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Abstract 
Motivation: Time-series NMR has advanced our knowledge about metabolic dynamics. Before ana-
lyzing compounds through modeling or statistical methods, chemical features need to be tracked and 
quantified. However, because of peak overlap and peak shifting, the available protocols are time con-
suming at best or even impossible for some regions in NMR spectra. 
Results: We introduce RTExtract (Ridge Tracking based Extract), a computer vision-based algorithm, 
to quantify time-series NMR spectra. The NMR spectra of multiple time points were formulated as a 3D 
surface. Candidate points were first filtered using local curvature and optima, then connected into ridges 
by a greedy algorithm. Interactive steps were implemented to refine results. It was tested on both sim-
ulated and experimental data sets composed of time-series NMR spectra and exhibited high accuracy 
in peak tracking for overlapping regions. 
Availability: Source code is freely available within Metabolomics toolbox GitHub repository 
(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA) and is implemented in 
MATLAB and R. 
Contact: aedison@uga.edu 
  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Experimental approaches have been developed in time-series metabolic 
measurements by both NMR (Nuclear Magnetic Resonance) and MS 
(Mass Spectrometry) (Judge, et al., 2019; Koczula, et al., 2016; Link, et 
al., 2015; Montana, et al., 2011). These experimental methods provide op-
portunities to understand metabolic dynamics, including metabolic 
changes under variation in carbon sources or oxygen levels (Judge, et al., 
2019; Link, et al., 2014; Link, et al., 2015). Among existing approaches, 
the CIVM-NMR (continuous in vivo monitoring of metabolism by NMR) 
method provided high time-resolution, in vivo measurements of metabo-
lites in Neurospora crassa under aerobic and anaerobic conditions (Judge, 
et al., 2019). These measurements covered a large proportion of pathways 

in central metabolism, and interesting dynamics in compound concentra-
tion were observed. 
 
NMR provides a highly reproducible way to identify and quantify com-
pounds. In an NMR spectrum, different metabolites are represented by 
different peaks (features), and peak height (intensity) is proportional to 
compound concentration. Peak resonance frequency is sensitive to the lo-
cal electronic structure and some environmental variables. Resonance fre-
quency is reported as chemical shift,	𝛿, which is derived by dividing the 
frequency in Hz by the spectrometer frequency in MHz and thus has units 
of parts per million (ppm). The dependence on local electronic structure 
allows for reliable complete identification. Additionally, some metabolites 
are sensitive to changes in the local chemical environment (e.g. pH or 
metal ion concentration) and systematically change their chemical shift, 
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providing a useful way to measure these environmental factors (Takis, et 
al., 2017; Tredwell, et al., 2016).  
 
Metabolism yields changes in metabolite concentration and local pH, 
changing peak intensity and chemical shift. These changes provide im-
portant information about metabolic dynamics but also complicate feature 
extraction. Moreover, peaks in NMR spectra often overlap, which affects 
both compound annotation and quantification. The combination of sys-
tematic chemical shift, overlap, and amplitude changes makes peak track-
ing and quantification a difficult problem. A practical, stable computa-
tional approach is needed to track and quantify peaks over time, regardless 
of overlap, amplitude and chemical shift changes. 
 
Traditional alignment-based methods are popular for processing NMR 
spectra from different samples and aligning shifting peaks. However, 
these methods often introduce artifacts and are unreliable for the regions 
where peaks cross (Csenki, et al., 2007; Vu and Laukens, 2013). In CIVM-
NMR data, the pattern of peak shifting is less noisy and more continuous 
than in discrete extracted samples by traditional methods. These properties 
provide new information for quantifying crossing peaks as discussed later. 
 
Multiple methods have been implemented to track peaks in time-series 
NMR spectra. The TSATool can track a peak through time by a predefined 
function describing peak shifting trajectory (Koczula, et al., 2016; Ludwig 
and Gunther, 2011). This method, though capable of tracking individual 
peaks, does not provide a general solution for quantifying multiple peaks 
efficiently. In our initial CIVM-NMR study, peak tracking was achieved 
by a smoothing filter to reduce noise (filtering step) and hierarchical clus-
tering (connection step) to connect candidate peaks (Judge, et al., 2019). 
While this method tracked peaks with chemical shift variation, substantial 
manual effort was needed in parameter tuning to accommodate different 
regions of the spectra. For instance, the proper scaling factor for the extent 
of chemical shift variation and the number of expected clusters were cru-
cial parameters but difficult to optimize. A few days of work were needed 
for the quantification in the original CIVM-NMR publication, which can 
be a significant bottleneck and cost (Judge, et al., 2019). Additionally, 
none of the aforementioned methods can deal with crossing or severely 
overlapped peaks. 
 
Computer version methods have been adapted to solve other spectroscopy 
problems (Klukowski, et al., 2018; Klukowski, et al., 2015) and can also 
be implemented here to promote efficiency. The steps of both filtering 
candidate points and subsequent connection can be improved by treating 
NMR peak extraction as a ridge tracking problem. Time-series NMR data 
can be viewed as a 2D matrix (or a 3D surface if we treat matrix elements 
as height) with each row being a spectrum at one time point and each col-
umn being the intensity of a particular resonance frequency across time. 
As the same peaks change continuously through time, they can be concep-
tualized as surface ridges, for which efficient detection algorithms exist 
(Suk and Bhandarkar, 1992). Surface segmentation techniques have been 
implemented in computer vision to classify 3D surface points based on 
their local curvature into qualitative surface types: inter alia, ridge, peak, 
and valley (Supplementary Figure 1) (Besl and Jain, 1986; Besl and Jain, 
1988; Suk and Bhandarkar, 1992). 
 
In RTExtract, to filter candidate peak points, we combined ridge classifi-
cation with other information such as local maxima. This combination of 
multiple filters provided cleaner results with fewer false positives, and 
tuning parameters were fewer and more intuitive. Candidate points were 
then connected by a 2-step greedy method, which is composed of simple 

local optimal connections without global evaluations and are possible be-
cause of the better filter on candidate points. Additionally, refinement 
steps were introduced to expand flexibility in tracking and increase track-
ing accuracy. 
 
In this paper, we present our new method (RTExtract) to extract and quan-
tify time-series NMR spectra. We simulated time-series NMR data specif-
ically presenting the challenges that limited previous methods. We also 
conducted a direct comparison of our previous method and RTExtract on 
experimental datasets (Judge, et al., 2019) and found that RTExtract was 
faster and manually easier than our previous approach. Previous tracking 
results were reproduced in less than two hours instead of several days. 
Additionally, we were also able to track complex spectral regions, such as 
those with high amounts of overlap and crossing peaks, that were impos-
sible with previous published methods. RTExtract therefore significantly 
expands the utility of the rich data collected in CIVM-NMR and acceler-
ates its analysis. 

2 Methods 

2.1 Ridge point classification 
Local curvature was used to classify ridge points and functions as one of 
the filters for candidate points. Including a ridge point filter with local 
optima filters reduced noise levels in selecting candidate points and in-
creased accuracy in ridge tracking. The following section describes the 
ridge point filter. 

 
For each point on the 3D surface (Figure 1), a normal vector (𝑵) can be 
defined. All planes that contain 𝑵 (the normal planes) will intersect the 
3D surface along a curve, and for each such curve at the point of interest, 
the curvature can be computed. The maximum and minimum curvature 
values, denoted by 𝜅% and 𝜅& respectively, correspond to two mutually or-
thogonal orientations of the normal planes and are referred to as the prin-
ciple curvatures of the 3D surface at that point. From 𝜅%  and 𝜅& , the 
Gaussian curvature (𝐾) and mean curvature (𝐻) are defined (Equation [1] 
& [2] and Figure 1) (Besl and Jain, 1986; Besl and Jain, 1988; Suk and 
Bhandarkar, 1992). The curvatures 𝐻 and 𝐾 can be used to classify 3D 

 
Figure 1: Illustration of the concept of 𝑯 and 𝑲 curvature. 𝑵 is the normal vector 
and the black curve is one of the intersect curve. For every point in the curve, there is 
a tangent vector (as indicated by the two horizontal black arrows) and based on its 
derivative, curvature of the curve can be represented. The two principal curvatures, 
the maximum curvature (𝜅%) and the minimum curvature (𝜅&), correspond to the two 
vectors. Gaussian curvature (𝐾) and mean curvature (𝐻) are represented by the prin-
cipal curvatures as shown above. For the ridge surface shown here, 𝜅& < 0 and 𝜅% ≈
0 which results in 𝐻 < 0 and 𝐾	 ≈ 0. Details regarding formulation and computation 
of 𝐻 and 𝐾 curvature can be found in Methods 2.1. Other surface types are illustrated 
in Supplementary Figure 1. 
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surface points locally into qualitative types, including, inter alia, peak, 
ridge, and valley. Specifically, when 𝐾 ≈ 0  and 𝐻 < 0 , the surface is 
classified as a ridge surface, and the central point of the surface is the can-
didate point (Supplementary Figure 1). 

𝐾 = 𝜅%𝜅& [1] 

𝐻 =
𝜅%+𝜅&
2 [2] 

As an alternative to Equations [1] and [2], the values of 𝐻 and 𝐾 can also 
be derived through the fundamental form matrices 𝐺 and 𝐵, which pro-
vide a practical computation process (Stoker, 1969). Let 𝑧 = 𝑓(𝑥, 𝑦) be 
the surface and the point 𝑋 = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) be a point on the surface. The 
first fundamental form G of the surface and the second fundamental form 
B of the surface can be computed from partial derivatives of the surface 
and the unit surface normal vector (𝒏) (Equations [3], [4], [5]) (Suk and 
Bhandarkar, 1992).  

𝐺 = B
𝑋C ⋅ 𝑋C 𝑋C ⋅ 𝑋E
𝑋E ⋅ 𝑋C 𝑋E ⋅ 𝑋EF

[3] 

𝐵 = B
𝒏 ⋅ 𝑋CC 𝒏 ⋅ 𝑋CE
𝒏 ⋅ 𝑋CE 𝒏 ⋅ 𝑋EEF

[4] 

𝒏 =
𝑋C × 𝑋E

∥ 𝑋C × 𝑋E ∥
[5] 

We use a discrete biorthogonal second-order Chebychev polynomial with 
the interaction term ignored to approximate the local 3D surface within a 
7 by 7 window (Besl and Jain, 1986; Haralick, et al., 1983). Using 
biorthogonal polynomials instead of a more general fitting process in-
creased computational speed. As the surface of interest was large (e.g. ~ 
50 spectra × 35000 points for each spectrum in our experimental data set) 
(Judge, et al., 2019), this approximation was necessary to incorporate real-
time analysis input within the workflow (wait time < 5 seconds). From the 
biorthogonal polynomial approximation, the first and second order deriv-
atives, the fundamental forms, and the curvatures (𝐻 and 𝐾) were com-
puted in that order (Suk and Bhandarkar, 1992). 
 
Multiple surface types were generated from a second-order polynomial 
with the interaction term in a 101 × 101 window (Equation [6]. Supple-
mentary Figure 1). The parameters 𝐴, 𝐵, and 𝐶 in Equation [6] were var-
ied to produce different surface types, including saddle ridge, minimal sur-
face, saddle valley, ridge, flat surface, valley, peak, and pit. The curvatures 
𝐻 and 𝐾 were computed for the central point in the window to check with 
the expected values. The same algorithm for ridge tracking (see the previ-
ous paragraph) was used in the computation. The expected 𝐻 and 𝐾 cur-
vatures were derived based on Equation [6] and computed with Equations 
[7] and [8]. 

𝑍 = 𝐴𝑋& + 𝐵𝑋𝑌 + 𝐶𝑌& [6]	
𝐻 = 𝐴 + 𝐶 [7]	

𝐾 = 4𝐴𝐶 − 𝐵& [8] 

2.2 Feature quantification by ridge tracking 
The entire workflow of RTExtract is presented in Figure 2. The steps in-
clude filtering candidate points, connecting candidate points into initial 
ridges, ridge refinement, and manual ridge selection. The initial ridge 
tracking process will be covered in this section and refinement in the next 
section. 
 
The tested experimental data sets contain ~50 spectra acquired at different 
time points (~11 hours), and each of them is comprised of ~35000 points 
in chemical shift resolution. The original time-series data sets were col-
lected with finer time resolution, and the averaged (denoised) data sets 
were used to evaluate RTExtract on the same criteria as published (Judge, 
et al., 2019). In NMR spectra, even a small region can exhibit high 

complexity, and peaks of interest also differ considerably from each other 
in intensity (Figure 2A, green and blue boxes). A region of interest (ROI) 
(ppm [1.3, 1.35] (Orange block in Figure 2A) was selected as an example 
to illustrate the computational pipeline (Figure 2B-E). The ROI is pre-
sented as a surface, in which different intensities can be visualized as dif-
ferent colors like a topographic map (Figure 2B). Each row of the surface 
matrix is a single spectrum acquired at one time point. To filter candidate 
points, information from curvature, local maxima, and a controlled num-
ber (𝑁RSC) of global maxima were combined (Figure 2C). Points on the 
surface were classified as ridge points (Set 𝑆U) if they satisfied the curva-
ture criteria in Equation [9], for which no changes in the thresholds (1 and 
0) were needed to accommodate different spectral regions. Besides ridge 
points, candidate points were also supplied through 𝑁RSC (the number of 
highest local maxima to add for each row), which define the Set 
𝑆W(𝑁RSC). For each selected ROI, 𝑁RSC more points are added as candi-
date points on each row. These candidate points were then intersected with 
local maxima (Set 𝑆X) to filter out points which did not correspond to true 
peaks. The combination of the three criteria ( (𝑆U ∪ 𝑆W(𝑁RSC)) ∩ 𝑆X ) 
helped identify most ridges and improved accuracy. 

|𝐾| < 1 
𝐻 < 0 [9] 

A two-step greedy connection procedure was implemented to connect 
these candidate points into ridges for quantifying individual peaks through 
time (Figure 2D). This procedure assumes that chemical shift variation of 
peaks at nearby time points is local and continuous, which is typically the 
case in time-series measurements. First, points adjacent in time and with 
the closest chemical shift distance within 𝐿]S^ (largest step size in chem-
ical shift dimension) were connected into segments. Second, these seg-
ments were connected into ridges to cover the entire time-range for the 
peak. The segment connection was based on the shortest distance and a 
user-adjustable threshold on angle (≤ 60°	default) between them. The an-
gle threshold ensured smooth shift pattern in ridges. The order of the seg-
ment connection was ranked from high to low based on their average in-
tensity. 
 
In the ridge tracking process, only the parameters 𝑁hij and 𝐿]S^ required 
tuning. The remaining parameters in the program required no modification 
for the simulated and experimental data sets we tested. Choices for 𝑁hij 
and 𝐿]S^ values were also intuitive. In the majority of cases, we recom-
mend the same small 𝐿]S^ for most regions. The parameter 𝐿]S^ can be 
increased when there is peak shifting and can be decreased when there are 
peaks that are close to each other. For 𝑁RSC , we recommend using 
𝑁RSC=1 plus the number of ridges expected but not yet tracked. The val-
ues used in the script (𝑁RSC = 1, 𝐿]S^ = 10) can be used as an initial 
guess for other data sets. 

2.3 Refinement of the tracking results 
While most peaks can be tracked without refinement, in some cases, the 
tracking is imperfect, which can be solved in the refinement step (Figure 
2E). Chemical expertise adds value to this step, especially in regions with 
a low signal-to-noise ratio (SNR). Besides removing short ridges (default 
minimum ridge length is 5 time points), the refinement steps also include 
retracking for small regions, manual ridge selection, and removal of im-
perfect ridge ends (Supplementary File 1). 
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When multiple peaks exhibit overlap and shifting, the greedy connection 
method (Methods 2.2) had difficulty deciding which direction to continue 
through peak crossing. This was ameliorated by local retracking. In re-
tracking, we imposed a more stringent constraint that the peaks tend to 
maintain their original directions when they cross. For each time point, a 
new small search window (length 5) for connecting next candidate points 
was centered at the linear extrapolation of previous (last 5 time points) 

chemical shift values. That is, ridges are assumed to be locally linear, 
which is a reasonable constraint for small windows. In the global tracking 
process (larger windows), however, there are indeed rapid changes in 
chemical shift, so in this case the stringent constraint is not imposed. Com-
bining different procedures for global and local tracking increases flexi-
bility when necessary. 
 

 
Figure 2: Illustration of the RTExtract algorithm. The algorithm is presented step by step based on an example time-series NMR data set, which was measured under aerobic condi-

tions (A) (Judge, et al., 2019). The stacked spectral plot (A) shows changes of whole NMR spectra (X-axis chemical shift 𝛿) through time (Y-axis), and each time point is distinguished by 

a different line color. Two regions (ppm [5.5, 8.5] and [1.3, 2.2]) are expanded here to show complexity of the spectra in scales and dynamics. The time-series spectra can be treated as a 

matrix, and each row of the matrix is a single NMR spectrum measured at one time point. (B) A column slice (ppm [1.30, 1.35] and the entire time range, indicated as orange box in A) of 

the matrix is chosen as show case for RTExtract (B-F). The selected sub-matrix can be treated as a surface as in Figure 1, and peaks changing through time will be ridges on this surface. 

(C) Based on the matrix, 𝐻 and 𝐾 curvatures were computed by an biorthogonal polynomial based on the 7 by 7 window (B) around each point, which was used to define ridge points 

(H<0 and |𝐾| < 1). These ridge points are intersected with local maxima. These peaks are also combined with the first 𝑁RSC global maximal points for each spectrum. The candidate 

points are shown in red on the surface in (C). (D) These points were connected in two steps by a greedy method to form segments and then ridges. The first step was based on chemical 

shift distance (𝐿]S^) between points, and the second step was based on distance and angles between segments from the last step. These ridges are shown as red lines on the surface in (D). 

(E) Ridges produced by the algorithm were refined and manually selected for feature quantification. In the refinement process, correct ridges that did not cover the entire time range can be 

extended, and imperfect ends of ridges can be removed. For the red ridge in (E), intensity and chemical shift (𝛿) were extracted and plotted against time (F). The intensity is measured in 

arbitrary units (AUs). Details on the RTExtract algorithm and tuning parameters can be found in Method 2.1 and 2.2. Time is measured in hours and chemical shift (𝛿) is measured in 

ppm. 
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The automatic ridge tracking procedure often generates false positives and 
these false ridges can be easily distinguished by the analyst. Hence, the 
interactive step (manual ridge selection) boosted performance by allowing 
analysts to select peaks with high confidence according to their 
knowledge. Moreover, compound quantification can also be improved by 
selecting peaks with good peak shapes, minimal overlap (with other 
peaks), and high SNR. The user can also record the annotated compound 
name and indicate whether the tracked peaks should be used for compound 
quantification in later steps. 
 
When the peak intensity decreases to near 0, the ridge tracking sometimes 
extends to noisy regions with no peak for a few time points. These imper-
fect ridge ends can also be removed by the ridge end removal interactive 
step. 
 
The feature quantification workflow provides an interface to walk the user 
through ridge tracking, retracking for overlapping regions, manual ridge 
picking, and manual end removal. The user can skip certain steps if 
needed. All information related to the tracking process, both explicit (pa-
rameter choices) and implicit (manual tuning records), is logged in data 
structure for documentation and reproducibility. Subsequently, peak in-
tensity and chemical shift can be plotted through time (Figure 2F). More 
details can be found in the tutorial (Supplementary File 1). 

2.4 Feature mapping and quantification 
Tracked ridge features need to be mapped to compounds and quantified. 
In the simulated spectra, after ridge tracking, the time-series data for each 
peak were automatically mapped back to compounds by differences in 
chemical shift. The difference (𝐷) was evaluated as Equation [10], and 
only the pairs with the smallest difference for all ridges and all compound 
peaks were selected as the final matches. In Equation [10], Ω is a set of 
time points overlapping between the simulated compound peaks and the 
tracked ridge peaks, and 𝐿	is the size of the set Ω. The variables 𝑣^^R

noR^p 
(simulated compound peak) and 𝑣^^R

qrp]s  (tracked ridge peak) are the corre-
sponding chemical shift vectors within Ω. D	is the sum of the squared dif-
ferences between extracted and simulated chemical shifts within the over-
lapping time range and is normalized by the range size (𝐿). Compounds 
were quantified by peak intensities normalized by the intensity of DSS (3-
(Trimethylsilyl)-1-propanesulfonic acid sodium salt, a chemical shift ref-
erence and intensity internal standard) peak. We also compute RMSD 
(Root Mean Square Deviation) between simulated and extracted chemical 
shift (𝛿urR and 𝛿sC, 𝑁 is the length of the ridge) for each ridge (Equation 
11). The annotation and quantification of the experimental data sets fol-
lows our published methods (Judge, et al., 2019). 

𝐷 =
1
𝐿vw𝑣^^R

noR^p − 𝑣^^R
qrp]sx

&
y

	

	 [10] 

𝑅𝑀𝑆𝐷 = |
1
𝑁v(𝛿urR − 𝛿sC)&

}

r~%

	 [11] 

2.5 NMR spectral simulation 
Time-series data sets were simulated according to the known challenges 
that limited previous methods. The simulation include following proce-
dures and quantification of their complexity is defined in the next section 
(Methods 2.6). 
 
Reference spectra for simulation were selected from GISSMO database 
(http://gissmo.nmrfam.wisc.edu) because there is no noise or solvent 
peaks as in experimental measured spectra (Supplementary table 1). This 
is important, especially when multiple reference spectra are summed to 
simulate the mixture spectra, where measurement noise can accumulate. 
The GISSMO database also provides accurate simulation of NMR spectra 
at different field strengths, making it feasible to simulate spectra of differ-
ent compounds under the same field strength as in the experimental data 
(600 MHZ) (Dashti, et al., 2017; Judge, et al., 2019). 
 
Peak intensity is simulated to change through time by changing compound 
concentration linearly. Some features increased through time, some de-
creased, and a few (e.g. DSS as the reference) were kept constant (Supple-
mentary table 1). For each time point, compound spectra were multiplied 
by their concentration and summed to make the in silico mixture. 
 
Besides changes in peak intensity, changes in chemical shift due to pH is 
also simulated in acetate and formate based on published titration data 
(Ackerman, et al., 1996; Tredwell, et al., 2016; Ye, et al., 2018). The pH 
varied from 4.0 to 6.0. The simulation was based on the Henderson-Has-
selbalch equation and corresponding parameters, including pKa, chemi-
cal shift for the protonated form, and the unprotonated form (Supplemen-
tary table 1) (Ackerman, et al., 1996; Tredwell, et al., 2016; Ye, et al., 
2018). 
 
After summing all composed spectra, white noise was added (Gaussian 
distribution. 𝜇 = 0, 𝜎 = 5). Exponential line broadening was introduced 
to simulate a line width similar to experimental measurements. The line 
broadening effect on NMR spectra (frequency domain) was implemented 
by multiplying the time domain data with an exponential decay function 
𝑒ÇÉ (𝜆 = −0.00035), where 𝑡 is the same in length with the original 
spectra. 

Table 1: Complexity metrics of spectral data sets from simulations and experimental measurements. 
Data source SNR Shift complexity Scale complexity Dynamics complexity 

aerobic experimental data set 2.47E+02 4.53E-07 6.76E-02 5.61E-02 

anaerobic experimental data set 6.49E+02 7.25E-08 3.55E-02 3.32E-02 

simulated data set 1.84E+03 2.62E-07 1.67E-01 7.57E-02 
 

Experimental and simulated data sets were compared for different types of complexity. SNR: signal to noise ratio for the DSS peak in the spectra. Shift complexity (𝐶uáràÉ): meas-

urements of how much peaks shift in chemical shift dimension. Scale complexity (𝐶unSâs): measurements of how nearby peaks differ in intensity. Dynamics complexity (𝐶pEäSRrnu): 

measurements of how dynamic peak intensity changes through time. The higher the SNR, the less complex the spectral data sets. The higher the other complexity measurement, the 

more complex the spectral data sets. The complexity measurements were compared based on both spectra matrix and peak intensity. Details in computing these criteria can be 

found in Method 2.6. 
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In addition to standard metabolite peaks, we added extra peaks (arbitrary 
peaks) to increase complexity and test the algorithm. More variation in 
chemical shift and peak intensity is introduced through these peaks. Ar-
bitrary peaks are also introduced to overlap with shifting peaks, such as 
the acetate peak. 
 
In summary, simulation of time-series NMR spectra is composed of 
these steps in order: varying concentration, shifting peak according to 
pH, adding arbitrary peak, adding noise, and applying exponential line 
broadening. 

2.6 Metrics of spectral complexity 
The complexity of experimental and simulated spectra is measured based 
on key peak qualities, including SNR, overlap, change in intensity, and 
chemical shift. 
 
The metrics are calculated from both the spectral matrix and the ridge in-
tensity matrix. In the ridge intensity matrix 𝑋, each row 𝑋(𝑖, : )	indicates 
ridge points at one time point, and each column 𝑋(: , 𝑗)	indicates a distinct 
ridge, in which 𝑖 ∈ 1…𝑁 and 𝑗 ∈ 1…𝑀, where 𝑁 is the total number of 
time points and 𝑀 is the total number of ridges. The vector 𝑉 ^R  denotes 
the whole chemical shift vector for the entire NMR spectrum, and 𝑣^^R

ë  
denotes the chemical shift vector for a single ridge 𝑗 through existing time 
points. The ridge matrix was shifted to be nonnegative (𝑋í) before the fol-
lowing calculations. A spectral region with no peaks (ppm [-0.4, -0.2]) 
was selected as a sample matrix (𝑋}) for noise level calculation. 
 
SNR is the mean ratio of the DSS peak intensity to the standard deviation 
(𝑠𝑑) in a region with no peaks (Equation [12]). The higher the noise level, 
the lower the SNR value. Annotation and quantification of peaks are more 
difficult in region with low SNR. 

𝑆𝑁𝑅 =
1
𝑁v

𝑋í(𝑖, 𝑗ïññ)
𝑠𝑑w𝑋}(𝑖, : )x

}

r

[12] 

Shift complexity (𝐶uáràÉ) measures the complexity in chemical shift vari-
ation and is computed through Equations [13] and [14]. Equation [13] 
centered and scaled the chemical shift vector for each peak (𝑣^^Ró (𝑗)), and 
in Equation [14] an average of the normalized sum of squares (𝑁𝑆𝑆, Equa-
tion [15]) of 𝑣^^Ró (𝑗) is used to measure the extent of peak shift for each 
data set. The more chemical shift varied for each individual peak, the 
larger 𝐶uáràÉ. In the calculation of NSS, 𝑉 is a vector, 𝑠 is the index in the 
vector, 𝑉u is one element in the vector, and 𝑁X is the length of the vector. 

𝑣^^Ró (𝑗) =
𝑣^^R
ë − minw𝑉 ^Rx

maxw𝑉 ^Rx − minw𝑉 ^Rx
[13] 

𝐶uáràÉ = 	
1
𝑀
	v𝑁𝑆𝑆w𝑣^^Ró (𝑗)x
ú

ë

[14] 

𝑁𝑆𝑆(𝑉) = 	
1
𝑁X
	vù𝑉u −

1
𝑁X
v𝑉u

}û

u

ü

&}û

u

[15] 

Scale complexity (𝐶unSâs) measures the extent to which peak intensities 
differ from their closest neighbors (Equation [16]). 𝑁^Srq  is the number 
of closest neighbor ridge pairs with average differences in chemical shift 
less than 0.05. 𝑁pràà is the number of peak pairs both counted in 𝑁^Srq  
and with fold change in intensity larger than 10. N is the total number of 
time points. The greater the difference in intensity between neighboring 
peaks, the higher the value of 𝐶unSâs. Considerable differences in inten-
sity between nearby peaks result in imperfect peaks shapes and 

quantification. Sometimes, the smaller peak is only discernible in a pro-
portion of time points because of overlap. 

𝐶unSâs = 	
1

𝑁wN°i¢£x
	v𝑁pràà

}

r

[16] 

Dynamic complexity (𝐶pEäSRrnu) measures the complexity in intensity 
variation through time and is computed with Equation [17]. For each 
ridge, the intensity vector is scaled by its maximum. NSS of the scaled 
intensity can indicate time dynamics for each ridge, and the value is av-
eraged for all ridges. The more the intensity changes for each peak 
through time, the higher 𝐶pEäSRrnu. Data set with higher 𝐶pEäSRrnu have 
a interesting underlying variation in metabolism, such as metabolic adap-
tion under different carbon sources (Judge, et al., 2019). 
 

𝐶pEäSRrnu =
1
𝑀v𝑁𝑆𝑆 §

𝑋í(: , 𝑗)
maxw𝑋í(: , 𝑗)x

•
ú

ë

[17] 

2.7 Data and software 
Programs were programmed in MATLAB and R. They are shared 
through the Edison lab metabolomics toolbox GitHub repository 
(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA) 
. The used experimental data can be found in Metabolomics Workbench 
(https://www.metabolomicsworkbench.org PR000738) and other used 
data can be found in Supplementary Data. We also provide a tutorial on 
the workflow (Supplement File 1). 
 
The programs were extensively run and tested in MATLAB 2018b and R 
(RStudio Version 1.1.456 and R Version 3.5.1) on a macOS (Mojave 
10.14.5) system. 

3 Results 

3.1 Comparison of simulated and experimental time-series NMR 
spectra 

Complexity in time-series NMR spectra was evaluated in SNR, peak in-
tensity, and chemical shift variation (Table 1). Besides the SNR value in 
the main simulation, multiple SNR levels were tested, and the workflow 
can still track ridges accurately in lower SNR levels (Supplementary Fig-
ure 6A-D). The peak with changing chemical shift was tracked automati-
cally for 𝑆𝑁𝑅 ≥ 99.24 (Supplementary Figure 6A-C) and needed some 
manual tuning for 𝑆𝑁𝑅 = 19.97 (Supplementary Figure 6D). In practice, 
most peaks in the experimental spectra possessed good enough SNR for 
tracking if they could be visually identified. As an example, the valine 
multiplet centered at ppm 2.267 had low SNR, and 6 peaks of the multi-
plet could still be tracked (Supplementary Figure 6E). The ridge tracking 
method had robust performance under a large range of different SNR 
levels. 
 
For the complexity metrics in variation of intensity (𝐶unSâs and 
𝐶pEäSRrnu) and chemical shift (𝐶uáràÉ), the values are similar between ex-
perimental and simulated data sets (Table 1). It is also interesting to see 
that the aerobic sample seems to be more complex than the anaerobic 
sample, which agrees with our observation that NMR spectra in aerobic 
data set has larger peak shifting and the intensities are changing more 
rapidly (Judge, et al., 2019). 
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NMR feature quantification by ridge tracking 

3.2 Performance evaluation of ridge tracking on the simulated 
data sets 
RTExtract was first tested on the simulated data sets (Supplementary 
Figure 2). Time-series NMR spectra were simulated with known concen-
tration and chemical shift (simulated value), which were used to evaluate 
the ridge tracking result (extracted value). Extractions were evaluated by 
RMSD in chemical shift and peaks were tracked accurately (low RMSD) 
in simulated data sets (Supplementary Figure 3 and Supplementary Table 
2). 
 

Concentration estimation was also evaluated. We plotted extracted con-
centrations ([𝐶]sC) against simulated concentrations ([𝐶]urR) and peaks 
without overlap (red) were all around the diagonal (slope=1) (Figure 
3A). Different peaks are affected by line broadening slightly differently 
and so there are deviations from the diagonal. Nearly half of the ridges 
were not overlapping and could be accurately quantified. 
 
For those peaks with overlap, quantification was affected. Both spectral 
changes through time (Figure 3B) and peak composition at selected time 
points (Figure 3C) are presented. For the alanine peak with overlap (peak 
1 in Figure 3A-C), [𝐶]sC was overestimated with a linear curve. This can 
be explained by the overlap with neighboring glycerol peaks, and both of 

 
Figure 3: Evaluation of the RTExtract algorithm on simulated data sets. Performance in estimating intensity and chemical shift was tested with simulated data sets. (A) 

Compound quantification for all ridge points were plotted. For each ridge peak, extracted compound concentrations normalized to DSS (Y-axis, [𝐶]sC) were plotted against 

simulated compound concentration (X-axis, [𝐶]urR). The black diagonal is with slope 1 and works as the perfect quantification reference. Red points are peaks without overlap 

and points of other colors are with overlap. Among the overlapping ridge peaks, four peaks mapped to four compounds (1: alanine (blue); 2: glycerol (pink); 3: serine (green); 4: 

ethanol (purple)) were selected as examples of quantification problems when there is overlap (B). Number and color of example peaks are used correspondingly in A-C. All other 

ridge peaks with overlap are in grey. (B) Tracked ridges of example compounds were plotted in stack spectra. One spectrum (at one specific time point) was highlight in black, 

which was then decomposed into compound peaks involved in the overlap (C). In the decomposition plot (C), the black line is the real spectrum and the sum of all compound 

peaks. Other compound spectra are presented in different colors. (D) Effects of overlapping on estimating intensity and chemical shift for the acetate peak. In the first column, 

the acetate peak was simulated with chemical shift variation under different pH conditions and overlapped with another peak. In the second column, extracted concentrations 

([𝐶]sC) were plotted against simulated concentrations ([𝐶]urR). In the third column, extracted chemical shifts (𝛿sC) were plotted against simulated chemical shift (𝛿urR). Perfor-

mance of concentration and chemical shift estimation with more compounds can be found in Supplementary Figure 4 and Supplementary Figure 5. Accuracy in peak tracking 

was also evaluated by chemical shift differences between tracked peaks and simulated peaks (Supplementary Table 2). Compound concentration was simulated with arbitrary 

unit (AU) and chemical shift 𝛿 was evaluated in ppm. 
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them were decreasing through time. A similar explanation exists for the 
glycerol peaks with overlap (peak 2 in Figure 3A-C). Overlaps with 
glycerol also caused quantification of the ethanol peak to change in the 
opposite direction (peak 4 in Figure 3A-C). In this case, the intensity var-
iation of the small side peak from ethanol is dominated by the variation 
in glycerol peak. 
 
Besides intensity estimation, overlap can affect chemical shift (peak 3 
mapped to serine in Figure 3A-C). In this overlapping region, the uridine 
concentration increased through time, and serine concentration de-
creased. Even though the ridge was mapped to serine by Equation [10], 
it was actually mixture of peaks from both compounds (uridine and ser-
ine), and there were different relative intensity contributions from both 
sides at different time points. This kind of continuous shift between two 
features not only caused incorrect quantification but also a fake chemical 
shift variation. Even though neither uridine nor serine had clear peak 
shift for the pH range considered ([4.0, 6.0]), the overlapped peak shifted 
smoothly. Through the changes of relative intensities of the two peaks, 
chemical shift of the summed peak changed. This could be mistaken for 
chemical shift change due to pH variation and seems to occur on the 

right-side peak at Figure 5D and glucose peaks (ppm region [5.2, 5.26]) 
under the aerobic condition in experimental data sets. 
 
In the case that the peaks are separated enough to be distinguishable, 
ridge tracking is often accurate in chemical shift estimation (Figure 3D). 
For the acetate peak, concentration ([C]®j) was over-estimated in the 
overlapped region, but chemical shift (δ®j) was estimated accurately. 
Both peaks could be tracked for the entire range through the overlapped 
region, and relative intensity between the two overlapping peaks did not 
affect tracking capability. Comparison of extracted and simulated values 
in concentration and chemical shift for more compounds can be found in 
Supplementary Figure 4 and 5. 

3.3 Performance evaluation of ridge tracking on the experi-
mental data sets 
The ridge tracking method was next tested on experimental data sets and 
compared with the approach used in the initial CIVM publication (Judge, 
et al., 2019). We first assessed the agreement on quantification of regions 
without much overlap (Figure 4 and Supplementary Figure 7). For quan-
tification under aerobic and anaerobic conditions, the residuals between 
the two methods were close to zero for most compounds, and RTExtract 
reproduced the earlier results with much less time and manual input. The 

  
Figure 4: Reproduction of compound quantification results from the published method. In each plot, the X-axes indicates time, and the Y-axes indicates Mean Scaled Ridge 
Intensity. Red curves are from aerobic data sets, and blue curves are from anaerobic data sets. Details in computing Mean Scaled Ridge Intensity can be found in the previous publica-
tion (Judge, et al., 2019)). Each row indicates quantification for one compound, including the published and the RTExtract methods and residuals (differences between the quantifica-
tions by the two methods). A value near zero in residuals indicates agreement between results of the two methods. Comparison for more compounds can be found in Supplementary 
Figure 7. 
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few differences were attributed to how negative values were dealt with 
between the two methods in computing Mean Scale Ridge Intensity (Fig-
ure 4 and Supplementary Figure 7). In RTExtract, time-series data with 
negative intensities are shifted to positive values first, which was not done 
in the original publication (Judge, et al., 2019).  
 
Besides on peaks with good peak shapes and little overlap, RTExtract also 
worked for more complex regions which were difficult for the published 
method (Figure 5) (Judge, et al., 2019). The complex regions might con-
tain one or more of the following complications: overlap, peak shifting, 
and peaks with short distances (in chemical shift) to each other. When two 
peaks are close to each other, especially when one is on the shoulder of 
the other, the original method often produced tracking results that move 
between the two (“jump”) (e.g. A, C, and D in Figure 5). In RTExtract, 

these peaks were tracked with no jumps, resulting in fewer errors in chem-
ical shift and intensity estimation. Parameter tuning, particularly in com-
plex regions, was difficult in the original publication but is much easier in 
RTExtract. The glutamate region (ppm [2.3, 2.44], Figure 5B) was another 
difficult case, in which the six peaks from glutamate shifted with pH and 
overlap with an unknown peak (yellow). By the previous method, only a 
small side peak in the multiplet was tracked for glutamate, so the quanti-
fication had a low SNR (Judge, et al., 2019). By RTExtract, all the six 
glutamate peaks in the multiplet can be tracked with the retracking ap-
proach.  

4 Discussion 

 
Figure 5: Evaluation of the ridge tracking algorithm on complex overlapping regions on the experimental data sets. Four different ROIs (A-D) in experimental spectra were 

selected as examples. These spectral regions have different levels of peak shift, overlap, small between-peak distance, or low SNR, which often causes trouble in the published ap-

proach (Judge, et al., 2019). Peaks in these ROIs can be precisely tracked, and the parts that are problematic in the published method are indicated with stars. For the published ap-

proach, tracking results jump between nearby ridges, instead of being correctly tracked by RTExtract. Spectra (X-axes chemical shift 𝛿) were plotted against time (Y-axes), and 

different line colors indicated spectra at different time points. Different point colors indicate different tracked peaks. Performance of the algorithm for less complex regions is in 

Figure 4 and Supplementary Figure 7. 
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RTExtract, a computer vision-based approach is introduced in this paper 
to quantify time-series NMR spectra. RTExtract takes less time and ex-
hibits better performance on complex regions than our original, less auto-
mated, approach (Judge, et al., 2019). It provides a more practical way to 
process time-series NMR spectra and analyze in vivo metabolic dynamics 
of an organism. 
 
RTExtract is an improvement from multiple perspectives. First, we re-
duced the number of tuning parameters from six to two, which reduces the 
interactive time and is more intuitive to optimize. Second, the refinement 
steps allowed fine-tuning of the ridge tracking process and easily removed 
imperfect regions. Instead of exploring a huge parameter space, the user 
can fix the imperfect regions through simple manual steps. With these two 
improvements, the published results can be replicated within 2 hours by 
RTExtract instead of a few days by the original method (Judge, et al., 
2019). Finally, RTExtract is also capable of dealing with more complex 
regions, especially with peak overlap and peak shifting (Figure 5). It is 
now possible to track peaks in these difficult regions, without merging 
multiple peaks into one. Subsequently, more tracked features can be used 
for downstream statistical analyses. 
 
We still offer the option of manual interaction in the workflow, which 
helps produce accurate results but still requires time and manual effort. 
Future versions of the workflow will incorporate statistical filters accom-
panied by higher degrees of automation. A clustering-based method can 
be implemented to remove artifact ridges, which are characterized by ran-
dom changes in intensity and chemical shift. Implementing this step might 
fully remove the manual procedure and make the full process much faster. 
 
The RTExtract can also combine with spectral deconvolution for overlap-
ping feature quantification. From RTExtract, chemical shift and intensity 
of individual overlapping peaks can be obtained and subsequently fed into 
the deconvolution methods. Based on the information of intensity and 
chemical shift, a Bayesian-based deconvolution approach can compute the 
underlying peak intensity (Krishnamurthy, 2013). 
 
In principle, as long as peaks are changing in a continuous manner, they 
can be tracked by RTExtract. The experimental data tested in this paper is 
from the CIVM method (Judge, et al., 2019), and provides dense, contin-
uous, time-series measurements. Other time-series NMR methods, such as 
flow NMR can also provide proper candidate measurements (Foley, et al., 
2014). Possible applications go beyond time-series measurements as long 
as the continuity constraint is met between neighboring spectra.  

5 Conclusion 

RTExtract is introduced in this paper to quantify dense time-series NMR 
spectra by ridge tracking. It is faster, easier to use, and can deal with more 
complex regions than previously published methods. The extraction is ac-
curate even in complex overlapping regions. As the ridge tracking method 
relies on the continuity of peaks at neighboring spectra, it can be further 
applied to other suitable data types. 
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