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Abstract: We consider the ASEP and the stochastic six vertex model started with step
initial data.After a long time,T , it is known that the one-point height functionfluctuations
for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in
space.Namely,weprove tightness (andBrownian absolute continuity of all subsequential
limits) as T goes to infinity of the height function with spatial coordinate scaled by
T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a
connection discovered recently by Borodin–Bufetov–Wheeler between the stochastic
six vertex height function and the Hall-Littlewood process (a certain measure on plane
partitions). Interpreting this process as a line ensemble with a Gibbsian resampling
invariance, we show that the one-point tightness of the top curve can be propagated to
the tightness of the entire curve.
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1. Introduction

1.1. The ASEP and S6Vmodel. In this paper we prove, as Theorem 3.13 and Corollary
3.11, the long predicted transversal 2/3 exponent for the asymmetric simple exclusion
process (ASEP) [50,70] and the stochastic six vertex (S6V) model [41]—two closely
related 1 + 1 dimensional random interface growth models in the Kardar–Parisi–Zhang
(KPZ) universality class.Wework with step initial data for both models and demonstrate
that their height functions, scaled in space by T 2/3 and in fluctuation size by T 1/3, are
tight as spatial processes as time T goes to infinity (we use T for time since t ∈ (0, 1)
will be reserved for the Hall-Littlewood parameter). We also show as Corollary 7.4,
that all subsequential limits of the scaled height function (shifted by a parabola) have
increments, which are absolutely continuous with respect to a Brownian bridgemeasure.
Conjecturally, the limit process should be the Airy2 process and we provide further
evidence for this conjecture by uncovering a Gibbsian line ensemble structure behind
these models, which formally limits to that of the Airy line ensemble [32].

1.1.1. Background. In 1986, Kardar et al. [46] predicted that a large class of growth
models in one-spatial dimension subject to space-time independent random forcing, and
lateral growth would all demonstrate the same universal scaling properties in long time
(see also [74]). In particular, drawing on the earlier 1977 work of Forster, Nelson and
Stephen [40,46] predicted that these models would have fluctuations of order T 1/3 in
the direction of growth, and have non-trivial spatial correlations in the T 2/3 transversal
scale, as T (time) goes to infinity. This 3 : 2 : 1 scaling of time : space : fluctuation
(known now as KPZ scaling) immediately caught the imagination of physicists and
then in the late 90s, mathematicians. Researchers generally sought to refine and expand
the scope and notion of this KPZ universality class through numerics, experiments, non-
rigorous methods, and in some limited cases mathematical proofs. Much of this progress
and a broader discussion about KPZ universality can be found in [7,28,42,64] and the
references therein.

Rigorous results concerning the KPZ class generally come in two flavors—those
mainly reliant upon underlying integrable structures in exactly solvable models (see
e.g. [14,21,23,25,29]), and those mainly reliant upon more probabilistic methods like
couplings or resolvent equations (see e.g. [5,6,65,66]). The integrable results provide
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the highest resolution and have led to exact calculations of statistics for KPZfluctuations.
The more probabilistic methods are more widely applicable and have met with some
success in extending KPZ universality outside the realm of integrable models.

Recently, there have been a few hybrid works which have recast certain elements
of the integrable model structures into more probabilistic language, and consequently
provided new tools in asymptotics. Examples of suchworks are [32,33], which introduce
a method to show tightness of Gibbsian line ensembles from one-point tightness, and
use that to probe the fluctuations of the Airy2 process and the KPZ equation. We will say
more about this method in Sect. 1.2, since our results rely on a variant of it. Another such
hybrid method is that of continuum statistics [35] (see also [18,53,63]), which recasts
the TASEP multipoint fluctuation formulas in terms of a kernel which solves a simple
boundary value problem. Recently, [52] extends this method to take limits of general
initial data formulas of [20,67] so as to give the full transition probabilities for the KPZ
fixed point.

Returning to the 2/3 KPZ transversal exponent, our results are not the first for KPZ
class models (though they are for the ASEP and S6V model). The TASEP (or expo-
nential/geometric last passage percolation and the longest increasing subsequence of
random permutations) is solvable via Schur/determinantal point processes. Using this,
[44,60] extract multipoint limit theorems in the T 2/3 transversal scale and show that
started from step initial data, the TASEP height function converges to the Airy2 pro-
cess (introduced in those works). Under the same scaling, but for other initial data (e.g.
periodic, or Bernoulli) other limit processes arise [4,20,31,52].

Whereas the TASEP is solvable via determinantal/Schur process methods, the ASEP
and S6Vmodel are not. Still, there are twomain algebraic structures which produce tools
for the analysis of integrable KPZ class models (including the TASEP, ASEP and S6V
model)—Macdonald processes and quantum integrable systems. In fact, there are now
some bridges between these structures which suggest that they will eventually be joined
together. Both of these structures produce moment formulas, which in principle entirely
characterize the distribution of the probabilistic systems in question at a given time.
Extracting meaningful asymptotics from these formulas remains a significant challenge
and so far, besides in the very special determinantal models, this has been achieved only
for one-point distribution functions.

For the ASEP started from step initial conditions, one-point T 1/3 fluctuations were
established first in [73] and then via other related methods in [19,22,30]. Analogous
asymptotic results are proved for theS6Vmodel in [11,16],KPZequation in [3,15], semi-
discrete directed polymer in [14], inverse-gammapolymer in [17,48], andq-TASEP in [8,
39]. Fromexact formulas (e.g. [14,19,24,54]),multipoint fluctuations for theASEP/S6V
model have proved elusive so far. There have been some non-rigorous attempts (e.g.
[37,38,43,61,62]) for related models (KPZ equation and inverse-gamma polymer) by
use of certain uncontrolled approximations. From more probabilistic methods, [68,69]
demonstrate the 2/3 transversal exponent for the polymer path of the inverse-gamma and
semi-discrete Brownian directed polymermodels (with stationary boundary conditions).

Employing the hybrid approach, [33] gives the first rigorous proof of the 2/3 transver-
sal exponent for the KPZ equation. In particular, they show that the spatial fluctuations
are tight in this transversal scale and under fluctuation scaling by exponent 1/3, and
that subsequential limits are locally Brownian. The starting point for this result is the
remarkable fact that the KPZ equation solution at a fixed time can be realized as the top
indexed curve of an infinite ensemble of curves (called the KPZ line ensemble—see also
[55,58]) that interact with nearest neighbor curves through an exponential energy. At the
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heart of this existence is the relation between the semi-discrete directed polymer and the
Whittaker process and quantum Toda lattice Hamiltonian, as facilitated by the geometric
Robinson–Schensted–Knuth (RSK) correspondence [56] (see also [34,54,57]).

Until recently, it did not seem that the ASEP or S6V model enjoyed such a relation-
ship with Gibbsian line ensembles. The work of [13] shows that the S6V height function
(and that of the ASEP through a limit transition) arises as the top curve of a line ensemble
related to the Hall-Littlewood process. In fact, [26] demonstrates a Hall-Littlewood vari-
ant of the RSK correspondence which makes this relationship all the more transparent.
As we discuss below in Sects. 1.2 and 3, the Hall-Littlewood line ensemble has a slightly
more involvedGibbs propertywhich requires us to develop some new techniques beyond
those of [33] in order to demonstrate our tightness results.

1.1.2. Main results. We now state our main results concerning the ASEP. Precise defini-
tions of this model and further discussion can be found in Sect. 2.3. We forgo stating the
S6V model result until the main text—Corollary 3.11—since it requires more notation
to define the model.

In the ASEP, particles occupy sites indexed by Z with at most one particle per site
(the exclusion rule) and jump according to independent exponential clocks to the right
and left with rates R and L respectively (R > L is assumed). Jumps that would violate
the exclusion rule are suppressed. Step initial data means that particles start at every
site in Z≤0 (and no particles start elsewhere). The height function hT (x) records the
number of particles at or to the right of position x ∈ Z at time T . For x /∈ Z we linearly
interpolate to make the height function continuous. With this notation we can state our
main theorem (Theorem 3.13 and Corollary 7.4 in the main text).

Theorem 1.1. Suppose r > 0, R = 1, L ∈ (0, 1), γ = R − L and fix α ∈ (0, 1). For
s ∈ [−r, r ] set

f ASE P
N (s) = σ−1

α N−1/3
(
f3(α)N + f ′

3(α)sN 2/3 + (1/2)s2 f ′′
3 (α)N 1/3

−hN/γ

(
αN + sN 2/3

))
, (1)

The constants above are given by σα = 2−4/3(1 − α2)2/3, f3(α) = (1−α)2

4 , f ′
3(α) =

− 1−α
2 , f ′′

3 (α) = 1
2 . If PN denotes the law of f ASE P

N (s) as a random variable in
(C[−r, r ], C)—the space of continuous functions on [−r, r ] with the uniform topology
and Borel σ -algebra C (see e.g. Chapter 7 in [10])—then the sequence PN is tight.

Moreover, if P∞ denotes any subsequential limit of PN and f ASE P∞ has law P∞, then
gASEP∞ defined by

gASEP∞ (x) = σα f ASE P∞ (x) − x2 f ′′
3 (α)

2
, for x ∈ [−r, r ],

is absolutely continuous with respect to a Brownian bridge of variance −2r f ′
3(α)[1 +

f ′
3(α)] in the sense of Definition 7.2.

Our approach for proving Theorem 1.1 is to (1) embed the ASEP height function into
a line ensemble, which enjoys a certain ‘Hall-Littlewood Gibbs’ resampling property,
and (2) use the known one-point tightness in the T 1/3 fluctuation scale to obtain the T 2/3

transversal tightness. These two points will be discussed more extensively in the section
below. Here we mention that the Gibbs property implies that conditional on the second
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curve in the line ensemble, the top curve (i.e. the height function) has a law expressible in
terms of an explicit Radon-Nikodym derivative with respect to the trajectory of a random
walk. By controlling this Radon-Nikodym derivative as T goes to infinity, we are able to
control quantities like themaximum,minimum andmodulus of continuity of the prelimit
continuous curves, which translates into a tightness statement in the space of continuous
curves. By exploiting a strong coupling of random walk bridges and Brownian bridges
we can further deduce the absolute continuity of subsequential limits with respect to
Brownian bridges of appropriate variance.

1.2. Hall-Littlewood Gibbsian line ensembles

1.2.1. Line ensembles and resampling. The central objects thatwe study in this paper are
discrete line ensembles, which satisfy what we call the Hall-Littlewood Gibbs property.
In what follows we describe the general setup informally, and refer the reader to Sect. 3.1
for the details.

A discrete line ensemble is a finite collection of up-right paths {Li }ki=1 drawn on the
integer lattice, which we assume to be weakly ordered, meaning that Li (x) ≥ Li+1(x)
for i = 1, . . . , k − 1, and all x . The up-right paths Li are understood to be continuous
curves on some interval I = [a, b], and to be piecewise constant or have slope 1 (see
Fig. 1 for examples).

Suppose we are given a probability distribution μ on the set of ensembles {Li }ki=1.
We will consider the following resampling procedure. Fix any i ∈ {1, . . . , k − 1} and
denote by f = Li−1 and g = Li+1 with the convention that L0 = +∞. Sample {Li }ki=1
according to μ and afterwards erase the line Li , between its endpoints A = Li (a) and
B = Li (b). Sample a new path L ′

i , connecting the points (a, A) and (b, B) from the
uniform distribution on all up-right paths that connect these points, and independently
accept the path with probability Wt (L ′

i , f, g). If the new path is not accepted the same
procedure is repeated until a path is accepted. We say that μ has the Hall-Littlewood
Gibbs property with parameter t ∈ (0, 1) if given {Li }ki=1 distributed according to μ,
the random path ensemble obtained from the above resampling procedure again has
distribution μ. The acceptance probability is given by

Fig. 1. The black lines are a sample from a discrete line ensemble {Li }ki=1 with k = 3 (L2 coincides with L ′
2

on the left). Each line is a continuous curve on I = [1, 7] that is piecewise constant or has slope 1. The dashed
lines (L ′

2 on the left and right respectively) are uniformly sampled up-right paths connecting the endpoints
(1, 1) and (7, 2) of L2
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Wt (L
′
i , f, g) =

b∏
s=a+1

(
1 − 1{�+(s−1)−�+(s)=1} · t�+(s−1)

)

·
(
1 − 1{�−(s−1)−�−(s)=1} · t�−(s−1)

)
, (2)

where �+(s) = f (s) − L ′
i (s) and �−(s) = L ′

i (s) − g(s). The above expression can be
understood as follows. Follow the path L ′

i from left to right and any time f −L ′
i decreases

from �+ to �+ −1 at location s−1 we multiply by a new factor 1− t�
+(s−1). Similarly,

any time L ′
i−g decreases from�− to�−−1 at location s−1wemultiply by a new factor

1 − t�
−(s−1). Observe that by our assumption on t we have that Wt (L ′

i , f, g) ∈ [0, 1],
which is why we can interpret it as a probability.

We make a couple of additional observations about the acceptance probability
Wt (L ′

i , f, g). By assumption f (a) ≥ L ′
i (a) ≥ g(a) and f (b) ≥ L ′

i (b) ≥ g(b). If
for some s we fail to have f (s) ≥ L ′

i (s) ≥ g(s), we see that one of the factors in
Wt (L ′

i , f, g) is zero and we will never accept such a path. Consequently, the resampling
procedure always maintains the relative order of lines in the ensemble. In addition, if
L ′
i is very well separated from f and g (in particular, when f = +∞) we have that

�± is very large and so the factors in (2) are close to 1. In this sense, we can interpret
Wt (L ′

i , f, g) as a deformed indicator function of the paths f, L ′
i , g having the correct

order.
ExampleWegive a short example of resampling L2 to explain the resampling procedure,
using Fig. 1 as a reference. We will calculate the acceptance probability if the path we
sampled is the dashed curve L ′

2 on the left or right of Fig. 1. Let us denote these candidates
by L ′

left, L
′
right for convenience. We haveWt (L ′

left, L1, L3) = 0 because the lines L3 and
L ′
left go out of order. In particular, we see that �−(s − 1) = 0 and �−(s) = −1 when

s = 6, which means that the factor
(
1 − 1{�−(s−1)−�−(s)=1} · t�−(s−1)

)
is zero. Such a

path is never accepted in the resampling procedure, and so we perform a new sampling.
We have Wt (L ′

right, L1, L3) = (1 − t)(1 − t2)(1 − t3). To see the latter notice that �+

decreases at location 1 from 3 to 2, producing the factor (1 − t3). Also, �− decreases
from 2 to 1 and from 1 to 0 at locations 2 and 5 respectively, producing factors (1− t2)
and (1 − t). We accept L ′

right with probability Wt (L ′
right, L1, L3) and perform a new

sampling if we failed to accept it.
The main result we prove for the Hall-Littlewood Gibbsian line ensembles appears

as Theorem 3.8 in the main text. It is a general result showing how one-point tightness
for the top curve of a sequence of Hall-Littlewood Gibbsian line ensembles translates
into tightness for the entire top curve. This theorem can be considered the main technical
contribution of this work, and we deduce tightness statements for different models like
the ASEP by appealing to it. It is possible that under some stronger (than tightness)
assumptions, one might be able to extend the results of that theorem to tightness of the
entire ensemble (i.e. all subsequent curves too)—we leave this for a future work.

The idea of using the Gibbs property to propagate one-point tightness to tightness of
the entire ensemble was developed in [32,33]. In those works, the Gibbs property was
either non-intersecting or an exponential repulsion. In other words, curves are penalized
by either an infinite or exponential energetic cost for moving out of their indexed order.
Those works rely fundamentally upon certain stochastic monotonicity enjoyed by such
Gibbsian line ensemble. Namely, if you consider a given curve and either shift the
starting/ending points of that curve up, or shift the above/below curves up, then the
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conditional measure of the given curve will stochastically shift up too. Since the Hall-
Littlewood Gibbs property relies on not just the distance between curves, but on their
relative slope (or derivative of the distance), this type of monotonicity is lost. Indeed, it
is not just the proof of the monotonicity, but the actual result which no longer holds true
in our setting (see Remark 4.2).

Faced with the loss of the above form of monotonicity, we had to find a weak enough
variant of itwhichwould actually be true,while being strong enough to allowus to rework
various types of arguments from [32,33]. Lemma 4.1 (and its corollaries) ends up fitting
this need. In essence, it says that the acceptance probability of the top curve increases
(thoughonly in termsof its expectedvalue andup to a factor of c(t) =∏∞

i=1(1−t i )) as the
curve is raised. Informally, this result is a weaker version of the stochastic monotonicity
of [32,33] in that pointwise inequalities are replaced with ones that hold on average and
upto an additional factor. Armed with this result, we are able to redevelop a route to
prove tightness of the entire top line of the ensemble from its one-point tightness. Our
approach should apply for more general Gibbs properties which rely upon not just the
relative separation of lines, but also their relative slopes. Indeed, the constant c(t) arises
in our case as a relatively crude estimate needed to handle the dependence of our weights
on the derivative of the distance between the top two curves. If the dependence of the
weights becomes different, one should be able to reproduce the same arguments, with
only the constant c(t) changing its value.

1.2.2. The homogeneous ascending Hall-Littlewood process. The prototypical model
behind the Hall-Littlewood Gibbsian line ensemble of the previous section is the (ho-
mogeneous ascending) Hall-Littlewood process (HAHP). The HAHP (a special case of
the ascending Macdonald processes [14]) is a probability distribution on interlacing se-
quences ∅ ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(M), where λ(i) are partitions (see the beginning
of Sect. 2.1 for some background on partitions, Young diagrams etc.). It depends on two
positive integers M and N as well as two parameters t, ζ ∈ (0, 1). We will provide a
careful definition in terms of symmetric functions in Sect. 2.1 later, but here we want to
give a more geometric interpretation of this measure. In what follows we will describe
a measure on interlacing sequences of partitions ∅ ≺ λ−M+1 ≺ · · · ≺ λ0 � λ1 � · · · �
λN−1 � ∅. The HAHP is then recovered by restriction to the first M partitions of this
sequence. The description we give dates back to [75], and we emphasize it here as it is
the origin of the Hall-Littlewood Gibbs property.

We can associate an interlacing sequence of partitions with a boxed plane partition
or 3D Young diagram, which is contained in the M × N rectangle—Fig. 2 provides an
illustration of this correspondence. Consequently, measures on interlacing sequences are
equivalent to measures on boxed plane partitions and we focus on the latter. For a plane
partition π , we define its weight by

W (π) = Aπ (t) × ζ diag(π), (3)

where diag(π) denotes the sum of the entries on the main diagonal of π (alternatively
this is the sum of the parts of λ0 or the number of cubes on the diagonal x = y in the
3D Young diagram). The function Aπ (t) depends on the geometry of π and is described
in Fig. 2 (see also Section 1 of [36] for a more detailed explanation). With the above
notation, we have that the probability of a plane partition is given by the weight W (π),
divided by the sum of the weights of all plane partitions.

Let us denote λ(i) = λi−M for i = 1, . . . , M . Then the HAHP is the probability
distribution induced from the weights (3) and projected to the first M terms ∅ ≺ λ(1) ≺
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Fig. 2. If given a sequence∅ ≺ λ−M+1 ≺ · · · ≺ λ0 � · · · � λN−1 � ∅wewrite the parts of λi downward—
in this way we obtain a plane partition. The left part of the figure shows how to do this when λ−5 = (3),
λ−4 = (3, 1), λ−3 = (3, 3, 1) and so on. In this example N = M = 6. The right part of the figure shows
the corresponding 3D Young diagram. The entry in a cell of the plane partition corresponds to the number of
cubes in a vertical stack of the 3D diagram. For the above diagram we have diag(π) = 5 + 4 + 3 + 2 + 2 = 16.
To find Aπ (t) we do the coloring in the right part of the figure. Each cell gets a level, which measures the
distance of the cell to the boundary of the terrace on which it lies. We consider connected components (formed
by cells of the same level that share a side) and for each one we have a factor (1 − t i ), where i is the level
of the cells in the component. The product of all these factors is Aπ (t). For the example above we have 7
components of level 1, 3 of level 2 and one of level 3—thus Aπ (t) = (1 − t)7(1 − t2)3(1 − t3)

λ(2) ≺ · · · ≺ λ(M). Denoting by λ′ the transpose of a partition λ we observe that
{λ′

j (·)}Nj=1 defines a discrete line ensemble on the interval [0, M]. In the above geometric

setting, the lines in the discrete line ensemble {λ′
j (·)}Nj=1 can be associated to the level

lines of π (in particular, λ′
1(·) corresponds to the bottom slice of the plane partition

π ). We emphasize is that the geometric interpretation of Aπ (t) above can be seen to
be equivalent with the statement that the line ensemble {λ′

j (·)}Nj=1 satisfies the Hall-
Littlewood Gibbs property of the previous section, see Proposition 3.9 in the main text.

The main result we prove for the HAHP is that as M, N tend to infinity the top line
λ′
1(·) (or alternatively the bottom slice of π ), appropriately shifted and scaled, is tight—

this is Theorem 3.10 in the text. The bottom slice of a similar (though slightly different)
Hall-Littlewood random plane partition was investigated in [36], using ideas from [14],
where it was shown that the one-point marginals are governed by the Tracy–Widom
distribution. In Theorem 2.3 we combine arguments from that paper as well as [16] to
show that the same is true for the model we described above. This convergence implies
in particular one-point tightness for the top line of the ensemble {λ′

j (·)}Nj=1. Once the
one-point tightness and Hall-Littlewood Gibbs property are established we enter the
setup Theorem 3.8, from which Theorem 3.10 is deduced.

1.2.3. Connection to the ASEP and S6Vmodel. In this sectionwe explain how theASEP
and S6V model fit into the setup of Hall-Littlewood Gibbsian line ensembles.

For the S6V model, the key ingredient comes from the remarkable recent work in
[13]. In particular, Theorem 4.1 in [13] (recalled as Theorem 2.5 in the main text), shows
that the top curve λ′

1 of the line ensemble {λ′
j (·)}Nj=1 of the previous section has the same

distribution as the height function on a horizontal slice of the S6V model, with appro-
priately matched parameters. This equivalence relies on the use of the t-Boson vertex
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model, as well as the infinite volume limit of the Yang-Baxter equation (as developed,
for instance, in [9,12,47]). Alternatively, [26] relates this distributional equality to a
Hall-Littlewood version of the RSK correspondence. Through this identification one
deduces the predicted transversal 2/3 exponent for the height function of the S6Vmodel
as a corollary of the HAHP result Theorem 3.10—this is Corollary 3.11 in the text.

We now explain how to relate the ASEP to our line ensemble framework. Recall
from Sect. 1.1 that hT (x) denotes the height function of the ASEP with rates R and L ,
started from step initial condition at time T . Set R = 1 and L = t ∈ (0, 1). Since we
use linear interpolation to define hT (x) for non-integer x , one observes that −hT (x)
either stays constant or goes up linearly with slope 1 as x increases, i.e. −hT (x) is an
up-right path. In Proposition 3.12 we show that for any T > 0 and k, K ∈ N there is a
random discrete line ensemble {LASEP

i }ki=1 on I = [−K , K ] such that (1) the law of
{L ASEP

i }ki=1 satisfies the Hall-Littlewood Gibbs property and (2) LASEP
1 has the same

law as −hT (x), restricted to x ∈ [−K , K ]. The realisation of −hT (x) as the top line in
a Hall-Littlewood Gibbsian line ensemble is an important step in our arguments and we
will provide some details how this is accomplished in a moment. For now let us explain
the implications of this fact.

Once we have that {LASEP
i }ki=1 satisfies the Hall-Littlewood Gibbs property, we

can use Theorem 3.8 to reduce the spatial tightness of the top curve LASEP
1 (i.e. the

negative height function −hT (·)) to the one-point tightness of its height function. The
latter follows from the celebrated theorem of Tracy–Widom [72, Theorem 3] (recalled
as Theorem 2.6 in the text). Consequently, once −hT (x) is understood as the top line
of a discrete line ensemble with the Hall-Littewood Gibbs property, the general ma-
chinery of Theorem 3.8 takes over and produces the tightness statement of Theorem
1.1.

Let us briefly explain howwe construct the line ensemble {LASEP
i }ki=1 from earlier—

see Proposition 3.12 for the details. One starts from a sequence ofHAHPwith parameters
ζN = 1 − 1−t

N . Under suitable shifts and truncations, these line ensembles become
tight and one defines {LASEP

i }ki=1 as a subsequential limit. The Hall-Littlewood Gibbs
property enjoyed by HAHP implies one for {LASEP

i }ki=1. The fact that L
ASEP
1 has the

same law as−hT (x) follows from the connection between theHAHP and the S6Vmodel
height function discussed above and the convergence of the height function of the S6V
model to hT (x). The observation that the ASEP height function can be obtained through
a limit transition of the S6V model was made in [16,41] with a complete proof in [2].

We end this section with a brief discussion on possible extensions of our results. In
Theorems 3.10, 3.13 and Corollary 3.11 we construct sequences of random continuous
curves, which are tight in the space of continuous curves. We believe that the same
sequences should converge to the Airy2 process—that is how the scaling constants
in those results were chosen. The missing necessary ingredient is the convergence of
several-pointmarginals of these curves (currently only one-point convergence is known).
It is possible that such several point-convergence will come from integrable formulas
for these models but we mention here an alternative approach. One could try to enhance
the arguments of this paper to show that the one-point convergence of the top line of
a Hall-Littlewood Gibbsian line ensemble implies tightness of the entire line ensemble
(not just the top curve). This was done in a continuous setting in [32,33]. If one achieves
the latter and [32, Conjecture 3.2] were proved, this would provide a means to prove
that the entire line ensemble corresponding to the ascending Hall-Littlewood process
converges to the Airy line ensemble. In particular, this would demonstrate the Airy2
process limit for the ASEP and S6V height functions too.
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Outline. The introductory section above provided some context for our work and a
general overview of the paper. In Sect. 2 we define the HAHP, S6Vmodel and the ASEP
and supply some known one-point convergence results for the latter. Section 3 introduces
the necessary definitions in the paper, states the main technical result—Theorem 3.8,
as well as the main results we prove about the HAHP, the S6V model and the ASEP in
Theorems 3.10, 3.13 and Corollary 3.11 respectively. Section 4 summarizes the primary
set of results we need to prove Theorem 3.8. In Sect. 5 we give the proof of Theorem
3.8 by reducing it to three key lemmas, whose proofs are presented in Sect. 6. In Sect. 7
we demonstrate that all subsequential limits of the tight sequence of Theorem 3.8 are
absolutely continuous with respect to Brownian bridges of appropriate variance. Section
8 is an appendix, which contains the proof of a strong coupling between random walks
and Brownian bridges, used in Sect. 4.

2. Three Stochastic Models

The results of our paper have applications to three different but related probabilistic
objects—the ascending Hall-Littlewood process, the stochastic six-vertex model in a
quadrant, and the ASEP. In this section we recall the definitions of these models, some
known one-point convergence results about them and explain how they are connected.

2.1. The ascending Hall-Littlewood process. In this section we briefly recall the defi-
nition of the Hall-Littlewood process (a special case of theMacdonald process [14]). We
will isolate a particular case that will be important for us, whichwe call the homogeneous
ascending Hall-Littlewood process (HAHP), and derive a certain one-point convergence
result for it. We start by fixing terminology and notation, using [51] as a main reference.

A partition is a sequence λ = (λ1, λ2, . . .) of non-negative integers such that λ1 ≥
λ2 ≥ · · · and all but finitely many elements are zero. We denote the set of all partitions
by Y. The length 	(λ) is the number of non-zero λi and the weight is given by |λ| =
λ1 + λ2 + · · · . There is a single partition of 0, which we denote by ∅. We write mi (λ)

for the multiplicity of i in λ, i.e. mi (λ) = |{ j ∈ N : λ j = i}|.
A Young diagram is a graphical representation of a partition λ, with λ1 left justified

boxes in the top row, λ2 in the second row and so on. In general, we do not distinguish
between a partition λ and the Young diagram representing it. The conjugate of a partition
λ is the partition λ′ whose Young diagram is the transpose of the diagram λ. In particular,
we have the formula λ′

i = |{ j ∈ N : λ j ≥ i}|.
Given two diagrams λ and μ such that μ ⊂ λ (as a collection of boxes), we call the

difference θ = λ − μ a skew Young diagram. A skew Young diagram θ is a horizontal
m-strip if θ containsm boxes and no two lie in the same column. If λ−μ is a horizontal
m-strip for some m ≥ 0, we write λ � μ. Some of these concepts are illustrated in
Fig. 3.

A plane partition is a two-dimensional array of nonnegative integers

π = (πi, j ), i, j = 0, 1, 2, . . . ,

such that πi, j ≥ max(πi, j+1, πi+1, j ) for all i, j ≥ 0 and the volume |π | =∑i, j≥0 πi, j is
finite. Alternatively, a plane partition is a Young diagram filled with positive integers that
form non-increasing rows and columns. A graphical representation of a plane partition
π is given by a 3-dimensional Young diagram, which can be viewed as the plot of the
function

(x, y) → π�x�,�y� x, y > 0.



Transversal Fluctuations of the ASEP 445

Fig. 3. The Young diagram λ = (5, 3, 3, 2, 2) and its transpose (not shown) λ′ = (5, 5, 3, 1, 1). The length
	(λ) = 5 and weight |λ| = 15. The Young diagram μ = (3, 3, 2, 2, 1) is such that μ ⊂ λ. The skew Young
diagram λ − μ is shown in black bold lines and is a horizontal 4-strip

Given a plane partition π we consider its diagonal slices λt for t ∈ Z, i.e. the sequences

λt = (πi,i+t ) for i ≥ max(0,−t).

One readily observes that λt are partitions and satisfy the following interlacing property

· · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · .

Conversely, any (terminating) sequence of partitions λt , satisfying the interlacing prop-
erty, defines a partition π in the obvious way. Concepts related to plane partitions are
illustrated in Fig. 2.

Fix t ∈ (0, 1). For partitions μ, λ ∈ Y we let Pλ/μ and Qλ/μ denote the (skew)
Hall-Littlewood symmetric functions with parameter t (see e.g. Chapter 3 in [51] for the
definition and properties of these functions). Let us fix M, N ∈ N and suppose (L,M)

is a pair of sequences of partitions L = {λk}N−1
k=−M+1 andM = {μk}N−2

k=−M+1. Define the
weight of such a pair as

W(L,M) :=
N−1∏

n=−M+1

Pλn/μn−1(xn)Qλn/μn (yn), (4)

where xi , yi ∈ [0, 1] for all i ∈ {−M + 1, . . . , N − 1} and we have μ−M = μN−1 = ∅.
From (5.8) and (5.8′) in Chapter III of [51] we have

Pλ/μ(x; t) = ψλ/μ(t)x |λ|−|μ| and Qλ/μ(x; t) = φλ/μ(t)x |λ|−|μ|, where

ψλ/μ(t) = 1λ�μ

∏
j∈J

(1 − tm j (μ)) and φλ/μ(t) = 1λ�μ

∏
i∈I

(1 − tmi (λ));

I = {i ∈ N : λ′
i+1 = μ′

i+1 and λ′
i > μ′

i } and J = { j ∈ N : λ′
j+1 > μ′

j+1 and λ′
j = μ′

j }.
(5)

Observe that the weights are non-negative (as t ∈ (0, 1)) and provided Z := ∑
L,M

W(L,M), is finite we have that P(L,M) := Z−1 · W(L,M) defines probability
measure on (L,M), which we call a Hall-Littlewood process.

Remark 2.1. One can generalize the approach we described above by considering the
Macdonald symmetric functions, instead of theHall-Littlewood ones, and by considering
more general (than single variable) specializations. The resulting object is called the
Macdonald process [14].
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In this paper we will consider the following variable specialization

xn+1 = 1, yn = 0 if n ≤ −1; xn+1 = 0, yn = ζ if 0 ≤ n, where ζ ∈ (0, 1) is fixed.
(6)

Using (5) and Proposition 2.4 in [14] we conclude that for the above variables we have

1. Z =
(
1−tζ
1−ζ

)NM
< ∞ so that the measure is well defined;

2. μn = λn for n < 0 and μn = λn+1 for n ≥ 0;
3. ∅ ≺ λ−M+1 · · · ≺ λ−1 ≺ λ0 � λ1 � · · · � λN−1 � ∅.

The last statement shows that L defines a plane partition π , whose base is contained in
an M × N rectangle (i.e. such that πi, j = 0 for i ≥ M or j ≥ N ). Denoting the set
of such plane partitions by P(M, N ) we see that the Hall-Littlewood process induces a
measure on P(M, N ).

Substituting Pλ/μ(x) and Qλ/μ(x) from (5) one arrives at

P(L) =
(
1 − ζ

1 − tζ

)NM

· ζ |λ0| · BL(t), where BL(t)

=
0∏

n=−M+1

ψλn/λn−1(t) ×
N∏

n=1

φλn−1/λn (t).

What is remarkable is that if π is the plane partition associated toL, then BL(t) = Aπ (t)
from (3), i.e. BL admits the geometric interpretation from Fig. 2. The latter is very far
from obvious from the definition of BL, since the functions φ and ψ are somewhat
involved, and we refer the reader to [76] where this identification was first discovered.

The above formulation aimed to reconcile the definition of the Hall-Littlewood pro-
cess in terms of symmetric functions with the geometric formulation given in Sect. 1.2.
In the remainder of the paper; however, we will be mostly interested in the projection
of this measure to the partitions λ−M+1, . . . , λ0. We perform a shift of the indices by
M and denote the latter by λ(1), . . . , λ(M). Using results from Section 2.2 in [14] we
have the following (equivalent) definition of the measure on these sequences, which we
isolate for future reference.

Definition 2.2. Let M, N ∈ N and ζ ∈ (0, 1). The homogeneous ascending Hall-
Littlewood process (HAHP) is a probability distribution on sequences of partitions ∅ ≺
λ(1) ≺ λ(2) ≺ · · · ≺ λ(M) such that

P
M,N
ζ (λ(1), . . . , λ(M)) =

(
1 − ζ

1 − tζ

)NM

×
M∏
i=1

Pλ(i)/λ(i−1)(1) × Qλ(M)(ζ
N ), (7)

where we use the convention that λ(0) = ∅ is the empty partition and ζ N denotes the
specialization of N variables to ζ . We also write E

M,N
ζ for the expectation with respect

to P
M,N
ζ .

We end this section with an important asymptotic statement for the measures P
M,N
ζ .
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Theorem 2.3. Let r > 0, ζ, t ∈ (0, 1) be given and fixμ ∈ (ζ, ζ−1). Suppose N , M ∈ N

are sufficiently large so that μN > (r + 2)N 2/3 and M > μN + (r + 2)N 2/3. Let λ′
1(·)

be sampled from P
M,N
ζ and set for x ∈ [−r − 1, r + 1]

f HL
N (x) := σ−1

μ N−1/3

(
λ′
1(μN + xN 2/3) − f1(μ)N − f ′

1(μ)xN 2/3 − x2

2
f ′′
1 (μ)N 1/3

)
, (8)

where we define λ′
1 at non-integer points by linear interpolation. The constants above

are given by σμ = (ζμ)1/6(1−√
ζμ)

2/3
(1−√

ζ/μ)
2/3

1−ζ
, f1(μ) = 1 − (1−√

ζμ)2

1−ζ
, f ′

1(μ) =√
ζ (1−√

ζμ)√
μ(1−ζ )

, f ′′
1 (μ) = −√

ζ

2μ3/2(1−ζ )
. Then for any x ∈ [−r − 1, r + 1] and y ∈ R we have

lim
N→∞ P

M,N
ζ

(
f HL
N (x) ≤ y

)
= FGUE (y), (9)

where FGUE is the GUE Tracy–Widom distribution [71].

Remark 2.4. Owing to the recent work in [11], the result of Theorem 2.3 can be estab-
lished by reduction to the Schur process (corresponding to t = 0). For the Schur process
a proof of the convergence in (9) for the case s = 0 can be found in [11, Theorem 6.1].
For the sake of completeness we will present a more direct proof below, relying on ideas
from [16,36], dating back to [14].

Proof. Fix x ∈ [−r − 1, r + 1] and y ∈ R throughout. For clarity we split the proof into
several steps.

Step 1 From Section 2.2 in [14] we know that for 1 ≤ K ≤ M we have

P
M,N
ζ (λ(K ) = ν) = P

K ,N
ζ (λ(K ) = ν) =

(
1 − ζ

1 − tζ

)K N

Pν(1
K ) · Qν(ζ

N ),

Setting λ′
1 = λ′

1(K ), we have as a consequence of Proposition 3.5 in [36] that if φ ∈
C\R

+ then

E
M,N
ζ

[
1

(φt1−λ′
1; t)∞

]
= det(I + K K ,N

φ )L2(Cρ). (10)

The contour Cρ is the positively oriented circle of radius ρ ∈ (ζ t−1, t−1), centered at
0, and the operator K K ,N

φ is defined in terms of its integral kernel

K K ,N
φ (w,w′) = 1

2πι

∫ 1/2+ι∞

1/2−ι∞
ds�(−s)�(1 + s)(−φ)sgK ,N

w,w′(t s),
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where � is the Euler gamma function and

gK ,N
w,w′(t s) = 1

wt−s − w′

(
1 − ζ(wt)−1

1 − ζ(wt)−1t s

)K (
1 − (wt)t−s

1 − (wt)

)N

.

We also recall that (x; t)∞ =∏∞
i=1(1 − xti−1) is the t-Pochhammer symbol and

det(I + K K ,N
φ )L2(Cρ) = 1 +

∞∑
n=1

1

n!
∫

Cρ

· · ·
∫

Cρ

det
[
K K ,N

φ (wi , w j )
]n
i, j=1

n∏
i=1

dwi

is the Fredholm determinant of the kernel K K ,N
φ (see Section 2 in [36] for details).

Step 2 For the remainder of the proof we set

K = μN + xN 2/3 + O(1) and φ(N )

= (−t−1) × t f1(μ)N+ f ′
1(μ)xN2/3+(1/2) f ′′

1 (μ)x2N1/3+yσμ,

where σμ and f (μ) are as in the statement of the theorem. Our goal in this step is to
show that

lim
N→∞ det(I + K K ,N

φ )L2(Cρ) = FGUE (y). (11)

We use the following change of variables and functional identities

wi → −1

w̃i
, ρ → ρ̃−1, �(−s)�(1 + s) = π

sin(πs)

to rewrite

det(I + K K ,N
φ )L2(Cρ) = det(I + K̃ K ,N

φ )L2(Cρ̃ ).

In the above we have that

K̃ K ,N
φ (w,w′) = 1

2ι

∫ 1/2+ι∞

1/2−ι∞
t−m̃νK+yσ̃νK 1/3

sin(πs)

g(w̃; ζ, νK , K )

g(t sw̃; ζ, νK , K )
· ds

w̃t s − w̃′ , where

g(w̃; b1, b2, x, t) =
(
1 + zt−1ζ

)x ( 1

1 + t−1 z̃

)t

,

σ̃ν = ζ 1/2ν−1/6

1 − ζ

(
(1 −√νζ )(

√
ν/ζ − 1)

)2/3

m̃ν = (
√

ν − √
ζ )2

1 − ζ
, and ν = μ−1 − xμ−5/3K−1/3

+
2x2

3
μ−7/3K−2/3 + O(K−1). (12)

The validity of (11) is now equivalent to Proposition 5.3 in [16]. To make the connection
clearer we reconcile the notation from equation (65) in that paper with our own below:

y ↔ h, t ↔ τ, ρ̃ ↔ r, K ↔ L , b1 ↔ 1 − ζ

1 − tζ
, b2 ↔ t

1 − ζ

1 − tζ
, ζ ↔ κ.
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We remark that in [16] the variable ν is constant, while in our case it changes with
K—this does not affect the validity of Proposition 5.3 and the same arguments can be
repeated verbatim.

Step 3 Combining (10) and (11) we see that

lim
N→∞ E

M,N
ζ [gN (XN − y)] = FGUE (y), where gN (z) = 1

(−t−N1/3z; t)∞
and

XN = σ−1
μ N−1/3(λ′

1(μN + xN 2/3) − f1(μ)N − f ′
1(μ)xN 2/3 − (1/2) f ′′

1 (μ)x2N 1/3).

(13)

Asdiscussed in the proof ofTheorem5.1 in [16],wehave that gN (z) satisfy the conditions
of Lemma 5.2 of the same paper, which implies that XN weakly converges to a random
variable X such that P(X ≤ y) = FGUE (y). This suffices for the proof. ��
2.2. The stochastic six-vertex model in a quadrant. In this section we recall the def-
inition of a stochastic inhomogeneous six-vertex model in a quadrant, considered in
[16,24,60]. There are several (equivalent) ways to define the model and we will follow
Section 1.1.2 in [1]. We also refer the reader to Section 1 of [24] for the definition of a
more general higher spin version of this model.

A six-vertex directed path ensemble is a family of up-right directed paths drawn in
the first quadrant Z

2≥1 of the square lattice, such that all the paths start from a left-to-
right arrow entering each of the points {(1,m) : m ≥ 1} on the left boundary (no path
enters from the bottom boundary) and no two paths share any horizontal or vertical edge
(but common vertices are allowed); see Fig. 4. In particular, each vertex has six possible
arrow configurations, presented in Fig. 5.

The stochastic inhomogeneous six-vertex model is a probability distribution P on
six-vertex directed path ensembles, depending on a set of parameters {ξx }x≥1, {uy}y≥1
and q, which satisfy

Fig. 4. The left picture shows an example of a six-vertex directed path ensemble. The right one shows an
element in Pn for n = 6. The vertices on the dashed line belong to Dn and are given half of an arrow
configuration for a directed path ensemble drawn from Pn . Vertices in Dn with zero (two) incoming arrows
can be completed in a unique way—by having zero (two) outgoing arrows. Compare vertices (4, 2) in both
pictures, also vertices (1, 5). Vertices in Dn with a single incoming arrow can be completed by having exactly
one outgoing arrow, which can go either to the right or up. Compare vertices (5, 1) in both pictures, also
vertices (2, 4)
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Fig. 5. The top row shows the six possible arrow configurations at a vertex (x, y). The bottom row shows the
probabilities of top-right completion, given the bottom-left half of a configuration. The probabilities b1(x, y)
and b2(x, y) depend on ξx , uy and q and are given in (15)

q ∈ (0, 1), ξx > 0, uy > 0, ξxuy > q−1/2 for all x, y ≥ 1. (14)

It is defined as the infinite-volume limit of a sequence of probability measures Pn ,
described below.

For n ≥ 1 we consider the triangular regions Tn = {(x, y) ∈ Z
2≥1 : x + y ≤ n} and let

Pn denote the set of six-vertex directed path ensembles whose vertices are all contained
in Tn . By convention, the set P1 consists of a single empty ensemble. We construct a
consistent family of probability distributions Pn on Pn (in the sense that the restriction
of a random element sampled from Pn+1 to Tn has law Pn) by induction on n, starting
from P1—the delta mass at the single element in P1.

For any integer n ≥ 1 we define Pn+1 from Pn in the following Markovian way.
Start by sampling a directed path ensemble En on Tn according to Pn . This gives arrow
configurations (of the type presented in Fig. 5) to all vertices in Tn−1. In addition, each
vertex in Dn = {(x, y) ∈ Z

2≥1 : x + y = n} is given “half” of an arrow configuration,
meaning that the arrows entering the vertex from the bottom or left are specified, but not
those leaving from the top or right; see Fig. 4.

To extend En to a path ensemble on Tn+1, we must “complete” the configurations, i.e.
specify the top and right arrows, for the vertices on Dn . Any half-configuration at a vertex
(x, y) can be completed in at most two ways; selecting between these completions is
done independently for each vertex in Dn at random according to the probabilities given
in the second row of Fig. 5, where the probabilities b1(x, y) and b2(x, y) are defined as

b1(x, y) = 1 − q1/2ξxuy

1 − q−1/2ξxuy
b2(x, y) = q−1 − q−1/2ξxuy

1 − q−1/2ξxuy
. (15)

In this way we obtain a random ensemble En+1 in Pn+1 and we denote its law by Pn+1.
One readily verifies that the distributions Pn are consistent and then we define P =
limn→∞ Pn .

A particular case that will be of interest to us is setting ξx = ξ and uy = u for all
x ≥ 1 and y ≥ 1, where ξ, u > 0 are such that ξu > q−1/2. We refer to this model
as the homogeneous stochastic six-vertex model and denote the corresponding measure
as Pξ,u,q . Let us remark that (upto a reflection with respect to the diagonal x = y)
this model was investigated in [41] and much more recently in [16] under the name
“stochastic six-vertex model”.

Given a six-vertex directed path ensemble on Z
2≥1, we define the height function

h(x, y) as the number of up-right paths, which intersect the horizontal line through y at
or to the right of x . We end this section by recalling the following important connection
between the height function of the homogeneous stochastic six-vertex model and the
homogeneous ascending Hall-Littewood process. The following result is a special case
of Theorem 4.1 in [13] and plays a central role in our arguments.
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Theorem 2.5 (Theorem 4.1 in [13]). Let ξ, u, q > 0 be given such that q ∈ (0, 1),
ζ = ξ−1u−1q−1/2 < 1 and fixμ ∈ (ζ, ζ−1). Let h(x, y) denote height function sampled
from Pξ,u,q and ∅ ≺ λ(1) ≺ · · · ≺ λ(M) be distributed as P

M,N
ζ from Definition 2.2,

where t = q. Then we have the following equality in distribution of random vectors

(
N − λ′

1(0), . . . , N − λ′
1(M)

) d= (h(1, N ), . . . , h(M + 1, N )) ,

where by convention λ′
1(0) = 0.

2.3. The asymmetric simple exclusion process. The asymmetric simple exclusion pro-
cess (ASEP) is a continuous time Markov process, which was introduced in the mathe-
matical community by Spitzer in [70]. In this paper we consider ASEP started from the
so-called step initial condition, which can be described as follows. Particles are initially
(at time 0) placed on Z so that there is a particle at each location in Z≤0 and all positions
in Z≥1 are vacant. There are two exponential clocks, one with rate L and one with rate
R, associated to each particle; we assume that R > L ≥ 0 and that all clocks are inde-
pendent. When some particle’s left clock rings, it attempts to jump to the left by one;
similarly when its right clock rings, it attempts to jump to the right by one. If the adjacent
site in the direction of the jump is unoccupied, the jump is performed; otherwise it is
not. For a more careful description of the model, as well as a proper definition of this
dynamics with infinitely many particles, we refer the reader to [50].

Given a particle configuration onZ, we define the height function h(x) as the number
of particles at or to the right of the position x , when x ∈ Z. For non-integral x , we define
h(x) by linear interpolation of h(�x�) and h(�x�). For R > L ≥ 0 and T ≥ 0 we denote
by P

T
L ,R the law of the height function h of the random particle configuration sampled

from the ASEP (started from the step initial condition) with parameters R and L after
time T .

We isolate the following one-point convergence result for future use.

Theorem 2.6. Suppose r > 0, R = 1, L ∈ (0, 1), γ = R − L and fix α ∈ (0, 1). Let
h(x) denote height function sampled from P

N/γ

L ,R and for s ∈ [−r − 1, r + 1] set

f ASE P
N (s) = σ−1

α N−1/3
(
f3(α)N + f ′

3(α)sN 2/3 + (1/2)s2 f ′′
3 (α)N 1/3

−h
(
αN + sN 2/3

))
, (16)

where we define h(·) at non-integer points by linear interpolation. The constants above
are given by σα = 2−4/3(1 − α2)2/3, f3(α) = (1−α)2

4 , f ′
3(α) = − 1−α

2 , f ′′
3 (α) = 1

2 .
Then for any s ∈ [−r − 1, r + 1] and y ∈ R we have

lim
N→∞ P

N/γ

L ,R

(
f ASE P
N (s) ≤ y

)
= FGUE (y), (17)

where FGUE is the GUE Tracy–Widom distribution [71].

Proof. Follows immediately from the celebrated theorem of Tracy–Widom [72, Theo-
rem 3]. ��

We end this section with the following connection between the height function of the
homogeneous stochastic six-vertex model and the height function of the ASEP started
from step initial condition. This connectionwas observed in [16,41] and carefully proved
for general initial conditions in [2].
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Theorem 2.7 (Theorem 1 in [2]) Let ξ(N ), u(N ), q > 0 be given such that q ∈ (0, 1),
ζ(N ) = ξ(N )−1u(N )−1q−1/2 < 1 and

b1(N ) = 1 − q1/2ξ(N )u(N )

1 − q−1/2ξ(N )u(N )
= qN−1 + O(N−2)

b2(N ) = q−1 − q−1/2ξ(N )u(N )

1 − q−1/2ξ(N )u(N )
= N−1 + O(N−2).

In addition, fix K ∈ N, T > 0 and set NT = �N · T �. Let hN (x, y) denote height
function sampled from Pξ(N ),u(N ),q and h have law P

T
L ,R, where R = 1 and L = q.

Then we have the following convergence in distribution of random vectors

(hN (NT − K + 1, NT ), . . . , hN (NT + K + 1, NT ))

�⇒ (h(−K + 1), . . . , h(K + 1)) as N → ∞.

3. Definitions, Notations and Main Results

In this section we introduce the necessary definitions and notations that will be used
in the paper as well as our main technical result—Theorem 3.8 below. Afterwards we
give several applications of Theorem 3.8 to the three models discussed in the previous
section.

3.1. Discrete line ensembles and the Hall-Littlewood Gibbs property. In this section
we introduce the concept of a discrete line ensemble and the Hall-Littlewood Gibbs
property. Subsequently, we state the main result of the paper.

Definition 3.1. Let N ∈ N, T0, T1 ∈ Z with T0 < T1 and denote � = {1, . . . , N },
�T0, T1� = {T0, T0 + 1, . . . , T1}. Consider the set Y of functions f : � × �T0, T1� → Z

such that f ( j, i + 1) − f ( j, i) ∈ {0, 1} when j ∈ � and i ∈ �T0, T1 − 1� and let D
denote the discrete topology on Y . We call elements in Y up-right paths.

A � × �T0, T1�-indexed (up-right) discrete line ensemble L is a random variable
defined on a probability space (�,B, P), taking values in Y such that L is a (B,D)-
measurable function.

Remark 3.2. Notice that the definition of an up-right path we use here differs from the
one in the six-vertex model. Namely, for the six-vertex model an up-right path is one that
moves either to the right or up, while in discrete line ensembles up-right paths move to
the right or with slope 1. This should cause no confusion as it will be clear from context,
which paths we mean.

We think of discrete line ensembles is as random collections of up-right paths on the
integer lattice, indexed by� (see Fig. 1). Note that one can view a path L on �T0, T1�×Z

as a continuous curve by linearly interpolating the points (i, L(i)). This allows us to
define (L(ω))(i, s) for non-integer s ∈ [T0, T1] and to view discrete line ensembles as
line ensembles in the sense of [32]. In particular, we can think of L(s), s ∈ [T0, T1] as a
random variable in (C[T0, T1], C)—the space of continuous functions on [T0, T1] with
the uniform topology and Borel σ -algebra C (see e.g. Chapter 7 in [10]).
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Wewill often slightly abuse notation and writeL : �×�T0, T1� → Z, even thoughL
is not such a function, but ratherL(ω) forω ∈ �. Furthermorewewrite Li = (L(ω))(i, ·)
for the index i ∈ � path.

In what follows we fix a parameter t ∈ (0, 1) and make several definitions. Suppose
we are given three up-right paths f, g, L on �T0, T1� × Z. Given a (finite) subset S ⊂
�T0 + 1, T1� we define the following weight function

Wt (T0, T1, L , f, g; S) =
∏
i∈S

(
1 − 1{�+(i−1)−�+(i)=1} · t�+(i−1)

)

×
∏
i∈S

(
1 − 1{�−(i−1)−�−(i)=1} · t�−(i−1)

)
, (18)

if f (i) ≥ L(i) ≥ g(i) for i ∈ S and 0 otherwise. In the above �+(s) = f (s) − L(s)
and �−(s) = L(s) − g(s). In words (18) means that we follow the paths f, g, L from
left to right and any time f − L (resp. L − g) decreases from �+ to �+ − 1 (resp. �−
to �− − 1) at a location in the set S we multiply by a factor of 1− t�

+
(resp. 1− t�

−
).

Observe that by our assumption on t we have that Wt ∈ (0, 1] unless L(i) > f (i) or
g(i) > L(i) for some i ∈ S, in which case the weight is 0. Typically S will be a finite
union of disjoint intervals (i.e. consecutive integer points).

Remark 3.3. Observe that (18)makes sense even if f = ∞. In the latter case as t ∈ (0, 1)
the first product in (18) becomes 1—this is themost commonwayWt (T0, T1, L , f, g; S)

appears in the text.

Example. Take the left sample in Fig. 1. If S = {2, . . . , 7} then we have Wt (1, 7, L2,

L1, L3; S) = (1 − t)(1 − t2)(1 − t3) and Wt (1, 7, L1,∞, L2; S) = (1 − t3). If S =
{3, . . . , 5} then Wt (1, 7, L2, L1, L3; S) = (1 − t2) and Wt (1, 7, L1,∞, L2; S) = 1. If
we take the right sample in Fig. 1 with S = {2, . . . , 7} then we have Wt (1, 7, L2, L1,

L3; S) = 0 and Wt (1, 7, L1,∞, L2; S) = (1 − t4).
Let ti , zi ∈ Z for i = 1, 2 be given such that t1 < t2 and 0 ≤ z2 − z1 ≤ t2 − t1.

Denote by�(t1, t2; z1, z2) the collection of up-right paths that start from (t1, z1) and end
at (t2, z2), by P

t1,t2;z1,z2
f ree the uniform distribution on �(t1, t2; z1, z2) and by E

t1,t2;z1,z2
f ree

the expectation with respect to this measure. One thinks of the distribution P
t1,t2;z1,z2
f ree

as the law of a simple random walk with i.i.d. Bernoulli increments with parameter
p ∈ (0, 1) that starts from z1 at time t1 and is conditioned to end in z2 at time t2. By our
assumptions on the parameters the state space is non-empty.

The key definition of this section is the following.

Definition 3.4. Fix N ≥ 2, t ∈ (0, 1), two integers T0 < T1 and set � = {1, . . . , N }.
Suppose P is a probability distribution on � × �T0, T1�-indexed discrete line ensembles
L = (L1, . . . , LN ) and adopt the convention L0 = ∞. We say that P satisfies the
Hall-Littlewood Gibbs property with parameter t for a subset S ⊂ �T0 + 1, T1� if the
following holds. Fix an arbitrary index i ∈ {1, . . . , N − 1} and let 	i−1, 	i , 	i+1 be three
paths drawn in {(r, z) ∈ Z

2 : T0 ≤ r ≤ T1} such that P(Li−1 = 	i−1, Li+1 = 	i+1) > 0
(if i = 1 we set 	0 = ∞). Then for any path 	 such that 	(T0) = a = 	i (T0) and
	(T1) = b = 	i (T1) we have

P(Li = 	|Li (T0) = a, Li (T1) = b, Li−1 = 	i−1, Li+1 = 	i+1)

= Wt (T0, T1, 	, 	i−1, 	i+1; S)

Zt (T0, T1, a, b, 	i−1, 	i+1; S)
, (19)
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where Zt (T0, T1, a, b, 	i−1, 	i+1; S) is a normalization constant. We call P
T0,T1,a,b
S

(·|	i−1, 	i+1) the measure in (19).

Remark 3.5. Definition 3.4 is equivalent to the following: the law of Li , conditioned
on its endpoints a = Li (T0) and b = Li (T1), Li−1 = 	i−1 and Li+1 = 	i+1 has the
Radon-Nikodym derivative

dP

dP
T0,T1;a,b
f ree

(	) = Wt (T0, T1, 	, 	i−1, 	i+1; S)

Zt (T0, T1, a, b, 	i−1, 	i+1; S)
.

With the above reformulation we get that

Zt (T0, T1, a, b, 	i−1, 	i+1; S) = E
T0,T1;a,b
f ree

[
Wt (T0, T1, 	, 	i−1, 	i+1; S)

]
,

where the expectation is over 	, distributed according to P
T0,T1;a,b
f ree .

If a measure P satisfies the Hall-Littlewood Gibbs property, it enjoys the following
sampling property. Start by (jointly) sampling Li (T0), Li (T1) and L j (r) for j �= i and
r ∈ �T0, T1� according to P (i.e. according to the restriction of P to these random
variables). Set a = Li (T0) and b = Li (T1) and let LN

i , N ∈ N be a sequence of

i.i.d. up-right paths distributed according to P
T0,T1;a,b
f ree . Let U be a uniform random

variable on (0, 1), which is independent of all else. For each N ∈ N we check if
Wt (T0, T1, LN

i , Li−1, Li+1; S) > U and set Q to be the minimal index N for which
the inequality holds. Observe that Q is a geometric random variable with parameter
Zt (T0, T1, a, b, Li−1, Li+1; S), which we call the acceptance probability. The above
Radon-Nikodym derivative formulation implies that the random ensemble of up-right
paths (L1, . . . , Li−1, L

Q
i , Li+1, . . . , LN ) has law P.

Remark 3.6. Wemention that the resampling property of Remark 3.5 for a {1, . . . , N }×
�T0, T1�-indexed line ensemble {Li }Ni=1 only holds for the first N −1 lines. The latter, in
particular, implies that forM ≤ N , we have that the induced law on {Li }Mi=1 also satisfies
the Hall-Littlewood Gibbs property with parameter t and subset S as an {1, . . . , M} ×
�T0, T1�-indexed line ensemble.

In this paper, we will be primarily concerned with the case when � = {1, 2} and the
discrete line ensemble is non-crossing, meaning that L1(r) ≥ L2(r) for all r ∈ �T0, T1�.
For brevity we will call {1, 2} × �T0, T1�-indexed non-crossing discrete line ensembles
simple. These line ensembles will typically arise by restricting a discrete line ensemble
with many lines to the top two lines. If the original line ensemble satisfies a Hall-
Littlewood Gibbs property with parameter t and set S, the same will be true for the
restriction to the simple line ensemble at the top (see Remark 3.6). To simplify notation,
whenever we are working with a simple discrete line ensemble we will omit the i − 1
index from all of the earlier formulas and notation, as L0, 	0 are deterministically ∞.

In the remainder of this section we describe a general framework that can be used to
prove tightness for the top curve of a sequence of simple discrete line ensembles.

Definition 3.7. Fix t ∈ (0, 1), α > 0, p ∈ (0, 1) and T > 0. Suppose we are given a
sequence {TN }∞N=1 with TN ∈ N and that {LN }∞N=1, L

N = (LN
1 , LN

2 ) is a sequence of
simple discrete line ensembles on �−TN , TN �. We call the sequence (α, p, T )-good if
there exists N0(α, p, T ) such that for N ≥ N0 we have
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• TN > T Nα and LN satisfies the Hall-Littlewood Gibbs property with parameter t
for S = �−TN + 1, TN �;

• for each s ∈ [−T, T ] the sequence of random variables {N−α/2(LN
1 (sNα)− psNα)}

is tight (i.e. we have one-point tightness of the top curves).

The main technical result of the paper is as follows.

Theorem 3.8. Fix α, r > 0 and p ∈ (0, 1) and let LN = (LN
1 , LN

2 ) be an (α, p, r + 1)-
good sequence. For N ≥ N0(α, p, r + 1) (as in Definition 3.7) set

fN (s) = N−α/2(LN
1 (sNα) − psNα), for s ∈ [−r, r ]

and let PN be the law of fN (s) as a random variable in (C[−r, r ], C). Then the sequence
PN is tight.

Roughly, Theorem 3.8 states that if a process can be viewed as the top curve of a
simple discrete line ensemble and under some shift and scaling the process’s one-point
marginals are tight, then under the same shift and scaling the trajectory of the process
is tight in the space of continuous curves. We will show later in Theorem 7.3 that any
subsequential limit of the measures PN in Theorem 3.8 is absolutely continuous with
respect to a Brownian bridge of a certain variance—see Sect. 7 for the details. We also
want to remark that both Theorem 3.8 and Theorem 7.3 do not depend strongly on any
particular structure of the Hall-Littlewood Gibbs property. Indeed, the main ingredient
that is used in deriving these results is a lower bound on the acceptance probability
Zt (T0, T1, a, b, L2; S) (see Remark 3.5), which is the content of Proposition 5.1. It is
our belief that our arguments can be extended to other discrete Gibbs properties without
significant modifications.

3.2. Applications to the three models. In this section we use Theorem 3.8 to prove our
main results for the three models in Sect. 2, given in Theorems 3.10, 3.13 and Corollary
3.11 below. In order to apply Theorem 3.8 we will need to rephrase the ascending Hall-
Littlewood process and the ASEP in the language of discrete line ensembles, to which
we first turn.

Suppose we are given a sequence ∅ = λ(0) ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(M). The
condition λ(i) ≺ λ(i + 1) is equivalent to λ′

j (i + 1) − λ′
j (i) ∈ {0, 1} for any j ≥ 1. The

latter implies that we can view the sequence ∅ = λ(0) ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(M)

as a collection of up-right paths {λ′
j (·)}Nj=1 drawn in the sector {0, . . . , M} × Z (see

Fig. 6). This allows us to interpret the ascending Hall-Littlewood process as a probability
distribution of {1, . . . , N } × �0, M�-indexed discrete line ensembles in the sense of
Definition 3.1, where L j (i) = λ′

j (i) for i = 0, . . . , M and j = 1, . . . , N .
The key observation we make is that if ∅ = λ(0) ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(M)

is distributed according to P
M,N
ζ from Definition 2.2, then the discrete line ensemble

L j (i) = λ′
j (i) for i = 0, . . . , M and j = 1, . . . , N satisfies the Hall-Littlewood Gibbs

property (this is the origin of the name of this property). We isolate this in the following
proposition.

Proposition 3.9. Fix M, N ∈ N and ζ, t ∈ (0, 1). Let ∅ = λ(0) ≺ λ(1) ≺ λ(2) ≺
· · · ≺ λ(M) be sampled from P

M,N
ζ (see Definition 2.2). Then

(
λ′
1(·), λ′

2(·), . . . , λ′
N (·))

satisfies the Hall-Littlewood Gibbs property with parameter t for S = �1, . . . , M�.
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Fig. 6. The up-right paths corresponding to λ′
1(i), λ

′
2(i), λ

′
3(i), for 0 ≤ i ≤ 9, where λ(i) is the i-the element

in the sequence ∅ ≺ (1) ≺ (2) ≺ (2) ≺ (4) ≺ (4, 2) ≺ (5, 2, 2) ≺ (5, 3, 2) ≺ (8, 5, 2, 1)

Proof. By Definition 2.2 and (5) we have

P
M,N
ζ (λ(1), . . . , λ(M)) = Qλ(M)(ζ

N ) ·
(
1 − ζ

1 − tζ

)NM

·
M∏
i=1

ψλ(i)/λ(i−1)(t), where

ψλ/μ(t) = 1{λ�μ} ·
∞∏
j=1

(
1 − 1{�(μ, j)−�(λ, j)=1}t�(μ, j)

)
, and �(μ, j) = μ′

j − μ′
j+1.

(20)

The above formula is readily seen to imply (19). ��
With the help of Proposition 3.9we deduce the following results for the homogeneous

ascending Hall-Littlewood process and stochastic six-vertex model.

Theorem 3.10. Assume the same notation as in Theorem 2.3. If PN denotes the law of
f HL
N (·) as a random variable in (C[−r, r ], C), then the sequence PN is tight.

Proof. Consider the {1, 2} × �−TN , TN �-indexed simple discrete line ensemble with
TN = �(r + 2)N 2/3�, given by

(LN
1 (i), LN

2 (i)) = (λ′
1(�μN� + i) − � f1(μ)N�, λ′

2(�μN� + i) − � f1(μ)N�) .
It follows from Proposition 3.9 that (LN

1 , LN
2 ) is a simple discrete line ensemble, which

satisfies the Hall-Littlewood Gibbs property with parameter t for S = �−TN + 1, TN �.
In addition, by Theorem 2.3 we know that for each s ∈ [−r − 1, r + 1] the sequence
of random variables N−1/3

(
LN
1 (sN 2/3) − sN 2/3 f ′

1(μ)
)
is tight. The latter statements

imply that the sequence (LN
1 , LN

2 ) is (2/3, f ′
1(μ), r +1)-good. It follows from Theorem

3.8 that if

gHL
N (s) = N−1/3

(
λ′
1(�μN� + sN 2/3) − � f1(μ)N� − f ′

1(μ)sN 2/3
)

, for s ∈ [−r, r ],
then gHL

N (·) form a tight sequence of random variables in (C[−r, r ], C), proving the
theorem. ��
Corollary 3.11. Let ξ, u, q, r > 0 be given such that q ∈ (0, 1), ζ = ξ−1u−1q−1/2 < 1
and fix μ ∈ (ζ, ζ−1). Let h(x, y) denote height function sampled from Pξ,u,q and set for
s ∈ [−r, r ]

f SVN (s) = σ−1
μ N−1/3

(
f2(μ)N + f ′

2(μ)sN 2/3 + (1/2)s2 f ′′
2 (μ)N 1/3

− h(1 + μN + sN 2/3, N )
)

, (21)
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where we define h(·, N ) at non-integer points by linear interpolation. The constants

above are given by σμ = (ζμ)1/6(1−√
ζμ)

2/3
(1−√

ζ/μ)
2/3

1−ζ
, f2(μ) = (1−√

ζμ)2

1−ζ
, f ′

2(μ) =
−

√
ζ (1−√

ζμ)√
μ(1−ζ )

, f ′′
2 (μ) =

√
ζ

2μ3/2(1−ζ )
. If PN denotes the law of f SVN (s) as a random

variable in (C[−r, r ], C), then the sequence PN is tight.

Proof. From Theorem 2.5 we know that the law of f HL
N as in the statement of Theorem

3.10 is the same as f SVN . The result now follows from Theorem 3.10. ��
Before we apply Theorem 3.8 to the ASEP, we need to rephrase the latter in the

language of discrete line ensembles that satisfy the Hall-Littlewood Gibbs property. We
achieve this in the following proposition, whose proof is deferred to the next section.

Proposition 3.12. Suppose R = 1, L = t ∈ (0, 1) are given, fix K1, K2 ∈ N, T > 0 and
set� = {1, . . . , K1}. Then there exists a probability space, on which a� × �−K2, K2�-
indexed discrete line ensemble (L1, L2, . . . , LK1) is defined such that

• the law of (L1, L2, . . . , LK1) satisfies the Hall-Littlewood Gibbs property with pa-
rameter t for the set S = �−K2 + 1, K2�;

• the law of (L1(−K2), . . . , L1(K2)) is the same as (−h(−K2 + 1), . . . ,−h(K2 + 1)),
viewed as random vectors in R

2K2+1, where h has law P
T
L ,R (see Sect.2.3).

With the help of Proposition 3.12 we deduce the following results for the ASEP.

Theorem 3.13. Assume the same notation as in Theorem 2.6. If PN denotes the law of
f ASE P
N (s) as a random variable in (C[−r, r ], C), then the sequence PN is tight.

Proof. Consider the {1, 2} × �−TN , TN �-indexed simple discrete line ensemble with
TN = �(r + 2)N 2/3�, given by

(L̃ N
1 (i), L̃ N

2 (i)) = (L1(�αN� + i) + � f3(α)N�, L2(�αN� + i) + � f3(α)N�) ,

with (L1, L2) defined as in Proposition 3.12with K1 = 2, K2 = αN+TN and T = N/γ .
By construction, we have that (L̃ N

1 , L̃ N
2 ) satisfies the Hall-Littlewood Gibbs property

with parameter t for S = �−TN +1, TN �. In addition, by Theorem 2.6 and the fact that L1
has the same law as−h, we know that for each s ∈ [−r−1, r+1] the sequence of random
variables N−1/3

(
L̃ N
1 (sN 2/3) + sN 2/3 f ′

3(α)
)
is tight. The latter statements imply that

the sequence (L̃ N
1 , L̃ N

2 ) is
(
2/3,− f ′

3(α), r + 1
)
-good. It follows from Theorem 3.8 that

if

gASEP
N (s) = N−1/3

(
L1(�αN� + sN 2/3) + � f3(α)N� + f ′

3(α)sN 2/3
)

, for s ∈ [−r, r ],

then gASEP
N (·) form a tight sequence of random variables in (C[−r, r ], C), proving the

theorem. ��
Remark 3.14. In Corollary 7.4 we show that any subsequential limit of either of the
sequences f HL

N , f SVN and f ASE P
N as in the text above, when shifted by an appropriate

parabola, is absolutely continuous with respect to a Brownian bridge of appropriate
variance. This, in particular, implies that the subsequential limits of these random curves
are non-trivial.
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3.3. Proof of Proposition 3.12. In this section we present the proof of Proposition
3.12, which we split into several steps for clarity. Before we go into the main argument
let us briefly outline the main ideas of the proof. We begin by considering a particular
sequence of {1, . . . , K1} × �−K2, K2�-indexed discrete line ensemble (�N

1 , . . . , �N
K1

).
The latter are defined through appropriately truncated and shifted discrete line ensembles
associated to ascending Hall-Littlewood processes with parameters ζ(N ) such that ζ(N )

converges to 1. In Step 1 below we carefully explain the construction of (�N
1 , . . . , �N

K1
)

and assume that the sequence is tight and that (�N
1 (−K2), . . . , �

N
1 (K2)) weakly con-

verges to (−h(−K2 + 1), . . . ,−h(K2 + 1)). Using the tightness assumption we can
pick some subsequential limit (�∞

1 , . . . , �∞
K1

) and show it satisfies the conditions of

the proposition. The weak convergence of (�N
1 (−K2), . . . , �

N
1 (K2)) to (−h(−K2 +

1), . . . ,−h(K2 + 1)) is proved in Step 2 and it relies on Theorems 2.5 and 2.7. The
tightness of (�N

1 , . . . , �N
K1

) is demonstrated in Steps 3, 4, 5 and 6, by combining the

already known tightness of �N
1 and the Hall-Littlewood Gibbs property.

Step 1 For each N ∈ N consider the homogeneous ascending Hall-Littlewood process
P
M,NT
ζ(N ) where NT = �N · T �, ζ(N ) = 1 − 1−t

N and M = NT + K . For N such that

NT ≥ K1 we let (�N
1 , . . . , �N

K1
) be the�×�−K2, K2�-indexed discrete line ensemble,

given by

�N
j (i) = λ′

j (i + NT ) − NT , for i ∈ {−K2,−K2 + 1, . . . , K2} and j ∈ {1, . . . , K1}
(22)

where (λ′
1(·), . . . , λ′

K1
(·)) is sampled from P

M,NT
ζ(N ) . We isolate the following claims.

Claims

• The sequence (�N
1 , . . . , �N

K1
) is tight as random vectors in Z

K1·(2K2+1)

• The sequence (�N
1 (−K2), . . . , �

N
1 (K2)) weakly converges to (−h(−K2 + 1), . . . ,

−h(K2 + 1)) as random vectors in Z
2K2+1 as N → ∞.

The latter statements are proved in the steps below. In what follows we assume their
validity and finish the proof of the proposition.

Let (�∞
1 , . . . , �∞

K1
) be any subsequential limit of (�N

1 , . . . , �N
K1

) and assume that
Nk is an increasing sequence of integers such that

(�
Nk
1 , . . . , �

Nk
K1

) �⇒ (�∞
1 , . . . , �∞

K1
) as k → ∞, (23)

We know (�
Nk
1 , . . . , �

Nk
K1

) is a � × �−K2, K2�-indexed discrete line ensemble, which
by Proposition 3.9 satisfies the Hall-Littlewood Gibbs property with parameter t on
S and we conclude the same is true for (�∞

1 , . . . , �∞
K1

). By our earlier assumptions
(�∞

1 (−K2), . . . , �
∞
1 (K2)) has the same law as (−h(−K2 + 1), . . . ,−h(K2 + 1)) and

so (�∞
1 , . . . , �∞

K1
) satisfies the conditions of the proposition.

Step 2 We show that (�N
1 (−K1), . . . , �

N
1 (K1)) weakly converges to (−h(−K1 +

1), . . . ,−h(K1 + 1)). We put q = t , ξ(N ) = t1/2 and u = t−1ζ−1. Theorem 2.5
implies the following distributional equality

(�N
1 (−K2), . . . , �

N
1 (K2))

d= (−h(NT − K2 + 1, NT ), . . . ,−h(NT + K2 + 1, NT )),
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where h is the height function of a homogeneous stochastic six-vertex model sampled
from Pξ(N ),u(N ),q . From (15) we have the following formulas for the probabilities b1(N )

and b2(N ):

b1(N ) = 1 − q1/2ξ(N )u(N )

1 − q−1/2ξ(N )u(N )
= t N−1 + O(N−2)

b2(N ) = q−1 − q−1/2ξ(N )u(N )

1 − q−1/2ξ(N )u(N )
= N−1 + O(N−2).

As a consequence of Theorem 2.7 we have that (−h(NT − K2 + 1, NT ), . . . ,−h(NT +
K2 + 1, NT )) converges weakly to (−h(−K2 + 1), . . . ,−h(K2 + 1)), where h has law
P
T
L ,R .

Step 3 In this step we show that (�N
1 , . . . , �N

K1
) is tight, by showing that �N

k is tight for
each k = 1, . . . , K1. We proceed by induction on k with base case k = 1 being true by
Step 2. In what follows assume that �N

1 , . . . , �N
k are tight and want to show that �N

k+1
is also tight. Notice that because LN

i ( j) − LN
i ( j + 1) ∈ {0, 1} it is enought to show that

λ′
k+1(NT ) − NT is tight.
Let ε > 0 be given. Set DN (B) := {λ′

k−1(NT )− NT ≥ −B}. If k ≥ 2 we have from
the tightness of the sequence λ′

k−1(NT ) − NT that there exists B ∈ N sufficiently large
so that

P
(
Dc

N (B)
)

< ε/16. (24)

By convention, λ0 = ∞ and so DN (B) is a set of full measure and (24) holds even if
k = 1.

From the tightness of the sequence λ′
k(NT ) − NT , we can find A ∈ N sufficiently

large so that

P
(|λ′

k(NT ) − NT | ≥ A
)

< ε(1 − t)B/16 and 1 ≥ (1 − t A)2A ≥ 1/2. (25)

We make the following definitions

EN := {λ′
k(NT − 2A) − NT > −4A} and FN := {λ′

k+1(NT ) − NT < −8A}.
Let us denote by Fk

N = Fext ({k} × (NT − 2A, NT ]) the σ -algebra generated by the
up-right paths λ′

j (·) for j �= k and λ′
k(·) on the interval [0, NT − 2A]. Observe that

all three events DN (B), EN and FN are Fk
N -measurable. Using the above notation we

claim that for all N sufficiently large we have

4 · E

[
1{λ′

k(NT ) ≤ NT − A}|Fk
N

]
≥ (1 − t)B · 1DN (B)∩EN∩FN . (26)

The above statement will be proved in Step 4 below. For now we assume it and finish
the proof.

Taking expectations on both sides of (26) and using (25), we conclude that ε/4 ≥
P(DN ∩ EN ∩ FN ). Notice that EN ⊂ {0 ≥ λ′

k(NT ) − NT > −2A}, which implies by
(25) that P(Ec

N ) ≤ ε/16. Combining the last two estimates with (24) we see that for all
large N we have

P(FN ) ≤ P(DN ∩ EN ∩ FN ) + P(Ec
N ) + P(Dc

N (B)) ≤ ε/4 + ε/16 + ε/16 < ε.
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The latter means that for all large N we have

P
(
0 ≥ λ′

k+1(NT ) − NT ≥ −8A
)

> 1 − ε.

Since ε > 0 was arbitrary this proves that λ′
k+1(NT ) − NT is tight.

Step 4 For t1, t2, x ∈ Z and t1 < t2 we let �x (t1, t2) denote the set of up-right paths
drawn in {t1, . . . , t2} × Z, which start from (t1, x). In addition, we fix two up-right path
	bot ∈ �y(t1, t2) and 	top ∈ �z(t1, t2), where y < x − 4A, y ≤ z and K (	top) ≤ B
where K (	top) := |{NT − 2A + 1 ≤ i ≤ NT : 	top(i) − 	top(i − 1) = 0}|. If k = 1 we
set 	top = ∞ and K (	top) = 0.

For N ∈ N we consider the measure P
x,	top,	bot
N on �x (NT − 2A, NT ), given by

P
x,	top,	bot
N (	) = Z−1

N · Wt (NT − 2A, NT , 	, 	top, 	bot ; SN ) · ζ(N )	(NT )−x ,

where SN = �NT − 2A + 1, NT � and ZN is a normalization constant. With the above

notation we define P(x, N , 	top, 	bot ) = P
x,	top,	bot
N (	(NT ) ≤ x + A) and claim that for

all N sufficiently large (depending on t and A) we have that

P(x, N , 	top, 	bot ) ≥ (1 − t)B/4. (27)

The latter will be proved in Step 5 below. For now we assume its true and finish the
proof of (26).

Let 	Nk±1 ∈ �λ′
k±1(NT −2A)(NT − 2A, NT ) be such that 	Nk±1(i) = λ′

k±1(i) for i =
NT−2A, . . . , NT , where 	Nk−1 = 	N0 = ∞when k = 1.As a consequence of Proposition
3.9 [see also (20)] we have the following a.s. equality of Fk

N random variables

1DN (B)∩EN∩FN · E

[
1{λ′

k(NT ) ≤ λ′
k(NT − 2A) + A}|Fk

N

]

= 1DN (B)∩EN∩FN · P(λ′
k(NT − 2A), N , 	Nk−1, 	

N
k+1).

In deriving the above we used that for ω ∈ DN (B) we have K (	Nk−1(ω)) ≤ B by
definition of DN (B).

Notice that a.s. λ′
k(NT − 2A) + A ≤ NT − A, from which we conclude that we have

the following a.s. inequality

1DN (B)∩EN∩FN · E

[
1{λ′

k(NT ) ≤ NT − A}|Fk
N

]

≥ 1DN (B)∩EN∩FN · P(λ′
k(NT − 2A), N , 	Nk−1, 	

N
k+1). (28)

From (27) we have for all large N that P(λ′
k(NT − 2A), N , 	Nk−1, 	

N
k+1) ≥ (1 − t)B/4,

which together with 1 ≥ 1DN (B)∩EN∩FN and (28) imply (26).

Step 5 In this step we establish (27), but first we briefly explain our idea. By assumption,
we know that 	 is a random path that lies at least a distance A above 	bot and that 	top(i)
increases by 1 when i increases by 1 on [NT − 2A, NT ] with at most B exceptions. The
latter implies that

1 ≥ Wt (NT − 2A, NT , 	, 	top, 	bot ; SN ) ≥ (1 − t)B(1 − t A)2A ≥ (1 − t)B/2,

where in the last inequality we used (25). On the other hand, we know that ζ(N ) → 1 as

N → ∞. This implies that P
x,	top,	bot
N (	) is essentially the uniform measure on up-right
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paths of length 2A started from x , conditioned to stay below 	top and distorted by a
well-behaved Radon-Nikodym derivative. At least half of the paths that start from x and
have length 2A end in a position below x + A, and since each path carries roughly the
same weight we can obtain the desired estimate.

We make the following definitions

�+(	top) := {	 ∈ �x (NT − 2A, NT ) : 	(NT ) > x + A and 	top(i) ≥ 	(i)

for NT − 2A ≤ i ≤ NT },
�−(	top) := {	 ∈ �x (NT − 2A, NT ) : 	(NT ) ≤ x + A and 	top(i) ≥ 	(i)

for NT − 2A ≤ i ≤ NT }.
We claim that we have

|�−| ≥ |�+|. (29)

The latter will be proved in Step 6 below. For now we assume it and finish the proof of
(27).

Write PN instead of P
x,	top,	bot
N for brevity. We can find N0 (depending on t and A)

such that for all N ≥ N0 we have 1 ≥ ζ(N )2A ≥ 1/2. The latter together with our
assumption on 	top implies

1 ≥ Wt (NT − 2A, NT , 	, 	top, 	bot ; SN ) ≥ (1 − t)B(1 − t A)2A ≥ (1 − t)B/2

Consequently, for any 	1, 	2 ∈ �x (NT − 2A, NT ) we have

PN (	1) ≥
[
(1 − t)B/2

]
· PN (	2).

In view of (29) we have

PN (�−) =
∑

	∈�−
PN (	) ≥

[
(1 − t)B/2

]
·
∑
	∈�+

PN (	) =
[
(1 − t)B/2

]
· PN (�+).

The latter implies that

PN (�−) ≥ (1/2) · PN (�−) +
[
(1 − t)B/4

]
· PN (�+) ≥

[
(1 − t)B/4

]
.

Step 6 In this final step we establish the validity of (29). It is easy to see that (29) is
equivalent to the following purely probabilistic question:

Let Xi be i.i.d. random variables such that P(X1 = 0) = P(X1 = 1) = 1/2 and
Sk = X1 + · · · + Xk be a random walk with increments Xi . Fix an up-right path 	top
such that 	top(0) ≥ 0 and A ∈ N. Then we have the following inequality

P(S2A ≤ A|Sk ≤ 	top(k) for k = 1, . . . , 2A) ≥ 1/2. (30)

Observe that if 	top = ∞ the above is trivial by symmetry. For finite 	top, conditioning
the walk to stay below 	top stochastically pushes the walk lower and the probability it
ends below A increases.

A rigorous way to prove the above is using the FKG inequality. To be more specific,
let L2A be the set of up-right paths starting from 0 of length 2A. The natural partial order
on L2A is given by

	1 ≤ 	2 ⇐⇒ 	1(i) ≤ 	2(i) for i = 1, . . . , 2A.
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Fig. 7. A path identified with a sequence of + and− signs. For the above path we have z2−z1 = 4, t2− t1 = 9
and R(	) = (+, −, −,+,+, −,−,+, −)

With this L2A has the structure of a lattice and so the FKG inequality reads
⎛
⎝ ∑

	∈L2A

1{	≤	top}1{	(2A)≤ A}
|L2A|

⎞
⎠ ≥

⎛
⎝ ∑

	∈L2A

1{	(2A) ≤ A}
|L2A|

⎞
⎠ ·
⎛
⎝ ∑

	∈L2A

1{	 ≤ 	top}
|L2A|

⎞
⎠,

and clearly implies (30). This concludes the proof of the proposition.

4. Basic Lemmas

This section contains the primary set of results we will need to prove Theorem 3.8. For
the remainder of the paper we will only work with simple discrete line ensembles and
as discussed in Sect. 3.1 we will drop references to 	0 and L0 from our notation.

4.1. Monotone weight lemma. In this section we isolate the key result that allows us to
analyze measures that satisfy the Hall-Littlewood Gibbs property—Lemma 4.1 below.
In addition, we derive two easy corollaries, which are more suitable for our arguments
later in the text.

Let z1, z2, t1, t2 ∈ Z be such that t1 < t2 and 0 ≤ z2 − z1 ≤ t2 − t1 and recall from
Sect. 3.1 that �(t1, t2; z1z2) denotes the set of up-right paths from (t1, z1) to (t2, z2).
Each 	 ∈ �(t1, t2; z1z2) can be encoded by a sequence R(	) of t2 − t1 signs: +’s and
−’s indexed from t1 + 1 to t2, so that R(i) = + if and only if 	(i) − 	(i − 1) = 1. The
latter is depicted in Fig. 7. The total number of +’s is fixed and equals z2 − z1 and the
number of −’s equals t2 − t1 − z2 + z1.

The main result of this section is the following.

Lemma 4.1. Fix t ∈ (0, 1) and let c(t) = ∏∞
i=1(1 − t i ) ∈ (0, 1). Suppose a, b, z1, z2,

t1, t2 are given such that t1 + 1 < t2, 0 ≤ z2 − z1 ≤ t2 − t1, 0 ≤ b− a ≤ t2 − t1, z1 ≤ a,
z2 ≤ b. Fix any 	bot ∈ �(t1, t2; z1, z2), S ⊂ {t1 +1, . . . , t2} and T ∈ {t1 +1, . . . , t2−1}.
Let m(T ) and M(T ) denote the minimal and maximal values of the set {	(T ) : 	 ∈
�(t1, t2; a, b)} and let m(T ) ≤ k1 ≤ k2 ≤ M(T ). Then we have

c(t) · E
t1,t2;a,b
f ree [Wt (t1, t2, 	, 	bot ; S)|	(T ) = k1]

≤ E
t1,t2;a,b
f ree [Wt (t1, t2, 	, 	bot ; S)|	(T ) = k2] . (31)

Proof. For brevity we write W (	) for Wt (t1, t2, 	, 	bot ; S). Let 	1 be a random path
sampled according to P

t1,t2;a,b
f ree , conditioned on 	1(T ) = k1. We identify this path with

a sequence of +’s and −’s and observe that we have (k1 − a) +’s in the first T − t1 slots



Transversal Fluctuations of the ASEP 463

Fig. 8. An example of 	0, 	1 and 	2 for the case k2 − k1 = 2

and the rest are filled with −’s. Similarly, we have exactly (b− k1) +’s in the rest t2 − T
slots. Let us pick uniformly at random (k2 − k1) −’s in the first T − t1 slots and change
them to +, and also we pick uniformly at random (k2 − k1) +’s in the last t2 − T slots
and change them to−. In this way we build a new sequence of +’s and−’s that naturally
corresponds to an element 	2 ∈ �(t1, t2; a, b) such that 	2(T ) = k2. Moreover it is clear
that the random path 	2 is distributed according to P

t1,t2;a,b
f ree , conditioned on 	2(T ) = k2.

We are interested in proving the following statement

W (	1) ≤ c(t)−1 · W (	2). (32)

The statement of the lemma is obtained by taking expectations on both sides of (32).
SinceW (	1) = 0 otherwise (and then (32) is immediate) wemay assume that 	1(i) ≥

	bot (i) for all i ∈ S. Let r = k2 − k1 and denote by x1 < x2 < · · · < xr and
y1 > y2 · · · > yr the positions of −’s and +’s respectively that we changed when we
transformed 	1 to 	2. We also let 	 j for j = 0, . . . , r denote the paths in �(t1, t2; a, b)
obtained by flipping only the signs at locations x1, . . . , x j and y1, . . . , y j (in particular
	0 = 	1 and 	r = 	2). An example is depicted in Fig. 8.

Recall from (18) that W (	) =∏ j∈S
(
1 − 1{�( j−1)−�( j)=1} · t�( j−1)

)
, where �( j)

= 	( j) − 	bot ( j). Let us explain how W (	 j+1) differs from W (	 j ). When we flip the
signs at x j+1 and y j+1, we raise the path 	 j by 1 in the interval [x j+1, y j+1 − 1], while
outside (x j+1 − 1, y j+1) it remains the same (see Fig. 8). The latter operation modifies
the factors in W (	 j ) as follows.

• If x j+1 ∈ S then W (	 j ) has a factor
(
1 − 1{�(x j+1−1)−�(x j+1)=1} · t�(x j+1−1)

)
, which

changes to 1.
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• All the factors
(
1 − 1{�(i−1)−�(i)=1} · t�(i−1)

)
become

(
1−1{�(i−1)−�(i)=1}

·t�(i−1)+1
)
whenever i ∈ S ∩ [x j+1, y j+1 − 1].

• If y j+1 ∈ S then W (	 j ) has a factor
(
1 − 1{�(y j+1−1)−�(y j+1)=1} · t�(y j+1−1)

)
, which

becomes
(
1 − 1{�(y j+1−1)−�(y j+1)=0} · t�(y j+1−1)+1

)
.

The first two changes only increase the weight W (	 j ), while the last can decrease it but
at most by a factor 1− tm j , where m j = 1 +mini∈S∩[x j+1,y j+1−1]

[
	 j (i) − 	bot (i)

]
. This

implies

W (	 j ) ≤ (1 − tm j )−1 · W (	 j+1).

Notice that m0 ≥ 1 since we assumed that 	0(i) = 	1(i) ≥ 	bot (i) for i ∈ S. In
addition, since at step j + 1 we raise the path on [x j+1, y j+1 − 1] by 1 it is clear that
m j+1 ≥ 1 + m j , which implies that m j ≥ j + 1 for each j ≥ 0. We conclude that

W (	0) ≤
r∏
j=1

(1 − t j )−1 · W (	r ) ≤ c(t)−1 · W (	r ).

As 	0 = 	1 and 	r = 	2 the above proves (32) and hence the lemma. ��
Remark 4.2. If t = 0 the acceptance probability W0(t1, t2, 	, 	bot ; S) is equal to 1 if 	

does not cross 	bot on the set S, and 0 otherwise. In this case one can use the arguments
in the proof of Lemmas 2.6 and 2.7 in [32] to show that we can construct on the same
probability space 	′ and 	′′ such that

P(	′ = 	) = P
t1,t2;a,b
f ree (	|	(T ) = k1), P(	′′ = 	) = P

t1,t2;a,b
f ree (	|	(T ) = k2)

and 	′( j) ≤ 	′′( j) for t1 ≤ j ≤ t2 with probability 1. The latter implies that we have the
following almost sure inequality W0(t1, t2, 	′, 	bot ; S) ≤ W0(t1, t2, 	′′, 	bot ; S), which
means that higher curves are accepted with higher probability. This statement fits well
with the continuous setup in [32].

For general t ∈ (0, 1) we no longer have the above inequality almost surely. For
example, we can take t1 = 0, t2 = 2n, a = k1 = 0, b = k2 = n, S = �t1 + 1, t2�,
	bot = 	′ to be the path that is flat on the interval [0, n] and goes up on [n, 2n], while 	′′
the path that goes up on [0, n] and is flat on [n, 2n]. For this choice one calculates

Wt (t1, t2, 	
′, 	bot ; S) = 1 >

n∏
i=1

(1 − t i ) = Wt (t1, t2, 	
′′, 	bot ; S).

Consequently, even though 	′ is below 	′′ it is accepted with higher probability and
the reason is that the acceptance probability depends not only on the distance between
lines but also on their relative slope. In this context, the result of Lemma 4.1 is that the
acceptance probability of the top line does increase as it is raised, although only in terms
of its expected value and up to a factor of c(t) = ∏∞

i=1(1 − t i ). This monotonicity is
much weaker than the almost sure monotonicity in the t = 0 case, but it turns out to be
sufficient for our methods to work.

Taking averages with respect to k1 and k2 in the above lemma gives the following
corollary.
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Corollary 4.3. Assume the same notation as in Lemma 4.1. Suppose A, B are non-empty
subsets of {m(T ),m(T ) + 1, . . . , M(T )}, such that α ≥ β for all α ∈ A and β ∈ B.
Then we have

c(t)·Et1,t2;a,b
f ree [Wt (t1, t2, 	, 	bot ; S)|	(T ) ∈ B] ≤ E

t1,t2;a,b
f ree [Wt (t1, t2, 	, 	bot ; S)|	(T ) ∈ A] .

(33)

We end this section with the following result that will be used later.

Corollary 4.4. Assume the same notation as in Lemma 4.1 and let α ≤ M(T ). Denote
by P the probability distribution P

t1,t2,a,b
S (·|	bot ) from Definition 3.4. Then we have

P(	(T ) ≥ α) ≥ c(t) · P
t1,t2;a,b
f ree (	(T ) ≥ α). (34)

Proof. If α ≤ m(T ) then (34) becomes 1 ≥ c(t), which is clearly true. We thus may
assume that M(T ) ≥ α > m(T ). Let A = [α, M(T )] and B = [m(T ), α). Define
D1 := {	 ∈ �(t1, t2; a, b) : 	(T ) ∈ A} and D2 := {	 ∈ �(t1, t2; a, b) : 	(T ) ∈ B}.
Observe that A and B satisfy the conditions of Corollary 4.3 and hence

∑
	∈D1

Wt (t1, t2, 	, 	bot ; S) ≥ c(t) · |D1|
|D2|

∑
	∈D2

Wt (t1, t2, 	, 	bot ; S).

Dividing both sides by
∑

	∈�(t1,t2;a,b) Wt (t1, t2, 	, 	bot ; S) we see that

P(	(T ) ≥ α) ≥ c(t) · |D1|
|D2| (1 − P(	(T ) ≥ α)) or equivalently P(	(T ) ≥ α)

≥ c(t) · |D1|
|D2| + c(t)|D1| .

Since c(t) ∈ (0, 1) we can increase the denominator by replacing it with |D1| + |D2|,
which makes the RHS above precisely c(t) · P

t1,t2;a,b
f ree (	(T ) ≥ α) as desired. ��

4.2. Properties of random paths. In this section we derive several lemmas about ran-
dom paths distributed as P

0,n;0,z
f ree for z ∈ {0, . . . , n}, which are essential for the proof

of our main results. Recall that if L is such a path, we define L(s) for non-integral s
by linear interpolation (see Sect. 3.1). The key ingredient we use to derive the lemmas
below is a strong coupling between random walk bridges and Brownian bridges, which
is presented as Theorem 4.5 below.

If Wt denotes a standard one-dimensional Brownian motion and σ > 0, then the
process

Bσ
t = σ 2(Wt − tW1), 0 ≤ t ≤ 1,

is called a Brownian bridge (conditioned on B0 = 0, B1 = 0) with variance σ 2. With
this notation we state the main result we use and defer its proof to Sect. 8.

Theorem 4.5. Let p ∈ (0, 1). There exist constants 0 < C, a, α < ∞ (depending on p)
such that for every positive integer n, there is a probability space on which are defined
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a Brownian bridge Bσ with variance σ 2 = p(1 − p) and a family of random paths
	(n,z) ∈ �(0, n; 0, z) for z = 0, . . . , n such that 	(n,z) has law P

0,n;0,z
f ree and

E

[
ea�(n,z)

]
≤ Ceα(log n)2e|z−pn|2/n, where �(n, z) := sup0≤t≤n∣∣∣√nBσ

t/n +
t
n z − 	(n,z)(t)

∣∣∣ . (35)

Remark 4.6. When p = 1/2 the above theorem follows (after a trivial affine shift) from
Theorem 6.3 in [49]. The proof we present in Sect. 8 for the more general p ∈ (0, 1)
case is based on (suitably adapted) arguments from the same paper.

We will also need the following monotone coupling lemma for random walks, which
can readily be established from the arguments used in the proof of Lemma 2.6 in [32].

Lemma 4.7. Suppose a1, b1, a2, b2, t1, t2 are given such that t1 < t2, 0 ≤ b2 − a2 ≤
t2 − t1, 0 ≤ b1 − a1 ≤ t2 − t1, a1 ≤ a2, b1 ≤ b2. Then there exists a probability space
on which are defined random paths 	1 and 	2 such that the law of 	i is P

t1,t2,ai ,bi
f ree for

i = 1, 2 and P(	1(s) ≤ 	2(s), for s = t1, . . . , t2) = 1.

Using facts about Brownian motion and the above coupling results we establish the
following statements for random paths.

Lemma 4.8. Let M > 0 and p ∈ (0, 1) be given. Then we can find N0(M, p) such that
for N ≥ N0, N ≥ z ≥ pN + MN 1/2 and s ∈ [0, N ] we have

P
0,N ;0,z
f ree

(
	(s) ≥ s

N
(pN + MN 1/2) − N 1/4

)
≥ 1/3. (36)

Proof. Assume that N0 ≥ 2M2 and N ≥ N0. In view of Lemma 4.7, we know that

P
0,N ;0,z2
f ree

(
	(s) ≥ s

N
(pN + MN 1/2) − N 1/4

)
≥ P

0,N ;0,z1
f ree

×
(
	(s) ≥ s

N
(pN + MN 1/2) − N 1/4

)
,

whenever z2 ≥ z1 and so it suffices to prove the lemma when z = �pN + MN 1/2�.
Suppose we have the same coupling as in Theorem 4.5 and let P denote the probability
measure on the space afforded by the theorem. Then we have for σ 2 = p(1 − p) that

P
0,N ;0,z
f ree

(
	(s) ≥ s

N
(pN + MN 1/2) − N 1/4

)
= P

(
	(N ,z)(s) ≥ s

N
(pN + MN 1/2) − N 1/4

)

≥ P

(
N 1/2Bσ

s/N ≥ 0 and �(N , z) ≤ (N 1/4 − 1)
)

≥ 1/2 − P
(
�(N , z) > N 1/4 − 1

)
.

In the next to last inequality we used that |z − (pN + MN 1/2)| ≤ 1 and in the last
inequality we used that P(Bv

s/N ≥ 0) = 1/2 for every v > 0 and s ∈ [0, N ]. Next by
Theorem 4.5 and Chebyshev’s inequality we know

P

(
�(N , z) > N 1/4 − 1

)
≤ Ceα(log N )2eM

2
e−aN1/4

.

The latter is at most 1/6 if we take N0 sufficiently large and N ≥ N0, which would imply
that P

0,N ;0,z
f ree

(
	(s) ≥ (s/N )(pN + MN 1/2) − N 1/4

) ≥ 1/3 for such N , as desired. ��
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Lemma 4.9. Let M1, M2 > 0 and p ∈ (0, 1) be given. Then we can find N0(M1, M2, p)
such that for N ≥ N0, z1 ≥ −M1N 1/2, z2 ≥ pN − M1N 1/2 we have

P
0,N ;z1,z2
f ree

(
	(N/2) ≥ M2N 1/2 + pN

2
− N 1/4

)
≥ (1/2)(1 − �p(1−p)/2(M1 + M2)),

(37)
where �v is the cdf of a Gaussian random variable with mean 0 and variance v.

Proof. Assume that N0 ≥ 2(M1+M2)
2 and N ≥ N0. In view of Lemma 4.7 it suffices to

prove the lemma when z1 = �−M1N 1/2� and z2 = �pN − M1N 1/2�. Set �z = z2 − z1
and observe that

P
0,N ;z1,z2
f ree

(
	(N/2) ≥ M2N 1/2 + pN

2
− N 1/4

)
= P

0,N ;0,�z
f ree

×
(

	(N/2) ≥ M2N 1/2 + pN

2
− z1 − N 1/4

)
.

Suppose we have the same coupling as in Theorem 4.5 and let P denote the probability
measure on the space afforded by the theorem. Then we have

P
0,N ;0,�z
f ree

(
	(N/2) ≥ M2N 1/2 + pN

2
− z1 − N 1/4

)

= P

(
	(N ,�z)(N/2) ≥ M2N 1/2 + pN

2
− z1 − N 1/4

)

≥ P

(
	(N ,�z)(N/2) ≥ (2M1 + M2)N 1/2 + �z

2
− N 1/4 + 2

)
,

where we used that |z1 +M1N 1/2| ≤ 1 and |z2 +M1N 1/2 − pN | ≤ 1. We now note that
the expression in the second line above is bounded from below by

P

(
Bσ
1/2 ≥ M2 + 2M1

2
and �(N , z) ≤ N 1/4 − 2

)
, where σ 2 = p(1 − p).

Since Bσ
1/2 has the distribution of a normal random variable with mean 0 and variance

σ 2/2, and �v is decreasing on R>0 we conclude that the last expression is bounded
from below by

1 − �p(1−p)/2(M1 + M2) − P

(
�(N , z) > N 1/4 − 2

)
≥ 1 − �p(1−p)/2(M1 + M2)

−Ceα(log N )2eM
2
e−aN1/4

.

In the last inequality we used Theorem 4.5 and Chebyshev’s inequality. The above is at
least (1/2)(1− �p(1−p)/2(M1 +M2)) if N0 is taken sufficiently large and N ≥ N0. ��
Lemma 4.10. Let p ∈ (0, 1) be given. Then we can find N0(p) such that for N ≥ N0,
z1 ≥ N 1/2, z2 ≥ pN + N 1/2 we have

P
0,N ;z1,z2
f ree

(
min

s∈[0,N ] [	(s) − ps] + N 1/4 ≥ 0

)
≥ 1

2

(
1 − exp

( −2

p(1 − p)

))
. (38)
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Proof. In view of Lemma 4.7 it suffices to prove the lemma when z1 = �N 1/2� and
z2 = �pN + N 1/2�. Set �z = z2 − z1 and observe that

P
0,N ;z1,z2
f ree

(
min

s∈[0,N ] [	(s) − ps] + N 1/4 ≥ 0

)
= P

0,N ;0,�z
f ree

(
min

s∈[0,N ] [	(s) − ps] + N 1/4 ≥ −z1

)
.

Suppose we have the same coupling as in Theorem 4.5 and let P denote the probability
measure on the space afforded by the theorem. Then we have

P
0,N ;0,�z
f ree

(
min

s∈[0,N ] [	(s) − ps] + N 1/4 ≥ −z1

)

= P

(
min

s∈[0,N ]

[
	(N ,�z)(s) − ps

]
≥ −N 1/4 − z1

)

≥ P

(
min

s∈[0,N ]

[
	(N ,�z)(s) − s

N
�z
]

≥ −N 1/4 − N 1/2 + 2

)
,

where in the last inequality we used that |z1 − N 1/2| ≤ 1 and |z2 − pN − N 1/2| ≤ 1.
We now note that the expression in the second line above is bounded from below by

P

(
min

s∈[0,1] B
σ
s ≥ −1 and �(N , z) ≤ N 1/4 − 2

)
, where σ 2 = p(1 − p).

We can lower-bound the above expression by P
(
mins∈[0,1] Bσ

s ≥ −1
) − P (�(N , z)

≤ N 1/4 − 2
)
. By basic properties of Brownian bridges we know that

P

(
min

s∈[0,1] B
σ
s ≥−1

)
=P

(
min

s∈[0,1] B
1
s ≥−σ−1

)
= P

(
max
s∈[0,1] B

1
s ≤ σ−1

)
= 1 − e−2σ−2

,

where the last equality can be found for example in (3.40) of Chapter 4 of [45]. On the
other hand, by Theorem 4.5 and Chebyshev’s inequality we have

P

(
�(N , z) > N 1/4 − 2

)
≤ Ceα(log N )2eM

2
e−aN1/4

,

and the latter is at most (1/2)(1− e−2σ−2
) if N0 is taken sufficiently large and N ≥ N0.

Combining the above estimates we conclude that if N0 is sufficiently large and N ≥ N0,
we haveP

0,N ;z1,z2
f ree

(
mins∈[0,N ] [	(s) − ps] + N 1/4 ≥ 0

) ≥ (1/2)(1−e−2σ−2
) as desired.

��
4.3. Modulus of continuity for random paths. The modulus of continuity of f ∈
C[a, b] is

w( f, δ) = sup
x,y∈[a,b]
|x−y|≤δ

| f (x) − f (y)|. (39)

In this sectionwe derive estimates on themodulus of continuity of paths with lawP
0,n;0,z
f ree

for z ∈ {0, . . . , n}, used in the proof of Theorem 3.8. The main result we want to show
is as follows.
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Lemma 4.11. Let M > 0 and p ∈ (0, 1) be given. For each positive ε and η, there exist
a δ > 0 and an N0 ∈ N (depending on ε, η, M and p) such that for N ≥ N0 we have

P
0,N ;0,z
f ree

(
w( f 	, δ) ≥ ε

)
≤ η, (40)

where f 	(x) = N−1/2(	(xN ) − pxN ) for x ∈ [0, 1] and |z − pN | ≤ MN 1/2.

Proof. The strategy is to use the strong coupling between 	 and a Brownian bridge
afforded by Theorem 4.5. This will allow us to argue that with high probability the
modulus of continuity of f 	 is close to that of a Brownian bridge, and since the latter
is continuous a.s., this will lead to the desired statement of the lemma. We now turn to
providing the necessary details.

Let ε, η > 0 be given and fix δ ∈ (0, 1), which will be determined later. Suppose we
have the same coupling as in Theorem 4.5 and let P denote the probability measure on
the space afforded by the theorem. Then we have

P
0,N ;0,z
f ree

(
w( f 	, δ) ≥ ε

)
= P

(
w( f 	(N ,z)

, δ) ≥ ε
)

. (41)

By definition, we have

w( f 	(N ,z)
, δ) = N−1/2 sup

x,y∈[0,1]
|x−y|≤δ

∣∣∣	(N ,z)(xN ) − pxN − 	(N ,z)(yN ) + pyN
∣∣∣ .

From Theorem 4.5 and the above we conclude that for σ 2 = p(1 − p) we have

w( f 	(N ,z)
, δ) ≤ N−1/2 sup

x,y∈[0,1]
|x−y|≤δ

∣∣∣N 1/2Bσ
x − N 1/2Bσ

y + (z − pN )(x − y)
∣∣∣+2N−1/2�(N , z).

(42)
From (41) and (42), the triangle inequality and our assumption that |z − pN | ≤ MN 1/2

we see that

P
0,N ;0,z
f ree

(
w( f 	, δ) ≥ ε

)
≤ P

(
w(Bσ , δ) + δM + 2N−1/2�(N , z) ≥ ε

)
. (43)

Let (I ) = P (w(Bσ , δ) ≥ ε/3) , (I I ) = P (δM ≥ ε/3) and (I I I ) = P
(
2N−1/2

�(N , z) ≥ ε/3
)
, then we have

P

(
w(Bσ , δ) + δM + 2N−1/2�(N , z) ≥ ε

)
≤ (I ) + (I I ) + (I I I ).

By Theorem 4.5 and Chebyshev’s inequality we know

P

(
�(N , z) > N 1/4

)
≤ Ceα(log N )2eM

2
e−aN1/4

.

Consequently, if we pick N0 sufficiently large and N ≥ N0 we can ensure that 2N−1/4 <

ε/3 and Ceα(log N )2eM
2
e−aN1/4

< η/3, which would imply (I I I ) ≤ η/3.
Since Bσ is a.s. continuous we know thatw(Bσ , δ) goes to 0 as δ goes to 0, hence we

can find δ0 sufficiently small so that if δ < δ0, we have (I ) < η/3. Finally, if δM < ε/3
then (I I ) = 0. Combining all the above estimates with (43) we see that for δ sufficiently
small, N0 sufficiently large and N ≥ N0, we have P

0,N ;0,z
f ree

(
w f 	 (δ) ≥ ε

) ≤ (2/3)η < η

as desired. ��
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5. Proof of Theorem 3.8

The goal of this section is to prove Theorem 3.8 and for the remainder we assume
that LN = (LN

1 , LN
2 ) is an (α, p, r + 1)-good sequence for some r > 0, defined on a

probability space with measure P. The main technical result we will require is contained
in Proposition 5.1 below and its proof is the content of Sect. 5.1. The proof of Theorem
3.8 is given in Sect. 5.2 and relies on Proposition 5.1 and Lemma 4.11.

5.1. Bounds on acceptance probabilities. The main result in this section is the fol-
lowing.

Proposition 5.1. Fix r > 0 and denote s1 = �r Nα�. Then for any ε > 0 there exist
δ > 0 and N1 (both depending on r, ε, t, α, p) such that for all N ≥ N1 we have

P

(
Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L2; S′) < δ

)
< ε,

where S′ = �−s1 + 1, s1� and Zt is the acceptance probability from Definition 3.4 (also
Remark 3.5).

The general strategy we use to prove Proposition 5.1 is inspired by the proof of
Proposition 6.5 in [33].We begin by stating three key lemmas that will be required. Their
proofs are postponed to Sect. 6. All constants in the statements below will, in addition,
depend on α, t and p, which are fixed throughout. We will not list this dependence
explicitly.

Lemma 5.2. For each ε > 0 there exist R(r, ε) > 0 and N1(r, ε) such that for all
N ≥ N1 we have

P

(
sup

s∈[−(r+1)Nα,(r+1)Nα]

[
LN
1 (s) − ps

]
≥ RNα/2

)
< ε.

Set s1 = �r Nα� and t1 = �(r+1)Nα� and assumea, b, z1, z2, t1 satisfy, 0 ≤ z2−z1 ≤
2t1, 0 ≤ b − a ≤ 2t1, z1 ≤ a, z2 ≤ b. Let 	bot be a fixed path in �(−t1, t1; z1, z2) and
denote S = �−t1 + 1, t1�, S̃ = �−t1 + 1,−s1� ∪ �s1 + 1, t1�. Let L and L̃ be two random
paths in �(−t1, t1; a, b) , with laws PL and PL̃ respectively such that

PL(L = 	) = P
−t1,t1,a,b
S (	|	bot ) and PL̃(L̃ = 	) = P

−t1,t1,a,b
S̃

(	|	bot ).

where the definition of P
T0,T1,a,b
S (·|	bot )was given in Definition 3.4. From (18) we know

that L will not cross 	bot with probability 1. On the other hand, L̃ can cross 	bot multiple
times in the interval (−s1, s1 + 1) but it will stay above it on [−t1,−s1] ∪ [s1 + 1, t1].
Lemma 5.3. Fix M1, M2 > 0, S′ = �−s1 + 1, s1� and suppose

(1) sups∈[−t1,t1] [	bot (s) − ps] ≤ M2Nα/2,
(2) a ≥ max(	bot (−t1),−pt1 − M1Nα/2),

(3) b ≥ max(	bot (t1), pt1 − M1Nα/2).
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There exists N2 ∈ N and explicit functions g and h (depending on r, M1, M2) such that
for N ≥ N2

PL̃

(
Zt

(
−s1, s1, L̃(−s1), L̃(s1), 	bot ; S′) ≥ g

)
≥ h. (44)

The functions g and h are given by

g = 1

4

(
1 − exp

( −2

p(1 − p)

))

and h = (c(t)3/18)(1 − �p(1−p)/2
(
10(1 + r)2(M1 + M2 + 1)

)
,

where c(t) = ∏∞
i=1(1 − t i ) and �v is the cdf of a mean zero, variance v Gaussian

random variable.

Lemma 5.4. Fix M1, M2 > 0, S′ = �−s1 + 1, s1� and suppose

(1) sups∈[−t1,t1] [	bot (s) − ps] ≤ M2Nα/2,
(2) a ≥ max(	bot (−t1),−pt1 − M1Nα/2),

(3) b ≥ max(	bot (t1), pt1 − M1Nα/2).

Let N2, g, h be as in Lemma 5.3 and for any ε̃ > 0 set δ(ε̃) = ε̃ · g · h. Then for N ≥ N2
we have

PL
(
Zt
(−s1, s1, L(−s1), L(s1), 	bot ; S′) ≤ δ(ε̃)

) ≤ ε̃. (45)

In the remainder we prove Proposition 5.1 assuming the validity of Lemmas 5.2 and
5.4. The arguments we present are similar to those used in the proof of Proposition 6.5
in [33].

Proof (Proposition 5.1). Define the event

EN =
{
LN
1 (−t1) ≥ max(LN

2 (−t1),−pt1 − M1N
α/2)

}

∩
{
LN
1 (t1) ≥ max(LN

2 (t1), pt1 − M1N
α/2)

}

∩
{

sup
s∈[−t1,t1]

[
LN
2 (s) − ps

]
≤ M2N

α/2

}
,

where M1 and M2 are sufficiently large so that for all large N we have P(Ec
N ) < ε/2.

The existence of such M1 and M2 is assured from Lemma 5.2 (since LN
1 dominates LN

2
pointwise) and the fact that LN is (α, p, r + 1)—good.

Let δ(ε̃) be as in Lemma 5.4 for the values ε̃ = ε/2, r, M1, M2 in the statement of
the lemma. Consider the probability

P

({
Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L

N
2 ; S′) < δ(ε̃)

}
∩ EN

)

= E

[
1EN E

[
1{Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L

N
2 ; S′) < δ(ε̃)}

∣∣∣Fext ({1} × (−t1, t1))
]]

.

(46)

In the above equation we have Fext ({1} × (−t1, t1)) is the σ -algebra generated by the
up-right paths LN

2 and LN
1 outside the interval (−t1, t1). The equality in (46) is justified

by the tower property since EN is measurable with respect toFext ({1} × (−t1, t1)). We
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next notice that we have the following a.s. equality ofFext ({1} × (−t1, t1))-measurable
random variables

E

[
1{Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L

N
2 ; S′) < δ(ε̃)}

∣∣∣Fext ({1} × (−t1, t1))
]

= PL

(
Zt (−s1, s1, L(−s1), L(s1), L

N
2 ; S′) < δ(ε̃)

)
,

where PL is specified as in the setup after Lemma 5.2 with respect to a = LN
1 (−t1),

b = LN
1 (t1), 	bot = LN

2 on [−t1, t1].
When the Fext ({1} × (−t1, t1))-measurable event EN holds we have that

sups∈[−t1,t1] [	bot (s) − ps] ≤ M2Nα/2 and a ≥ max(	bot (−t1),−pt1 − M1Nα/2),
b ≥ max(	bot (t1), pt1 − M1Nα/2) (recall that LN is a simple discrete line ensem-
ble by definition so that LN

1 lies above LN
2 ). Thus we may apply Lemma 5.4 on EN and

obtain that

PL

(
Zt (S

′,−s1, s1, L(−s1), L(s2), L
N
2 ) < δ(ε̃)

)
≤ ε̃1EN + 1Ec

N
,

where the inequality is understood in the a.s. sense. Putting this into (46) we conclude
that

P

(
{Zt (S

′,−s1, s1, L
N
1 (−s1), L

N
1 (s1), L

N
2 ) < δ(ε/2)} ∩ EN

)
≤ ε/2.

Using this and P(Ec
N ) < ε/2, we see that for all large N we have

P

(
Zt (S

′,−s1, s1, L
N
1 (−s1), L

N
1 (s1), L

N
2 ) < δ(ε/2)

)
< ε.

��
5.2. Concluding the proof of Theorem 3.8. For clarity we split the proof of Theorem
3.8 into several steps. In the first two steps we reduce the statement of the theorem
to establishing a certain estimate on the modulus of continuity of the paths LN

1 . In
the next two steps we show that it is enough to establish these estimates under the
additional assumption that (LN

1 , LN
2 ) are well-behaved (implying in particular that the

acceptance probability Zt (−s1, s1, LN
1 (−s1), LN

1 (s1), L2; S′) is lower bounded—this is
where we use Proposition 5.1). The fact that the acceptance probability is lower bounded
is exploited in Step 5, together with the resampling property of Remark 3.5, to effectively
reduce the estimates on the modulus of continuity of LN

1 to those of a uniform random
path. The latter estimates are then derived in Step 6, by appealing to Lemma 4.11.

Step 1 Recall from (39) that the modulus of continuity of f ∈ C[−r, r ] is defined by

w( f, δ) = sup
x,y∈[−r,r ]
|x−y|≤δ

| f (x) − f (y)|.

As an immediate generalization of Theorem 7.3 in [10], in order to prove the theorem it
suffices for us to show that the sequence of random variables fN (0) is tight and that for
each positive ε and η there exist δ′ > 0 and N1 ∈ N such that for N ≥ N1, we have

P(w( fN , δ′) ≥ ε) ≤ η. (47)
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The tightness of fN (0) is immediate fromour assumption that {LN }∞N=1 is an (α, p, r+1)-
good sequence (in fact we know from Definition 3.7 that fN (s) is tight for each s ∈
[−r − 1, r + 1]). Consequently, we are left with verifying (47).

Step 2 Suppose ε, η > 0 are given and also denote s1 = �r Nα�. We claim that we can
find δ > 0 such that for all N sufficiently large we have

P

⎛
⎜⎝ sup

x,y∈[−s1,s1]|x−y|≤2δs1

∣∣∣LN
1 (x) − LN

1 (y) − p(x − y)
∣∣∣ ≥ ε(2s1)1/2

2(2r)1/2

⎞
⎟⎠ ≤ η. (48)

Let us assume the validity of (48) and deduce (47).
Let δ′ = rδ. Suppose that x, y ∈ [−r, r ] are such that |x − y| ≤ δ′ and without

loss of generality assume that x < y. Let X = �xNα� and Y = �yNα�. One readily
observes that if N is sufficiently large then |X − Y | ≤ 2δs1, and X,Y ∈ [−s1, s1]. In
addition, we have that

| fN (x) − fN (y)| = N−α/2
∣∣∣LN

1 (xNα) − LN
1 (yNα) − pNα(x − y)

∣∣∣
≤ N−α/2

∣∣∣LN
1 (X) − LN

1 (Y ) − p(X − Y )

∣∣∣ + 2N−α/2(1 + p),

where we used that |X − xNα| < 1, |Y − yNα| < 1, the slope of L1 is in absolute
value at most 1, and the triangle inequality. The above inequality shows that for all N
sufficiently large we have

P
(
w( fN , δ′) ≥ ε

) ≤ P

×
⎛
⎜⎝ sup

x,y∈[−s1,s1]|x−y|≤2δs1

∣∣∣LN
1 (x) − LN

1 (y) − p(x − y)
∣∣∣ ≥ εNα/2 − 2(1 + p)

⎞
⎟⎠ .

Since s1 = �r Nα� we see that ε(2s1)1/2

2(2r)1/2
∼ (ε/2)Nα/2 as N becomes large and so we

conclude that for all sufficiently large N we have ε(2s1)1/2

2(2r)1/2
≤ εNα/2 − 2(1 + p). This

together with (48) implies that the RHS in the last equation is bounded from above by
η, which is what we wanted.

Step 3 The first two steps above reduce the proof of the theorem to establishing (48),
which is the core statement to show. To prove it we need additional notation that we
summarize in this step.

From the tightness of N−α/2
[
LN
1 (xNα) − xpNα

]
at x = −r and x = r we can find

M1 > 0 sufficiently large so that for all large N we have

P
(
(E1(M1, N )

) ≥ 1 − η/4, where E1(M1, N )

=
{
max

(∣∣∣LN
1 (−s1) + ps1

∣∣∣ ,
∣∣∣LN

1 (s1) − ps1
∣∣∣
)

≤ M1N
α/2
}

.

In addition, we know from Proposition 5.1 that we can find δ1 > 0 such that for all
sufficiently large N we have

P
(
E2(δ1, N )

) ≥ 1 − η/4, where E2(δ1, N )

=
{
Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L2; S′) > δ1

}
.
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Suppose a, b, z1, z2 are given such that 0 ≤ z2 − z1 ≤ 2s1, 0 ≤ b − a ≤ 2s1, z1 ≤ a,
z2 ≤ b. For a given 	bot ∈ �(−s1, s1; z1, z2), we let

E(a, b, 	bot , N )

:=
{
(LN

1 , LN
2 ) : LN

2 = 	bot on [−s1, s1], LN
1 (−s1) = a and LN

1 (s1) = b
}

.

Observe that E1(M1, N ) ∩ E2(δ1, N ) can be written as a countable disjoint union of
sets of the form E(a, b, 	bot , N ), where the triple (a, b, 	bot ) satisfies:

(1) 0 ≤ b − a ≤ 2s1, |a + ps1| ≤ M1Nα/2 and |b − ps1| ≤ M1Nα ,
(2) z1 ≤ a, z2 ≤ b and 	bot ∈ �(−s1, s1, z1, z2),
(3) Zt (S′,−s1, s1, a, b, 	bot ) > δ1.

Clearly, there are only finitely many choices for a, b that satisfy the conditions above.
The number of z1, z2 for each given pair (a, b) is countable, while the cardinality of
�(−s1, s1, z1, z2) is finite. Thus the number of triplets (a, b, 	bot ) is indeed count-
able. The fact that E(a, b, 	bot , N ) are disjoint is clear, while the first and third condi-
tion above show that their union is indeed E1(M1, N ) ∩ E2(δ1, N ). Let us denote by
F(δ1, M1, s1, N ) the set of triplets (a, b, 	bot ) that satisfy the three conditions above.

Step 4 Let us write LN
1 ([−s1, s1]) as the restriction of LN

1 to [−s1, s1]. For δ > 0 and
	 ∈ �(−s1, s1; a, b) we define

V (δ, 	) = sup
x,y∈[−s1,s1]|x−y|≤2δs1

|	(x) − 	(y) − p(x − y)| .

We assert that we can find δ > 0 such that for all large N and (a, b, 	bot ) ∈ F(δ1,

M1, s1, N )

P

(
V (δ, LN

1 ([−s1, s1])) ≥ A
∣∣∣E(a, b, 	bot , N )

)
≤ η/4, where A = ε(2s1)1/2

2(2r)1/2
. (49)

Let us assume the validity of (49) and deduce (48). We have

P

(
V (δ, LN

1 ([−s1, s1])) ≥ A
)

≤ P

( {
V (δ, LN

1 ([−s1, s1])) ≥ A
}

∩ E1(M1, N ) ∩ E2(δ1, N )
)
+ η/2,

where we used that P(Ec
1(M1, N )) ≤ η/4 and P(Ec

2(δ1, N )) ≤ η/4. In addition, we
have

P

( {
V (δ, LN

1 ([−s1, s1])) ≥ A
}

∩ E1(M1, N ) ∩ E2(δ1, N )
)

=
∑

(a,b,	bot )∈F(δ1,M1,s1,N )

P

( {
V (δ, LN

1 ([−s1, s1])) ≥ A
}

∩ E(a, b, 	bot , N )
)
,

where we used that E1(M1, N ) ∩ E2(δ1, N ) is a disjoint union of E(a, b, 	bot , N ).
Finally, (49) implies

P

( {
V (δ, LN

1 ([−s1, s1])) ≥ A
}

∩ E(a, b, 	bot , N )
)

= P

(
V (δ, LN

1 ([−s1, s1])) ≥ A
∣∣∣E(a, b, 	bot , N )

)
P
(
E(a, b, 	bot , N )

)

≤ (η/4) · P
(
E(a, b, 	bot , N )

)
.
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Summing the latter over (a, b, 	bot ) ∈ F(δ1, M1, s1, N ) and applying the earlier in-
equalities we get

P

(
V (δ, LN

1 ([−s1, s1])) ≥ A
)

≤ η/2 + η/4 ·
∑

(a,b,	bot )∈F(δ1,M1,s1,N )

P
(
E(a, b, 	bot , N )

)

= η/2 + (η/4) · P
(
E1(M1, N ) ∩ E2(δ1, N )

)
< η,

where in the middle equality we again used that E1(M1, N ) ∩ E2(δ1, N ) is a disjoint
union of E(a, b, 	bot , N ). The last equation implies (48).

Step 5 In this step we establish (49) and begin by fixing (a, b, 	bot ) ∈ F(δ1, M1, s1, N ).
Since LN satisfies the Hall-Littlewood Gibbs property on �−s1, s1� with respect to
S′ = �−s1 + 1, s1� for N sufficiently large we know that

P
(
LN
1 ([−s1, s1]) = 	

∣∣E(a, b, 	bot , N )
) = P

−s1,s1,a,b
S′ (	|	bot ) for any 	 ∈ �(−s1, s1; a, b).

(50)
We now recall the sampling property we explained in Remark 3.5. Let 	K be a

sequence of i.i.d. up-right paths distributed according to P
−s1,s1;a,b
f ree . Also let U be a

uniform random variable on (0, 1), independent of all else. For each K ∈ N we check
if Wt (−s1, s1, 	K , 	bot ; S′) > U and set Q to be the minimal index K , which satisfies
the inequality. Then we have that Q is a geometric random variable with parameter
Zt (−s1, s1, a, b, 	bot ; S′) and

P̃

(
	Q = 	

)
= P

−s1,s1,a,b
S′ (	|	bot ) for any 	 ∈ �(−s1, s1; a, b), (51)

where P̃ is the probability measure on a space on which 	K and U are defined, we also
write Ẽ for the expectation with respect to P̃.

Byour assumption that (a, b, 	bot ) ∈ F(δ1, M1, s1, N ),weknow that Zt (−s1, s1, a, b,
	bot ; S′) > δ1 and so Ẽ[Q] = Zt (−s1, s1, a, b, 	bot ; S′)−1 ≤ δ−1

1 . It follows that if we
take R = 8δ−1

1 η−1, then by Chebyshev’s inequality we have

P̃(Q > R) ≤ η/8. (52)

Fix A = ε(2s1)1/2

2(2r)1/2
and observe that

P̃

(
V (δ, 	Q) ≥ A

)
= P̃

(
V (δ, 	Q) ≥ A, Q > R

)

+ P̃

(
V (δ, 	Q) ≥ A, Q ≤ R

)
≤ P̃ (Q > R)

P̃

(
max
1≤i≤R

V (δ, 	i ) ≥ A

)
= P̃ (Q > R) + 1 − P̃

(
max
1≤i≤R

V (δ, 	i ) < A

)

≤ 1 − P̃

(
V (δ, 	1) < A

)�R�
+ η/8.

In the last inequality we used (52) and the independence of 	i . Combining the latter
inequality with (50) and (51) we see that

P

(
V (δ, LN

1 ([−s1, s1])) ≥ A|E(a, b, 	bot , N )
)

≤ 1 − P̃

(
V (δ, 	1) < A

)�R�
+ η/8.

(53)
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Equation (49) would now follow from (53) if we can show that for any ε′ > 0 we can
find δ > 0 (depending on M1, ε′, η, r and p), such that for all large N we have

P̃

(
V (δ, 	1) < A

)
≥ 1 − ε′. (54)

Step 6 In this final step we establish (54), which is the remaining statement we require.
Notice that A = ε̃(2s1)1/2, where ε̃ = ε

2(2r)1/2
. The key observation we make is the

following

P̃

(
V (δ, 	1) < A

)
= P

0,2s1;0,b−a
f ree

(
w( f 	1, δ) < ε̃

)
, (55)

where f 	(x) = (	(2xs1) − 2pxs1))/
√
2s1, x ∈ [0, 1] and w( f, δ) is the modulus of

continuity on [0, 1].
Notice that since (a, b, 	bot ) ∈ F(δ1, M1, s1, N ), we know that |b − a − 2ps1| ≤

2M1Nα/2 ≤ 4M1
(2r)1/2

(2s1)1/2 for all large N . The latter means that we can apply Lemma

4.11, and find δ > 0 (depending on M1, ε′, ε̃, η and p), such that for all large N we have

P
0,2s1;0,b−a
f ree

(
w( f 	1 , δ) < ε̃

)
≥ 1 − ε′.

Combining the latter with (55) concludes the proof of (54).

Remark 5.5. An important idea in our arguments above is to conditionon E(a, b, 	bot , N )

and obtain estimates on these events, where additional structure is available to us. The
latter is possible because of the discrete nature of our problem and substitutes the more
involved notions of stopping domains and strong Brownian Gibbs properties that were
used in [32,33].

6. Proof of Three Key Lemmas

Here we prove the three key lemmas from Sect. 5.1. The arguments we use below heavily
depend on the results from Sect. 4.

6.1. Proof of Lemma 5.2. Let us start by fixing notation. As in Sect. 5.1 we set s1 =
�r Nα� and t1 = �(r + 1)Nα�. Define the events
E(M) =

{∣∣∣LN
1 (−t1) + pt1

∣∣∣ > MNα/2
}

, F(M) =
{
L1(−s1) > −ps1 + MNα/2

}
and

G(M) =
{

sup
s∈[0,t1]

[
LN
1 (s) − ps

]
> (6r + 10)(M + 1)Nα/2

}
.

For a, b ∈ Z and s ∈ {0, 1, . . . , t1} as well as a path 	bot in �(−t1, s; z1, z2), where
z1 ≤ a and z2 ≤ b we define E(a, b, s, 	bot ) to be the event that LN

1 (−t1) = a,
LN
1 (s) = b, and LN

2 agrees with 	bot on [−t1, s]. We will also write LN
1 ([m, n]) for the

restriction of LN
1 to the interval [m, n].

Observe that Ec(M) ∩ G(M) can be written as a countable disjoint union of sets of
the form E(a, b, s, 	bot ), where the quadruple (a, b, s, 	bot ) satisfies:

(1) 0 ≤ s ≤ t1,
(2) 0 ≤ b − a ≤ t1 + s, |a + pt1| ≤ MNα/2 and b − ps > (6r + 10)(M + 1)Nα/2,
(3) z1 ≤ a, z2 ≤ b and 	bot ∈ �(−t1, s, z1, z2),
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Clearly, there are only finitely many choices for s and for any s there are countably
many a, b that satisfy the conditions above. Then the number of z1, z2 for each given
pair (a, b) is again countable, while the cardinality of �(−t1, s, z1, z2) is finite. This
means that the number of quadruples (a, b, s, 	bot ) is indeed countable. The fact that
E(a, b, s, 	bot ) are disjoint is again clear, while the first and second condition above
show that their union is indeed Ec(M) ∩ G(M). Let us denote by D(M) the set of
quadruples (a, b, s, 	bot ) that satisfy the three conditions above.

By 1-point tightness of LN
1 there exists M > 0 sufficiently large so that for every

N ∈ N we have

P
(
E(M)

)
< ε/4 and P

(
F(M)

)
<

εc(t)

12
, (56)

where we recall that c(t) =∏∞
i=1(1− t i ). Suppose (a, b, s, 	bot ) ∈ D(M) and observe

that we have

P
−t1,s;a,b
f ree

(
	(−s1) ≥ −ps1 + MNα/2) = P

0,t1+s;0,b−a
f ree

(
	(t1 − s1) + a ≥ −ps1 + MNα/2)

≥ P
0,t1+s;0,b−a
f ree

(
	(t1 − s1) ≥ p(t1 − s1) + 2MNα/2) , (57)

where in the last inequality we used that a + pt1 ≥ −MNα/2. Since |a + pt1| ≤ MNα/2

and b− ps ≥ (6r +10)(M +1)Nα/2, we conclude that b−a ≥ p(t1 + s)+ (6r +9)(M +
1)Nα/2. It follows from Lemma 4.8 that for all large N we have

P
0,t1+s;0,b−a
f ree

(
	(t1 − s1) ≥ t1 − s1

t1 + s
[p(t1 + s) + (6r + 9)(M + 1)Nα/2] − (t1 + s)1/4

)
≥ 1/3.

(58)
Notice that since s ∈ [0, t1], s1 = �r Nα� and t1 = �(r + 1)Nα�, we have t1−s1

t1+s
≥ 1

2r+3

for all large N . These estimates together imply that for all large N we have t1−s1
t1+s

[p(t1 +
s) + (6r + 9)(M + 1)Nα/2] − (t1 + s)1/4 ≥ p(t1 − s1) + 2MNα/2 and so from (57) and
(58) we conclude that

P
−t1,s;a,b
f ree

(
	(−s1) ≥ −ps1 + MNα/2

)
≥ 1/3. (59)

Since the sequenceLN is (α, p, r+1)-good, we know that for any 	 ∈ �(−t1, s; a, b)
we have

P(LN
1 ([−t1, s]) = 	|E(a, b, s, 	bot )) = Wt (−t1, s, 	, 	2; S)

Zt (−t1, s, a, b, 	bot ; S)
,

where S = �−t1 + 1, s�. The latter together with (59) and Corollary 4.4 allow us to
conclude that

P

(
L1(−s1) + ps1 > MNα/2|E(a, b, s, 	bot )

)
≥ c(t)/3. (60)

We now observe that

P
(
F(M)

) ≥
∑

(a,b,s,	bot )∈D(M)

P
(
F(M) ∩ E(a, b, s, 	bot )

)

=
∑

(a,b,s,	bot )∈D(M)

P
(
F(M)

∣∣E(a, b, s, 	bot )
)
P
(
E(a, b, s, 	bot )

)

≥ (c(t)/3)P
(
Ec(M) ∩ G(M)

)
,
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where in the last inequality we used (60). Combining the above inequality with the
inequalities in (56) we see that for all large N we have

ε/2 > P(G(M)) = P

(
sup

s∈[0,t1]

[
LN
1 (s) − ps

]
> (6r + 10)(M + 1)Nα/2

)
. (61)

A similar argument shows that for all large N we have

ε/2 > P

(
sup

s∈[−t1,0]

[
LN
1 (s) − ps

]
> (6r + 10)(M + 1)Nα/2

)
. (62)

Combining (61) and (62) we conclude the statement of the lemma for R = (6r +10)(M+
1).

6.2. Proof of Lemma 5.3. For clarity we will split the proof into two steps.

Step 1 Define F =
{
min

(
L̃(−s1) + ps1, L̃(s1) − ps1

)
≥ (M2 + 1)Nα/2 + (2s1)1/2

}
.

We claim that for all N sufficiently large we have

PL̃ (F) ≥ (c(t)3/18)
(
1 − �p(1−p)/2

(
10(1 + r)2(M1 + M2 + 1)

))
. (63)

Establishing the validity of (63) will be done in the second step, and in what follows we
assume it is true and finish the proof of the lemma.

We assert that if N2 is sufficiently large and N ≥ N2 we have

F ⊂ A =
{
Z
(
−s1, s1, L̃(−s1), L̃(s1), 	bot ; S′) ≥ 1

4

(
1 − exp

( −2

p(1 − p)

))}
.

(64)
Observe that (63) and (64) prove the lemma and so it suffices to verify (64). The details
are presented below (see also Fig. 9).

From Definition 3.4 (see also Remark 3.5) we have

Z
(
−s1, s1, L̃(−s1), L̃(s1), 	bot ; S′) = E

−s1,s1;L̃(−s1),L̃(s1)
f ree

[
Wt (−s1, s1, ·, 	bot ; S′)

]
.

Ifwe set� = �(−s1, s1; L̃(−s1), L̃(s1)) and Zt (L̃(−s1), L̃(s1)) = Z
(−s1, s1, L̃(−s1),

L̃(s1), 	bot ; S′) then the above implies

Zt (L̃(−s1), L̃(s1)) = |�|−1
∑
	∈�

Wt (−s1, s1, 	, 	bot ; S′). (65)

Denote�′ = {	 ∈ � : 	(s) − ps ≥ (M2 + 1)Nα/2 − (2s1)1/4 for s ∈ [−s1, s1]
}
. It fol-

lows fromLemma 4.10 that on the event F , provided N2 is sufficiently large and N ≥ N2
we have

|�′|
|�| ≥ 1

2

(
1 − exp

( −2

p(1 − p)

))
. (66)

Since |s1 − r Nα| < 1 we know that for N2 sufficiently large and N ≥ N2, we have that
	 ∈ �′ satisfies 	(s) − ps ≥ (M2 + 1/2)Nα/2 ≥ 	bot (s) − ps + (1/2)Nα/2, where the
last inequality holds true by our assumption on 	bot . The conclusion is that for 	 ∈ �′,
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Fig. 9. Overview of the arguments in Step 1: We want to prove that on the event F , we have a lower bound on
the acceptance probability Zt (L̃(−s1), L̃(s1)) = Zt (−s1, s1, L̃(−s1), L̃(s1), 	bot ; S′). As explained in (65)
the acceptance probability is just the average of the weights Wt (−s1, s1, 	, 	bot ; S′) over all up-right paths in
� = �(−s1, s1; L̃(−s1), L̃(s1)). Consequently, to show that Zt (L̃(−s1), L̃(s1)) is lower-bounded it suffices
to find a big subset �′ ⊂ �, such that the weights Wt (−s1, s1, 	, 	bot ; S′) for 	 ∈ �′ are lower-bounded. Let
A(s) and B(s) denote the lines ps + (M2 + 1)Nα/2 − (2s1)1/4 and ps + M2N

α/2, drawn in grey and black
respectively above. Then �′ denotes the set of up-right paths in �, which lie above A(s) on [−s1, s1]. On the
event F we have that L̃(±s1) are at least a distance (2s1)1/2 + (2s1)1/4 above the points A(±s1) respectively.
Since the endpoints of paths in � are well above those of A(s) this means that some positive fraction of these
paths will stay above A(s) on the entire interval [−s1, s1]; i.e. |�′|/|�| is lower bounded; the exact relation
is given in (66). To see that Wt (−s1, s1, 	, 	bot ; S′) for 	 ∈ �′ are lower bounded, we notice that elements
	 ∈ �′ are well-above B(s), which dominates 	bot by assumption. This means that 	 is well above 	bot and
for such paths Wt (−s1, s1, 	, 	bot ; S′) is lower bounded. The exact relation is given in (67)

we have that 	(s) − 	bot (s) ≥ m, where m = (1/2)Nα/2. In view of (18) we conclude
that for N2 sufficiently large, N ≥ N2 and 	 ∈ �′

Wt (−s1, s1, 	, 	bot ; S′) ≥ (1 − tm)2s1 ≥ (1 − t (1/2)N
α/2

)2r N
α ≥ 1

2
. (67)

Combining (65), (66) and (67) we conclude that provided N2 is sufficiently large and
N ≥ N2 on the event F we have

Zt (L̃(−s1), L̃(s1)) ≥ |�|−1
∑
	∈�′

Wt (−s1, s1, 	, 	bot ; S′) ≥ |�′|
|�| · 1

2

≥ 1

4

(
1 − exp

( −2

p(1 − p)

))
.

Step 2 In this step we prove (63). We refer the reader to Fig. 10 for an overview of the
main ideas in this step and a graphical representation of the notation we use.

Let K1 = 8(1 + r)2(M1 + M2 + 1)Nα/2. Define E = �M∈X EM for

EM = {L̃(0) = M} and
X =

{
M ∈ N : M ≥ (1/2)K1 − [2(r + 1)N ]α/4 and PL̃(EM ) > 0

}
.
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Fig. 10. Overview of the arguments in Step 2: L̃1 and L̃2 are the restrictions of L̃ to [−t1, 0] and [0, t1]
respectively. 	1bot and 	2bot denote the restrictions of 	bot to [−t1, 0] and [0, t1] respectively. Let B(s) denote

the line ps + M2N
α/2, drawn in black above. We have that F denotes the event that L̃ is at least a distance

Nα/2 + (2s1)1/2 above the line B(s) at the points ±s1 and we want to find a lower bound on PL̃ (F). We

first let E denote the event that L̃(0) is much higher than B(0), and prove that PL̃ (E) is lower bounded. The

exact statement is given in (68). Afterwards, we show that on the event that the midpoint L̃(0) is very high,
the points L̃(±s1) are also very high with positive probability. The exact statement is given in (72). In a sense,
by conditioning on the midpoint L̃(0) we split our problem into two independent subproblems for the left and
right half of L̃—see (69). Establishing the required estimates for each of the subproblems is then a relatively
straightforward application of Lemma 4.8 and Corollary 4.4—see (70)

It follows from Lemma 4.9 that we can find N2, depending on r, M1, M2 such that for
N ≥ N2

P
−t1,t1;a,b
f ree

(
	(0) ≥ (1/2)K1 − [2(r + 1)N ]α/4

)
≥ (1/2)(1 − �p(1−p)/2(M1 + K1)).

Then by Corollary 4.4 we conclude

PL̃ (E) ≥ (c(t)/2)(1 − �p(1−p)/2(M1 + K1)). (68)

Denote by L̃1 and L̃2 the restriction of L̃ to [−t1, 0] and [0, t1] respectively. Similarly,
we let 	1bot and 	2bot denote the restriction of 	bot to [−t1, 0] and [0, t1] respectively. Note
that if M ∈ X then

PL̃(L̃1 = 	1, L̃2 = 	2|EM ) = P
−t1,0,a,M
S1

(	1|	1bot ) · P
0,t1,M,b
S2

(	2|	2bot ), (69)

where S1 = �−t1 + 1,−s1�, S2 = �s1 + 1, t1� and 	1 ∈ �(−t1, 0; a, M), 	2 ∈
�(0, t1; M, b).

From Lemma 4.8, we know that

P
−t1,0;a,M
f ree

(
	(−s1) ≥ M

t1 − s1
t1

+ a
s1
t1

− [(r + 1)N ]α/4
)

≥ 1/3,
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provided N2 is large enough and N ≥ N2. Since a ≥ −pt1 − M1Nα/2, s1 = �r Nα�,
t1 = �(r +1)Nα�,M ≥ (1/2)K1−[2(r +1)N ]α/4 and K1 = 8(1+r)2(1+M1+M2)Nα/4

we conclude that if N2 is sufficiently large and N ≥ N2 then

P
−t1,0;a,M
f ree

(
	(−s1) + ps1 ≥ (M2 + 1)Nα/2 + (2s1)

1/2
)

≥ 1/3.

From Corollary 4.4 and the above inequality we conclude

P
−t1,0,a,M
S1

(
	1(−s1) + ps1 ≥ (M2 + 1)Nα/2 + (2s1)

1/2
)

≥ c(t)/3. (70)

Similar arguments show that

P
0,t1,M,b
S2

(
	2(s1) − ps1 ≥ (M2 + 1)Nα/2 + (2s1)

1/2
)

≥ c(t)/3. (71)

Combining (69), (70) and (71), we see that for M ∈ X , we have

PL̃ (F |EM ) ≥ c(t)2/9. (72)

The above inequality implies that

PL̃(F) ≥ PL̃ (F ∩ E) =
∑
M∈X

PL̃ (F |EM ) PL̃(EM ) ≥ (c(t)2/9) · PL̃ (E) .

The latter inequality together with (68) and the monotonicity of �v on R>0 prove (63).

6.3. Proof of Lemma 5.4. Define PL ′ and PL̃ ′ as the measure on up-right paths L ′ and
L̃ ′ : [−t1,−s1] ∪ [s1, t1] → R (with L ′(−t1) = L̃ ′(−t1) = a and L ′(t1) = L̃ ′(t1) = b
) induced by the restriction of the measures PL and PL̃ to these intervals. The Radon-
Nikodym derivative between these two restricted measures is given on up-right paths
B : [−t1,−s1] ∪ [s1, t1] → R by

dPL ′

dPL̃ ′
(B) = (Z ′)−1Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′), (73)

where Z ′ = EL̃ ′
[
Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′)

]
.

Observe that Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′) is a (deterministic) function of
(B(−s1), B(s1)). In addition, the law of (B(−s1), B(s1)) under PL̃ ′ is the same as
(L̃(−s1), L̃(s1)) under PL̃ (this is because PL̃ ′ is a restriction of PL̃ to intervals that
contain ±s1). The latter and Lemma 5.3 imply

Z ′ = EL̃ ′
[
Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′)

]

= EL̃

[
Zt (−s1, s1, L̃(−s1), L̃(s1), 	bot ; S′)

]
≥ gh.

Similarly, the law of (B(−s1), B(s1)) under PL ′ is the same as (L(−s1), L(s1))
under PL (this is because PL ′ is a restriction of PL to intervals that contain ±s1). Since
Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′) is a (deterministic) function of (B(−s1), B(s1)),
we conclude that

PL
(
Zt (−s1, s1, L(−s1), L(s1), 	bot ; S′) ≤ δ(ε̃)

)

= PL ′
(
Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′) ≤ δ(ε̃)

)
.
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Let us denote E = {
Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′) ≤ δ(ε̃)

} ⊂ � (here � is the
space of paths B). Then we have that

PL ′ (E) =
∫

�

1E · dPL ′(B) = (Z ′)−1
∫

�

1E · Zt (−s1, s1, B(−s1), B(s1), 	bot ; S′) · dPL̃ ′(B).

The above is immediate from (73). On E we have that Zt (−s1, s1, B(−s1), B(s1),
	bot ; S′) ≤ δ(ε̃) and so the above is bounded by

(Z ′)−1
∫

�

1E · δ(ε̃) · dPL̃ ′(B) ≤ 1

gh

∫

�

1E · δ(ε̃) · dPL̃ ′(B) ≤ ε̃.

The first inequality used that Z ′ ≥ gh and the second one that δ(ε̃) = ε̃ ·gh and 1E ≤ 1.
This concludes the proof of the lemma.

7. Absolute Continuity with Respect to Brownian Bridges

In Theorem 3.8 we showed that under suitable shifts and scalings (α, p, r + 1)-good
sequences give rise to tight sequences of continuous random curves. In this section, we
aim to obtain some qualitative information about their subsequential limits and we show
that any subsequential limit is absolutely continuous with respect to a Brownian bridge
with appropriate variance. In particular, this demonstrates that we have non-trivial limits
and do not kill fluctuations with our rescaling. In Sect. 7.1 we present the main result of
the section—Theorem 7.3 and explain how it relates to the other results in the paper. The
proof of Theorem 7.3 is given in Sect. 7.2 and relies on our control of the acceptance
probability in Proposition 5.1 and the Hall-Littlewood Gibbs property.

7.1. Formulation of result and applications. We introduce some relevant notation and
define what it means to be absolutely continuous with respect to a Brownian bridge.

Definition 7.1. Let X = C([0, 1]) and Y = C([−r, r ]) be the spaces of continuous
functions on [0, 1] and [−r, r ] respectively with the uniform topology. Denote by dX
and dY the metrics on the two spaces and by B(X) and B(Y ) their Borel σ -algebras.
Given z1, z2 ∈ R we define Fz1,z2 : X → Y and Gz1,z2 : Y → X by

[Fz1,z2(g)](x) = z1 + g
( x + r

2r

)

+
x + r

2r
(z2 − z1) [Gz1,z2(h)](ξ) = h (2rξ − r) − z1 − (z2 − z1)ξ,

(74)

for x ∈ [−r, r ] and ξ ∈ [0, 1].
One observes that Fz1,z2 and Gz1,z2 are bijective homomorphisms between X and Y

that are mutual inverses. Let X0 = { f ∈ X : f (0) = f (1) = 0} with the subspace
topology and define G : Y → X through G(h) = Gh(−r),h(r)(h). Let us make some
observations.

(1) G is a continuous function. Indeed, from the triangle inequality we have
dX
(
Gh1(−r),h1(r)(h1),Gh2(−r),h2(r)(h2)

) ≤ 2dY (h1, h2).
(2) If L is a random variable in (Y,B(Y )) then G(L) is a random variable in (X,B(X)),

which belongs to X0 with probability 1. The measurability of G(L) follows from
the continuity of G, everything else is clearly true.
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Recall from Sect. 4.2 that Bσ stands for the Brownian bridge on [0, 1], with variance
σ 2—this is a random variable in (X,B(X)), which belongs to X0 with probability 1.

With the above notation we make the following definition.

Definition 7.2. Let L be a random variable in (Y,B(Y )) with law PL . We say that L is
absolutely continuous with respect to a Brownian bridge with variance σ 2 if for any
K ∈ B(X) we have

P(Bσ ∈ K ) = 0 �⇒ PL(G(L) ∈ K ) = 0.

The main result of this section is as follows.

Theorem 7.3. Assume the same notation as in Theorem 3.8 and let P∞ be any subse-
quential limit of PN . If f∞ has law P∞ then it is absolutely continuous with respect to
a Brownian bridge with variance 2rp(1 − p) in the sense of Definition 7.2.

Theorem 7.3 has the following corollary about the three stochastic models of Sect. 2.

Corollary 7.4. Assume the same notation as in Theorems 2.3, 2.6 and Corollary 3.11
respectively and define for x ∈ [−r, r ]

gHL
N (x) = σμ f HL

N (x) +
x2 f ′′

1 (μ)

2
, gSVN (x) = σμ f SVN (x) − x2 f ′′

2 (μ)

2
,

gASEP
N (x) = σα f ASE P

N (x) − x2 f ′′
3 (α)

2
.

If gHL∞ , gSV∞ and gASEP∞ are any subsequential limits of gHL
N , gSVN and gASEP

N respectively
as N → ∞ then gHL∞ , gSV∞ and gASEP∞ are absolutely continuous with respect to a
Brownian bridge of variance 2r f ′

1(μ)[1− f ′
1(μ)],−2r f ′

3(μ)[1+ f ′
2(μ)] and−2r f ′

3(α)[1+
f ′
3(α)] respectively in the sense of Definition 7.2.

Proof. From the proof of Theorem 3.10 we know that

gHL
N (s) = N−1/3

(
LN
1 (sN 2/3) − f ′

1(μ)sN 2/3
)

, for s ∈ [−r, r ],

where the sequence (LN
1 , LN

2 ) is (2/3, f ′
1(μ), r +1)-good. By Theorem 7.3 we conclude

the statement for gHL∞ . In addition, by Theorem 2.5 we know that for each N ∈ N, f HL
N

has the same distribution as f SVN and so we conclude the statement for gSV∞ as well.
From the proof of Theorem 3.13 we know that

gASEP
N (s) = N−1/3

(
L̃ N
1 (sN 2/3) + f ′

3(α)sN 2/3
)

, for s ∈ [−r, r ],

where the sequence (L̃ N
1 , L̃ N

2 ) is
(
2/3,− f ′

3(α), r + 1
)
-good. By Theorem 7.3 we con-

clude the statement for gASEP∞ . ��
Remark 7.5. Conjecturally, f HL

N , f SVN and f ASE P
N should converge to theAiry2 process.

Corollary 7.4 provides further evidence for this result as it is known that theAiry2 process
minus a parabola has Brownian paths [32]. See also the discussion at the end of Sect. 1.2.
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7.2. Proof of Theorem 7.3. In this section we give the proof of Theorem 7.3, which
for clarity is split into several steps. Before we go into the main argument we introduce
some useful notation and give an outline of our main ideas.

Throughout we assume we have the same notation as in the statement of Theorem 3.8
as well as the notation from Sect. 7.1 above. We Denote σ 2

1 = 2rp(1− p), s1 = �r Nα�,
rN = s1N−α and S′ = �−s1 + 1, s1�. In addition, we define three probability spaces
P
1, P

2, P
3 as well as a big probability space P̃, which is the product space of P

1, P
2

and P
3. The three spaces will carry different stochastic objects and we will use the

superscript to emphasize, which properties we are using in different steps of the proof.
We also reserve P to refer to the law of universal probabilistic objects like a Brownian
bridge of a fixed variance.

From Theorem 4.5 in the paper, we know that for each n ∈ N we have a probability
space, on which we have a Brownian bridge Bσ with variance σ 2 = p(1 − p) and a
family of random paths 	(n,z) ∈ �(0, n; 0, z) for z = 0, . . . , n such that 	(n,z) has law
P
0,n;0,z
f ree and

E

[
ea�(n,z)

]
≤ Ceα(log n)2e|z−pn|2/n, where �(n, z) = sup0≤t≤n

∣∣∣√nBσ
t/n +

t
n z − 	(n,z)(t)

∣∣∣ ,

where the constants C, a, α depend only on p and are fixed. By taking products of
countably many of the above spaces we can construct a probability space (�1,F1, P

1),
on which we have defined independent Brownian bridges Bσ,k,n and independent fam-
ilies of random paths 	(n,k,z) ∈ �(0, n; 0, z) for z = 0, . . . , n such that 	(n,k,z) has law
P
0,n;0,z
f ree for each k and

EP1

[
ea�(n,k,z)

]
≤ Ceα(log n)2e|z−pn|2/n, where �(n, k, z) := sup0≤t≤n

∣∣∣√nBσ,k,n
t/n + t

n z − 	(n,k,z)(t)
∣∣∣ .

In words, for each pair (k, n) ∈ N × N we have an independent copy of the probability
space afforded by Theorem 4.5 sitting inside (�1,F1, P

1). In addition, we assume that
(�1,F1, P

1) carries a uniform random variableU ∈ (0, 1), which is independent of all
else.

Since P∞ is a subseqential limit of PN we know that we can find an increasing se-
quence N j such thatPN j weakly converge toP∞. By Skorohod’s representation theorem
(see e.g. Theorem 6.7 in [10]) we can find a probability space (�2,F2, P

2), on which
are defined random variables f̃N j and f̃∞ that take values in (Y,B(Y )) such that the laws

of f̃N j and f̃∞ are PN j and P∞ respectively and such that dY
(
f̃N j (ω

2), f̃∞(ω2)
)

→ 0

as j → ∞ for each ω2 ∈ �2.
We consider a probability space (�3,F3, P

3), on which we have defined the original
(α, p, r + 1)-good sequence LN = (LN

1 , LN
2 ) and so

fN (s) = N−α/2(LN
1 (sNα) − psNα), for s ∈ [−r, r ]

has law PN for each N ≥ 1. Let us briefly explain the difference between P
2 and P

3 and
why we need both. The space (�2,F2, P

2) carries the random variables f̃N j of law PN j

and what is crucial is that the latter converge almost surely to f̃∞, whose law is P∞. The
space (�3,F3, P

3) carries the entire discrete line ensembles LN = (LN
1 , LN

2 ) (and not
just the top curve), which is needed to perform the resampling procedure of Sect. 3.1.
Finally, we define (�̃, F̃ , P̃) as the product of the three probability spaces we defined
above.
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At this time we give a brief outline of the steps in our proof. In the first step we fix
K ∈ B(X) such that P(Bσ1 ∈ K ) = 0 and find an open set O , which contains K , and
such that Bσ1 is extremely unlikely to belong to O . Our goal is then to show that G( f̃∞)

is also unlikely to belong to O , the exact statement is given in (77) below. Using that O is
open and that f̃N j converge to f̃∞ almost surely we can reduce our goal to showing that

it is unlikely thatG( f̃N j ) belongs to O and f̃N j is at least a small distance away from the
complement of G−1(O) for large j . Our gain from the almost sure convergence is that
we have bounded ourselves away fromG−1(O)c, and by performing small perturbations
we do not leave G−1(O). As the laws of f̃N j and fN j are the same we can switch from
(�2,F2, P

2) to (�3,F3, P
3), reducing the goal to showing that it is unlikely thatG( fN )

belongs to O and fN is at least a small distance away from G−1(O)c for large N . The
exact statement is given in (78) and the reduction happens in Step 2. The benefit of this
switch is that we can perform the resampling of Sect. 3.1 in (�3,F3, P

3) as the latter
carries an entire line ensemble.

In the third step we use U and 	(2s1,k,z) for k = 1, 2, 3 . . . to resample fN on the
interval [−s1, s1]. If we denote by Q the index k of the first line we accept from the
resampling, we can rephrase our statements for fN to equivalent statements that involve
the path 	(2s1,Q,z)—this is (80). The benefit of working with 	(2s1,k,z) is that they are
already strongly coupled with Brownian bridges by construction. In Step 4 we construct
an event F(N ), on which our coupling of 	(2s1,Q,z) and the Browniand bridge Bσ,Q,2s1 is
good andonwhich Bσ,Q,2s1 iswell-behaved (its supremumandmodulus of continuity are
controlled). Provided we are on F(N ) (where the coupling is good) we see that 	(2s1,Q,z)

belonging to a certain set (wewant to show is unlikely) implies that
√
2r Bσ,Q,2s1 belongs

to O . Here it is crucial, that we have the extra distance to the complement of G−1(O)

so that when we approximate our discrete paths with Brownian bridges we do not leave
G−1(O).

The above steps reduce the problem to showing that it is unlikely that
√
2r Bσ,Q,2s1

belongs to O or that we are outside the event F(N )—the exact statement is in (88).
The control of

√
2r Bσ,Q,2s1 is obtained by arguing that with high probability Q is

bounded—this requires our estimate on the acceptance probability from Proposition 5.1
and is the focus of Step 5. By having Q bounded we reduce the question to a regular
Brownian bridge, for which the event it belongs to O is unlikely by definition of O .
We demonstrate that F(N )c is unlikely in Step 6. As before we use the estimate on
the acceptance probability to reduce the question to one involving a regular Brownian
bridge, using the uniform control of the coupling of our paths with Brownian bridges
for all large N .

We now turn to the proof of the theorem.

Step 1 Suppose that K ∈ B(X) is given such that P(Bσ1 ∈ K ) = 0. We wish to show
that

P
2
(
G( f̃∞) ∈ K

)
= 0. (75)

Let ε ∈ (0, 1) be given and note that by Proposition 5.1 and Theorem 3.8 , we can find
δ ∈ (0, 1) and M > 0 such that for all large N one has

P
3 (E(δ, M, N )) < ε, where E(δ, M, N )

=
{
Zt (−s1, s1, L

N
1 (−s1), L

N
1 (s1), L2; S′) < δ

}
∪

{
sup

s∈[−r Nα,r Nα]

∣∣∣LN
1 (s) − ps

∣∣∣ ≥ MNα/2
}
. (76)
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We observe that since C([−r, r ]) is a metric space we have by Theorem II.2.1 in [59]
that the measure of Bσ1 is outer-regular. In particular, we can find an open set O such
that K ⊂ O and P(Bσ1 ∈ O) < ε · log(1−δ)

log(ε) . The set O will not be constructed explicitly
and we will not require other properties from it other than it is open and contains K .

We will show that

P
2
(
G( f̃∞) ∈ O

)
≤ 6ε. (77)

Notice that the above implies that P
2
(
G( f̃∞) ∈ K

)
≤ 6ε and hence we reduce the

proof of the theorem to establishing (77).

Step 2 Our goal in this step is to reduce (77) to a statement involving finite indexed
curves.

We first observe G−1(O) is open since G is continuous (see Sect. 7.1) and so

P
2
(
G( f̃∞) ∈ O

)
= P

2
(
f̃∞ ∈ G−1(O)

)

= lim
j→∞ P

2
({

f̃N j ∈ G−1(O)
}

∩
{
dY ( f̃N j ,G

−1(O)c) > ρ j

})
,

whereρ j is any sequence that converges to 0 as j → ∞. Thefirst equality is by definition.
The second one follows from the fact that f̃N j converge to f̃∞ in the uniform topology

P
2-almost surely and that G−1(O) is open. To be more specific we take ρ j = N−α/8

j
for the sequel.

Since fN has law PN for each N ≥ 1, we observe that to get (77) it suffices to show
that

lim sup
N→∞

P
3
({

fN ∈ G−1(O)
}

∩
{
dY ( fN ,G−1(O)c) > N−α/8

})
≤ 6ε. (78)

Step 3 At this time we recall the resampling procedure from Remark 3.5 in the setting
of our probability spaces P

i . The goal of this step is to rephrase (78) into a statement
involving the paths 	(n,k,z) that are defined on (�1,F1, P

1).
Denote by a = LN

1 (−s1), b = LN
1 (s1), z = b− a, n = 2s1 and 	bot = LN

2 restricted
to [−s1, s1]. We resample the top curve LN

1 as follows. We start by erasing the curve
in the interval [−s1, s1]. For k = 1, 2, 3, . . . we take 	(n,k,z) (these were defined on the
space (�1,F1, P

1)), check if Wt (−s1, s1, (−s1, a) + 	(n,k,z), 	bot ; S′) > U and set Q
to be the minimal index k, which satisfies the inequality. Here (−s1, a) + 	(n,k,z) is just
the up-right path 	(n,k,z) shifted so that it starts from the point (−s1, a).

Notice that by construction the path (−s1, a) + 	(n,k,z) are independent identically
distributed as P

−s1,s1;a,b
f ree . Because LN satisfies the Hall-Littlewood Gibbs property we

have

P̃

(
(−s1, a) + 	(2s1,Q,b−a) = 	

)
= P

3
(
LN
1 [−s1, s1] = 	

)
, (79)

for every 	 ∈ ∪z1≤z2�(−s1, s1; z1, z2) where LN
1 [−s1, s1] stands for the restriction of

LN
1 to the interval [−s1, s1]. If we denote

hN (s) =
{
N−α/2

(
a + 	(2s1,Q,b−a)(sNα + s1)

)
, for s ∈ [−rN , rN ]

fN (s) for s ∈ [−r, r ]\[−rN , rN ],
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we have that hN has the same law as fN . Consequently it suffices to show that

lim sup
N→∞

P̃

({
hN ∈ G−1(O)

}
∩
{
dY (hN ,G−1(O)c) > N−α/8

})
≤ 6ε. (80)

Step 4 Let Bk(s) := Bσ,k,2s1
s for s ∈ [0, 1] and consider the event

F(N ) =
{
�(2s1, Q, b − a) < Nα/4

}
∩
{

sup
s∈[0,1]

∣∣∣BQ(s)
∣∣∣ ≤ Nα/4

}

∩
{
w(BQ, N−α) ≤ N−α/4

}
. (81)

In the above w stands for the modulus of continuity of a function on [0, 1] as defined in
(39).

In this step we verify the following statement: There exists N0 ∈ N and C both
depending on r such that for N ≥ N0 and on the event F(N ) we have

dY
(
hN , HQ

1

)
≤ CN−α/4, where HQ

1 = FhN (−r),hN (r)

(√
2r BQ

)
(82)

Before we prove (82) we give a brief summary of the ideas. By definition, we have that
HQ
1 is given by an appropriate shift and rescaling of BQ , which interpolates the points

(−r, hN (−r)) and (r, hN (r)). To better understand how HQ
1 differs from hN we first

do an auxillary rescaling HQ
2 by erasing the part of hN on the interval [−rN , rN ] and

interpolating the points (−rN , hN (−rN )) , (rN , hN (rN )) with an appropriate shift and
rescaling of BQ . The distance dY (hN , HQ

2 ) is easily shown to be O
(
N−α/4

)
using only

the strong coupling of BQ and 	(2s1,Q,b−a) on F(N ) (this is the first event in (81)). Since
rN is close to r and hN (±rN ) is close to hN (±r) one can show that dY (HQ

2 , HQ
1 ) =

O
(
N−α/4

)
. The latter estimate uses the bounds on BQ and w

(
BQ, N−α

)
from the

second and third event in (81), since what is involved is a certain stretching of the
Brownian bridge BQ . In what follows we supply the details of the above strategy.

We start by defining

HQ
2 (s) =

{
N−α/2

(
a +

√
2s1BQ

(
sNα+s1
2s1

)
+ sNα+s1

2s1
(b − a)

)
for s ∈ [−rN , rN ],

fN (s) for s ∈ [−r, r ]\[−rN , rN ],
where we recall that rN = s1N−α . Notice that

dY
(
hN , HQ

2

)
= N−α/2 · �(2s1, Q, b − a) ,

and so on the event F(N ) for all N ≥ 1 we have

dY
(
hN , HQ

2

)
< N−α/4. (83)

We next estimate HQ
2 (s) − HQ

1 (s) on the interval [−r, r ]. Whenever s ∈ [−rN , rN ]
and we are on the event F(N ) we have

HQ
2 (s) − HQ

1 (s) = N−α/2
(
a +
√
2s1B

Q
(
sNα + s1

2s1

)
+
sNα + s1

2s1
(b − a)

)

−
(
hN (−r) +

√
2r BQ

( s + r

2r

)
+
s + r

2r
(hN (r) − hN (−r))

)
= O(N−α/4), (84)
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where the constant in the big O notation depends on r . In obtaining the second equality
we used:

(1) s1 = �r Nα� = r Nα + O(1), b − a ≤ 2r Nα ,
(2)

∣∣hN (−r) − N−α/2 · a∣∣ = |hN (−r) − hN (−rN )| ≤ N−α/2,
(3) |hN (r) − N−α/2 · b| = |hN (r) − hN (rN )| ≤ N−α/2,
(4) on F(N ) we have sups∈[0,1]

∣∣BQ(s)
∣∣ ≤ Nα/4 and w(BQ, N−α) ≤ N−α/4.

For s ∈ [−r, r ]\[−rN , rN ], we know that
∣∣∣HQ

1 (s) − HQ
2 (s)

∣∣∣ ≤
∣∣∣HQ

1 (±rN ) − HQ
2 (±rN )

∣∣∣
+
∣∣∣HQ

1 (s) − HQ
1 (±rN )

∣∣∣ +
∣∣∣HQ

2 (s) − HQ
2 (±rN )

∣∣∣ ,

where we choose the top sign if s > rN and the bottom sign otherwise. Note that the
first term above is O

(
N−α/4

)
by (84). Substituting the definitions of HQ

1 and HQ
2 we

get for s ∈ [−r, r ]\[−rN , rN ]
∣∣∣HQ

1 (s) − HQ
2 (s)

∣∣∣ ≤ O
(
N−α/4) + N−α/2

∣∣∣∣
√
2s1B

Q
(
sNα + s1

2s1

)
+
sNα ∓ s1

2s1
(b − a)

∣∣∣∣

+

∣∣∣∣
√
2r

[
BQ
( s + r

2r

)
− BQ

(±s1N−α + r

2r

)]

+
s ∓ s1N−α

2r
(hN (r) − hN (−r))

∣∣∣∣ = O
(
N−α/4) , (85)

where again we take the top sign if s > rN and the bottom sign otherwise and the
constant in the big O notation depends only on r . In obtaining the last equality we used
the same estimates above together with the inequality |hN (r) − hN (−r)| ≤ 2r Nα/2.
Combining (84) and (85) we deduce that

dY
(
HQ
1 , HQ

2

)
= O

(
N−α/4

)
, (86)

where the constant in the big O notation depends on r . Combining (83) and (86) we
deduce (82).

Step 5 In this step we first show the following inclusion of events for all large N
(depending on r )

I (N ) :=F(N )∩
{
hN ∈G−1(O)

}
∩
{
dY (hN ,G−1(O)c)>N−α/8

}
⊂
{√

2r BQ ∈O
}

.

(87)

Recall from (82) that there are N0 and C depending on r such that for N ≥ N0 on the
event F(N )

HQ
1 = FhN (−r),hN (r)

(√
2r BQ

)
and dY

(
hN , HQ

1

)
≤ CN−α/4.

By increasing N0 we can also ensure that CN−α/4 < N−α/8 for N ≥ N0.
Fix N ≥ N0 and assume we are on the event I (N ). Since hN ∈ G−1(O) and

dY (hN ,G−1(O)c) > N−α/8, we see that HQ
1 ∈ G−1(O). Observe that G(HQ

1 ) =√
2r BQ by definition and so we conclude that

√
2r BQ ∈ O on I (N ). This proves (87).
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From (87) we know that the LHS of (80) is bounded by

lim sup
N→∞

[
P̃

(√
2r BQ ∈ O

)
+ P̃
(
F(N )c

)]
.

In order to finish the proof it suffices to show

lim sup
N→∞

P̃

(√
2r BQ ∈ O

)
≤ 3ε and lim sup

N→∞
P̃
(
F(N )c

) ≤ 3ε. (88)

In the second part of this step we verify the first inequality in (88) and for brevity we
set W = log(ε)

log(1−δ)
. Observe that

P̃

(√
2r BQ ∈ O

)
≤ P

3(E(δ, M, N )) + P̃

(
E(δ, M, N )c ∩

{√
2r BQ ∈ O

})
,

where E(δ, M, N ) was defined in Step 1. By assumption on E(δ, M, N ) it suffices to
show that

lim sup
N→∞

P̃

(
E(δ, M, N )c ∩

{√
2r BQ ∈ O

})
≤ 2ε. (89)

Notice that on E(δ, M, N )c we have that Q is a geometric random variable with param-
eter Zt (−s1, s1, a, b, 	bot ; S′) ≥ δ. In particular, we have the a.s. inequality

P̃
(
Q > W |E(δ, M, N )c

) ≤ (1 − δ)W . (90)

The above suggests that

P̃

(
E(δ, M, N )c ∩

{√
2r BQ ∈ O

})

≤ P̃
(
E(δ, M, N )c

) [
(1 − δ)W + P̃

(
{Q ≤ W } ∩

{√
2r BQ ∈ O

} ∣∣∣E(δ, M, N )c
)]

≤ (1 − δ)W + P̃

(
W⋃
i=1

{√
2r Bi ∈ O

})
≤ (1 − δ)W +W · P̃

(√
2r B1 ∈ O

)
,

where we used in the last inequality that Bk are identically distributed.

Now notice that P̃

(√
2r B1 ∈ O

)
= P(Bσ1 ∈ O) ≤ ε · log(1−δ)

log(ε) by our choice of O

and so we conclude that

(1 − δ)W +W · P̃

(√
2r B1 ∈ O

)
≤ (1 − δ)W + ε ≤ 2ε.

This establishes (89).

Step 6 In this final step we establish the second inequality in (88) and as in Step 5 set
W = log(ε)

log(1−δ)
. Observe that

P̃
(
F(N )c

) ≤ P
3(E(δ, M, N )) + P̃

(
E(δ, M, N )c ∩ F(N )c

)

and so by assumption on E(δ, M, N ) it suffices to show that

lim sup
N→∞

P̃
(
E(δ, M, N )c ∩ F(N )c

) ≤ 2ε. (91)
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Using (90) we see that

P̃
(
E(δ, M, N )c ∩ F(N )c

)

≤ P̃
(
E(δ, M, N )c

) [
(1 − δ)W + P̃

(
{Q ≤ W } ∩ F(N )c

∣∣∣E(δ, M, N )c
)]

≤ (1 − δ)W +
W∑
i=1

P̃
({Q = i} ∩ F(N )c ∩ E(δ, M, N )c

)
.

Since (1 − δ)W ≤ ε, we reduce (91) to establishing

lim sup
N→∞

W∑
i=1

P̃

(
{Q = i} ∩ F(N )c ∩ E(δ, M, N )c

)
≤ ε. (92)

One clearly has that

P̃

(
{Q = i} ∩ F(N )c ∩ E(δ, M, N )c

)
≤ P̃

(
AN
i ∩ E(δ, M, N )c

)
+ P̃

(
BN
i ∩ E(δ, M, N )c

)

+ P̃

(
CN
i ∩ E(δ, M, N )c

)
,

where

AN
i =

{
�(2s1, i, b − a) ≥ Nα/4

}
, BN

i =
{

sup
s∈[0,1]

∣∣∣Bi (s)
∣∣∣ < Nα/4

}
,

CN
i =

{
w(Bi , N−α) > N−α/4

}
.

In addition, we know that since Bi are identically distributed
W∑
i=1

P̃
({Q = i} ∩ F(N )c ∩ E(δ, M, N )c

)

≤ W ·
[
P̃

(
AN
1 ∩ E(δ, M, N )c

)
+ P̃

(
BN
1 ∩ E(δ, M, N )c

)
+ P̃

(
CN
1 ∩ E(δ, M, N )c

)]
.

The above inequality reduces (92) to showing that

lim sup
N→∞

P̃

(
AN
1 ∩ E(δ, M, N )c

)
= 0,

lim sup
N→∞

P̃

(
BN
1 ∩ E(δ, M, N )c

)
= 0, lim sup

N→∞
P̃

(
CN
1 ∩ E(δ, M, N )c

)
= 0. (93)

Notice that by construction

P̃

(
BN
1

)
=
∑
a≤b

P
1

(
sup

s∈[0,1]

∣∣∣Bσ,b−a,2s1
s

∣∣∣ < Nα/4

)
P
3
(
LN
1 (−s1) = a, LN

1 (s1) = b
)

=
∑
a≤b

P

(
sup

s∈[0,1]
∣∣Bσ (s)

∣∣ < Nα/4

)
P
3
(
LN
1 (−s1) = a, LN

1 (s1) = b
)

= P

(
sup

s∈[0,1]
∣∣Bσ (s)

∣∣ < Nα/4

)
,
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and the latter clearly converges to 0 as N → ∞.
A similar argument shows that

P̃

(
CN
1

)
= P

(
w(Bσ , N−α) > N−α/4

)
,

and the latter converges to 0 as N → ∞ by the almost sure Hölder-1/3 continuity of the
Brownian bridge (see e.g. Proposition 7.8 in Chapter 8 of [27]). The above establishes
the second line in (93).

In the remainder we study P̃
(
AN
1 ∩ E(δ, M, N )c

)
and notice that by assumption

on E(δ, M, N ) we have that on the event E(δ, M, N )c the values a = L1(−s1) and
b = L(s1) satisfy

|a + ps1| ≤ MNα/2 and |b − ps1| ≤ MNα/2.

The latter implies that

P̃

(
AN
1 ∩ E(δ, M, N )c

)
≤

∑

|z|≤2MNα/2

P̃

(
AN
1 ∩ {b − a = �2ps1 + z�}

)

=
∑

|z|≤2MNα/2

P
1
(
�(2s1, 1, �2ps1 + z�) ≥ Nα/4

)

P
3({b − a = �2ps1 + z�}).

By Chebyshev’s inequality and Theorem 4.5 we know that

P
1
(
�(2s1, 1, �2ps1 + z�) ≥ Nα/4

)
≤ C ′N−α/4ec

′(log N )2 ,

for constantsC ′ and c′ that are independent of N but depend onM . The latter inequalities
show

P̃

(
AN
1 ∩ E(δ, M, N )c

)

≤ C ′N−α/4ec
′(log N )2

∑

|z|≤2MNα/2

P
3({b − a = �2ps1 + z�}) ≤ C ′N−α/4ec

′(log N )2 .

Since the latter clearly converges to 0 as N → ∞, we conclude (93), which finishes the
proof.

8. Appendix: Strong Coupling of Random Walks and Brownian Bridges

In this sectionwe prove a certain generalization of Theorem6.3 in [49], given in Theorem
8.1 below, which we will use to prove Theorem 4.5 in the main text.
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8.1. Proof of Theorem 4.5. Fix p ∈ (0, 1) throughout this and the next sections. Let
Xi be i.i.d. random variables with P(X1 = 1) = p and P(X1 = 0) = 1− p. We also let
Sn = X1+· · ·+Xn denote the randomwalkwith increments Xi . For z ∈ Ln = {0, . . . , n}
we let S(n,z) = {S(n,z)

m }nm=0 denote the process with the law of {Sm}nm=0, conditioned
so that Sn = z. Finally, recall from Sect. 4.2 that Bσ stands for the Brownian bridge
(conditioned on B0 = 0, B1 = 0) with variance σ 2. We are interested in proving the
following result.

Theorem 8.1. For every b > 0, there exist constants 0 < C, a, α < ∞ (depending on
b and p) such that for every positive integer n, there is a probability space on which are
defined a Brownian bridge Bσ with variance σ 2 = p(1− p) and the family of processes
S(n,z) for z ∈ Ln such that

E

[
ea�(n,z)

]
≤ Ceα(log n)2eb|z−pn|2/n, (94)

where �(n, z) = �(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n +

t
n z − S(n,z)

t

∣∣∣ . We define

S(n,z)
t for non-integer t by linear interpolation.

We observe that conditional on Sn = z the law of the path determined by Sn is
precisely P

0,n;0,z
f ree . Consequently, Theorem 8.1 implies Theorem 4.5 and in the remainder

we focus on establishing the former. Our arguments will follow closely those in Section
6 of [49].

The proof of Theorem 8.1 relies on two lemmas, which we state below and whose
proofs are deferred to Sect. 8.2. We begin by introducing some necessary notation. Sup-
pose that Z is a continuous random variable with strictly increasing cumulative distribu-
tion function F and G is the distribution function of a discrete random variable, whose
support is {a1, a2, . . .}. Then (Z ,W ) are quantile-coupled (with distribution functions
(F,G)) if W is defined by

W = a j if r j− < Z ≤ r j ,

where r j−, r j are defined by

F(r j−) = G(a j−), F(r j ) = G(a j ).

The quantile-coupling has the following property. If

F(ak − x) ≤ G(ak−) < G(ak) ≤ F(ak + x),

then
|Z − W | = |Z − ak | ≤ x on the event {W = ak}. (95)

With the above notation we state the following two lemmas.

Lemma 8.2. There exists ε0 (depending on p) such that for every b1 > 0 there exist
constants 0 < c1, a1 < ∞ such that the following holds. Let N be an N (0, 1) random
variable. For each integers m, n such that n > 1 and |2m − n| ≤ 1 and every z ∈ Ln,
let

Z = Z (m,n,z) = m

n
z +

√
p(1 − p)m

(
1 − m

n

)
N ,

so that Z ∼ N
(m
n
z, p(1 − p)m

(
1 − m

n

))
.
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Let W = W (m,n,z) be the random variable, whose law is the same as that of S(n,z)
m and

which is quantile-coupled with Z. Then if |z − pn| ≤ ε0n and P(W = w) > 0,

E

[
ea1|Z−W |

∣∣∣W = w
]

≤ c1 · √
n · exp

(
b1

(w − pm)2 + (z − pn)2

n

)
. (96)

Lemma 8.3. There exist positive constants ε0, c2, b2 (depending on p) such that for
every integers m, n such that n ≥ 2 and |2m−n| ≤ 1, every z ∈ Ln with |z− pn| ≤ ε0n
and every w ∈ Z,

P(Sm = w|Sn = z) ≤ c2n
−1/2 exp

(
−b2

(w − (z/2))2

n

)
.

Proof (Theorem 8.1). It suffices to prove the theorem when b is sufficiently small. For
the remainder we fix b > 0 such that b < b2/37, where b2 is the constant from Lemma
8.3. Let ε0 be the smaller of the two values of ε0 in Lemmas 8.2 and 8.3.

In this proof, by an n-couplingwewill mean a probability space on which are defined
a Brownian bridge Bσ and the family of processes {S(n,z) : z ∈ Ln}. Notice that for any
n-coupling if z ∈ Ln , St = S(n,z)

t then

�(n, z) = sup
0≤t≤n

∣∣∣∣
√
nBσ

t/n +
t

n
z − S(n,z)

t

∣∣∣∣ ≤ 2n + sup
0≤t≤n

|√nBσ
t/n|.

The above together with the fact that there are positive constants c̃ and u such that
E
[
exp
(
sup0≤t≤1 y|Bσ

t |)] ≤ c̃euy
2
for any y > 0 (see e.g. (6.5) in [49]) imply that

E

[
ea�(n,z)

]
≤ c̃e(2a+ua2)n .

Clearly, there exists a0 = a0(b) such that if 0 < a < a0 then 2a + ua2 ≤ bε20 .
The latter has the following implications. Firstly, (94) will hold for any n-coupling

with C = c̃, α = 0 and a ∈ (0, a0) if z ∈ Ln satisfies |z− pn| ≥ ε0n. For the remainder
of the proof we assume that a < a0. Let b1 = b/20 and let a1, c1 be as in Lemma 8.2
for this value of b1. We assume that a < a1 and show how to construct the n-coupling
so that (94) holds for some C, α.

We proceed by induction and note that we can find C ≥ max(1, c̃) sufficiently large
so that for any n-coupling with n ≤ 2 we have

E

[
ea�(n,z)

]
e−b|z−pn|2/n ≤ C, ∀z ∈ Ln, n ≤ 2.

With the above we have fixed our choice of a and C .
We will show that for every s ∈ N, there exist n-couplings for all n ≤ 2s such that

E

[
ea�(n,z)

]
e−b|z−pn|2/n ≤ As−1

n · C, ∀z ∈ Ln, (97)

where An = 2c1c2n + 2c1
√
n. The theorem clearly follows from this claim.

We proceed by induction on s with base case s = 1 being true by our choice of C
above. We suppose our claim is true for s and let 2s < n ≤ 2s+1. We will show how
to construct a probability space on which we have a Brownian bridge and a family of
processes {S(n,z) : |z − pn| ≤ ε0n}, which satisfy (97). Afterwards we can adjoin (after
possibly enlarging the probability space) the processes for |z| > nε0. Since C > c̃ and
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a < a0 we know that (97) will continue to hold for these processes as well. Hence, we
assume that |z− pn| ≤ ε0n. For simplicity we assume that n = 2k, where k is an integer
such that 2s−1 < k ≤ 2s (if n is odd we write n = k + (k +1) and do a similar argument).

We define the n-coupling as follows:

• Choose two independent k-couplings
(
{S1(k,z))}z∈Lk , B

1
)

,
(
{S2(k,z))}z∈Lk , B

2
)

, satisfying (97).

Such a choice is possible by the induction hypothesis.

• Let N ∼ N (0, 1) and define the translated normal variables Zz = z
2 +
√

p(1−p)n
4 N

as well as the quantile-coupled random variables Wz as in Lemma 8.2. Assume, as
we may, that all of these random variables are independent of the two k-couplings
chosen above. Observe that by our choice of a we have that

E

[
ea|Zz−Wz |

∣∣∣Wz = w
]

≤ c1 · √
n · exp

(
b

20
· (w − kp)2 + (z − np)2

n

)
. (98)

• Let

Bt =
{
2−1/2B1

2t + t
√
p(1 − p)N 0 ≤ t ≤ 1/2,

2−1/2B2
2(t−1/2) + (1 − t)

√
p(1 − p)N 1/2 ≤ t ≤ 1.

(99)

By Lemma 6.5 in [49], Bt is a Brownian bridge with variance σ 2.
• Let S(n,z)

k = Wz , and

S(n,z)
m =

{
S1(k,W

z)
m 0 ≤ m ≤ k,

Wz + S2(k,z−Wz)
m−k , k ≤ m ≤ n.

What we have done is that we first chose the value of S(n,z)
k from the conditional

distribution of Sk , given Sn = z. Conditioned on the midpoint S(n,z)
k = Wz the two

halves of the random walk bridge are independent and upto a trivial shift we can use
S1(k,W

z) and S2(k,z−Wz) to build them.

The above defines our coupling and what remains to be seen is that it satisfies (97) with
s + 1.

Note that

�(n, z, S(n,z), B) ≤ |Zz − Wz |
+max

(
�(k,Wz, S1(k,W

z), B1),�(k, z − Wz, S2(k,z−Wz), B2)
)

and therefore for any w such that P(Wz = w) > 0 we have

E

[
ea�(n,z)

∣∣∣Wz = w
]

≤ E

[
ea|Zz−Wz |

∣∣∣Wz = w
]

× CAs−1
n

(
eb|w−kp|2/k + eb|z−w−kp|2/k) .

In deriving the last expression we used that our two k-couplings satisfy (97) and the
simple inequality E[emax(Z1,Z2)] ≤ E[eZ1 ] + E[eZ2 ]. Taking expectation on both sides
above we see that

E

[
ea�(n,z)

]
≤ C · (2c1

√
n) · As−1

n

k∑
w=0

P(Wz = w)

exp

(
9

4
· bmax(|w − kp|2, |z − w − kp|2)

n

)
. (100)
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In deriving the last expression we used (98) and the simple inequality x2 + y2 ≤
5max(x2, (x − y)2) as well as that k = n/2.

We finally estimate the sum in (100) by splitting it over the w such that |w − z/2| >

|z − pn|/6 and |w − z/2| ≤ |z − pn|/6. Notice that if |w − z/2| ≤ |z − pn|/6 we have
max(|w − pk|2, |z − w − pk|2) ≤ (2|z − pn|/3)2; hence

∑
w:|w−z/2|≤|z−pn|/6

P(Wz = w) exp

(
9

4
· max(|w − kp|2, |z − w − kp|2)

n

)

≤ exp

( |z − pn|2
n

)
. (101)

To handle the case |w − z/2| > |z − pn|/6 we use Lemma 8.3, from which we know
that

P(Wz = w) = P(Sk = w|Sn = z) ≤ c2n
−1/2 exp

(
−b2

(w − (z/2))2

n

)
.

Using the latter together with the fact that for |w − z/2| > |z − pn|/6 we have that
(w − z/2)2 > 1

16 max
(
(w − kp)2, |z − w − kp|2) we see that

∑
w:|w−z/2|>|z−pn|/6

P(Wz = w) exp

(
9

4
· bmax(|w − kp|2, |z − w − kp|2)

n

)

≤
k∑

w=1

c2n
−1/2 exp

(
− b

16
· (w − kp)2

n

)
≤ c2

√
n.

(102)

Combining the above estimates we see that

E

[
ea�(n,z)

]
≤ C · (2c1

√
n) · As−1

n

[
exp

( |z − pn|2
n

)
+ c2

√
n

]

≤ C · As
n exp

( |z − pn|2
n

)
.

The above concludes the proof. ��
8.2. Proof of Lemmas 8.2 and 8.3. Our proofs of Lemmas 8.2 and 8.3 will mostly
follow (appropriately adapted) arguments from Sections 6.4 and 6.5 in [49]. We begin
with two lemmas.

Lemma 8.4. There is a constant c > 0 (depending on p) such that for integers m, n, z
and real w with n ≥ 2, |2m−n| ≤ 1, |z− pn| ≤ cn, |w| ≤ cn and w + m

n z ∈ N one has

P

(
Sm = w +

m

n
z
∣∣∣Sn = z

)
= 1√

2πσ 2
n,z

exp

(
− w2

2σ 2
n,z

+ O

(
1√
n
+

|w|3
n2

))
, (103)

where σ 2
n,z = (n/4)(z/n)(1 − z/n).
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Proof. The above result is very similar to Lemma 6.7 in [49] and so we only sketch the
main ideas that go into the proof. The statement of the lemma will follow if we can show
that if | j | ≤ cn we have

p( j,m, n, z) = P

(
�Sm − m

n
z� = j

∣∣∣Sn = z
)

= 1√
2πσ 2

n,z

exp

(
− j2

2σ 2
n,z

+ O

(
1√
n
+

j3

n2

))
.

Using Stirling’s approximation formula A! = √
2π AA+1/2e−A[1 + O(A−1)], we see

that

p(0,m, n, z) = P

(
�Sm − m

n
z� = 0

∣∣∣Sn = z
)

= 1√
2πσ 2

n,z

(
1 + O

(
n−1
))

.

Let us remark that in order to apply Stirling’s approximation, we needed to choose c
sufficiently small so that m

n z, z, m − m
n z, n − z all tend to infinity faster than εn for

some ε > 0 fixed (depending on p) as n → ∞. For the remainder we assume such a c
is chosen and the constant in the big O notation above depends on it.

Let us focus on the case j > 0 (if j < 0 a similar argument can be applied). For

j > 0 and A( j,m, n, z) = (m+z−2�m
n z�−2 j)

2−(m−z)2

(2�m
n z�+2 j+2+m−z)

2−(m−z)2
we have

p( j + 1,m, n, z) = p( j,m, n, z) × A( j,m, n, z)

and so

p( j,m, n, z) = p(0,m, n, z) ×
j∏

i=1

A(i,m, n, z).

Given our earlier result for p(0,m, n, z) to finish the proof it remains to show that

j∑
i=1

log [A( j,m, n, z)] = − j2

2σ 2
n,z

+ O

(
1√
n
+

j3

n2

)
. (104)

Notice that if we choose c sufficiently small, we have that

A( j,m, n, z) = 1 − B( j,m, n, z), where B( j,m, n, z)

= 8 jm

m2 − (m − z)2
+ O

(
j

n2
+
1

n

)

and 0 ≤ B( j,m, n, z) ≤ 1
2 . Using the latter together with the fact that log(1 + x) =

x + O(x2) for |x | ≤ 1/2 we get

j∑
i=1

log [A( j,m, n, z)] = −
j∑

i=1

8im

m2 − (m − z)2
+ O

(
j2

n2
+

j

n

)

= − 4 j2m

m2 − (m − z)2
+ O

(
j3

n2
+

1√
n

)
.
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To conclude the proof we observe that

4 j2m

m2 − (m − z)2
= j2

m · z
2m · (1 − z

2m

) = j2

n
2 · z

n · (1 − z
n

) + O

(
j2

n2

)

= j2

2σ 2
n,z

+ O

(
j3

n2
+

1√
n

)
.

��
Wenow statewithout proof an easy large deviation estmiate, which can be established

in the same way one establishes large deviations for binomial random variables.

Lemma 8.5. There exists an η > 0 (depending on p) such that, for any a > 0, there
exist C = C(a) < ∞ and γ = γ (a) > 0 with the following properties. For any integers
m, n, z with n ≥ 2, |2m − n| ≤ 1, |z − pn| ≤ ηn one has

P

(∣∣∣Sm − m

n

∣∣∣ > am
∣∣∣Sn = z

)
≤ Ce−γm . (105)

It is clear that Lemmas 8.4 and 8.5 imply Lemma 8.3. What remains is to prove
Lemma 8.2.

Proof (Lemma 8.2). Notice that we only need to prove the lemma for n sufficiently
large. In order to simplify the notation we will assume that n is even and so m = n/2
(the case n odd can be handled similarly).

We start by choosing ε0 ≤ min(c, η) with c and η as in Lemmas 8.4 and 8.5 respec-
tively. We denote

Z = Zn,z = z/2 +
√
p(1 − p)n/4N , Ẑ = Ẑn,z = z/2 + σn,z N ,

where we recall that σ 2
n,z = (n/4)(z/n)(1 − z/n) and let W = Wn,z be the random

variable with distribution S(n,z)
n/2 that is quantile coupled with N . Notice that W is also

quantile coupled with Z and Ẑ . We write F = Fn,z for the distribution function of Ẑ
and G = Gn,z for the distribution function ofW . We observe that from Lemmas 8.4 and
8.5, the random variable W − �z/2� satisfies the conditions of Lemma 6.9 in [49], from
which we deduce that there are constants c′, ε′ > 0 and N ′ ∈ N such that for n ≥ N ′
and |x − z/2| ≤ ε′n we have

F

(
x − c′

[
1 +

(x − z/2)2

n

])
≤ G(x−1) ≤ G(x+1) ≤ F

(
x + c′

[
1 +

(x − z/2)2

n

])
.

(106)
In the remainder we assume ε0 ≤ ε′ as well. It follows from (95) and (106) that

|Ẑ − W | ≤ c′
[
1 +

(W − z/2)2

n

]
, (107)

for all n ≥ N ′, provided that |z − pn| ≤ ε0n, |W − z/2| ≤ ε0n. In addition, we have
the following string of inequalities for any a > 0

E

[
ea|Z−Ẑ |

∣∣∣W = w
]

≤ E

[
ea(Z−Ẑ) + e−a(Z−Ẑ)

∣∣∣W = w
]

≤
E

[
ea(Z−Ẑ) + e−a(Z−Ẑ)

]

P(W = w)
= 2ea

2σ(n,p)2/2

P(W = w)
,
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where σ(n, p) = √
n/4 · ∣∣√p(1 − p) − √

(z/n)(1 − z/n)
∣∣. It follows from Lemma 8.4

that if |w − z/2| ≤ ε0n and |z − pn| ≤ ε0n then we have for some C > 0 and all n ≥ 2
that

E

[
ea|Z−Ẑ |

∣∣∣W = w
]

≤ Cea
2σ(n,p)2/2√n · exp

(
C

(w − z/2)2

n

)
. (108)

Combining (107) and (108) we see that for some (possibly larger than before) C > 0
we have

E

[
ea|W−Z |

∣∣∣W = w
]

≤ E

[
ea|W−Ẑ |ea|Z−Z |

∣∣∣W = w
]

≤ Cea
2σ(n,p)2/2√n · exp

(
C

(w − z/2)2

n

)
, (109)

provided n ≥ N ′, |w − z/2| ≤ ε0n and |z − pn| ≤ ε0n.
Notice that by possibly taking ε0 smaller we canmake σ(n, p) ≤ √

n/4·cp|z/n− p|,
where cp = 2

p(1−p) . Using the latter together with (109) and Jensen’s inequality we have
for any k ∈ N that

E

[
e(1/k)|W−Z |

∣∣∣W = w
]

≤ E

[
e|W−Z |

∣∣∣W = w
]1/k

≤ (
√
nC)1/k · exp

(
cp(z − pn)2

nk
+ C

(w − z/2)2

nk

)
,

and if we further use that (x + y)2 ≤ 2x2 + 2y2 above we see that

E

[
e(1/k)|W−Z |

∣∣∣W = w
]

≤ (
√
nC)1/k ·exp

(
(cp + 1/2)(z − pn)2

nk
+
2C(w − pm)2

nk

)
,

(110)
provided n ≥ N ′, |w − z/2| ≤ ε0n and |z − pn| ≤ ε0n.

Suppose now that b1 is given, and let k be sufficiently large so that

cp + 1/2

k
≤ b1 and

2C

k
≤ b1.

If a1 ≤ 1/k we see from (110) that

E

[
ea1|W−Z |

∣∣∣W = w
]

≤ C1/k√n · exp
(
b1(z − pn)2

n
+
b1(w − pm)2

n

)
, (111)

provided n ≥ N ′, |w − z/2| ≤ ε0n and |z − pn| ≤ ε0n. If |z − pn| > ε0n or
|w − z/2| > ε0n we observe that

b1(z − pn)2

n
+
b1(w − pm)2

n
≥ b1ε20n

3
.

One easily observes that if a1 ≤ a0 with a0 sufficiently small and C ≥ c̃ with c̃
sufficiently large we have for any w such that P(W = w) > 0 that

E

[
ea1|W−Z |

∣∣∣W = w
]

≤ C1/k√n · exp
(
b1ε20n

3

)
.

The latter statements suggest that (111) holds for all w such that P(W = w) > 0 and
n ≥ N ′, which concludes the proof of the lemma. ��
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