not reliably fit the minor axis and

position angle using the VLA or VLA+PT data, we use
VLBI measurements at shorter wavelengths to estimate
these parameters. The minor axis of the scattering is
small enough at 1.3 cm that intrinsic structure may be
significant. Taking only the 3.6 cm measurement and full
uncertainty gives θmin,0 = 0.703 ± 0.013 mas. This es-
timate represents an upper limit to the scattering size
because we have not included a contribution from in-
trinsic structure. However, our representative intrinsic
source size derived below using the full set of shorter-
wavelength data (see §5.3) would bias this upward by
only <∼ 0.01 mas, which is within our measurement un-
certainty.
Despite the relatively complete baseline coverage at

3.6 cm (see Figure 3), the position angle is rather poorly
constrained at this wavelength. The reason for the poor
constraint is that there are only eight baselines that are
dominated by the Gaussian structure, and these baselines
must constrain the (time-dependent) self-calibration so-
lutions for the six participating stations. For comparison,
among those same six stations, the 1.3 cm data have fif-
teen baselines that are dominated by the Gaussian struc-
ture. Thus, the self-calibration at 1.3 cm is heavily over-
constrained, and the measured position angle has small
uncertainties despite the more limited baseline coverage.
Because we find a position angle that is consistent with a
constant value over wavelengths from 3.5mm to 3.6 cm,
it is unlikely that intrinsic structure changes the position
angle appreciably at wavelengths of 1.3 or 3.6 cm. In ad-
dition, for the scattering model of Psaltis et al. (2018),
the position angle of the scattering kernel is independent
of wavelength. Thus, we estimate the scattering posi-
tion angle by combining the measured position angles at
1.3 cm and 3.6 cm, giving φPA = 81.9± 0.2.
Table 2 compares our newly derived Gaussian param-

eters with previously reported estimates. Note that the
three observations used to derive our parameter esti-
mates (2015 VLA observations, and VLBA observations
at 3.6 and 1.3 cm) were not used by any of these previous
studies. Relative to past work, the major and minor axes
are consistent with the values found by Shen et al. (2005),
but our major axis normalization is 4.7σ larger than the
estimate of Bower et al. (2006) and 3σ larger than Bower
et al. (2015b) (both relied on the same VLA+PT image-
domain analysis at long wavelengths). Our major axis
uncertainty is similar to these previous results, largely
because of the increased error budget to accommodate
refractive fluctuations, while our minor axis uncertainty
is significantly smaller than all past work. While our po-
sition angle is somewhat larger than most previous stud-

Table 2

Estimated Asymptotic Gaussian Scattering Parameters.

Reference θmaj,0 (mas) θmin,0 (mas) P.A. (deg)

Lo et al. (1998) 1.430± 0.020 0.760± 0.050 80± 3
Shen et al. (2005) 1.390± 0.020 0.690± 0.060 80
Bower et al. (2006) 1.309± 0.015 0.640+0.040

−0.050 78+0.8
−1.0

Lu et al. (2011) 1.335± 0.014 0.817± 0.042 —
Psaltis et al. (2015b)a 1.320± 0.040 0.820± 0.210 77.8± 9.7
Bower et al. (2015b) 1.320± 0.020 0.670± 0.020 81.8± 0.2
This Work 1.380± 0.013 0.703± 0.013 81.9± 0.2

Note. — These parameters give the scattering kernel at the
reference wavelength λ0 ≡ 1 cm.
a Unlike the other entries in this table, Psaltis et al. (2015b) rean-
alyzed a sample of published Gaussian parameter fits rather than
analyzing new or archival observations directly.

ies, it is close to the value and uncertainty estimated by
Bower et al. (2015b).

5.2. Constraining α and rin

The remaining two parameters of our scattering model,
α and rin, can be constrained in two ways: through a
change in the scatter-broadening law from its asymp-
totic behavior at long wavelengths and through stochas-
tic signatures of refractive scattering. For both types
of constraints, the effects of α and rin must be consid-
ered jointly; α will determine the asymptotic behavior at
short wavelengths, but rin determines the scale on which
the scattering transitions between the two asymptotic
regimes. Many previous efforts have constrained α by
fitting the wavelength-dependence of scatter broadening
to a power-law λβ or by quantifying Gaussianity of the
scattered image (e.g., Lo et al. 1998; Bower et al. 2004;
Lu et al. 2011). However, these studies have implicitly
assumed the limit rin → 0, effectively fitting centime-
ter data to the properties of the scattering expected for
the asymptotic regime λ → 0. As we will demonstrate,
jointly fitting the two parameters is imperative to derive
meaningful parameter constraints for α and rin.
We will now derive a series of constraints α and rin. In

§5.2.1, we derive constraints from the refractive noise on
long baselines at 3.6 and 1.3 cm. In §5.2.2, we determine
constraints from the stringent limits on refractive fluc-
tuations of the image size at 7mm. In §5.2.3, we derive
constraints based on the λ2 scaling of scatter broaden-
ing at centimeter wavelengths. In §5.2.4, we establish
constraints based on Gaussianity of the scattered image
at 1.3 cm. While any of these individual constraints can
only weakly constrain the parameter pair (α, rin), the
cumulative constraints are quite restrictive, summarized
in Figure 9. We discuss these constraints and give our
recommended characteristic values in §5.2.5.

5.2.1. Constraints from Refractive Noise at 3.6 and 1.3 cm

For a single long-baseline visibility measurement, the
refractive noise is drawn from a circular Gaussian distri-
bution. On baselines that heavily resolve the ensemble-
average image, the visibility amplitude is then drawn
from a Rayleigh distribution. However, the mean of this
distribution is poorly constrained by a single measure-
ment. Moreover, refractive noise among nearby baselines
will be correlated, with a correlation length that is com-
parable to the length of baselines that begin to resolve
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2014b, 2015b; Zhao et al. 2017). A uniform distribution
over the entire range 680− 750 µas has a standard devi-
ation of 20.2µas, or fractional variations of 2.8%. Note
that this range is inflated by measurement uncertainties
in the reported sizes (in addition to scattering and in-
trinsic variability). Thus, we estimate that the fractional
scatter of the major axis size at λ = 7mm from refractive
distortion is certainly less than 3%.
We can compare this limit to the expected refractive

fluctuations, which can be computed semi-analytically
via the framework for renormalized refractive noise de-
veloped in the Appendix. Namely, on short baselines,
the renormalized refractive noise is dominated by refrac-
tive fluctuations in image size. For a short baseline u,
the renormalized visibility (i.e., the visibility after nor-
malizing the total flux density and centering the image)
is given by

V̂ (u) = 1− π2

4 ln 2
θ2‖u

2 +O
(

θ3‖u
3
)

, (5)

where θ‖ is the source size projected along the baseline
direction (see Eq. 3 and 4). Because of scattering, the
instantaneous source size will not match the ensemble-
average value,

〈

θ‖
〉

; this discrepancy is what produces
renormalized refractive noise σ̂ref(u) on short baselines.
Explicitly,

σ̂ref(u) =

√

〈

∆V̂ (u)2
〉

≈ π2

4 ln 2
u2

√

(

θ2‖ −
〈

θ‖
〉2
)2

≈ π2

2 ln 2
u2

〈

θ‖
〉

√

〈

∆θ2‖

〉

⇒

√

〈∆θ2‖〉
〈

θ‖
〉 ≈ 2 ln 2

π2

σ̂ref(u)

u2
〈

θ‖
〉2 . (6)

The red lines in the right panel of Figure 9 show con-
tours for the values of α and rin that would produce
1%, 3%, and 5% fractional fluctuations of the major axis
size at λ = 7mm. For these calculations, we hold the
ensemble-average image size fixed (approximating it by
our measured size), so the intrinsic size is also a func-
tion of these parameters because the scattering kernel
depends on them. The requirement that the fluctuations
are smaller than 3% then gives an α-dependent upper-
limit on rin.
Observe that the shapes of the image fluctuation con-

tours are very similar to those of the refractive noise at
1.3 cm on the fixed baseline u = (207.6,−30.4) × 106.
This similarity is expected because both effects are dom-
inated by scattering modes on the same angular scale.
Specifically, at 7mm, the dominant modes for image dis-
tortion are on the scale of the image size, θmaj ≈ 0.7mas.
At 1.3 cm, the dominant modes for refractive noise are
those matched to the angular resolution of the long base-
lines, 1/|u| ∼ 1mas.

5.2.3. Constraints from the λ
2 Scaling of Scattered Size

The constant scaling of image size as θ ∝ λ2, stable
image anisotropy, and constant position angle at wave-
lengths λ >∼ 1.3 cm strongly argues against a departure

of the angular broadening from the asymptotic λ2 law
in this interval, as that would require intrinsic structure
to fortuitously offset the change in angular broadening.
Likewise, these properties argue against intrinsic struc-
ture being significant at these wavelengths. This plausi-
bility argument gives a lower bound on the inner scale
because the angular broadening asymptotes to θ ∝ λ1+ 2

α

as λ → 0, with the transition when the diffractive scale
becomes larger than the inner scale.
The diffractive scale is larger at shorter wavelengths,

so our most stringent constraints on rin come from the
shortest wavelengths that exhibit the λ2 law. We have
found close agreement with the λ2 law across the observ-
ing bandwidth at 1.3 cm (see Figure 4), so the inner scale
must exceed the diffractive scale at 1.3 cm: rin >∼ 300 km.
The limit is slightly higher for lower values of α because
they asymptotically give a stronger departure from λ2

scaling. The limit is slightly higher for the minor axis
than for the major axis because the former has a larger
diffractive scale.
Blue lines in the right panel of Figure 9 show α-

dependent lower limits on rin using the simple condi-
tion that the λ = 1.3 cm angular broadening cannot be
more than 5% smaller than the value extrapolated from
λ → ∞ with a pure λ2 scaling (i.e., the limit as rin → ∞).
Requiring that the scaling across the full λ = 1.3 cm
bandwidth match a λ2 law to within the uncertainties
shown in Figure 4 gives a similar constraint.

5.2.4. Constraints from the Image Gaussianity

We can also constrain α and rin from the shape of
the scatter-broadened image at a fixed wavelength. At
long wavelengths, the scatter-broadening is Gaussian and

the visibility function falls as e−u2

, while at short wave-
lengths the visibility function falls as e−uα

. As in §5.2.3,
this constraint is really a plausibility argument; the in-
trinsic source could fortuitously offset any change in the
angular broadening function to produce a Gaussian im-
age despite non-Gaussian scattering, and non-Gaussian
source structure could mimic the behavior of a non-
Gaussian scattering kernel. Thus, we focus these tests
on our 1.3 cm and 7mm observations, where the baseline
coverage is excellent and source structure is subdominant
to scatter broadening.
Once again, the transition between the two scaling

regimes depends on the inner scale. Specifically, the scat-
tering kernel will depart from a Gaussian for baselines
with physical lengths b >∼ (1 + M)rin, where M ≈ 0.53
for Sgr A∗ (see §2.3). At 1.3 cm, the longest base-
lines that are not dominated by refractive noise are
∼100Mλ ≈ 1300 km, so these observations can, in prin-
ciple, constrain rin to be greater than ∼800 km. The
lower limit is expected to increase with decreasing α be-
cause of a sharper deviation from the Gaussian kernel
with decreasing α.
To derive constraints on α and rin using image Gaus-

sianity tests, we fit our 1.3 cm and 7mm observations
with the full, non-Gaussian kernel of our scattering
model. For each case, we included refractive noise in the
error budget as we did for Gaussian fits. For the 1.3 cm
fits, we used a point-source model for the intrinsic struc-
ture. This procedure then quantifies the baseline length
at which visibilities become inconsistent with a Gaussian
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this model is compatible with our measurements if the
inner scale (corresponding to the thickness of current
sheets in this model) is significantly larger than expected:
rin ∼ 2 × 106 km. In this case, the Goldreich & Sridhar
(2006) spectrum would instead produce significantly en-
hanced refractive effects at millimeter wavelengths.

6.2.2. The Inner Scale of Turbulence

Our measurements constrain the inner scale of tur-
bulence, both through plausibility arguments related to
the λ2 dependence of the angular broadening and im-
age Gaussianity and by relating the scattering power
on large scales (refractive noise) to that on small scales
(the diffractive blurring). Ultimately, our most strin-
gent lower limit on the inner scale comes from the image
Gaussianity at 1.3 cm, giving rin >∼ 600 km. Likewise, the
7mm data show a statistically significant departure from
a Gaussian image, with a preference for rin <∼ 1000 km,
although we regard this upper limit as tentative (see
§5.2.4). Thus, we have adopted a recommended char-
acteristic value of rin = 800 km. While the scattering of
Sgr A∗ is anomalously strong, the dissipation mechanism
for turbulence in the ISM may be universal. Thus, we
now compare our estimate for rin with previous theoret-
ical and observational estimates.
Using VLBI measurements of the angular broaden-

ing for several heavily scattered objects, Spangler &
Gwinn (1990) estimated an inner scale of 50 − 200 km.
Based on weak scintillation measurements at centime-
ter wavelengths, Armstrong et al. (1995) constrained
the inner scale for the nearby ISM (within 1 kpc) to
be less than ∼5× 104 km. Rickett et al. (2009) esti-
mated rin = 70− 100 km from the pulse broadening
of PSR J1644-4559. Smirnova & Shishov (2010) esti-
mated rin = 350 ± 150 km from the pulse broadening of
PSR B2111+46. Each of these studies has its own limita-
tions. For instance, the pulsar analyses assumed isotropic
scattering, and Rickett et al. (2009) noted that a (finely-
tuned) anisotropy would allow an arbitrarily large inner
scale. Perhaps the most significant difficulty in our study
of Sgr A∗ is that intrinsic source structure becomes sig-
nificant for the baselines and wavelengths that are sen-
sitive to a direct estimate of the inner scale for Sgr A∗.
Nevertheless, our lower limit on the inner scale is quite
robust.
Goldreich & Sridhar (1995) suggest that the inner scale

in the ISM may approach the ion Larmor radius, and
Spangler & Gwinn (1990) proposed that the inner scale
corresponds to the larger of the ion inertial length and
the ion Larmor radius in the scattering medium. The
ion inertial length is ℓi = VA/Ωi ≈ 230/

√

ne/cm−3 km,
where VA = B/

√
4πnemi is the Alfvén speed and Ωi =

eB/(mic) is the ion cyclotron frequency. The ion Larmor

radius is ri = vth/Ωi ≈ 930 km ×
(

B
1µG

)−1
(

T
104 K

)1/2
,

where vth =
√

kT/mi is the ion thermal speed. Given
the strong scattering of Sgr A∗, it is likely that the ion
Larmor radius will then determine the inner scale in this
model. The required B ∼ 1µG is somewhat lower than
expected for magnetic fields in the ISM at the galacto-
centric distance R ∼ 5.5 kpc (e.g., Han et al. 2006), and
it may suggest that the inner scale is a few times larger
than ri.

In terms of a specific model for the scattering of Sgr A∗,
Sicheneder & Dexter (2017) have proposed that the scat-
tering may arise in a single H II region along the line
of sight, with density ne ∼ 200 cm−3 and radius ∼3 pc.
They note that this region can also produce the ob-
served rotation measure of the Galactic center magnetar
SGR J1745-2900, if the field strengths in the scattering
material are 15 − 70µG. In this model, the ion inertial
length is only ℓi ∼ 10 − 20 km and the ion Larmor ra-
dius is ri <∼ 60 km. Thus, our estimates of an inner scale
that is significantly higher than either of these values
support the scenario in which the large RM of the mag-
netar arises from a local contribution near the Galactic
Center (Eatough et al. 2013; Desvignes et al. 2018). For
smaller magnetic fields, B ∼ 1µG, the parameters iden-
tified by Sicheneder & Dexter (2017) remain plausible for
the scattering.

6.2.3. The Power-Law Index of Turbulence

Figure 14 shows our constraints on the power spectrum
of phase fluctuations, Q(q), along the direction of the
scattering major axis. Refractive noise on a long base-
line u is dominated by refractive modes with q ∼ 2πu/D.
Thus, our measurements of refractive noise at 3.6 and
1.3 cm constrain the power in wavenumbers q−1 ∼ 1013−
1014 cm. In addition, our measurements of the asymp-
totic Gaussian angular broadening constrain the power
in wavenumbers q−1 ∼ rin, with the exact constraint also
weakly dependent on α: Q(r−1

in ) ∝ r4in/Γ(1− α/2).
As is evident from Figure 14, larger values of the in-

ner scale require a flatter power spectrum for the mea-
sured refractive noise to be compatible with the mea-
sured angular broadening (see also Figure 9). Allowing
arbitrarily small inner scales, we find α <∼ 1.6, while
including our derived constraints on the inner scale,
we obtain α < 1.47. Thus, a Kolmogorov spectrum
(α = 5/3) is incompatible with our measurements, as is
an α = 3/2 spectrum (see, e.g., Iroshnikov 1964; Kraich-
nan 1965; Sridhar & Goldreich 1994; Goldreich & Sridhar
1995). Our results are at tension with measurements for
the local ISM (e.g., Armstrong et al. 1995), the wave-
length dependence of pulsar temporal broadening (e.g.,
Löhmer et al. 2001; Bhat et al. 2004; Lewandowski et al.
2013), and VLBI of heavily scattered sources (Spangler &
Gwinn 1990), all of which tend to infer somewhat larger
values of α. We now outline possible generalizations to
our scattering model that might render higher values of
α, including a Kolmogorov spectrum, feasible.
The first possibility is an outer scale of turbulence that

is similar to the scales probed at 3.6 cm, thereby reducing
the 3.6 cm refractive noise but perhaps not the 1.3 cm re-
fractive noise (which probes smaller scales). The 3.6 cm
refractive noise corresponds to scattering modes with a
transverse scale of ∼4AU on the scattering screen, so the
required outer scale is rout ∼ 1AU. This value is some-
what smaller than the lower limit estimated by Arm-
strong et al. (1995). Moreover, this is a finely-tuned con-
straint, requiring the outer scale to be precisely matched
to our observing parameters — a smaller outer scale
would be inconsistent with the observed 1.3 cm refrac-
tive noise, and a larger outer scale would not affect the
3.6 cm noise.
A second possibility is that there is extra power located

near the dissipation scale. Spectral flattening near the
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a few times this radius) with the dissipation scale of
ISM turbulence. This estimate also suggests that the
rotation measure associated with the scattering mate-
rial is modest, and hence that the rotation measure of
the Galactic Center magnetar is dominated by local con-
tributions (Eatough et al. 2013) rather than from the
scattering material (Sicheneder & Dexter 2017). Our es-
timated rin is also comparable to the ion inertial length
for ne ∼ 0.1 cm−3 and requires ne >∼ 0.1 cm−3 if the in-
ner scale is determined by the larger of these character-
istic two plasma length scales (Spangler & Gwinn 1990).
However, we cannot conclusively rule out much shallower
spectra with correspondingly larger inner scales.
While our primary objective has been to constrain the

parameters of our specific scattering model, our obser-
vations also constrain alternative theories for the scat-
tering of Sgr A∗. For example, Goldreich & Sridhar
(2006) have proposed a model in which the scattering
is caused by an ensemble of folded current sheets in the
ISM. While this model naturally reproduces the λ2 scal-
ing of angular broadening and the Gaussian image at
long radio wavelengths, it predicts an absence of refrac-
tive scattering effects. This model would not produce
scattering substructure in images, and any intrinsic sub-
structure would be blurred out by small-scale scattering
modes. Hence, the pronounced long-baseline refractive
noise at 1.3 cm enables us to firmly reject this alterna-
tive scattering model for Sgr A∗ in its simplest form (see
also Gwinn et al. 2014). However, the model is com-
patible with our measurements if the thickness of the
current sheets is significantly larger than expected, cor-
responding to rin ∼ 2 × 106 km, in which case it would
instead produce strongly enhanced refractive effects at
millimeter wavelengths. Thus, we expect that continued
observations with the GMVA and EHT will be sufficient
to firmly support or reject this model.
Our results highlight the importance of including re-

fractive noise when fitting models to radio observations

of Sgr A∗. Refractive uncertainties can plausibly explain
many of the discrepancies in past measurements of the
size of Sgr A∗, such as those identified by Psaltis et al.
(2015b). In addition, we have shown that refractive ef-
fects likely prohibit a meaningful study of intrinsic struc-
ture at wavelengths longer than 1.3 cm (or 3.6 cm for the
minor axis; see Figure 15). Nevertheless, our results also
show that both the blurring and substructure from scat-
tering may be significantly smaller at 1.3mm than ex-
pected. Thus, the prospects for deeper study of Sgr A∗

at millimeter wavelengths, including imaging with the
EHT, are excellent.
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APPENDIX

A. CALCULATING RENORMALIZED REFRACTIVE NOISE

As described in §2.2, refractive noise includes contributions that may not be appropriate for the relevant error budget.
For instance, the refractive noise on a zero-baseline corresponds to refractive modulation of the total flux density, which
may be absorbed into model parameters. Likewise, the variance in the imaginary part of visibilities on short baselines
is produced by image wander, which is only relevant for observations with absolute phase referencing. We now derive
“renormalized” refractive noise expressions, which remove the contributions of flux density modulation and/or image
wander. We now derive expressions to efficiently compute properties of renormalized refractive noise semi-analytically,
following the methodology and notation of Johnson & Narayan (2016) (see also Blandford & Narayan 1985).

To proceed, we will first define the renormalized average visibility V̂a(b) as the visibility corresponding to a scattered

image that has been normalized to have unit total flux density (e.g., V̂a(0) = 1) and that has been shifted such that
its brightness distribution is centered on the origin:

V̂a(b) ≡
Va(b)

Va(0)
e2πib·x0,a/(λD) (9)

=
Vea(b) + ∆Va(b)

Vea(0) + ∆Va(0)
e2πib·∆x0,a/(λD)e2πib·x0,ea/(λD)

≈ e2πib·x0,ea/(λD)

Vea(0)

[

Vea(b) + ∆Va(b)−
Vea(b)

Vea(0)
∆Va(0) + 2πiVea(b)b ·∆x0,a/(λD)

]

.

In these expressions and throughout the remainder of this paper, a subscript “a” denotes a quantity in the average
image regime, while “ea” denotes a quantity in the ensemble-average image regime (Narayan & Goodman 1989;
Goodman & Narayan 1989). The original image centroid, x0,a, is given as a transverse displacement on the scattering



The Scattering and Intrinsic Structure of Sgr A∗ 23

screen. Thus, in angular units, the centroid is at η0,a ≡ x0,a/D. We assume that the refractive effects are only a small
perturbation of the ensemble-average image, so the final expression only includes refractive terms to linear order.
The renormalized refractive noise can then be written

∆V̂a(b) ≈
e2πib·x0,ea/(λD)

Vea(0)

[

∆Va(b)−
Vea(b)

Vea(0)
∆Va(0) + 2πiVea(b)b ·∆x0,a/(λD)

]

. (10)

The prefactor in this expression only depends on the ensemble-average visibility. It normalizes the ensemble-average
image to have unit flux density and to be centered on the origin. The first term inside the square brackets is the full
refractive noise of the average image. The remaining two terms remove the contributions from flux modulation and
from image wander, respectively. To simplify the remainder of our discussion, we will assume that the ensemble-average
image is centered on the origin: x0,ea = 0 and ∆x0,a = x0,a.

To estimate properties of the refractive noise, we must determine the function fV̂(r;b, λ) defined by ∆V̂a(b) ≡
∫

d2r fV̂(r;b, λ)φ(r), where φ(r) is the refractive component of the scattering screen phase (i.e., consisting only of
modes with wavelengths longer than the Fresnel scale). For example, the average visibility is approximated as (see
Johnson & Narayan 2016; Eq. 11-12)

Va(b) ≈ Vea(b) +

∫

d2r fV(r;b, λ)φ(r) ≡ Vea(b) + ∆Va(b), (11)

fV(r;b, λ) ≡ r2Fe
−ir·b/(Dλ)

[

i

Dλ
b · ∇Iea(r)−∇2Iea(r)

]

.

These equations arise from the approximate representation of scattering in the geometric optics regime, which gives
the scattered image Ia(r) in terms of the ensemble-average image Iea(r) and the refractive scattering screen phase
gradients:

Ia(r) ≈ Iea(r+ r2F∇φr(r)) (12)

≈ Iea(r) + r2F [∇φr(r)] · [∇Iea(r)] .

To denote the integral correspondence in Eq. 11, we will introduce the shorthand ∆Va(b) ↔ fV(r;b, λ). Obviously,
we then have ∆Va(0) ↔ fV(r;0, λ). Finally, note that

∇bVa(b)⌋b=0 = −2πiVa(0)x0,a/(λD) = −2πiVa(0)∆x0,a/(λD), (13)

where ∇b denotes a gradient with respect to baseline (not the directional derivative b · ∇). This general identity
relates an image centroid to the corresponding visibility gradient at zero baseline. We will use the notation that
∇bVa(b)⌋b=0 ≡ ∇b=0Va(b). Thus, ∆x0,a = iλD2π

1
Va(0)

∇b=0Va(b) ≈ iλD2π
1

Vea(0)
∇b=0Va(b). Consequently,

∆x0,a ↔ i
λD

2π

1

Vea(0)
∇b=0fV(r;b, λ). (14)

Putting everything together, we obtain

∆V̂a(b) ↔ fV̂(r;b, λ) ≡
1

Vea(0)

[

fV(r;b, λ)−
Vea(b)

Vea(0)
fV(r;0, λ)−

Vea(b)

Vea(0)
b · ∇b=0fV(r;b, λ)

]

. (15)

For computational purposes, we require the Fourier-conjugate quantity, f̃V̂(q;b, λ) ≡
∫

d2r fV̂(r;b, λ)e
−iq·r, which

follows trivially from Eq. 15:

f̃V̂(q;b, λ) =
1

Vea(0)

[

f̃V(q;b, λ)−
Vea(b)

Vea(0)
f̃V(q;0, λ)−

Vea(b)

Vea(0)
b · ∇b=0f̃V(q;b, λ)

]

, (16)

where f̃V(q;b, λ) is (Johnson & Narayan 2016; Eq. 15)

f̃V(q;b, λ) = r2Fq ·
[

q+ (1 +M)−1r−2
F b

]

Vea

(

(1 +M)r2Fq+ b
)

. (17)

As in Eq. 10, the prefactor in Eq. 16 normalizes the ensemble-average image to have unit total flux density. The first
term in the brackets gives the usual contribution of refractive noise, the second term eliminates noise from refractive
flux modulation, and the third term eliminates noise from refractive position wander.
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We can also express Eq. 16 explicitly in terms of the ensemble-average visibility and its gradient:

b · ∇b=0f̃V(q;b, λ) =
q · b
1 +M

Vea

(

(1 +M)r2Fq
)

+ r2F |q|2 b · ∇Vea

(

(1 +M)r2Fq
)

⇒ f̃V̂(q;b, λ) =
r2F

Vea(0)

{

q ·
[

q+ (1 +M)−1r−2
F b

]

[

Vea

(

(1 +M)r2Fq+ b
)

− Vea(b)

Vea(0)
Vea

(

(1 +M)r2Fq
)

]

(18)

− |q|2 Vea(b)

Vea(0)
b · ∇Vea

(

(1 +M)r2Fq
)

}

.

In this expression, the terms that eliminate flux modulation and image wander are mixed.
A benefit of these representations is that we can easily calculate the corresponding functions for the real or imaginary

components of the normalized refractive noise; e.g., Re
[

∆V̂a(b)
]

↔ fV̂,re(r;b, λ). These functions are necessary to es-

timate the full covariance matrix of the complex refractive noise among different interferometric baselines. Specifically,
because fV̂(r;−b, λ) = f∗

V̂
(r;b, λ) and the Fourier transform is linear, we obtain

f̃V̂,re(q;b, λ) =
1

2

[

f̃V̂(q;b, λ) + f̃V̂(q;−b, λ)
]

, (19)

f̃V̂,im(q;b, λ) =
1

2i

[

f̃V̂(q;b, λ)− f̃V̂(q;−b, λ)
]

.

Using these functions, we can compute statistical properties of the renormalized refractive noise using the expressions
given in Johnson & Narayan (2016), with f̃V replaced by f̃V̂. For example, the variance of the renormalized refractive
noise on a baseline b is

〈

∣

∣

∣
∆V̂a(b)

∣

∣

∣

2
〉

=
λ2

(2π)4

∫

d2q
∣

∣

∣
f̃V̂(q;b, λ)

∣

∣

∣

2

Q(q). (20)

B. EFFICIENT COMPUTATION OF REFRACTIVE NOISE

Even the simplified expressions for refractive noise (e.g., Eq. 20) remain numerically expensive, and an efficient
approximation is necessary for our fitting framework. We now derive a suitable approximation by making two key
simplifications: we approximate the ensemble-average visibility as an elliptical Gaussian, and we approximate the power
spectrum Q(q) ∝ q−(α+2) by a sum of exponentials. With these approximations, the (renormalized) refractive noise
integrals (e.g., Eq. 20) become Gaussian integrals and can be computed analytically. The first of these approximations
is likely excellent for Sgr A∗; the second can achieve any desired accuracy based on a simple prescription that we now
develop.
Specifically, we use the framework of Psaltis et al. (2018) to define the power spectrum of phase fluctuations in the

scattering screen. In this framework, the power spectrum arises from a wandering magnetic field direction throughout
the scattering medium; anisotropic scattering arises if the field has a preferred direction, with the major axis of the
scattering orthogonal to the preferred field direction. In this framework, the power spectrum takes the form,

Q(q) = Q̄ (qrin)
−(α+2) exp(−q2r2in)P (φq − φ0), (21)

where P (φq − φ0) describes the (normalized) angular distribution of scattering power, and the overall normalization
Q̄ is given by,

Q̄ =
2

Γ
(

1− α
2

)

[

r2in(D +R)
√
2 ln 2
π λ2

0R

]2

(θ2maj,0 + θ2min,0) . (22)

We will use the “dipole” model of Psaltis et al. (2018):

P (φq − φ0,PA; kζ) =

[

1 + kζ sin
2(φq − φ0,PA)

]−(α+2)/2

2π 2F1 (1/2, 1 + α/2; 1;−kζ)
, (23)

where kζ is determined by the asymptotic (λ → ∞) asymmetry of the scatter-broadening:

(

θmaj,0

θmin,0

)2

=
2F1

(

α+2
2 , 1

2 ; 2;−kζ
)

2F1

(

α+2
2 , 3

2 ; 2;−kζ
) . (24)

With this model, the power spectrum can be written

Q(q) =
Q̄r

−(α+2)
in

2π 2F1 (1/2, 1 + α/2; 1;−kζ)

(

q2
[

1 + kζ sin
2(φq − φ0,PA)

])−(α+2)/2
exp(−q2r2in) . (25)
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2015, ApJ, 799, 1

Cho, I., Jung, T., Zhao, G.-Y., et al. 2017, PASJ, 69, 87
Coles, W. A., Harmon, J. K., & Martin, C. L. 1991,

J. Geophys. Res., 96, 1745
Coles, W. A., Rickett, B. J., Codona, J. L., & Frehlich, R. G.

1987, ApJ, 315, 666
Cordes, J. M., & Lazio, T. J. W. 1997, ApJ, 475, 557
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