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ABSTRACT

This paper surveys recently published literature on tactile sensing in robotic manipulation to under-
stand effective strategies for using tactile sensing and the issues involved in tactile sensing. It consists
of a brief review of existing tactile sensors for robotic grippers and hands, review of modalities avail-
able from tactile sensing, review of the applications of tactile sensing in robotic manipulations, and
discussion of the issues of tactile sensing and an approach to make tactile sensors more useful. We
emphasize vision-based tactile sensing because of its potential to be a good tactile sensor for robots.

1. Introduction

In human object manipulation, tactile perception plays
an important role in addition to visual perception [1].
Do robots benefit from tactile sensing? Recent robotic
systems are equipped with good vision systems. Many
cameras including RGB, depth, and RGB-D are often
used in robotic application. On the other hand, although
there are products of robotic hands where tactile sen-
sors are embedded, such as BarrettHand [2], PR2 [3], and
ReFlex Hand [4], it will be hard to say that tactile per-
ception and programming robots with tactile sensing are
popular. Why is this?

Although there exists much work on tactile manipula-
tion including machine learning-based approaches [5-8],
the use of tactile perception is not considered as essen-
tial in robotics. Or, robotics engineers seem to be finding
ways to avoid using tactile sensors. For example in work
on learning robotic grasping with deep learning [9-11],
robots learned grasping with visual input only; tactile
sensing was not used. In another study of dexterous in-
hand manipulation where a Shadow Dexterous Hand
equipped with tactile (touch) sensors on the fingertips
was used, the researchers did not use the tactile sen-
sors [12]. These implementations were possible because
there were consistent relations between the state before
grasping (visual scene of the object and the gripper),
including the manipulation parameters and the outcome
of manipulation. Such consistent relations can be learned
by neural networks or other machine learning methods.
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In the context of learning robotic manipulations from
human demonstrations, Yang et al. proposed a method
referred to as teleoperation training [13]. Manipulation
of clothes was demonstrated to the dual-arm robot (Nex-
tage from Kawada Robotics co.) by teleoperating it with a
head mount display. In this research, tactile sensing was
not used; tactile sensors were not attached on the robots,
and the teleoperators did not have tactile feedback. The
robots used vision as the input.

In order to understand effective strategies of using tac-
tile sensors in robotic manipulation, we survey recently
published research on tactile sensing for robotic manip-
ulations. The focus of this survey is on tactile sens-
ing for robotic manipulation. Rather than surveying on
wide range of tactile sensors, we review off-the-shelf tac-
tile sensors that can be purchased or easily fabricated.
For the review of tactile sensors, refer to surveys such
as [14]. This survey emphasizes an approach of vision-
based tactile sensing for robotic manipulation. Taking the
recent progress in cameras and computer vision offers
the advantages of high resolution, ease of fabrication and
wiring, affordability, and reliability.

The rest of this paper consists of: Section 2: We briefly
review existing tactile sensors for robotic grippers and
hands. The purpose of this section is knowing what tac-
tile sensors are available to non-experts in tactile sensor
development. Section 3: We review what modalities are
available through tactile sensors. We focus on sensing
slip. Section 4: We review applications of tactile sensing in
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robotic manipulation. We focus on grasping with tactile-
enabled robotic hands. Section 5: We discuss two things
in this section. One is the issues in introducing tactile
sensors to robotic hands. The other is the open source
approach of tactile sensor development as a possible solu-
tion to these issues.

2. Brief review of tactile sensors for robotic
hands

We briefly review the examples of tactile sensors available
in robotic hands and grippers.

2.1. Commercial tactile sensor

The dual arm mobile robot PR2 developed by Willow
Garage Co. [3] has a parallel jaw gripper whose fingers
have tactile sensors. The tactile sensor on each finger is a
capacitive type, consisting of 22 sensing elements. We can
obtain a pressure value per sensing element. This tactile
sensor was manufactured by Pressure Profile Systems Inc.
A capacitive tactile sensor is an array of sensing elements
each of which is a capacitor made from two metal plates
and a dielectric medium. Applying force on a capacitor
changes the distance between the plates, which results
in a change of capacitance. From the measurement of
the capacitance change, we can obtain the pressure. It is
considered that implementing a high spatial resolution is
difficult with this approach. There are some applications
of capacitive tactile sensors made by Pressure Profile Sys-
tems Inc. to robotic hands [15]. An example is the robotic
hand with three fingers, BarrettHand developed by Bar-
rett Technology LLC [2]. It optionally has a six-axis force
and torque sensor, fingertip torque sensors, and tactile
sensors. The fingertip torque sensor measures torque of
the fingertip joint with a strain gage. The tactile sensor
has 96 sensing elements in total on the fingers and the
palm, that is developed by Pressure Profile Systems Inc.
Another example is TWENDY-ONE of the Sugano Labo-
ratory in Waseda University [16-18]. Each hand has 241
capacitive sensing elements by Pressure Profile Systems
Inc.

The examples of resistive tactile sensors by measuring
the change of resistance caused by pressure or deforma-
tion are strain gage, force-sensing resistors, pressure con-
ductive elastomer [19], and pressure sensitive ink [20].
There are commercial products of those sensors such as
the Inastomer from Inaba Rubber Co. [21].

A three-finger robotic hand ReFlex Hand [4] devel-
oped by RightHand Robotics Co. provides a tactile sensor
TakkTile [22]. TakkTile is made with miniature baromet-
ric sensor chips consisting of micro electromechanical
systems (MEMS) pressure sensors [23]. The sensor is

covered with rubber; the pressure sensor senses the pres-
sure applied to the rubber surface. They developed a
unique manufacturing technology: in order to remove
the little amount of air in the MEMS pressure sensor
during pouring liquid rubber into the mold, vacuum
degassing was used, which was necessary to increase the
sensitivity.

Similar to human tactile sensors that have multiple
modalities, combining multiple modalities would be use-
ful in robotic applications. For example, BioTac from
SynTouch Inc. mimics some of the physical properties
and sensory capabilities of the human fingertip and gives
robotic hands more human-like tactile sensing [24]. It
can measure pressure distribution at 19 points, 3-axis
force, micro vibration, and temperature. SynTouch pro-
vides interfaces to commercial robotic hands such as
BarrettHand (Barrett Technology, Inc.) and Shadow Dex-
terous Hand (Shadow Robot Company Ltd.). BioTac has
a structure in which a core unit consisting of impedance
electrodes, pressure sensor, and thermistor is covered
with an artificial skin made of an elastomer; conductive
fluid is filled between the core unit and the skin. A draw-
back of this sensor is its expense; it is more expensive than
many commercial robotic grippers.

Some researchers use a force and torque sensor
mounting on fingertips of robotic hands. Some small
ones are commercially available that are suitable for
mounting on fingertips. For example an optics-based
force sensor OptoForce (OnRobot A/S [25]) is mounted
on each fingertip of a Robotiq Three-Finger Adaptive
Gripper in [26]. Small force sensors ShokacChip and
SchokacCube are distributed by Touchence Inc. [27].
These sensors are small and not difficult to install on
robotic grippers, however, they do not form images of the
force or pressure distribution.

2.2. Vision-based tactile sensor

When we try to introduce good quality (high-resolution,
multi-modal) tactile sensors to robotic hands, a vision-
based approach would be practical since non-experts
might be able to manufacture such sensors with adjust-
ments to their robots. Because of the recent progress in
imagers, circuits, and algorithms for computer vision,
turning tactile sensing into a vision problem has the
advantages: (1) achieving high resolution (superhuman
resolution) is not difficult, (2) the sensor structure can be
simple and manufacturing is not difficult, (3) wiring is
not problematic by using the established network infras-
tructure, (4) buying the ingredients is affordable, (5) the
sensing device (camera) is becoming smaller, cheaper,
reliable, and better in resolution and speed, due to the
markets of smart phone and endoscopic surgery, and



(6) physically robust since the sensing device and the
skin can be isolated. Regarding (5), there is an example
of embedding a small camera on a human fingertip [28].

The research of vision-based tactile sensor has decades
of history. An initial attempt was measuring the frustra-
tion of total internal reflection within a waveguide on a
sensor surface caused by contact [29-32]. The research
trend has shifted to measuring displacement of markers
placed on the sensor surface where cameras are used to
capture the video and computer vision is used to detect
and track the marker movements [33-42]. A reason for
this trend is that it is easy to acquire a higher spatial
resolution estimate of the force field, and measuring the
marker displacements is robust since displacements are
proportional to the external force. The resolution of the
contact force field depends on the camera resolution
and the marker density. Recently high-resolution sensors
have been proposed, such as TacTip [41]. The dynamic
range of the force measurement can be controlled by
changing the hardness of the elastic material. For exam-
ple using softer elastomer as the skin, the sensor becomes
more sensitive to smaller force.

GelSight is one of most popular vision-based tactile
sensor, which was developed by Johnson and Adelson in
[43]. It consists of a transparent elastomer covered with a
reflective skin. The surface texture and shape of an object
can be observed by pressing the object surface on the
reflective skin (the observation is made from the elas-
tomer side). It could reconstruct the textures of a cookie,
a decorative pin, a human fingerprint, and a twenty dol-
lar bill (it is not flat!). GelSight was installed on a finger of
a Baxter robot for robotic manipulation tasks [44] where
they used GelSight for localizing an object on the finger.
In order to estimate the shear forces as well as normal and
torsional load, markers were placed around the surface
(reflective skin) of the sensor [45]. Similar to other work
of vision-based force estimation, they applied computer
vision to detect and track the markers. It was also possible
to estimate incipient slip [45]. For better robotic manip-
ulation, a version of GelSight with a slenderized fingertip
was developed by introducing mirrors around the finger-
tip, named GelSlim [46]. The finger was designed to be
physically durable; it could survive more than 3000 grasp
trials.

Much of the above work covers a transparent elas-
tic material with an opaque skin in order to remove the
effect of the background on the computer vision pro-
cesses. In contrast, Yamaguchi and Atkeson proposed
the FingerVision sensor which is not covered with an
opaque skin [42]. It means the camera can see through
the materials. Markers are placed on the surface. Tracking
the marker movements with computer vision estimates
the external force distribution. Additionally, it provides
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visual information of nearby objects (proximity vision).
Analyzing the visual information gives different modal-
ities, such as high-resolution slip [47], object texture (it
could recognize a QR code on the object), and object
pose. It should be emphasized that many other slip
sensing methods are estimated from other modalities
(e.g. vibration, pressure distribution), while FingerVision
directly measures the movement of an object. Another
interesting point is that even humans do not have such
tactile sensation that can see through the skin. FingerVi-
sion is available as open source [48] so that researchers
can reproduce the sensor. Models for 3D printers are
designed for Robotiq and Baxter grippers.

Another approach of vision-based tactile sensing was
proposed in [49]. They developed a vision-based tac-
tile sensor with a compound-eye camera consisting of an
array of lenses and an imager. Such a camera can sense
RGB images and infrared images at the same time. They
placed a compound-eye camera under an acrylic plate
which was used as a waveguide for infrared light. Contact
on the acrylic plate can be detected based on frustrated
total internal reflection [50] from IR images. Since the
other RGB imagers see through the acrylic plate, the sen-
sor can sense nearby objects by stereo vision. This sensor
was used in robotic grasp control [51]. The benefit of
this approach is that it can sense the contact with vision,
i.e. it does not depend on the amount of force from the
object. Similar to the transparency of the skin of Fin-
gerVision, this approach can be combined with many
other ideas such as a vision-based slip detection. A draw-
back of this approach is that it depends on the optical
qualities of the object as reported in [50]. We would need
to investigate what objects this approach can sense the
contact on. Another difficulty would be the availability of
compound-eye cameras.

Similar to vision-based tactile sensors, there is an
approach of using proximity sensors (range finders and
distance sensors). For example, a tactile sensor consisting
of range finders covered with transparent elastic material
is proposed in [52]. The idea is that the deformation of
the transparent material can be estimated from the mea-
surement of the distances between the range finders and a
nearby object. Normal contact forces are computed from
the deformation. If there is no contact with the object,
this sensor simply gives the distances to it. A similar idea
is implemented on a hi-speed robot hand where prox-
imity sensors are used to measure the distance to any
objects and contact. In [53], tactile sensors with a more
dense array of proximity sensors were developed, which
was used to sense the distance to an object and the sur-
face shape. In [54], fingertips with high-speed and high-
precision proximity sensors were developed. They were
installed on a high-speed robotic gripper, which was able
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to catch a fragile object (a paper balloon). In [55], they
developed sensing fingers with proximity sensors based
on their previous work [56,57]. Originally the fingertip
had a tactile sensor consisting of an array of proximity
sensors (Net-Structured Proximity Sensors [56,57]) that
senses the distance to an object. In addition, new prox-
imity sensors are added to the fingernail of each finger
for measuring the distance to a support surface such as a
table [55].

3. Modalities of tactile sensing

There are various modalities of tactile sensing, includ-
ing contact (on/off), pressure or force distribution, slip,
vibration, temperature, and object properties such as tex-
ture and hardness.

Providing pressure distribution seems to be most com-
mon. Some sensors provide a three-axis force distri-
bution. Examples of other modalities sensed by tactile
sensors are: microvibration (e.g. BioTac [24]), tempera-
ture (e.g. BioTac [24], TakkTile [22]), and proximity [52].

3.1. Sense of slip

As well as force distribution, sense of slip is important in
object manipulation. Much research has investigated the
role of slip sensation in human manipulation. An impor-
tant early work on the role of slip in human grasping is
[58] which describes a holding behavior where grip force
is increased when slip is detected. In addition to launch-
ing the field, this work eventually led to the design of
the BioTac sensor [59]. Recent papers following up on
this work include [60], which discusses how to hold very
light objects, and [61], which discusses how grip force is
increased during arm movements. More information is
available in [62,63].

Many attempts have been made to develop slip sen-
sors. An early approach used a mechanical roller to
detect slip [64]. An approach to use acoustic signals
(acoustic emission) caused by slip was explored in [65].
A popular approach is using the vibration caused by
slip [66-71]. Some vibration approaches used accelerom-
eters [66,67,70]. In [26,45,72,73], they analyzed an
observed force (and torque) to detect slip. For example in
[73], high-pass filtered normal force was used to detect
slip. In an optics-based tactile sensor [31], slip is detected
as a binary flag when the change of normal force is greater
than a threshold. In [26], slip was detected by measuring
the increasing rate of change of tangential force.

There are approaches to create a mechanism for mak-
ing slip-detection easier. In [66], a soft skin covered with
nibs which produce small vibrations was introduced into
a fingertip. Two accelerometers were embedded in the

fingertip. A similar structure of nibs was introduced into
an optics-based tactile sensor [31]. In [69], a gripper
consisting of two elastic fingers was developed where
strain gauges are embedded at the bottom of fingers.
Slip on the fingers is detected by the strain gauges as
vibration.

Detecting slip with a distributed sensor array is also
a popular approach [74-77]. In [77], a 44 x 44 pres-
sure distribution is converted to an image, and slip is
detected by image processing. In [78], a multi-sensor
fusion approach was proposed where they combined
stereo vision, joint-encoders of the fingers, and finger-
tip force and torque sensors. In [76], they developed
slip detection using center-of-pressure tactile sensors.
In [79], they trained hidden Markov models to predict
slip. According to their experimental results, the method
predicted a slip before a slip actually took place. Some
researchers use the BioTac sensor [59]. In [80], two Bio-
Tac sensors were used and several strategies to detect slip
were compared experimentally. BioTac sensors were also
used in [81], where they developed three types of tactile
estimation: finger forces, slip detection, and slip classi-
fication. They compared machine learning methods to
estimate finger forces. They considered two approaches
to detect slip: a force-derivative method and a pressure-
vibration-based method. They used neural networks to
classify the slip category, linear or rotational, from time-
varying BioTac electrode values. A similar slip prediction
approach was explored in [82,83] where they used ran-
dom forest classifiers to classify the tactile data from a
BioTac into slip and non-slip classes. They investigated
the generalization ability of learned classifier over the
objects including unseen ones.

Slip detection methods have been developed for
vision-based tactile sensing. In [84], a method to detect
slip of an object by tracking the dotted markers placed
on the object was introduced. Since they need to place
markers on the object, the applications may be limited. In
[39,85,86], slip was estimated from the ‘stick ratio’. The
stick ratio is a ratio of areas of stick and contact regions;
the ratio is one when there is no slip, it becomes smaller
than one when there is incipient slip, and when the ratio
becomes zero, it is considered as total slip. In [39], the
stick ratio was estimated from the displacement of dotted
markers. In the work of GelSight [45], an entropy of shear
(marker) displacement distribution was used to detect
slip by thresholding the entropy. It could distinguish the
shear (no slip), incipient/partial slip, and total slip. In
[87], a slip detection method for TacTip was developed
where they used the difference of position of each marker
between consecutive frames as the input, and trained a
support vector machine to classify the tactile signal into
slip or static classes.



The marker displacement was used to detect slip in the
above vision-based tactile sensors [39,45,87]. In contrast,
direct analysis of video was used in the work of Fin-
gerVision [47]. Since FingerVision can see through the
skin, the movement of object against the sensor is directly
shown in the video. Thus computer vision methods for
analyzing the video, such as optical flow and background
subtraction, are applicable to detect the movement. In
order to distinguish the movement of a foreground object
and the background, a color histogram-based object
detection was introduced in [47]. Since this approach
does not depend on the marker displacement which
requires a certain amount of load, it was possible to detect
slip of very lightweight objects such as origami arts and
dried flowers.

4, Tactile sensing in robotic manipulation
4.1. Grasping

Grasping is a most basic and popular application of tac-
tile sensing. A grasping behavior may be decomposed
into grasp planning and execution of a planned grasp
or grasping behavior. Since tactile sensing is not avail-
able in grasp planning, much of tactile grasp research
focuses on the use of tactile sensing during grasp execu-
tion. Using tactile sensing in grasp execution is expected
to reduce uncertainty, such as the pose estimation error
of an object [88], unknown content of a container, and
friction coefficient of the object. Using tactile sensing
aims to increase the success ratio and the stability of
grasp. It is achieved by controlling the grasp parame-
ters such as a grasp pose, width, and force to hold an
object. Grasp execution with tactile sensing is sometimes
referred to as grasp adaptation or adjustment. There are
many attempts. One axis to understand such attempts is
the intervals (control cycle) of executing grasp adjust-
ments for tactile observation. When the interval is short,
the adjustment is continuously performed. Such an adap-
tation tries to locally find a better grasp around the
current grasp. Some criteria are proposed to evaluate a
grasp, such as grasp stability and slip amount. When the
interval is larger, sometimes it is referred to as re-grasp.
After executing a grasp, tactile sensors can be used to
assess (evaluate) the result of grasp, which may be used
to improve the grasp planning.

4.1.1. Heuristic grasp adaptation strategy

Designing control strategies or policies is an approach
of grasp adaptation. In [88], an integrated manipulation
system consisting of a robotic arm and a three-finger
robotic hand was presented. An external vision, finger
torque sensors, and tactile sensors on fingers and palm

ADVANCED ROBOTICS (&) 5

were unified. They demonstrated the usefulness of the
unified system through some experiments, including a
task of aligning the lid over the canister and screwing on
it. The tactile sensors were used to compensate the error
of estimating poses of objects caused by the uncalibrated
stereo vision. In [89], a grasp adaptation was developed
with tactile sensors on the PR2 robot.

Similarly, a human-inspired grasp strategy was devel-
oped for grasping a range of objects without breaking
them [73]. A study of grasp strategy of humans [1] was
considered in their method. The PR2 robot with the
tactile sensors on the fingertips was used. These tactile
sensors provide an array of pressures, while humans use
slip sensation in grasping [1]. In [73], they estimated slip
from the pressure array as mentioned in Section 3.1.

In [90], a grasping strategy of 3-finger 8-DoF robotic
hand with biomimetic tactile sensors were developed.
They used contact detection on each link of the fingers to
create the motion of fingers to adapt the shape of grasp.

4.1.2. Grasp adaptation with slip detection

Using slip sensation to adapt grasp is a popular approach.
A simple control strategy, increasing the grasping force
when slip is detected, works robustly in many situa-
tions if the detection of slip is accurate. Examples include
[66,76,85,91,92]. In much of this work, slip was estimated
from other modalities such as vibration, force, and center
of pressure, as mentioned in Section 3.1.

Slip detection for an optics-based tactile sensor was
used in grasp adaptation [31] where grasping force of a
robot hand was controlled to avoid slip. An experiment
of grasping a paper cup was conducted, where water was
poured into the cup. It was demonstrated that the robot
adapted the grasp against the increasing weight of water
without breaking the paper cup.

Su et al. [81] created a behavior to gently pick up
objects where they combined finger force estimates,
and slip detection and classification. As mentioned in
Section 3.1, machine learning was used to detect slip from
the tactile reading of the BioTac sensors.

A grasping strategy with slip detection was studied in
[26] where multiple finger grippers were considered. In
the experiments, they used a three-finger robotic hand
(Three-finger Adaptive Robot Gripper from Robotiq Co.)
where OptoForce sensors were attached on the finger-
tips. This paper explored grasp adaptation to deformable
objects with dynamic centers of mass, such as containers
with liquids.

In [82], they trained a classifier of slip and non-slip
classes from the BioTac reading, and applied the esti-
mation in stabilizing the grip. They considered a sit-
uation where a single finger with BioTac on a 7-DoF
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robot pushed an object against the wall. The control strat-
egy was rather simple: when the robot predicts slip, it
increases the force in the direction of the contact normal.
They extended this method in [83] where an improved
slip classifier was used. They were able to stabilize a
deformable plastic cup where the finger pushed one side
and a human pushed the other.

Grasp adaptation with FingerVision was explored in
[47,93]. As mentioned in Section 3.1, slip was directly
detected with FingerVision by analyzing the video from
the cameras. As the result, it could detect slip of very
lightweight objects such as origami and flowers. Because
of this feature, the grasp adaptation with FingerVi-
sion could adapt grasp to a range of objects including
lightweight ones. In [47], they demonstrated that the
grasp adaptation with FingerVision works with origami
cranes and flowers. In [47], they extended the grasp
adaptation control for a wide variety of objects includ-
ing deformable and fragile objects such as vegetables
including tomatoes, mushrooms, and zucchinis, fruits,
raw eggs, and cupcakes.

4.1.3. Grasp adaptation with estimating friction
coefficient

A grasp adaptation strategy which included estimat-
ing the friction coefficient was explored in [94], which
was referred to as a slipping control algorithm. They
attempted to estimate the friction coefficient at the con-
tact points of a grasped object from the observation of
a tactile sensor (an optics-based force and torque sen-
sor was used). Then the estimated friction coefficient
was used in slipping control. The same grasp adaptation
strategy was used in [95].

4.1.4. Grasp adaptation with grasp stability
estimation

Constructing a grasp stability estimator from tactile read-
ing is also a popular approach in grasp adaptation. A
grasp stability estimator can be used to trigger grasp
adaptation control, as well as to plan a better grasp.

In [96], in order to adapt grasping an object whose
pose is observed with uncertainty, a grasp adaptation
was developed with tactile feedback of the BarrettHand.
An SVM classifier was learned to estimate grasp sta-
bility from tactile data, which was used to determine
if the adjustment action is executed. The SVM classi-
fier estimates if the grasp is stable or unstable, whose
input is the grasp features represented by a bag-of-words
model of the valid contacts obtained from the tactile sens-
ing data. The training dataset was constructed with the
Grasplt! simulator where the stability was determined by
thresholding the epsilon and the volume qualities that

measures the grasp robustness against disturbances (i.e.
less fragility) and the grasp strength respectively.

In [97], a grasp adaptation to handle uncertainties of
object properties such as the weight and the contact fric-
tions was proposed. It was designed for a three-finger
robotic hand with BioTac sensors on the fingertips. The
grasp adaptation consists of an object-level impedance
controller, which is triggered by a grasp stability esti-
mator. The grasp stability estimator was learned from
successful (stable) grasp example. It is a one-class classi-
fier (Gaussian Mixture Model was used) predicting if the
current grasp is stable from an input of grasp features.
The grasp features consist of the grasp stiffness and the
rest length defined in the virtual frame of an object, and
the tactile reading. This grasp stability estimator was also
used in the object-level impedance controller where the
goal is adapting the grasp stiffness and the rest length so
that the grasp becomes stable.

An adaptive grasping method was proposed in [98]
that finds a stable grasp on a novel object. It consists of
two estimation models: a grasp stability estimator from
tactile data, and a predictor of tactile data from the cur-
rent data and an adaptive action. By combining them, an
adaptive action that improves the grasp stability can be
found by an optimization.

Grasp stability estimation is also used in triggering re-
grasp. In [7], a re-grasping strategy was studied where the
quality of grasp is estimated from the tactile sensing, and
the re-grasp is executed when the grasp is unstable.

Calandra et al. used the GelSight embedded two-finger
parallel gripper to predict grasp success [99]. Later they
extended the method for adapting grasp by re-grasping
an object [100]. In both papers, a deep, multimodal con-
volutional neural network was constructed that predicts
the outcome of a grasp (grasp success probability). The
input of the network is multimodal: images from an
external RGB camera and the GelSight cameras. In the
re-grasping setting [100], grasp adjustment actions are
also used as input. The neural network was trained with
9000 [99] and 6450 [100] grasp trials with the Sawyer
robot. The trained neural network was used to predict the
grasp success [99] and select the most promising re-grasp
action [100]. A similar re-grasping strategy was explored
in [101] where GelSlim was used.

4.1.5. Complete grasp process with tactile sensing

A complete process of grasp planning with machine
learning and grasp execution with tactile sensing was
explored in [102]. The grasp planning was achieved with
deep neural networks that estimate a stable grasp from an
input image. A BarrettHand was used with the Universal
Robots URS5 robot to execute the planned grasp. The tac-
tile sensors of the BarrettHand were used to correct the



training dataset of the neural networks. The dataset con-
sists of pairs of input and output variables, where a label
of stable or unstable grasp is necessary as the output. The
tactile sensors were used to assess the grasp. In the grasp
assessment, a swinging motion was performed to test
the stability of the grasp. The tactile reading during the
motion was used to compute the assessment value. If the
assessment value is above a threshold after the swinging
motion, that grasp is recorded as a stable grasp.

4.2. Other robotic manipulations

We briefly explore the use of tactile sensors in robotic
manipulations other than grasping. There are several dif-
ferent uses of tactile sensing, such as detecting events
(touch on finger [31], slip [31], and touch on grasped
object [32,42,47]), estimating pose and location of
touched objects [8,44,47,77,103], using the tactile data in
part of the state of reinforcement learning [5,6,8], and
exploring the workspace without vision [104,105].

4.2.1. Detecting events with tactile sensors
In [31], tactile sensors were used in opening a cap of
a bottle by twisting it, where the tactile data was used
mainly as triggers of actions. For example, events of
contact (touch) and slip were used as triggers.

In [42], a cutting fruits task was implemented where
a knife was held by a FingerVision-enabled gripper. The
tactile data was used to determine when the knife reaches
the cutting board. Such an event would be difficult to
detect with external vision due to occlusion.

In [32,47], robots with tactile-enabled robotic hands
were used in handover tasks which are often consid-
ered in human-robot interaction. In both studies, tactile
signals were used as a trigger to activate the handover
motions. In [32], the tactile sensors were used to detect a
tapping force applied to the bottom of the grasped object
which triggers the handover motion. In [47], the tactile
sensors were used to detect touch events on the grasped
object where both force change and slip were consid-
ered as the events. When grasping an object tightly, force
change is easier to detect than slip, while when grasping
an lightweight object gently, slip is easier to detect than
force change.

In [90], tactile reading was used to trigger the releasing
action of grasped object when placing it on a table. They
also used an event detection in a peg-in-hole task where
they detected the hole with tactile reading during sliding
the peg (a bottle) on a plane.

4.2.2. Estimating pose and location with tactile
sensors

In [103], as an example manipulation with a Tac-
Tip, rolling a cylinder with a single-finger robot was
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explored. It achieved a super-resolved manipulation at
sub-millimeter accuracy where the high-resolution tac-
tile sensor was used for localizing the cylinder. Similarly
in [47,77], tactile sensors were used to estimate the poses
of objects in the hand, and the estimate was used in
in-hand manipulation of the objects.

In [44], pose estimation of a grasped object was used in
an insertion task of a USB connector. GelSight was used
to estimate the pose of the grasped USB connector, and
then it was inserted into a socket.

In [8], a contour-following control was learned with
tactile sensors and reinforcement learning. BioTac was
used as the tactile sensor on a robotic hand. It demon-
strated some manipulations of tracing a string and clos-
ing a ziplock bag.

Another example of pose estimation of a grasped
object from tactile reading was proposed in [106], which
was implemented on a three-finger robotic hand with
tactile sensors.

4.2.3. Reinforcement learning with tactile sensors
Since modeling the contact between robot fingers and
an object is not easy, machine learning is some-
times used with tactile sensing. There are examples of
using reinforcement learning in order to learn tactile
manipulations.

In [5], reinforcement learning of a robotic scraping
task was implemented. The state involved data from tac-
tile sensors that sense an array of pressures. In [6], in-
hand manipulation skills of a cylinder were acquired with
reinforcement learning where tactile data was used as a
part of the state vector. They used a ReFlex hand that
has tactile sensors made from MEMS barometers. In the
work of the contour following of a ziplock bag [8], they
converted the tactile reading from BioTac into discrete
states (three spatial relationship between the fingerpad
and the zipper), which was used as the state space of
reinforcement learning.

Since typically the sensor space of a robotic hand
with tactile sensors is high dimensional, sometimes
researchers manually extract features for the state of
reinforcement learning. Instead of a manual feature-set
design, an approach to use autoencoders was proposed
in [107]. It reduces the high dimensional sensor space
into a low dimensional latent space which is used in the
state space of reinforcement learning. They tested the
proposed method in a simple robotic task of tilting a
pole where BioTac was used. In [108], they developed an
unsupervised learning method to learn a spatio-temporal
representation of a time series of tactile data. In [109],
they modeled the manipulation procedure with POMDP
(partially observable Markov decision process) in order
to represent the latent states, and built a Q-learning to
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learn a policy with the learned representation. In [110],
they built a three-dimensional latent space from a tac-
tile sensor where BioTac was used. Then they learned
dynamical models on the latent space for tactile servoing.

4.2.4. Exploring the workspace without vision

There is some work to explore a work space in a dark
scene, i.e. without vision. In [104], active exploration was
developed to search for objects in an unknown workspace
with tactile sensing. A similar approach was used in a
study of tactile-based grasp learning where touch-based
object localization called ‘touch-scans’ and tactile-based
re-grasping methods were developed [105].

4.3. Tactile perception

We briefly review the applications of tactile sensing to
perceiving objects and environment. For a thorough
review of tactile perception, refer to [111,112]. The basic
idea is pressing the tactile sensors on an object or stroking
the surface of an object with the tactile sensors, and esti-
mating the properties such as texture type, hardness, and
shape from the tactile data.

In [38], they explored estimating the local shape (e.g.
an edge) of an object and the irregularity of the object
surface by pressing a vision-based tactile sensor on the
object. In [40], a similar approach was explored, where
the object shapes were detected in more detail. They used
TacTip, and referred to their method as ‘seeing by touch’.

Sensing by stroking or poking a target object is a kind
of active perception. In [113], a method to estimate the
classes of wood, cork, paper, and vinyl was proposed
where the tactile data was observed by stroking the mate-
rial with a tactile sensor consisting of distributed strain
gauges and PVDF films. In [114], the shape of an object
was estimated by stroking the surface with robotic fingers
with tactile sensors. They used optical tactile sensors. In
[115], they used all modalities of a BioTac sensor and esti-
mated 117 types of textures at the precision of 95.4% from
tactile data of stroking a texture. In [116], a fingertip with
two force sensors, an actively heated temperature sensor,
and a microphone was used to categorize objects into six
material classes: metal, plastic, wood, glass, ceramic, and
fabric. In [117], tactile sensors on a four-finger robotic
gripper were used to classify the object into 20 classes.
They used machine learning to classify where several dif-
ferent setups were compared, such as using single frame
data and time-series data. The tactile sensors are called
uSkin, which can sense a distribution of three-axis force
by detecting the magnetic field changes [118].

In [119], they classified grasped objects from tactile
reading, which was handled as images. The tactile sensor

was Weiss Robotics sensor DSA 9205, a resistive pressure
array consisting of 6 x 14 cells.

As mentioned before, GelSight is able to detect the
texture and shape of an object surface. It was able to
detect the textures of a cookie, a decorative pin, a human
fingerprint, a twenty dollar bill, USB connector, and so
on [43,44].In [120], they developed a method to estimate
the properties of clothing including thickness, smooth-
ness, fuzziness, season to be used, textile type, and wash-
ing method from the reading of GelSight by pressing it on
a cloth. Deep neural networks were used as the classifier
where the GelSight image was directly used as the input.

Estimating the shapes of objects by touch (and
stroking) is also a popular application of tactile sens-
ing. As mentioned above, in [40,43,44,114], they used
tactile sensors to sense the surface shape of objects.
In [40,43,44], they estimated small-scale surface shapes
(textures), while in [114], they estimated relatively larger
shapes.

In [121], a method to estimate 3D shape of objects
was developed where GelSight was used with an exter-
nal vision. In their system, a rough 3D shape of object is
predicted from a single-view color image with neural net-
works, and then it is refined by touching regions where
the visual prediction is highly uncertain.

In [122], a planning algorithm was proposed to esti-
mate a path to stroke an object in order to reduce the
uncertainty of the shape roughly modeled from vision.
A similar approach of such a tactile exploration was
proposed in [123].

5. Discussion

5.1. Issues of introducing tactile sensors to robotic
hands

Summarizing the survey described so far, we found that
there is much work of tactile sensing and many differ-
ent uses in the applications to robotic manipulations.
However, tactile sensing seems to be still experimental in
robotics. The following are possible reasons:

o Difficulty to install on robotic hands. When installing
tactile sensors on robotic hands, we need to place tac-
tile sensors in a limited space, and the finger surface
shapes vary including flat and curved surfaces. Robot
hands are typically not designed for sensors.

o Wiring, power supply, and processing. Installing many
tactile sensors increases the complexity of wiring of
signals, power supply, and processing circuits.

e Low durability, fragility. Many of tactile sensors
directly interact with external forces, which some-
times breaks the sensors. If we cover a sensor with



elastic material to protect it from large external forces,
it will decrease the sensitivity and increase the hys-
teresis. Note that there are different types of durability,
such as external force, liquids, temperature, dirt, and
chemical. If repairing the sensor is low cost and easy,
low durability might be accepted. However, many of
tactile sensors are not easy to repair. Low durability
would also suffer the use in machine learning due
to the change of sensor properties. When a sensor
property changes, that change needs to be estimated.

o Less compatibility with the other tactile sensors. There
are variations of modalities, and spatial and tempo-
ral resolutions in tactile sensors. The sensing princi-
ples also vary. Due to that, many tactile sensors are
not compatible with others. They also decrease the
reusability of software.

o It is unclear what we can do with tactile sensors. Many
robotic manipulations can be implemented without
tactile sensors. Grasp adaptation can be also achieved
with soft robotic hands without tactile sensors.

e Disadvantages caused by tactile sensors.

o Maintenance becomes complicated. We would
need periodic calibrations and repairs.
o Programming becomes complicated.

e Expensive. High performance tactile sensors are typi-
cally expensive.

e Asking for the moon. Some of researchers tend to
require tactile sensing capabilities that are hard to
achieve. Implementing human-quality tactile sensors
is impossible with the state of the art.

These issues prevent the researchers from using tac-
tile sensors, which makes it difficult to accumulate the
knowledge of using tactile sensors.

5.2. Open source tactile sensor project

A solution to popularize the use of tactile sensing in
robotic manipulation scenarios would be open source
projects for tactile sensors. Since there are a lot of robotic
grippers and hands, providing tactile sensors for all of
them is impractical. In many cases, roboticists wish to
customize grippers and hands for their purposes. Mak-
ing the fabrication, software, and case studies open would
be a solution to this issue, which might lead to forming a
community for that tactile sensor.

Some tactile projects are available from the Soft
Robotics Toolkit [124], which is an open platform of soft
robotics. For example, TacTip and TakkTile are available
through the Toolkit (note that TakkTile is currently a
product [22]).

FingerVision is also available as open source [48]. On
the project website, its fabrication including CAD models
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for 3D printing, software including standalone programs
and ROS packages, and tutorials are available. There is a
community of FingerVision developers where technical
knowledge about FingerVision development and appli-
cations is shared. Some successors of FingerVision have
been developed such as [125].

6. Conclusion

In this paper, we investigated tactile sensors for robotic
hands and their applications to robotic manipulations.
We found that many different types of tactile sensors
were used in robotic manipulations in many different
ways. Through this survey, we discussed the issues of
introducing tactile sensors into robotic systems. As a pos-
sible solution to these issues, an approach of open source
tactile sensors was introduced.
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