


ADVANCED ROBOTICS

https://doi.org/10.1080/01691864.2019.1632222

SURVEY PAPER

Recent progress in tactile sensing and sensors for robotic manipulation: can we
turn tactile sensing into vision?1

Akihiko Yamaguchi a and Christopher G. Atkesonb

aGraduate School of Information Sciences, Tohoku University, Miyagi, Japan; bThe Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
USA

ABSTRACT

This paper surveys recently published literature on tactile sensing in robotic manipulation to under-
standeffective strategies for using tactile sensing and the issues involved in tactile sensing. It consists
of a brief review of existing tactile sensors for robotic grippers and hands, review of modalities avail-
able from tactile sensing, review of the applications of tactile sensing in robotic manipulations, and
discussion of the issues of tactile sensing and an approach to make tactile sensors more useful. We
emphasize vision-based tactile sensing because of its potential to be a good tactile sensor for robots.
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1. Introduction

In human object manipulation, tactile perception plays

an important role in addition to visual perception [1].

Do robots benefit from tactile sensing? Recent robotic

systems are equipped with good vision systems. Many

cameras including RGB, depth, and RGB-D are often

used in robotic application. On the other hand, although

there are products of robotic hands where tactile sen-

sors are embedded, such as BarrettHand [2], PR2 [3], and

ReFlex Hand [4], it will be hard to say that tactile per-

ception and programming robots with tactile sensing are

popular. Why is this?

Although there exists much work on tactile manipula-

tion includingmachine learning-based approaches [5–8],

the use of tactile perception is not considered as essen-

tial in robotics. Or, robotics engineers seem to be finding

ways to avoid using tactile sensors. For example in work

on learning robotic grasping with deep learning [9–11],

robots learned grasping with visual input only; tactile

sensing was not used. In another study of dexterous in-

hand manipulation where a Shadow Dexterous Hand

equipped with tactile (touch) sensors on the fingertips

was used, the researchers did not use the tactile sen-

sors [12]. These implementations were possible because

there were consistent relations between the state before

grasping (visual scene of the object and the gripper),

including the manipulation parameters and the outcome

of manipulation. Such consistent relations can be learned

by neural networks or other machine learning methods.

CONTACT Akihiko Yamaguchi info@akihikoy.net
1Portions of this work were previously presented at the Robotics Symposia 2018, Toyama, Japan.

In the context of learning robotic manipulations from

human demonstrations, Yang et al. proposed a method

referred to as teleoperation training [13]. Manipulation

of clothes was demonstrated to the dual-arm robot (Nex-

tage fromKawada Robotics co.) by teleoperating it with a

head mount display. In this research, tactile sensing was

not used; tactile sensors were not attached on the robots,

and the teleoperators did not have tactile feedback. The

robots used vision as the input.

In order to understand effective strategies of using tac-

tile sensors in robotic manipulation, we survey recently

published research on tactile sensing for robotic manip-

ulations. The focus of this survey is on tactile sens-

ing for robotic manipulation. Rather than surveying on

wide range of tactile sensors, we review off-the-shelf tac-

tile sensors that can be purchased or easily fabricated.

For the review of tactile sensors, refer to surveys such

as [14]. This survey emphasizes an approach of vision-

based tactile sensing for roboticmanipulation. Taking the

recent progress in cameras and computer vision offers

the advantages of high resolution, ease of fabrication and

wiring, affordability, and reliability.

The rest of this paper consists of: Section 2: We briefly

review existing tactile sensors for robotic grippers and

hands. The purpose of this section is knowing what tac-

tile sensors are available to non-experts in tactile sensor

development. Section 3: We review what modalities are

available through tactile sensors. We focus on sensing

slip. Section 4:We review applications of tactile sensing in

© 2019 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan
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robotic manipulation. We focus on grasping with tactile-

enabled robotic hands. Section 5: We discuss two things

in this section. One is the issues in introducing tactile

sensors to robotic hands. The other is the open source

approach of tactile sensor development as a possible solu-

tion to these issues.

2. Brief review of tactile sensors for robotic

hands

Webriefly review the examples of tactile sensors available

in robotic hands and grippers.

2.1. Commercial tactile sensor

The dual arm mobile robot PR2 developed by Willow

Garage Co. [3] has a parallel jaw gripper whose fingers

have tactile sensors. The tactile sensor on each finger is a

capacitive type, consisting of 22 sensing elements.We can

obtain a pressure value per sensing element. This tactile

sensorwasmanufactured by Pressure Profile Systems Inc.

A capacitive tactile sensor is an array of sensing elements

each of which is a capacitor made from two metal plates

and a dielectric medium. Applying force on a capacitor

changes the distance between the plates, which results

in a change of capacitance. From the measurement of

the capacitance change, we can obtain the pressure. It is

considered that implementing a high spatial resolution is

difficult with this approach. There are some applications

of capacitive tactile sensors made by Pressure Profile Sys-

tems Inc. to robotic hands [15]. An example is the robotic

hand with three fingers, BarrettHand developed by Bar-

rett Technology LLC [2]. It optionally has a six-axis force

and torque sensor, fingertip torque sensors, and tactile

sensors. The fingertip torque sensor measures torque of

the fingertip joint with a strain gage. The tactile sensor

has 96 sensing elements in total on the fingers and the

palm, that is developed by Pressure Profile Systems Inc.

Another example is TWENDY-ONE of the Sugano Labo-

ratory in Waseda University [16–18]. Each hand has 241

capacitive sensing elements by Pressure Profile Systems

Inc.

The examples of resistive tactile sensors by measuring

the change of resistance caused by pressure or deforma-

tion are strain gage, force-sensing resistors, pressure con-

ductive elastomer [19], and pressure sensitive ink [20].

There are commercial products of those sensors such as

the Inastomer from Inaba Rubber Co. [21].

A three-finger robotic hand ReFlex Hand [4] devel-

oped by RightHandRobotics Co. provides a tactile sensor

TakkTile [22]. TakkTile is made withminiature baromet-

ric sensor chips consisting of micro electromechanical

systems (MEMS) pressure sensors [23]. The sensor is

covered with rubber; the pressure sensor senses the pres-

sure applied to the rubber surface. They developed a

unique manufacturing technology: in order to remove

the little amount of air in the MEMS pressure sensor

during pouring liquid rubber into the mold, vacuum

degassing was used, which was necessary to increase the

sensitivity.

Similar to human tactile sensors that have multiple

modalities, combiningmultiple modalities would be use-

ful in robotic applications. For example, BioTac from

SynTouch Inc. mimics some of the physical properties

and sensory capabilities of the human fingertip and gives

robotic hands more human-like tactile sensing [24]. It

can measure pressure distribution at 19 points, 3-axis

force, micro vibration, and temperature. SynTouch pro-

vides interfaces to commercial robotic hands such as

BarrettHand (Barrett Technology, Inc.) and ShadowDex-

terous Hand (Shadow Robot Company Ltd.). BioTac has

a structure in which a core unit consisting of impedance

electrodes, pressure sensor, and thermistor is covered

with an artificial skin made of an elastomer; conductive

fluid is filled between the core unit and the skin. A draw-

back of this sensor is its expense; it ismore expensive than

many commercial robotic grippers.

Some researchers use a force and torque sensor

mounting on fingertips of robotic hands. Some small

ones are commercially available that are suitable for

mounting on fingertips. For example an optics-based

force sensor OptoForce (OnRobot A/S [25]) is mounted

on each fingertip of a Robotiq Three-Finger Adaptive

Gripper in [26]. Small force sensors ShokacChip and

SchokacCube are distributed by Touchence Inc. [27].

These sensors are small and not difficult to install on

robotic grippers, however, they do not form images of the

force or pressure distribution.

2.2. Vision-based tactile sensor

When we try to introduce good quality (high-resolution,

multi-modal) tactile sensors to robotic hands, a vision-

based approach would be practical since non-experts

might be able to manufacture such sensors with adjust-

ments to their robots. Because of the recent progress in

imagers, circuits, and algorithms for computer vision,

turning tactile sensing into a vision problem has the

advantages: (1) achieving high resolution (superhuman

resolution) is not difficult, (2) the sensor structure can be

simple and manufacturing is not difficult, (3) wiring is

not problematic by using the established network infras-

tructure, (4) buying the ingredients is affordable, (5) the

sensing device (camera) is becoming smaller, cheaper,

reliable, and better in resolution and speed, due to the

markets of smart phone and endoscopic surgery, and
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(6) physically robust since the sensing device and the

skin can be isolated. Regarding (5), there is an example

of embedding a small camera on a human fingertip [28].

The research of vision-based tactile sensor has decades

of history. An initial attempt was measuring the frustra-

tion of total internal reflection within a waveguide on a

sensor surface caused by contact [29–32]. The research

trend has shifted to measuring displacement of markers

placed on the sensor surface where cameras are used to

capture the video and computer vision is used to detect

and track the marker movements [33–42]. A reason for

this trend is that it is easy to acquire a higher spatial

resolution estimate of the force field, and measuring the

marker displacements is robust since displacements are

proportional to the external force. The resolution of the

contact force field depends on the camera resolution

and the marker density. Recently high-resolution sensors

have been proposed, such as TacTip [41]. The dynamic

range of the force measurement can be controlled by

changing the hardness of the elastic material. For exam-

ple using softer elastomer as the skin, the sensor becomes

more sensitive to smaller force.

GelSight is one of most popular vision-based tactile

sensor, which was developed by Johnson and Adelson in

[43]. It consists of a transparent elastomer covered with a

reflective skin. The surface texture and shape of an object

can be observed by pressing the object surface on the

reflective skin (the observation is made from the elas-

tomer side). It could reconstruct the textures of a cookie,

a decorative pin, a human fingerprint, and a twenty dol-

lar bill (it is not flat!). GelSight was installed on a finger of

a Baxter robot for robotic manipulation tasks [44] where

they used GelSight for localizing an object on the finger.

In order to estimate the shear forces as well as normal and

torsional load, markers were placed around the surface

(reflective skin) of the sensor [45]. Similar to other work

of vision-based force estimation, they applied computer

vision to detect and track themarkers. It was also possible

to estimate incipient slip [45]. For better robotic manip-

ulation, a version of GelSight with a slenderized fingertip

was developed by introducing mirrors around the finger-

tip, named GelSlim [46]. The finger was designed to be

physically durable; it could survive more than 3000 grasp

trials.

Much of the above work covers a transparent elas-

tic material with an opaque skin in order to remove the

effect of the background on the computer vision pro-

cesses. In contrast, Yamaguchi and Atkeson proposed

the FingerVision sensor which is not covered with an

opaque skin [42]. It means the camera can see through

thematerials.Markers are placed on the surface. Tracking

the marker movements with computer vision estimates

the external force distribution. Additionally, it provides

visual information of nearby objects (proximity vision).

Analyzing the visual information gives different modal-

ities, such as high-resolution slip [47], object texture (it

could recognize a QR code on the object), and object

pose. It should be emphasized that many other slip

sensing methods are estimated from other modalities

(e.g. vibration, pressure distribution), while FingerVision

directly measures the movement of an object. Another

interesting point is that even humans do not have such

tactile sensation that can see through the skin. FingerVi-

sion is available as open source [48] so that researchers

can reproduce the sensor. Models for 3D printers are

designed for Robotiq and Baxter grippers.

Another approach of vision-based tactile sensing was

proposed in [49]. They developed a vision-based tac-

tile sensor with a compound-eye camera consisting of an

array of lenses and an imager. Such a camera can sense

RGB images and infrared images at the same time. They

placed a compound-eye camera under an acrylic plate

which was used as a waveguide for infrared light. Contact

on the acrylic plate can be detected based on frustrated

total internal reflection [50] from IR images. Since the

other RGB imagers see through the acrylic plate, the sen-

sor can sense nearby objects by stereo vision. This sensor

was used in robotic grasp control [51]. The benefit of

this approach is that it can sense the contact with vision,

i.e. it does not depend on the amount of force from the

object. Similar to the transparency of the skin of Fin-

gerVision, this approach can be combined with many

other ideas such as a vision-based slip detection. A draw-

back of this approach is that it depends on the optical

qualities of the object as reported in [50]. We would need

to investigate what objects this approach can sense the

contact on. Another difficulty would be the availability of

compound-eye cameras.

Similar to vision-based tactile sensors, there is an

approach of using proximity sensors (range finders and

distance sensors). For example, a tactile sensor consisting

of range finders covered with transparent elastic material

is proposed in [52]. The idea is that the deformation of

the transparent material can be estimated from the mea-

surement of the distances between the range finders and a

nearby object. Normal contact forces are computed from

the deformation. If there is no contact with the object,

this sensor simply gives the distances to it. A similar idea

is implemented on a hi-speed robot hand where prox-

imity sensors are used to measure the distance to any

objects and contact. In [53], tactile sensors with a more

dense array of proximity sensors were developed, which

was used to sense the distance to an object and the sur-

face shape. In [54], fingertips with high-speed and high-

precision proximity sensors were developed. They were

installed on a high-speed robotic gripper, which was able
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to catch a fragile object (a paper balloon). In [55], they

developed sensing fingers with proximity sensors based

on their previous work [56,57]. Originally the fingertip

had a tactile sensor consisting of an array of proximity

sensors (Net-Structured Proximity Sensors [56,57]) that

senses the distance to an object. In addition, new prox-

imity sensors are added to the fingernail of each finger

for measuring the distance to a support surface such as a

table [55].

3. Modalities of tactile sensing

There are various modalities of tactile sensing, includ-

ing contact (on/off), pressure or force distribution, slip,

vibration, temperature, and object properties such as tex-

ture and hardness.

Providing pressure distribution seems to bemost com-

mon. Some sensors provide a three-axis force distri-

bution. Examples of other modalities sensed by tactile

sensors are: microvibration (e.g. BioTac [24]), tempera-

ture (e.g. BioTac [24], TakkTile [22]), and proximity [52].

3.1. Sense of slip

As well as force distribution, sense of slip is important in

object manipulation. Much research has investigated the

role of slip sensation in human manipulation. An impor-

tant early work on the role of slip in human grasping is

[58] which describes a holding behavior where grip force

is increased when slip is detected. In addition to launch-

ing the field, this work eventually led to the design of

the BioTac sensor [59]. Recent papers following up on

this work include [60], which discusses how to hold very

light objects, and [61], which discusses how grip force is

increased during arm movements. More information is

available in [62,63].

Many attempts have been made to develop slip sen-

sors. An early approach used a mechanical roller to

detect slip [64]. An approach to use acoustic signals

(acoustic emission) caused by slip was explored in [65].

A popular approach is using the vibration caused by

slip [66–71]. Some vibration approaches used accelerom-

eters [66,67,70]. In [26,45,72,73], they analyzed an

observed force (and torque) to detect slip. For example in

[73], high-pass filtered normal force was used to detect

slip. In an optics-based tactile sensor [31], slip is detected

as a binary flagwhen the change of normal force is greater

than a threshold. In [26], slip was detected by measuring

the increasing rate of change of tangential force.

There are approaches to create a mechanism for mak-

ing slip-detection easier. In [66], a soft skin covered with

nibs which produce small vibrations was introduced into

a fingertip. Two accelerometers were embedded in the

fingertip. A similar structure of nibs was introduced into

an optics-based tactile sensor [31]. In [69], a gripper

consisting of two elastic fingers was developed where

strain gauges are embedded at the bottom of fingers.

Slip on the fingers is detected by the strain gauges as

vibration.

Detecting slip with a distributed sensor array is also

a popular approach [74–77]. In [77], a 44 × 44 pres-

sure distribution is converted to an image, and slip is

detected by image processing. In [78], a multi-sensor

fusion approach was proposed where they combined

stereo vision, joint-encoders of the fingers, and finger-

tip force and torque sensors. In [76], they developed

slip detection using center-of-pressure tactile sensors.

In [79], they trained hidden Markov models to predict

slip. According to their experimental results, the method

predicted a slip before a slip actually took place. Some

researchers use the BioTac sensor [59]. In [80], two Bio-

Tac sensors were used and several strategies to detect slip

were compared experimentally. BioTac sensors were also

used in [81], where they developed three types of tactile

estimation: finger forces, slip detection, and slip classi-

fication. They compared machine learning methods to

estimate finger forces. They considered two approaches

to detect slip: a force-derivative method and a pressure-

vibration-based method. They used neural networks to

classify the slip category, linear or rotational, from time-

varying BioTac electrode values. A similar slip prediction

approach was explored in [82,83] where they used ran-

dom forest classifiers to classify the tactile data from a

BioTac into slip and non-slip classes. They investigated

the generalization ability of learned classifier over the

objects including unseen ones.

Slip detection methods have been developed for

vision-based tactile sensing. In [84], a method to detect

slip of an object by tracking the dotted markers placed

on the object was introduced. Since they need to place

markers on the object, the applicationsmay be limited. In

[39,85,86], slip was estimated from the ‘stick ratio’. The

stick ratio is a ratio of areas of stick and contact regions;

the ratio is one when there is no slip, it becomes smaller

than one when there is incipient slip, and when the ratio

becomes zero, it is considered as total slip. In [39], the

stick ratio was estimated from the displacement of dotted

markers. In the work of GelSight [45], an entropy of shear

(marker) displacement distribution was used to detect

slip by thresholding the entropy. It could distinguish the

shear (no slip), incipient/partial slip, and total slip. In

[87], a slip detection method for TacTip was developed

where they used the difference of position of eachmarker

between consecutive frames as the input, and trained a

support vector machine to classify the tactile signal into

slip or static classes.
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Themarker displacement was used to detect slip in the

above vision-based tactile sensors [39,45,87]. In contrast,

direct analysis of video was used in the work of Fin-

gerVision [47]. Since FingerVision can see through the

skin, themovement of object against the sensor is directly

shown in the video. Thus computer vision methods for

analyzing the video, such as optical flow and background

subtraction, are applicable to detect the movement. In

order to distinguish themovement of a foreground object

and the background, a color histogram-based object

detection was introduced in [47]. Since this approach

does not depend on the marker displacement which

requires a certain amount of load, it was possible to detect

slip of very lightweight objects such as origami arts and

dried flowers.

4. Tactile sensing in robotic manipulation

4.1. Grasping

Grasping is a most basic and popular application of tac-

tile sensing. A grasping behavior may be decomposed

into grasp planning and execution of a planned grasp

or grasping behavior. Since tactile sensing is not avail-

able in grasp planning, much of tactile grasp research

focuses on the use of tactile sensing during grasp execu-

tion. Using tactile sensing in grasp execution is expected

to reduce uncertainty, such as the pose estimation error

of an object [88], unknown content of a container, and

friction coefficient of the object. Using tactile sensing

aims to increase the success ratio and the stability of

grasp. It is achieved by controlling the grasp parame-

ters such as a grasp pose, width, and force to hold an

object. Grasp execution with tactile sensing is sometimes

referred to as grasp adaptation or adjustment. There are

many attempts. One axis to understand such attempts is

the intervals (control cycle) of executing grasp adjust-

ments for tactile observation. When the interval is short,

the adjustment is continuously performed. Such an adap-

tation tries to locally find a better grasp around the

current grasp. Some criteria are proposed to evaluate a

grasp, such as grasp stability and slip amount. When the

interval is larger, sometimes it is referred to as re-grasp.

After executing a grasp, tactile sensors can be used to

assess (evaluate) the result of grasp, which may be used

to improve the grasp planning.

4.1.1. Heuristic grasp adaptation strategy

Designing control strategies or policies is an approach

of grasp adaptation. In [88], an integrated manipulation

system consisting of a robotic arm and a three-finger

robotic hand was presented. An external vision, finger

torque sensors, and tactile sensors on fingers and palm

were unified. They demonstrated the usefulness of the

unified system through some experiments, including a

task of aligning the lid over the canister and screwing on

it. The tactile sensors were used to compensate the error

of estimating poses of objects caused by the uncalibrated

stereo vision. In [89], a grasp adaptation was developed

with tactile sensors on the PR2 robot.

Similarly, a human-inspired grasp strategy was devel-

oped for grasping a range of objects without breaking

them [73]. A study of grasp strategy of humans [1] was

considered in their method. The PR2 robot with the

tactile sensors on the fingertips was used. These tactile

sensors provide an array of pressures, while humans use

slip sensation in grasping [1]. In [73], they estimated slip

from the pressure array as mentioned in Section 3.1.

In [90], a grasping strategy of 3-finger 8-DoF robotic

hand with biomimetic tactile sensors were developed.

They used contact detection on each link of the fingers to

create the motion of fingers to adapt the shape of grasp.

4.1.2. Grasp adaptation with slip detection

Using slip sensation to adapt grasp is a popular approach.

A simple control strategy, increasing the grasping force

when slip is detected, works robustly in many situa-

tions if the detection of slip is accurate. Examples include

[66,76,85,91,92]. Inmuch of this work, slip was estimated

from othermodalities such as vibration, force, and center

of pressure, as mentioned in Section 3.1.

Slip detection for an optics-based tactile sensor was

used in grasp adaptation [31] where grasping force of a

robot hand was controlled to avoid slip. An experiment

of grasping a paper cup was conducted, where water was

poured into the cup. It was demonstrated that the robot

adapted the grasp against the increasing weight of water

without breaking the paper cup.

Su et al. [81] created a behavior to gently pick up

objects where they combined finger force estimates,

and slip detection and classification. As mentioned in

Section 3.1,machine learningwas used to detect slip from

the tactile reading of the BioTac sensors.

A grasping strategy with slip detection was studied in

[26] where multiple finger grippers were considered. In

the experiments, they used a three-finger robotic hand

(Three-fingerAdaptiveRobotGripper fromRobotiqCo.)

where OptoForce sensors were attached on the finger-

tips. This paper explored grasp adaptation to deformable

objects with dynamic centers of mass, such as containers

with liquids.

In [82], they trained a classifier of slip and non-slip

classes from the BioTac reading, and applied the esti-

mation in stabilizing the grip. They considered a sit-

uation where a single finger with BioTac on a 7-DoF



6 A. YAMAGUCHI AND C. G. ATKESON

robot pushed an object against thewall. The control strat-

egy was rather simple: when the robot predicts slip, it

increases the force in the direction of the contact normal.

They extended this method in [83] where an improved

slip classifier was used. They were able to stabilize a

deformable plastic cup where the finger pushed one side

and a human pushed the other.

Grasp adaptation with FingerVision was explored in

[47,93]. As mentioned in Section 3.1, slip was directly

detected with FingerVision by analyzing the video from

the cameras. As the result, it could detect slip of very

lightweight objects such as origami and flowers. Because

of this feature, the grasp adaptation with FingerVi-

sion could adapt grasp to a range of objects including

lightweight ones. In [47], they demonstrated that the

grasp adaptation with FingerVision works with origami

cranes and flowers. In [47], they extended the grasp

adaptation control for a wide variety of objects includ-

ing deformable and fragile objects such as vegetables

including tomatoes, mushrooms, and zucchinis, fruits,

raw eggs, and cupcakes.

4.1.3. Grasp adaptation with estimating friction

coefficient

A grasp adaptation strategy which included estimat-

ing the friction coefficient was explored in [94], which

was referred to as a slipping control algorithm. They

attempted to estimate the friction coefficient at the con-

tact points of a grasped object from the observation of

a tactile sensor (an optics-based force and torque sen-

sor was used). Then the estimated friction coefficient

was used in slipping control. The same grasp adaptation

strategy was used in [95].

4.1.4. Grasp adaptation with grasp stability

estimation

Constructing a grasp stability estimator from tactile read-

ing is also a popular approach in grasp adaptation. A

grasp stability estimator can be used to trigger grasp

adaptation control, as well as to plan a better grasp.

In [96], in order to adapt grasping an object whose

pose is observed with uncertainty, a grasp adaptation

was developed with tactile feedback of the BarrettHand.

An SVM classifier was learned to estimate grasp sta-

bility from tactile data, which was used to determine

if the adjustment action is executed. The SVM classi-

fier estimates if the grasp is stable or unstable, whose

input is the grasp features represented by a bag-of-words

model of the valid contacts obtained from the tactile sens-

ing data. The training dataset was constructed with the

GraspIt! simulator where the stability was determined by

thresholding the epsilon and the volume qualities that

measures the grasp robustness against disturbances (i.e.

less fragility) and the grasp strength respectively.

In [97], a grasp adaptation to handle uncertainties of

object properties such as the weight and the contact fric-

tions was proposed. It was designed for a three-finger

robotic hand with BioTac sensors on the fingertips. The

grasp adaptation consists of an object-level impedance

controller, which is triggered by a grasp stability esti-

mator. The grasp stability estimator was learned from

successful (stable) grasp example. It is a one-class classi-

fier (Gaussian Mixture Model was used) predicting if the

current grasp is stable from an input of grasp features.

The grasp features consist of the grasp stiffness and the

rest length defined in the virtual frame of an object, and

the tactile reading. This grasp stability estimator was also

used in the object-level impedance controller where the

goal is adapting the grasp stiffness and the rest length so

that the grasp becomes stable.

An adaptive grasping method was proposed in [98]

that finds a stable grasp on a novel object. It consists of

two estimation models: a grasp stability estimator from

tactile data, and a predictor of tactile data from the cur-

rent data and an adaptive action. By combining them, an

adaptive action that improves the grasp stability can be

found by an optimization.

Grasp stability estimation is also used in triggering re-

grasp. In [7], a re-grasping strategy was studied where the

quality of grasp is estimated from the tactile sensing, and

the re-grasp is executed when the grasp is unstable.

Calandra et al. used theGelSight embedded two-finger

parallel gripper to predict grasp success [99]. Later they

extended the method for adapting grasp by re-grasping

an object [100]. In both papers, a deep, multimodal con-

volutional neural network was constructed that predicts

the outcome of a grasp (grasp success probability). The

input of the network is multimodal: images from an

external RGB camera and the GelSight cameras. In the

re-grasping setting [100], grasp adjustment actions are

also used as input. The neural network was trained with

9000 [99] and 6450 [100] grasp trials with the Sawyer

robot. The trained neural networkwas used to predict the

grasp success [99] and select themost promising re-grasp

action [100]. A similar re-grasping strategy was explored

in [101] where GelSlim was used.

4.1.5. Complete grasp process with tactile sensing

A complete process of grasp planning with machine

learning and grasp execution with tactile sensing was

explored in [102]. The grasp planning was achieved with

deep neural networks that estimate a stable grasp from an

input image. A BarrettHand was used with the Universal

Robots UR5 robot to execute the planned grasp. The tac-

tile sensors of the BarrettHand were used to correct the
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training dataset of the neural networks. The dataset con-

sists of pairs of input and output variables, where a label

of stable or unstable grasp is necessary as the output. The

tactile sensors were used to assess the grasp. In the grasp

assessment, a swinging motion was performed to test

the stability of the grasp. The tactile reading during the

motion was used to compute the assessment value. If the

assessment value is above a threshold after the swinging

motion, that grasp is recorded as a stable grasp.

4.2. Other roboticmanipulations

We briefly explore the use of tactile sensors in robotic

manipulations other than grasping. There are several dif-

ferent uses of tactile sensing, such as detecting events

(touch on finger [31], slip [31], and touch on grasped

object [32,42,47]), estimating pose and location of

touched objects [8,44,47,77,103], using the tactile data in

part of the state of reinforcement learning [5,6,8], and

exploring the workspace without vision [104,105].

4.2.1. Detecting events with tactile sensors

In [31], tactile sensors were used in opening a cap of

a bottle by twisting it, where the tactile data was used

mainly as triggers of actions. For example, events of

contact (touch) and slip were used as triggers.

In [42], a cutting fruits task was implemented where

a knife was held by a FingerVision-enabled gripper. The

tactile data was used to determine when the knife reaches

the cutting board. Such an event would be difficult to

detect with external vision due to occlusion.

In [32,47], robots with tactile-enabled robotic hands

were used in handover tasks which are often consid-

ered in human–robot interaction. In both studies, tactile

signals were used as a trigger to activate the handover

motions. In [32], the tactile sensors were used to detect a

tapping force applied to the bottom of the grasped object

which triggers the handover motion. In [47], the tactile

sensors were used to detect touch events on the grasped

object where both force change and slip were consid-

ered as the events. When grasping an object tightly, force

change is easier to detect than slip, while when grasping

an lightweight object gently, slip is easier to detect than

force change.

In [90], tactile readingwas used to trigger the releasing

action of grasped object when placing it on a table. They

also used an event detection in a peg-in-hole task where

they detected the hole with tactile reading during sliding

the peg (a bottle) on a plane.

4.2.2. Estimating pose and location with tactile

sensors

In [103], as an example manipulation with a Tac-

Tip, rolling a cylinder with a single-finger robot was

explored. It achieved a super-resolved manipulation at

sub-millimeter accuracy where the high-resolution tac-

tile sensor was used for localizing the cylinder. Similarly

in [47,77], tactile sensors were used to estimate the poses

of objects in the hand, and the estimate was used in

in-hand manipulation of the objects.

In [44], pose estimation of a grasped objectwas used in

an insertion task of a USB connector. GelSight was used

to estimate the pose of the grasped USB connector, and

then it was inserted into a socket.

In [8], a contour-following control was learned with

tactile sensors and reinforcement learning. BioTac was

used as the tactile sensor on a robotic hand. It demon-

strated some manipulations of tracing a string and clos-

ing a ziplock bag.

Another example of pose estimation of a grasped

object from tactile reading was proposed in [106], which

was implemented on a three-finger robotic hand with

tactile sensors.

4.2.3. Reinforcement learningwith tactile sensors

Since modeling the contact between robot fingers and

an object is not easy, machine learning is some-

times used with tactile sensing. There are examples of

using reinforcement learning in order to learn tactile

manipulations.

In [5], reinforcement learning of a robotic scraping

task was implemented. The state involved data from tac-

tile sensors that sense an array of pressures. In [6], in-

handmanipulation skills of a cylinder were acquiredwith

reinforcement learning where tactile data was used as a

part of the state vector. They used a ReFlex hand that

has tactile sensors made from MEMS barometers. In the

work of the contour following of a ziplock bag [8], they

converted the tactile reading from BioTac into discrete

states (three spatial relationship between the fingerpad

and the zipper), which was used as the state space of

reinforcement learning.

Since typically the sensor space of a robotic hand

with tactile sensors is high dimensional, sometimes

researchers manually extract features for the state of

reinforcement learning. Instead of a manual feature-set

design, an approach to use autoencoders was proposed

in [107]. It reduces the high dimensional sensor space

into a low dimensional latent space which is used in the

state space of reinforcement learning. They tested the

proposed method in a simple robotic task of tilting a

pole where BioTac was used. In [108], they developed an

unsupervised learningmethod to learn a spatio-temporal

representation of a time series of tactile data. In [109],

they modeled the manipulation procedure with POMDP

(partially observable Markov decision process) in order

to represent the latent states, and built a Q-learning to
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learn a policy with the learned representation. In [110],

they built a three-dimensional latent space from a tac-

tile sensor where BioTac was used. Then they learned

dynamical models on the latent space for tactile servoing.

4.2.4. Exploring the workspace without vision

There is some work to explore a work space in a dark

scene, i.e. without vision. In [104], active exploration was

developed to search for objects in anunknownworkspace

with tactile sensing. A similar approach was used in a

study of tactile-based grasp learning where touch-based

object localization called ‘touch-scans’ and tactile-based

re-grasping methods were developed [105].

4.3. Tactile perception

We briefly review the applications of tactile sensing to

perceiving objects and environment. For a thorough

review of tactile perception, refer to [111,112]. The basic

idea is pressing the tactile sensors on an object or stroking

the surface of an object with the tactile sensors, and esti-

mating the properties such as texture type, hardness, and

shape from the tactile data.

In [38], they explored estimating the local shape (e.g.

an edge) of an object and the irregularity of the object

surface by pressing a vision-based tactile sensor on the

object. In [40], a similar approach was explored, where

the object shapes were detected inmore detail. They used

TacTip, and referred to their method as ‘seeing by touch’.

Sensing by stroking or poking a target object is a kind

of active perception. In [113], a method to estimate the

classes of wood, cork, paper, and vinyl was proposed

where the tactile data was observed by stroking themate-

rial with a tactile sensor consisting of distributed strain

gauges and PVDF films. In [114], the shape of an object

was estimated by stroking the surface with robotic fingers

with tactile sensors. They used optical tactile sensors. In

[115], they used allmodalities of a BioTac sensor and esti-

mated 117 types of textures at the precision of 95.4% from

tactile data of stroking a texture. In [116], a fingertip with

two force sensors, an actively heated temperature sensor,

and a microphone was used to categorize objects into six

material classes: metal, plastic, wood, glass, ceramic, and

fabric. In [117], tactile sensors on a four-finger robotic

gripper were used to classify the object into 20 classes.

They usedmachine learning to classify where several dif-

ferent setups were compared, such as using single frame

data and time-series data. The tactile sensors are called

uSkin, which can sense a distribution of three-axis force

by detecting the magnetic field changes [118].

In [119], they classified grasped objects from tactile

reading, which was handled as images. The tactile sensor

wasWeiss Robotics sensor DSA 9205, a resistive pressure

array consisting of 6 × 14 cells.

As mentioned before, GelSight is able to detect the

texture and shape of an object surface. It was able to

detect the textures of a cookie, a decorative pin, a human

fingerprint, a twenty dollar bill, USB connector, and so

on [43,44]. In [120], they developed amethod to estimate

the properties of clothing including thickness, smooth-

ness, fuzziness, season to be used, textile type, and wash-

ingmethod from the reading of GelSight by pressing it on

a cloth. Deep neural networks were used as the classifier

where the GelSight image was directly used as the input.

Estimating the shapes of objects by touch (and

stroking) is also a popular application of tactile sens-

ing. As mentioned above, in [40,43,44,114], they used

tactile sensors to sense the surface shape of objects.

In [40,43,44], they estimated small-scale surface shapes

(textures), while in [114], they estimated relatively larger

shapes.

In [121], a method to estimate 3D shape of objects

was developed where GelSight was used with an exter-

nal vision. In their system, a rough 3D shape of object is

predicted from a single-view color imagewith neural net-

works, and then it is refined by touching regions where

the visual prediction is highly uncertain.

In [122], a planning algorithm was proposed to esti-

mate a path to stroke an object in order to reduce the

uncertainty of the shape roughly modeled from vision.

A similar approach of such a tactile exploration was

proposed in [123].

5. Discussion

5.1. Issues of introducing tactile sensors to robotic

hands

Summarizing the survey described so far, we found that

there is much work of tactile sensing and many differ-

ent uses in the applications to robotic manipulations.

However, tactile sensing seems to be still experimental in

robotics. The following are possible reasons:

• Difficulty to install on robotic hands. When installing

tactile sensors on robotic hands, we need to place tac-

tile sensors in a limited space, and the finger surface

shapes vary including flat and curved surfaces. Robot

hands are typically not designed for sensors.

• Wiring, power supply, and processing. Installing many

tactile sensors increases the complexity of wiring of

signals, power supply, and processing circuits.

• Low durability, fragility. Many of tactile sensors

directly interact with external forces, which some-

times breaks the sensors. If we cover a sensor with
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elastic material to protect it from large external forces,

it will decrease the sensitivity and increase the hys-

teresis. Note that there are different types of durability,

such as external force, liquids, temperature, dirt, and

chemical. If repairing the sensor is low cost and easy,

low durability might be accepted. However, many of

tactile sensors are not easy to repair. Low durability

would also suffer the use in machine learning due

to the change of sensor properties. When a sensor

property changes, that change needs to be estimated.

• Less compatibility with the other tactile sensors. There

are variations of modalities, and spatial and tempo-

ral resolutions in tactile sensors. The sensing princi-

ples also vary. Due to that, many tactile sensors are

not compatible with others. They also decrease the

reusability of software.

• It is unclear what we can do with tactile sensors. Many

robotic manipulations can be implemented without

tactile sensors. Grasp adaptation can be also achieved

with soft robotic hands without tactile sensors.

• Disadvantages caused by tactile sensors.

◦ Maintenance becomes complicated. We would

need periodic calibrations and repairs.

◦ Programming becomes complicated.

• Expensive. High performance tactile sensors are typi-

cally expensive.

• Asking for the moon. Some of researchers tend to

require tactile sensing capabilities that are hard to

achieve. Implementing human-quality tactile sensors

is impossible with the state of the art.

These issues prevent the researchers from using tac-

tile sensors, which makes it difficult to accumulate the

knowledge of using tactile sensors.

5.2. Open source tactile sensor project

A solution to popularize the use of tactile sensing in

robotic manipulation scenarios would be open source

projects for tactile sensors. Since there are a lot of robotic

grippers and hands, providing tactile sensors for all of

them is impractical. In many cases, roboticists wish to

customize grippers and hands for their purposes. Mak-

ing the fabrication, software, and case studies openwould

be a solution to this issue, which might lead to forming a

community for that tactile sensor.

Some tactile projects are available from the Soft

Robotics Toolkit [124], which is an open platform of soft

robotics. For example, TacTip and TakkTile are available

through the Toolkit (note that TakkTile is currently a

product [22]).

FingerVision is also available as open source [48]. On

the project website, its fabrication includingCADmodels

for 3D printing, software including standalone programs

and ROS packages, and tutorials are available. There is a

community of FingerVision developers where technical

knowledge about FingerVision development and appli-

cations is shared. Some successors of FingerVision have

been developed such as [125].

6. Conclusion

In this paper, we investigated tactile sensors for robotic

hands and their applications to robotic manipulations.

We found that many different types of tactile sensors

were used in robotic manipulations in many different

ways. Through this survey, we discussed the issues of

introducing tactile sensors into robotic systems. As a pos-

sible solution to these issues, an approach of open source

tactile sensors was introduced.
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