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Abstract

We provide the first tight bounds on the lower tail probability of the one-point
distribution of the Kardar—Parisi—-Zhang (KPZ) equation with narrow wedge initial
data. Our bounds hold for all sufficiently large times T and demonstrates a crossover
between superexponential decay with exponent % (and leading prefactor %Tl/ 3)
for tail depth greater than T2/3, and exponent 3 (with leading prefactor at least % )
for tail depth less than T2/3,
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1. Introduction
The (1 + 1)d stochastic heat equation (SHE) with multiplicative space-time white
noise £ is'

ArZ(T, X) = %a%zm X) + Z(T, X)&(T, X), (1.1)

where T > 0 and X € R. The SHE is ubiquitous, modeling the density of particles
diffusing in space-time random environments (with random killing/branching as in
[94], [116] or random drifts as in [12], [42]). Via the Feynman—Kac formula, it is the
partition function for the continuum directed polymer model (see, e.g., [4], [38], [84]).
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IThe solution theory for this stochastic PDE is classical (see, e.g., [39], [127], [139]), based on Itd stochastic
integrals or martingale problems.
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Taking logarithms formally” leads to the Kardar—Parisi—-Zhang (KPZ) equation
1 1
dr I (T, X) = S5 H(T. X) + 5 (0x H(T.X))* + §(T.X).

which is a paradigm for random interface growth (see [91]) and a testing ground for
the study of nonlinear stochastic PDEs (SPDEs) (see, e.g., [69]-[71], [74], [76]). The
KPZ equation’s spatial derivative formally solves the stochastic Burgers equation—
a continuum model for turbulence (see [18], [68]), interacting particle systems, and
driven lattice gases (see [137]).

The Cole—Hopf solution to the KPZ equation with narrow wedge initial data is
given by

J(T,X):=1logZ(T,X), with Z(0,X) = 8x—o. (1.2)

The well-definedness of logZ for all T > 0 and X € R relies on the almost-sure
strict positivity of Z proved in [119] to hold for a wide class of initial data (including
the delta function). This is the physically relevant notion of solution and it has been
shown to arise quite generally from various regularization or discretization schemes
for the equation and for noise (see, e.g., [17], [20], [45], [46], [69]-[71], [74], [76],
[77]). The Cole-Hopf solution also coincides with the solutions constructed from
regularity structures (see [74]), paracontrolled distributions (see [70]), and energy
solution methods (see [71]).

The present work establishes tight bounds on the lower fail probability that
Z(T, X) is close to zero, or equivalently that (7, X) is very negative.” The first
result in this direction was the aforementioned almost sure positivity of Z established
in [119] via large deviation bounds and a comparison principle. Using Malliavin
calculus, Mueller and Nualart [120] proved a quantitative upper bound on the decay
of the lower tail probability. Working with the SHE on an interval with Dirich-
let boundary conditions and constant initial data, they showed that for any § > 0

2Due to the nonlinearity of the KPZ equation and the roughness of the white noise, it is challenging to construct a
solution theory for it directly. Smoothing the noise in space, Bertini and Cancrini [17] showed that the logarithm
of the smoothed noise SHE solves the KPZ equation with the same smoothed noise, up to an Itd correction
whose size diverges as the smoothing disappears. More recently, the techniques of regularity structures in [74]
and [75], energy solutions in [69] and [72], paracontrolled distributions in [70], and [71], and renormalization
group in [104] have been used to construct the solution theory of the KPZ equation directly. These solutions all
agree with the Cole—Hopf solution.

3To avoid confusion, let us distinguish our present investigation from earlier work of [59], [60], and [61] which
studied the stochastic Burgers equation (the spatial derivative of KPZ) but with a noise which is smooth in space
and white in time. In that case, which has no direct relationship to our work, the tail of the local slope has —%
power-law (not exponential) decay. A proxy for the question we consider here, [6] studied the tail behavior of the
invicid Burgers equation with white-noise initial data, showing cubic exponential decay. That result, however,
also has no direct bearing on our present work.
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there are constants cy,c; > 0 so that P(H (T, X) < —s) < ¢ exp(—czs%_‘g). Using
Talagrand’s concentration of measure methods, Moreno Flores [117] improved the
exponent. In particular, he considered the full-line SHE with Z(0, X) = §x—¢ initial
data (this is the setting we address here) and he proved a similar bound to [120]
but with the 3/2 — § exponent replaced by the Gaussian exponent 2. Quite recently,
the use of Malliavin calculus [82] extended these sort of results to noises with more
general covariance structure. There is some work in progress [95] which seeks to
use stochastic analytic methods to prove a lower bound with exponent % on this
tail probability. As we prove here, the exponents accessed in earlier work are not
optimal and, moreover, these previous results are (in a sense we now describe) not
well adapted to study the long (or intermediate) time solution tail.

When time increases, the KPZ equation shows an overall decay at linear rate
—T/24 with fluctuations which grows like 7''/3. The first author with Amir and
Quastel [4] proved (see also [130] for a less rigorous treatment done in parallel, and
[34], [57] for physics results) that when Z(0, X) = 6x =0,

H(Q2T,0) + L

lim P(Y7 <s) = Fgug(s), where Y := ;
T—o00 T3

(1.3)

The T'/3 scaling is a characteristic of models in the KPZ universality class, as is
the limiting Gaussian unitary ensemble (GUE) Tracy—Widom distribution Fgug(s)
(see [39]). We consider # at time 2T to simplify some factors of 2 in formulas.
Reinterpreting the tail bounds of [120] and [117] in terms of the lower tail of Y7, one
sees that their effectiveness degrades as T grows (i.e., they do not reflect the centering
or scaling associated with the long-time fluctuations).

While the distributional limit in (1.3) does not control the tails ?f 3TT for finite
T, it does suggest a natural conjecture. For s large, Fgue(—s) ~ e~ 12°" (see Propo-
sition 5.1 and [7], [128], [134]). Thus one might expect a similar lower tail bound
for Yr, at least for large enough 7. As we prove in Theorem 1.1, this is only half
true. In fact, there are two types of decay regimes for the lower tail P(Y7 < —s):
for T2/3 > 5 > 0, a cubic exponent controls the tail decay, whereas for s > T2/3,
the tail exponent becomes % and the leading constant in the exponential is %Tl/ 3
instead of % in the first regime (in fact, in Theorem 1.1 we are only able to lower
bound the prefactor to the cubic exponent by %).

The existence of these two regimes has been discussed extensively in the physics
literature for many years. The KPZ equation is believed to be the unique heteroclinic
orbit between the Edwards—Wilkinson (or weak coupling) and KPZ (or strong cou-
pling) fixed points (see [111]). The cubic exponent is (as explained above) represen-
tative of the KPZ fixed point behavior. On the other hand, the Edwards—Wilkinson
fixed point is described by a Gaussian process, suggesting naively a tail exponent of
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2, not g The % exponent was first demonstrated in [97]-[99] (see also more recent
works of [89], [113] and the discussion in the footnote of Section 2.3) by studying
the short-time deep tail. Since the Gaussian Edwards—Wilkinson fixed point arises as
a limit of the short-time shallow tail, there is no contradiction.

Studying the short-time deep tail is equivalent to putting a small constant in front
of the noise. In that case, it is possible to reformulate the tail behavior in terms of a
large deviation problem for the underlying space-time white noise and then to opti-
mize over all possible instances of the noise which realize the desired one-point devi-
ation. Although this approach only applies to short time, quite interestingly the behav-
ior it predicts seems to remain valid for all times, provided one goes deep enough into
the tail.

This weak noise theory (WNT) or optimal fluctuation theory generalizes
Freidlin—Wentzell theory for stochastic differential equations. In the mathematics
literature, it is only recently that this sort of approach for nonlinear SPDEs has begun
to be put on a rigorous mathematical footing. Namely, [78] and [35] take the first
step of this approach (computing the rate function for a given space-time trajec-
tory) for certain SPDEs (not presently including KPZ) in a periodic setting. Besides
adapting this to the KPZ equation on the line, there is significant work needed to
extract close-form one-point tail behavior by optimizing over all possible space-time
trajectories.

While the cubic shallow tail exponent should be quite universal (i.e., for all KPZ
class models), the % exponent’s universality is much less clear. For instance, for some
discrete KPZ class models like last passage percolation with bounded entries, the
very deep tail will be controlled by the tail behavior of the underlying noise and it is
unlikely to conform with this exponent. On the other hand, the % exponent seems to
show up when studying the total current of certain periodic space KPZ class particle
systems (i.e., in terms of height functions, this corresponds with the spatial average
height function). This behavior was first demonstrated in the physics literature for
totally asymmetric simple exclusion process (TASEP) in [55] and then extended to
asymmetric simple exclusion process (ASEP) in [54] and tested numerically for other
models in [108]. Studying the tail behavior for other integrable models (as discussed
in Section 2.6) and extending the weak noise theory to other systems should help to
shed further light on the generality of this % exponent.

Between the cubic and % exponent regimes, there is a crossover in the tail of Y7
at depth of order T72/3, or for #(2T,0) at a depth of order T'. As T goes to infinity,
this crossover corresponds with the large deviation rate function (generally denoted
by ®_(z)) for the KPZ equation which has speed 72 (see Section 2.3). Recently there
has been significant work focused on determining this rate function. The authors of
[131] computed ®_(z) (see (2.5) for the formula) and showed that it crosses over
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between cubic and % power-law behavior as |z| moves from near zero to near infinity.
That calculation involves a nonrigorous Wentzel-Kramers—Brillouin (WKB) approx-
imation analysis of an integro-differential generalization of the Painlevé II equation
which [4] related to the distribution of the KPZ equation. Making this WKB approx-
imation rigorous seems to require solving an inverse scattering problem—see Sec-
tion 2.1 for further discussion on this.

In Section 2.3 we outline another approach to computing ®_(z) via large devia-
tions for the Airy point process. A month after posting the first version of this article,
along with P. Le Doussal, A. Krajenbrink, and L.-C. Tsai, we filled in the details of
this outline. In particular, we conjectured an electrostatic formula for this rate function
of the empirical measure for the Airy point process and solved the resulting variation
problem. This approach (which has not yet been made rigorous) yields the same for-
mula for ®_(z) asin [131].

The first rigorous proof of the rate function ®_(z) came half a year after the first
version of our article posted, and it is due to L.-C. Tsai [136]. Instead of proving a
general Airy point process large deviation principle, he considered just the special
test function (namely, a — (@ — z)+ discussed in Section 2.3) which arises in this
application and uses the stochastic Airy operator representation for the point process
to reduce the computation of ®_(z) into a large deviation result for the underly-
ing Brownian motion driving that operator. This approach is delicate and relies on
a special property of the test function which does not hold in general. Besides the
three approaches mentioned so far (integro-differential equation, electrostatic Airy
rate function, and stochastic Airy operator), there is another nonrigorous approach
introduced recently in [100] which relies on computing cumulants of certain linear
statistics of the Airy point process. All four approaches are discussed in [103].

Before stating our main result, it should be emphasized that the tail result which
we prove, and the abovementioned large deviation rate function results are comple-
mentary in their nature. Our result demonstrates that for all time there are precisely
two regimes of tail decay (and gives their behavior), and the large deviation results
identify the long-time limit of the crossover mechanism between these two regimes.

We now state our main result.

THEOREM 1.1

Let Y1 denote the centered and scaled KPZ solution with narrow wedge initial data
as in (1.2). Fix €,8 € (0, %) and Ty > 0. Then there exist S = S(€,6,Tp), C =
C(Ty) >0, K1 = K1(€,8,Ty) > 0, and K, = K5(Tp) > O such that for all s > S
and T > Ty,

au-co i 3

— _ 3-8_.T1/3 _(1=Ce) 3
P(TTf_S)Se 57 +e Kis eT s+e s

12 (1.4)
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and

a0+co 1 2 ;
P(Yr <—s)>e isn 1252 4 o~Kas?, (1.5)

We prove this in Section 3. Note that the right-hand side of (1.4) is a sum of three
terms. The first dominates the other two when s > T%. In the region T% >85>0,
the second and third terms dominate, and when T — oo, the third dominates the
second and recovers the %s3 tail behavior of the GUE Tracy—Widom distribution.
There is a similar interplay between the two terms in (1.5), although in this lower
bound we do not recover the % constant as 7 — oo.”

In a follow-up work [40], we have extended the upper bound (1.4) to general
initial data. We do not yet have a matching lower bound, and we expect that the
coefficients in the exponents will depend on the initial data. That work relies on The-
orem .l as an input and also uses the Brownian Gibbs property for the KPZ line
ensemble from [43].

We now briefly explain the three steps in our proof, although to simplify the
exposition we will leave off the ¢ and §’s which are present in the statement and
proof.

Step 1: The first step in our proof is to reduce the study of the lower tail asymp-
totics for the KPZ equation to the large-parameter (1 in (1.6)) asymptotics of the SHE
Laplace transform. This is the content of the proof of Theorem 1.1, and the desired
SHE Laplace transform asymptotics are then recorded as Proposition 3.1. The funda-
mental identity which allows us to prove these asymptotics in Proposition 3.1 is the
one-point formula (see, e.g., [4], [34], [57], [130]). Recently, [26] reformulated that
result as an identity between the Laplace transform of the SHE and the expectation
of a specific multiplicative functional of the Airy point process (see Proposition 1.2).
Armed with this, we reduce Proposition 3.1 to Proposition 4.2 which studies Airy
point process asymptotics and whose proof is the main technical feat here.

Step 2: The proof of Proposition 4.2 relies on three results (Theorems 1.4, 1.5,
and 1.6) about large deviations of the number of Airy points in large intervals and their
rigidity around typical locations. Theorems 1.4 and 1.5 respectively probe the lower
and upper large deviation tails for the fluctuations of the number of Airy points in a
large interval [—s, 00). The mean number of points grows’ (see Proposition 1.3) like
%s% and these theorems probe the probability of finding a different constant than
%. On the lower tail, Theorem 1.4 shows that the exponential decay power law has
exponent 3, while Theorem 1.5 shows that the corresponding upper tail exponent is %
To our knowledge, such large deviation results are new for the Airy point process (see

4We expect this is just a limitation of our result and would follow from a finer analysis.
5The variance grows like log(s) and the fluctuations satisfy a central limit theorem in this scale; see [132].
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Sections 1.2 and 2.3 for further discussion). Theorem 1.6 controls the maximum (over
the entire Airy point process) deviation of points outside bands around their typical
locations. We do not expect this result to be nearly as tight as Theorems 1.4 and
1.5, but it will suffice for our purposes. Using these three theorems we can establish
control over the probabilities of various scenarios for the Airy point process and hence
establish precise upper and lower bounds on the expectation value needed to prove
Proposition 4.2.

Step 3: The proofs of Theorems 1.4, 1.5, and 1.6 are each rather different. The
first two rely on the determinantal structure of the Airy point process (see Section 4.1),
while the third uses its relation to the stochastic Airy operator (see Section 4.3). The
proof of Theorem 1.4 is technically the most challenging. Via Markov’s inequality, it
reduces to a bound on the cumulant generating function for the number of Airy points
in the interval [—s, 00), when the parameter v of the generating function is of order s%
(see Section 1.3). Theorem 1.7 relates (via standard determinantal methods) this gen-
erating function F(x;v) to the Ablowitz—Segur solution of the Painlevé II equation,
and then proves the needed decay bound on the generating function using a delicate
analysis of an asymptotic formula (given in recent work in [30] in terms of oscillatory
Jacobi elliptic functions) for this solution to Painlevé II. The proof of Theorem 1.5
is considerably simpler. It uses the fact that the number of Airy points in an interval
equals (in law) the sum of independent Bernoulli random variables (with parameters
related to the eigenvalues of the Airy kernel projected onto the interval). The theorem
follows by combining Bennett’s concentration inequality on such sums, along with
estimates on mean and variance given in Proposition 1.3. Theorem 1.6 uses the iden-
tity in law (see Proposition 4.4) between the Airy point process and the spectrum of
the stochastic Airy operator. The typical locations of the Airy points are given by the
zeros of the Airy function, and the estimate on uniform deviations from bands around
those typical locations can be reduced (through operator manipulations such as those
used in [128], [138]) to an exponential tail estimate (proved in Lemma 4.7) of the
maximum oscillation of Brownian motion.’

The rest of this Introduction records the main results (summarized above) which
go into our proof of Theorem 1.1. Section 1.1 provides the key identity relating the
Laplace transform of the SHE and the expectation of a multiplicative functional of
the Airy point process. Section 1.2 records the Airy point process large deviation and
rigidity estimates upon which we rely. Section 1.3 records the precise asymptotics
of the Ablowitz—Segur solution of the Painlevé II equation needed in the proof of
Theorem 1.4.

5The Brownian motion is the driving noise for the stochastic Airy operator.
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1.1. Laplace transform formula

The starting point for our study is the exact formula characterizing the one-point dis-
tribution of the SHE with delta initial data. This was simultaneously and indepen-
dently computed in [4], [34], [130], and [57] (rigorous proof provided in [4]). That
formula can, by straightforward manipulations, be reformulated (Proposition 1.2) in
terms of the expectation of a multiplicative functional of the Airy point process (Sec-
tion 4). This was done in [26, Theorem 2.2], and the resulting formula offers a major
benefit since it enables one to bring to bear on the KPZ equation the vast range of tools
and understanding developed for the Airy point process. In fact, prior to our present
work, it was not clear how to prove directly that the formula in [4], [34], [130], and
[57] defines a probability distribution.” Proposition 1.2 makes such a result immedi-
ate, and the lower tail decay becomes more tractable.

Proposition 1.2 is a special limit case of a general matching between stochastic
vertex models and Macdonald measures in [23, Corollary 4.4]. In special cases, the
Macdonald measures reduce to determinantal Schur measures and hence are analyz-
able in the spirit of our work here (see [11], [24], [27] or Sections 2.5 and 2.6 for
further discussion).

PROPOSITION 1.2 ([26, Theorem 2.2])

Let Z(T, X) be the unique solution to the SHE (1.1) with Z(0,X) = §x=¢. Denote
the ordered points of the Airy point process (Section 4) by a; > a, > ---. Then for any
T, u > 0, we have®

B [exp(~uZCT. 0 exp(2))] = EA,w[ﬁ

—] (1.6)
1 +uexp(T3a;)

Setting u = exp(T%s) and rewriting the above result in terms of Y7 from (1.3),
we find that
o0
1 1
Esue[exp(—exp((T3 (Y7 + 5)))] = EAiry[H T ] (1.7)
k=1 1 +exp(T3(s +ag))

Let G be a Gumbel random variable. Then the function exp(—exp(x)) is equal to
P(G < —x). Armed with this, one can now see that the left-hand side of (1.7) is equal
to P(Yr + 773 G < —s), where Y7 and G are independent. Due to the rapid decay of
the lower tail probability of a Gumbel distribution,” when s is large and T is greater
than some Tp > 0, P(Yr + T_%G < —s) is approximately P(T7 < —s) which is
"The hard part is to prove that the lower tail probability decays to zero.

8 A similar result holds for any X up to multiplying Z by a Gaussian factor; see [4, Proposition 1.4].
The lower tail probability of a Gumbel distribution has double exponential decay.
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exactly the tail we are looking to control. Now consider the right-hand side of (1.7). If
s + ax > 0, then the corresponding term in the product will be exponentially small,
whereas if s + ag < 0, then the term will be very close to 1. Thus, the tail decay on
the left-hand side is linked with the number of exponentially small terms (and their
exponential factors) on the right-hand side.

Typically, the Airy point process is close to the zeros of the Airy function (Propo-
sition 4.5), and hence a; ~ —(37”1()% (Proposition 4.6). Plugging in this estimate

readily yields decay like exp(— % T3s> ). The Airy points may, however, differ from
these typical locations. For instance, a; (which is GUE Tracy—Widom distributed)
may dip below —s in which case the product in the expectation on the right-hand
side of (1.7) becomes very close to 1. The probability of such a drastic dip behaves
like exp(—%s3). Of course, there are many other scenarios in which the Airy points
deviate from their typical locations in less drastic ways, and the contributions of those
to the overall expectation need to be controlled and ultimately contribute to the other
terms in our bounds in Theorem 1.1. We give a brief overview of this in Section 1.2.
Proposition 3.1 (which follows directly from Proposition 4.2) contains precise state-
ments of the bounds that we prove on the behavior of the right-hand side of (1.7).

1.2. Rigidity bounds for Airy point process

The Airy point process a; > a, > --- (see Section 4) is a determinantal point process
on the real line introduced by Tracy and Widom [134] as the scaling limit of the edge
of the spectrum of the GUE. There they found that F(s) := P(a; < s) can be written
in terms of the Hastings—McLeod (HM) solution of Painlevé II:

Fo =ex(- [0 —xndy0)dy). (1.8

where uyy(y) is the solution of the Painlevé II equation (introduced in [124], [125];
see also the review [67]) with specific boundary behavior as x — oco:

d
Ui = Xunm + 2uiy, (/)=E,
o (1.9)
(x) a 4e_%xi(l—}—o(l)) as X — 00
UnMm = , .
2.1

This solution was introduced by Hastings and McLeod in [81], where they determined
an asymptotic formula for ug(x) as x — —oo (this is called solving the connection
problem). Plugging this into (1.8) allowed [134] to demonstrate that F(—s) decays
like exp(—%). Later, using the nonlinear steepest descent technique pioneered by
Deift and Zhou [52], the authors of [50], [53], and [7] determined smaller-order terms
in the asymptotic expansion of F(—s). Similar results have been established for other
determinantal point processes related to KPZ class models (see, e.g., [8], [10]).
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In order to make rigorous the heuristic described in the last section, we need to
establish sufficiently precise control over the deviations of a large number of Airy
points from their typical locations. Controlling deviations of eigenvalues from their
typical locations is a central theme in some works on random matrix universality
(see, e.g., [63], [64] and subsequent works). We require very precise upper and lower
bounds on large deviations which do not seem to be present in the existing literature.
In fact, we must ultimately rely upon the Ablowitz—Segur solution of Painlevé II to
establish suitably precise bounds.

Our rigidity bounds are established in terms of counting Airy points in intervals.
Define

1M B(R) — Zso, yM(B) :=#{k:a;r € B}, VBeB(R),

where B(R) denotes the Borel o-algebra of R. The cumulants of y*!(B) have been
studied in [132] when the Borel set B is a semi-infinite interval of the form [—s, 00)
or a finite interval of the form [—ks, —(k — 1)s). Following [132, Theorem 1],' we
can record the following formulas for the expectation and the variance of the random
variable y*1(B).

PROPOSITION 1.3
Define intervals By (s) := [—ks,—(k — 1)s) for k € Z~1 and B1(s) := [—s, 00). For
any s >0,

. 2 3
Eairy[ ™ (B1(5))] = gﬁ +D(s),

Var (1(81(5))) = 1y log(s) + €(s)

where supg-o|D(s)| < 0o, and supsq |€(s)| < co. For any k € Z~, there exists
so = So(k) >0 and C = C(k) > 0 such that for all s > s,

Varaiey (" (B (5))) < C log(s).

10As pointed out by Higg [73, footnote, p. 16], there is a mistake in the calculation leading up to [132, Theo-
11

) 1272

x21(B1(s)) recorded in Proposition 1.3. In fact, for our purposes, the exact value of this constant is unneces-

sary. For the variance of xA1(51(s)) with k € Z~1, the constant should also be modified from that in [132,
Theorem 1]. Since [73] does not provide the fixed value in this case (and to avoid redoing the calculation), we
can easily argue that there must be some constant ¢ (k) > 0 such that Varair, (x*1 (B (5))) < c(k)log(s). To
see this, define X = x*1(B1(ks)), X = x*(B1((k — 1)s)), and Z = x* (B (s)). Since X =Y + Z,
Variry (X) = Varairy (Y') + Varairy (Z) + Covairy (Y, Z). Using the bounds for the variance of X and Y, and
the inequality | Cov(Y, Z)| < +/Var(Y') Var(Z), we arrive at the desired type of bound for Var(Z). (We thank
Thomas Claeys for pointing us to the work of [73].)

rem 1] which erroneously produced the constant instead of the correct constant % for the variance of
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These estimates can be used to prove a central limit theorem for linear statistics
(including the number of particles in large intervals) for the Airy point process (see,
e.g., [132]). By studying higher-order cumulants, [56, Theorem 5.2] derives a moder-
ate deviation result for y*'(B,,) where B, := [-n,n]. However, their result does not
probe far enough into the tails of the distribution (it is still effectively Gaussian) to be
of use in our desired application.

The theorems which we now state effectively show that the deviations of
12([—s,00)) have the same exponential order (up to some small correct terms)
tail behavior as the deviations of a;. In other terms, the probability of having far too
few or far too many points in a large interval is similar to the probability of having
the first point far to the left or to the right.

THEOREM 1.4
For any § € (0, %), there exist so = s9(8) > 0 and K = K(8) > 0 such that for all
s >soandc >0,

P(x*([—s,00)) — E[x*([—s, 00))] < —cs%) <exp(—cs* (1 - Ks_%)). (1.10)

THEOREM 1.5
Recall By (s) from Proposition 1.3. Fix any k € Z>1, ¢ > 0, and € € (0, 1). Then there
exists s = so(k, €) such that for all s > s,

P(xM (Bi(5) — B[ (B (s))] = es2)
< exp(—cs% (log(cs%) — (14 €)log(log(s))))-

Theorems 1.4 and 1.5 are, respectively, proved in Sections 4.5 and 4.6. The proof
of Theorem 1.4 is based on a connection between the cumulant generating function of
12([—s,00)) and the Ablowitz—Segur solution of Painlevé II (see Section 1.3). The
proof of Theorem 1.5 is simpler, relying on estimates in Proposition 1.3 along with
Bennett’s concentration inequality.

In addition to controlling the number of Airy points in large intervals, we require
some uniform bound on the distance between the points and their typical locations.
Let Ay <A, < --- denote the eigenvalues of the Airy operator (see Section 4.3). As
shown in Proposition 4.6, A, ~ (%”n)-%. The following result follows directly from
combining Proposition 4.5 with 8 = 2, and Proposition 4.4. Proposition 4.5 is a sim-
ilar bound for the Airyg point process, and its proof relies on studying the spectrum
of the stochastic Airy operator. To control the deviations of that random operator’s
spectrum, we prove a result (Lemma 4.7) which precisely controls the oscillations of
Brownian motion. We do not claim that the next rigidity result is optimal and it may
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be possible to prove similar (or better) results about uniform rigidity of Airy points
via other methods (see, e.g., [32, Theorem 3.1]).

THEOREM 1.6
For € € (0,1), let C2 be the smallest real number such that for all k > 1,

(1—€)Ap — CH < —ay < (1 +€)Ag + CH. (1.11)
Then for all €,68 € (0, 1) there exist so = so(€,6) and k = Kk (€,8) such that for s > s,

IP’(CEAi >5) SKCXp(—KSI_(S). (1.12)

1.3. Asymptotics of the Ablowitz—Segur solution of Painlevé 11
The proof of Theorem 1.4 relies on Markov’s inequality which shows that for any
v >0,

. . 3
P(x™([=s,00)) = E[}*([-s. 00))] < —cs2)
< e—cvs% +v]E[XAi([_s,oo)]F(_s; U), (1.13)

where
F(x;v):= ]E[exp(—v)(Ai([x, oo)))].

In (1.13) we choose v = s%_‘g. In order to extract asymptotics of F(x;v) (see Theo-
rem 1.7), we rely on a connection to the Ablowitz—Segur (AS) solution of the Painlevé
IT equation.

The Ablowitz—Segur (AS) solution uas(+; y) of the Painlevé II equation is a one-
parameter family of solutions to (1.9) characterized by the following boundary con-
dition:

1
x"& _ 2x 3

2\/;6\ (1+o(1)) asx— oo.

(Here o(1) means any function which goes to zero as x — 00.) For fixed y € (0, 1),
[1] and [2] solved the connection problem (behavior as x — —o0). The case y =1
is the Hastings—McLeod solution analyzed in [81], and the case in which y > 1 was
subsequently studied in [90].

ups(x;y) = /v

THEOREM 1.7
For KAl the Airy point process correlation kernel (see Section 4) and y =1 —e™?,

o0
F(x:v) =det(I = yK™) 12((x.00)) = eXp(—/ (v = 0)uzs(y;y) dy)- (1.14)
X
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3_
Fix any § € (0, %), and set v =s279. Then, as s goes to o0,

1]

2 3 3138
log F(—s;v) < —3—vs2 + O™ ). (1.15)
b4

The first part of this result, (1.14), contains two equalities. The first follows from
general theory relating multiplicative functions of determinant point processes to
Fredholm determinants (see [5, Section 3.4] for background on Fredholm determi-
nants). For a determinantal point process X with state space X and correlation kernel
KX, and a function ¢: X —C,

E“—[ ¢(x)] = det(1— (1 - $)K¥) 2 x)- (1.16)

xeX

This identity requires (1 — ¢)KX to be trace-class (see [22] for more details). The
second equality in (1.14) relies on the integrable structure of the Airy kernel (see
[134, Section 1.C]).

Proving the second part of the theorem, namely, (1.15), requires a close analysis
of the AS solution to Painlevé II, as is provided in Section 6.

The AS solution has received some attention recently in [21] and [31] due to the
fact that y K ' represents the kernel for a thinned version of the Airy point process—
each particle is removed with probability 1 — y. This thinning represents one way
to achieve a crossover between the GUE Tracy—Widom distribution and more classi-
cal extreme-value statistics. The study of positive temperature free fermions in Sec-
tion 2.2 represents another such mechanism.

Ablowitz and Segur [1], [2] solved the connection problem for the AS solution
for y € (0,1) fixed. For our application, y (or, equivalently, v) fixed would only
yield an exponent of s 27 in Theorem 1.4 (not the desired s3~%). Recently, utilizing
Riemann-Hilbert steepest descent, Bothner [30] computed the asymptotic form of the
AS solution uas(x;y) as x — —oo for a more general range of y. The formulas are
written in terms of Jacobi elliptic theta functions and take different forms depending

1

on the values of y. In particular, setting t := ~ o log(1 — y), [30] computes

asymptotic formulas in three different ranges of parameters: (a) t € (0, (—x)™%];
3
(b) T € (0, 2./2 - nl; (¢) T € (%\/5 — &M,oo). Here 8,7 > 0 are arbitrary
(—x)2
small numbers and R € (—oo, Z]. For 7 € (0, %ﬁ) the resulting asymptotic form
of uas(x;y) as x — —oo is pseudoperiodic, thus making it rather challenging to
compute the integral in the exponential in (1.14) (as necessary to recover asymptotics
for F(x;v)). As t approaches 0 and %\/f the oscillations die out, although due to
different mechanisms in each case.
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In [30] and [29], Bothner managed to translate his asymptotic result for g into a
corresponding result for F only in the (c) region.'' For region (a), [30] demonstrated
a simplified form of uas(x; y(x)) for t € (0, (—x)~%) for any fixed § > 0. However,
this simplified form still retains its oscillatory nature which is one of the difficulties in
getting a full expansion for F(—s;1—e™* 3/2_”). Recently, Bothner and Buckingham
[31] showed that for any 0 < € < %, there exist constants 5o = so(€) and c} = c; (e)

for j = 1,2 so that for s > 59 and 0 < v = —log(1 — y) <S%—e’

log F(=s:v) = —2253 + 2 log(ss3)
og F(—s;v) = ——s5 ——log(8s
3x 472
iv
+10g(G(1+2—) (1—— )+r(s,v). (1.17)

Here G(x) is the Barnes G-function and |r(s,v)| < ¢} ”—3 + 5% forall s > 59, 0 <
52

v<s2E.

Since (1.17) gives the full expansion of log F(—s; s%_‘s) only when § > %, plug-
ging it into the right-hand side of (1.13) only yields a leading term (in the upper
bound of the lower tail probability of y*i([—s, 00))) like exp(—cs?~). However, The-
orem 1.4 asks that the upper bound be like exp(—cs>7). In Section 6 we demonstrate
how we can work with § close to zero. Presently, we cannot justify a full expansion
of F(—s;v) in Theorem 1.7 like that of (1.17). However, the weaker result in Theo-

rem 1.7 suffices for our present needs.

Outline

The organization of this article is the following. Section 2 includes a brief discussion
of how our results and methods connect to other problems and may be extended in
other directions. Section 3 reduces the proof of our main result (Theorem 1.1) to a
result (Proposition 3.1) for a cumulant generating function. Proposition 3.1 is subse-
quently proved in Section 4.2 by reducing it to a result (Proposition 4.2) about the Airy
point process. The rest of Section 4 develops and proves various properties about the
Airy point process, including the key rigidity estimates stated in the Introduction as
Theorems 1.4, 1.5, and 1.6. Proposition 4.2 is proved in Section 5. Finally, Section 6
contains a discussion on asymptotics of the Ablowitz—Segur solution of Painlevé II
and a proof of Theorem 1.7, stated earlier in the Introduction.

"I'The article [30] achieved this for T > %ﬁ based on the lack of oscillations in u s for such t, and [29]
provided an extension to the full region (c) (and slightly beyond).
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2. Connections and extensions

We discuss various applications and extensions of our results and methods. Sec-
tion 2.1 describes the relationship between our analysis and an inverse-scattering
problem generalizing the Painlevé II equation. Section 2.2 explains how our results
relate to the lower tail decay for positive temperature free fermions. Section 2.3 dis-
cusses extending our analysis to study the KPZ equation large deviation rate function,
as well as relates our work to recent physics literature. Sections 2.4, 2.5, and 2.6 touch
upon extensions of our methods and results to (respectively) the KPZ equation upper
tail decay and general initial data, half-space geometry, and certain discretizations of
the KPZ equation like ASEP or the stochastic six-vertex model.

2.1. An integro-differential generalization of Painlevé 11

Using the explicit form of the Airy kernel and the fact (1.16) that expectations of
multiplicative functions of determinant point processes can be written as Fredholm
determinants, we can rewrite the equality in Proposition 1.2 (actually (1.7)) as

Esug[exp(— exp((T%(TT +5)))] =det(J — K)12(5.00) =: Q(5), 2.1

where K is the Airy kernel deformed by a Fermi factor:

(2.2)

1

o0
K(x,x") = / dro(r)Ai(x +r)Ai(x" +r), witho(r) =
o 1 +eT3r

It was proved in [4, Section 5.2] (following [135]) that for any choice of o (r)
(which is smooth except at a finite number of points at which it has bounded jumps,
and which approaches 0 at —oo and 1 at +oco exponentially fast), the resulting O (s)
satisfies

d? o]
Ta1s00) = [ dre (12,

0(s) = exp(—/soo dx(x —s) /_(: dro'(r)qrz(x)),

where ¢, (s) solves the following integro-differential generalization of Painlevé II:

d2 [oe}
G0 =(sre2 [ aretheie)a .

with g, (s) ~ Ai(r + s) as s — +o0. (2.3)

If o(r) = 1,50, then the above equation recovers the Hastings—McLeod solution to
Painlevé I1. The derivation of the above result in [4, Section 5.2] came from an attempt
to directly study the lower tail for the KPZ equation. Due to the complexity of this
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equation, [4] was unable to even show that the lower tail decays to zero and resorted
to a more indirect route via the results of [119]. Sasorov, Meerson, and Prolhac [131]
managed to extract asymptotics from this equation via a WKB approximation along
with a self-consistency ansatz for the form of the solution to a Schrédinger equation
in which the potential depends upon the solution. It would be valuable to make this
approach rigorous, and below we mention possible ways to start. Before doing so, let
us note that we may reverse the direction of inference and try to use our methods for
studying the KPZ tail (via the Airy point process) to deduce results for the solution to
(2.3).

The connection problem for (2.3) asks how the Airy behavior as s — oo propa-
gates through as s — —oo. This problem also falls under the realm of inverse scat-
tering on the line (see [14], [51]) for the Airy operator. For the Hastings—McLeod
solution of the Painlevé II equation, this problem has been resolved to a great level
of detail using the steepest descent method for an associated 2 x 2 Riemann—Hilbert
problem (see, e.g., [7], [311, [501, [52], [53], [67]).

For a general choice of o (r), the kernel K may be rewritten as

Aix +r) A’ (X" +7r) = Ai'(x + 1) Ai(x" + 1)
x—=x'

K(x,x") = /00 dro’(r)

and hence takes the form of an integrable integral operator. As shown in [85], the
associated Q(s) can be written in terms of an operator-valued Riemann-Hilbert prob-
lem.'” The analysis of such problems is considerably more involved than in the finite-
dimensional (namely, 2 x 2) matrix setting (see [86], [87] for some recent advances
in this direction).

The approach developed in these pages may offer an alternative to studying the
operator-valued Riemann-Hilbert problem. In our analysis there is nothing particu-
larly special about the choice of o (r) (which translates into the choice of multiplica-
tive functional). For another o (r) we could just as well similarly derive asymptotics
for Q(s). Turning this into a solution to the connection problem in (2.3) may still be a
challenge. Should this work, the study of the operator-valued Riemann—Hilbert prob-
lem would be reduced to the study of the 2 x 2 matrix problem associated with the
Hastings—McLeod and Ablowitz—Segur solutions. We do not pursue this idea further
in the present text and leave it for future investigation.

2When o/(r) is a sum of N delta functions, the resulting Riemann—Hilbert problem is (2N x 2N)-
dimensional.
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2.2. Positive temperature free fermions

Positive temperature free fermions and the related Moshe—-Neuberger—Shapiro [118]
matrix model'® have recently been studied in [47] and [109] (and earlier in [88] in
grand-canonical form). These ensembles are indexed by an inverse temperature .
When  — oo this recovers the GUE. The authors of [47], [88], and [109] consider
taking the number of fermions (or matrix dimension) N — co. When S is fixed, the
distribution of the rightmost fermion converges to the GUE Tracy—Widom distribution
(see [109, Theorem 2(a)]); when B tends to O sufficiently fast relative to N going to
infinity, the rightmost fermion converges to a Gumbel distribution; and when f tends
to 0 and N tend to infinity in a critical manner, there is a crossover between the
GUE Tracy—Widom and Gumbel distributions. The limit of the correlation kernel for
a fermion point process at the edge converges under this critical scaling to the Fermi
factor deformation of the Airy kernel given in (2.2). Hence, the Fredholm determinant
(2.1) gives the probability that the rightmost limiting fermion is to the left of s, and
Proposition 3.1 provides the lower tail probability decay of that distribution.

2.3. Large deviation rate function

Theorem 1.1 shows that there is a crossover between two types of tail decay which
occurs when s is of order 72/3. This can be understood in terms of large deviations.
For z <0, let

¢_(z) = lim 772 1og(IP(J€(2T, 0) + % < zT)). 2.4)

The existence of the above limit is not a priori clear.* In terms of ®_, Theorem 1.1
suggests that ®_(z) =~ %(—z)3 for z near 0 and ®_(z) ~ % (—z)% for z near —oo.

In the physics literature, the crossover between the exponents % to 3 seems to
have been first predicted via weak noise theory by Kolokolov and Korshunov [97] in
the context of directed polymers, and quite recently by Meerson, Katsav, and Vilenkin
[113] in the context of the KPZ equation. Weak noise theory (WNT), sometimes also
called optimal fluctuation theory, studies the large deviations of the noise necessary to
produce a given space-time trajectory of the KPZ equation (or more general systems).

3This is a one-parameter (b > 0) unitarily invariant measure on n x n Hermitian matrices H with density
(relative to the Lebesgue measure on algebraically independent entries of H ') given proportional to

e~ Cb+DTH(H?) dUeszr(UHlﬁH)’
U(n)
where the integral is with respect to the Haar measure on the unitarty group U(n). When b = 0, the measure
reduces to the GUE.
14Basu, Ganguly, and Sly [13] have an approach to proving the existence of such rate functions for first and
directed last passage percolation. Whether this approach lifts to positive temperature models like KPZ remains
to be seen.
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It is a valid method only under “weak coupling” or when there is an exceedingly small
parameter in front of the noise term. In many instances, this approach is only valid
for short times (when the noise is, through rescaling, effectively weak). However, for
the KPZ equation it seems that it remains valid for longer times, if one probes deep
enough into the tail. WNT has a long and rich history within physics dating back to the
1960s in condensed matter physics (see, e.g., [79], [110], [140]) and was introduced
into the study of the noisy Burgers equation by Fogedby [66] in the late 1990s. It also
goes under names such as the instanton method in turbulence, macroscopic fluctuation
theory in lattice gases (see [19]), and WKB method in reaction-diffusion systems (see
[114] for a more extensive history). Within mathematics, the WNT for diffusions
goes under the name Freidlin—Wentzell theory. For field-valued/infinite-dimensional
diffusion processes (see [33]) and for certain nonlinear SPDEs (see [35], [78]), it
has recently received some rigorous treatment. WNT alone does not provide the %
exponent or associated prefactor. Once the large deviations for the sample path (e.g.,
evolution of the KPZ equation) is determined, one still needs to solve a Hamiltonian
variational problem to figure out the most likely trajectory among all those which
achieve a given one-point large deviation. In the physics literature, [97], [99], and
[113] worked through this calculation for KPZ with flat initial data and predicted the
% exponent along with a prefactor of %. The authors of [89] worked with parabolic
initial data (which interpolates between flat and narrow wedge) and predicted that the
prefactor becomes % in the narrow wedge limit. These short-time predictions have
been confirmed through exact formulas in [106] and [101].

Weak noise theory does not provide any explanation for the crossover of the
exponents of ®_(z) from % to 3 as z goes from 0 to —oo. Recently, this crossover has
been studied via analysis of the integro-differential equation discussed in Section 2.1.
Le Doussal, Majumdar, and Schehr [107] performed a rough (nonrigorous) analysis
of the equation and predicted the existence of a large deviation principle (LDP) with
speed T2 and cubic behavior for small z. However, their analysis missed the behavior
of ®_(z) for z <« 0 and hence did not predict that the % exponent remains for a long
time. Via nonrigorous WKB approximation analysis, Sasorov, Meerson, and Prolhac
[131] predicted not only that the % to 3 crossover should hold for all times sufficiently
large, but also predicted a formula for the large deviation rate function ®_(z) from
(2.4). The [131] prediction

2 1,

5
|- 7225 — Sl
(1—n%2) 157r6+37r42 27{22

P_(z)=

56 (2.5)

indeed recovers the desired small and large z asymptotics. Hartmann, Le Doussal,
Majumdar, Rosso, and Schehr [80] have performed simulations which numerically
confirm the % exponent for short and moderate values of time. The cubic exponent is
harder to access numerically.
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We now explain how our present work could be extended to prove a formula
for ®_(z). The core challenge is that there is no proved large deviation theory for
the empirical density of the Airy point process (such as was done for the GUE point
process in [15]; see also [105] and the references therein). Since there are infinitely
many points in the Airy point process, one cannot naively apply the Coulomb-
gas/electrostatics approach to formulate a large deviation principle. Indeed, we have
derived what should be the rate function in [41], although only in a physics way. The
proof of this has not yet been made rigorous. We leave this challenge to future work.

In light of (1.6) and the argument used to prove Theorem 1.1, ®_(z) should be
given by

1 o0
d_(z)= hm ) logE[exp (— Z Or,—z72/3 (ai))],

where the a;’s are the Airy point process, and ¢ s(a) := log(l + exp(T'3(a +
s))). For large T, ¢ _,712/3 (T?a) ~ T(a — z)4+ (where (-)4 := max(-,0)). Let-
ting ur()=T71Y,., 84, 7—2/3(-) denote the scaled empirical Airy point process
measure, -

d_(z)= Tli_1>noQ % loglE[exp(—TZ/]R dapr(a)(a— z)+)].

Now assume that, for a suitable class of functions u, the empirical measure pur
satisfies P(ur ~ ) ~ exp(—T21(j1)) for a rate functional /. Then we would expect
that

d_(z)= mm(/]R dap(a)(a—z)+ + I(/L)), (2.6)

where the minimum is over the class of functions upon which 7 is finite.

Assuming (2.6), we can derive upper bounds on ®_. For instance, /(i) should
be minimized and equal to zero for the limiting density'® of the Airy point process
Us(a) = JT_IHI,KO Plugging this choice into (2.6) and evaluating the integral
gives ®_(z) < 15 (— 2)2 On the other hand, consider the limiting density of the
Airy point process conditioned on a; < zT?/3 (after the scaling discussed above).
Since that density will be supported strictly on (—o0, z], the integral in (2.6) will
be zero. For that density, /(u) =

12 , as can be determined by the known large
deviations for a; in Proposition 5.1. Thus, we find that ®_(z) < %
A month after initially posting this paper, we (along with Le Doussal, Krajen-

brink, Tsai in [41]) derived (based on a nonrigorous limit of the GUE LDP from [15];

15This can be calculated, for instance, by taking the trace of the Airy kernel.
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see also [48], [49]) an electrostatic formula for 7(j4).'® Assuming the validity of this,
we were able to solve the variational problem and confirm the formula for ®_(z) in
(2.5). Proving the Airy large deviation principle remains a challenge for future work.

Half a year after initially posting the present article, Tsai [136] found a proof of
the formula for ®_(z) in (2.5) based on the stochastic Airy operator representation for
the point process. Essentially, the large deviation problem is transferred onto a large
deviation problem for the driving noise for that operator which, being Gaussian, is
readily studied via standard theory. This is obviously an oversimplification and there
are some real subtleties which presently restrict the class of test functions for which
this approach can be applied. Presently the result of [136] does not control the finite
T tail behavior, although it is believable that the method could be extended to recover
bounds such as proved here in Theorem 1.1. In certain applications, it is important to
have uniform tail bounds for all times.

2.4. Upper tail and general initial data

Unlike for the lower tail, the upper tail probability P(Y7 > s) can be studied via
Fredholm determinants (see [44, Proposition 10]). The large deviation rate should be
T (instead of T2 for the lower tail) and it is predicted in [107] and [131] that the rate
function is %s%. In our followup work [40] we have provided some analysis of this
upper tail behavior.

The first author and Hammond [43] introduced a method (based on the KPZ line
ensemble Gibbs property) to extend tail probabilities from narrow wedge initial data
to general initial data. In [43, Theorem 13], the inputs came from [4] and [117] and
were far from optimal. In our follow-up work [40], we employed the bounds from
Theorem 1.1 to extend the upper bound (1.4) to general initial data. A matching lower
bound is presently not accessible.

2.5. Half-space KPZ

The (1 + 1)-dimensional SHE Z (T, X) in the half-space R with delta initial data at
the origin is uniquely defined (see [45]) by the SPDE in (1.1) and the Robin boundary
condition (parameterized by A € R) which is formally given as dx Z"(T, X)|x=o =
AZP(T,0), for all T > 0. The above half-space SHE/KPZ equation has been recently
studied in [45] and [126] where it arises as the scaling limit of a corresponding
ASEP. In the spirit of Proposition 1.2, [11] (see [126, Corollary 1.3]) computed a
Laplace transform formula for the half-space SHE in terms of the (Pfaffian) GOE

16The conjectured formula is that /() is finite only when [ da(i(a) — «(a)) = 0 and otherwise

2 oo
1) == [ 1oglar —axl [] dai (wta) = (@) + 5 [ dalal* (@,

i=1
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point process. Using this, [136] proved the half-space KPZ large deviation rate func-
tion. Recently, [96] proved tights bounds on the lower tail of the half-space KPZ equa-
tion by extending our methods. The half-space problem has also received attention in
the physics literature (see [102], [115]).

2.6. Other integrable probabilistic systems

Integrable probabilistic systems in the KPZ universality class (see [39]) fall into
two classes: determinantal (i.e., free fermion) or nondeterminantal. For determinantal
models like the longest increasing subsequence, polynuclear growth model, directed
last passage percolation with geometric (or exponential) weights, and TASEP, various
authors (see, e.g., [8], [9]) have obtained optimal lower tail'’ estimates via analysis of
2 x 2 Riemann—Hilbert problems related to Painlevé equations. Coulomb gas methods
or loop equation also provide means to extract lower tail estimates in these contexts
(see, e.g., [28], [36], [37], [48]). So far, our present work on the KPZ equation pro-
vides the only lower tail bounds for nondeterminantal models.

Besides studying one-point lower tail decay and large deviations, there is much
interest in understanding the large deviations of the entire space-time trajectory. For
TASEP, a recent attempt at this has been made in [121]. The rate is still N 2 although
the rate function is only bounded above and below in [121]. The stochastic six-vertex
model [25] is a discrete-time analogue of (T)ASEP. Significant efforts have been made
(summarized, for instance, in [129]) to study large deviations and surface tensions for
the six-vertex model. Until recently, the only rigorous results (i.e., large deviations
for limit shapes) are for determinantal models such as uniform Aztec diamond or
rhombus tilings (see, e.g., [92], [93]). Aggarwal [3] has now proved an arctic circle
for the square ice model. This is, however, only the boundary of the limit shape and
the method there does not seem able to capture the internal shape.

Using the methods considered here, we should be able to access tail/large
deviation-type results for a few other nondeterminantal models. The starting point
for our result is the identity in Proposition 1.2 which matches the SHE Laplace
transform with a multiplicative function of the Airy point process. Similar formulas
exist for ASEP (see [27, Theorem 1.1]), the stochastic six-vertex model (see [23,
Corollary 4.4]), and g-TASEP (see [122, Proposition 6.1]). The methods of this
article should extend to these other models, even though will likely involve some new
analysis (such as of g-Laplace transforms and the associated variants of the Painlevé
equations which may arise for these different models).

7For TASEP, the lower tail corresponds to the upper tail for the current of particles to pass the origin.



1350 CORWIN and GHOSAL

3. Proof of the main result .

Recall Y7 from (1.3). The random variable exp(—exp(7' 3 (Y7 + s))) is equal to the
conditional probability P(G < —T'/3(Yr + 5)| Y1), where G is a Gumbel random
variable independent of Y7. Thus, the expected value of exp(— exp(T% (Y7 +5)))
is equal to the probability P(Y7 + T~/3G < —s), which is approximately equal to
1(Yr < —s) for large enough s and for all 7' greater than some Ty > 0. Motivated
by this heuristic, we prove Theorem 1.1 by estimating the Laplace transform formula
Elexp(— exp(T%(TT + 5)))]. We first state in Proposition 3.1 matching upper and
lower bounds on the Laplace transform formula. Then, using Proposition 3.1, we
finish the proof of Theorem 1.1 in Section 3.1.

PROPOSITION 3.1
Fixe,§ € (0, %) and Ty > 0. Then there exist so = so(€,8,Tp), C = C(Tp) >0, K1 =
K1(€,8,Tp) > 0, and K» = K>(Tp) > 0 such that for all s > s¢, one has

E[exp(—exp(T S(Yr + )]

< 6_4(11256)T%S% n e—K1s3*3—eT1/3s n e_(l—lzce)s_% 3.1)
and
1 _40+Co i3 K53
Efexp(—exp(T3 (Y7 +5)))] Ze™ t5m 7777 o727 (3.2)

We postpone the proof of Proposition 3.1 to Section 4.2.

3.1. Proof of Theorem 1.1
We show that (3.1) (resp., (3.2)) implies (1.4) (resp., (1.5)) of Theorem 1.1.
Let us first show that (3.1)=>(1.4). Observe that using Markov’s inequality

P(Yr <—s) = P(exp(— exp(T%(TT + s))) > g_l)
< eE[exp(—exp(T3 (T7 +5))]

The inequality (3.1) bounds the right-hand side and yields (1.4).
Now we show that (3.2)=(1.5). Take 5 := (1 — €)~Ls. Observe that

R :=E[exp(— eXp(T% (1 +3)))]
< B[1{Y1 = —s} + {1 > —s} exp(— exp(e5T 1)) .

where 1{A} is an indicator function. The above inequality implies that
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P(Yr < —s) > R — exp(—exp(e3T3)). (3.3)

It follows from (3.2) that
L 4 1 s 3
%Zexp(—(l +Ce+C G)FT3s2) + exp(—Kas~) (3.4)
b4

for all s > S = S(e,§). Here, the C’e terms appear because 53 < sg(l + C’¢) for
some C’ > 0.
Now, we notice that there exists S” = S’(e, Tp) such that for all s > §’,
5

4
exp(eET%) > T3 1;

2
—loge and
T (3.5)

4
exp(— exp(eET%)) < eexp(—FT%s%).
s

Plugging the lower bound (3.4) on fR and the upper bound (3.5) on exp(—exp(esT 3 ))
into the right-hand side of (3.3) yields, for all s > max{S, S'},

, 4 15 3
P(Yr <—s)>(1—¢) exp(—(l +(C+C )E)ET3S2> + exp(—Kzs”).

The multiplicative factor (1 — €) can be absorbed into the exponential factor (1 +
(C + C")¢)) on the right-hand side above; and rewriting it as (1 + Ce) for a slightly
modified constant C yields the right-hand side of (1.5), thus completing the proof of
Theorem 1.1. U

4. Airy point process

To prove Proposition 3.1, we use Proposition 1.2 which connects the SHE and the
Airy point process. In this section we recall or prove various properties about the Airy
point process. Section 4.1 reviews its determinantal structure. Section 4.2 contains a
proof of Proposition 3.1. Section 4.3 relates the Airy point process to the stochastic
Airy operator and derives properties about the typical point locations and deviations
from there. Section 4.4 contains a heuristic explanation for certain terms in our tail
bound. Finally, Sections 4.5, 4.6, and 4.7 provide proofs of, respectively, Theorem 1.4,
Theorem 1.5, and Proposition 4.5.

4.1. Determinantal point process definition

The Airy point process (written here as y*' or a; > a, > ---) is a simple determinantal
point process (see [5, Section 4.2]). Let us briefly review these terms. Denote the
Borel o-algebra of the real line R by 8B(R), and let u be a sigma-finite measure
over R. A point process is a probability distribution on locally finite configurations
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of the real points, or in other words, a nonnegative integer-valued random measure
x on the measure space M = (R, B(R), u). A point process y is called simple if
w({3x : x(x) #0}) = 0. For any k > 1, the k-point correlation function of y with
respect to the measure p is the locally integrable function py : R — [0, 00) such that
for any mutually disjoint families of the Borel sets By,..., Bx € B(R),

k
B [Tx0] = [ ot din) - die).
i=1

1 XX By

A simple point process y is determinantal if there exists KX : R? — C such that for
allk > 1, pr(x1,...,xk) = det[KX(x;, x;)]1<i,j<k- Werefer to KX as the correlation
kernel of .

The Airy point process correlation kernel K relative to Lebesgue measure 4 on
Ris'®

_Ai(x0)AI'(y) — Ai(y)AT'(x)
= e =

o0
K2 (x,y) / Ai(x +r)Ai(y +r)dr.  (4.1)
0
We will write yA! to denote the Airy point process (random) measure. We may also
write A = Y72 8, for random points a; > a, > ---.!” We will use both of these

notational conventions.
An integral operator & : L2(M) — L?(M) with kernel K : R?> — C written as

(&)(x) = f K. y) f5)dp(y). for f € L2(M)

is locally admissible if for any compact set D C R, the operator Rp = 1pR1p, hav-
ing kernel Kp(x,y) =1p(x)K(x, y)1p(»), has the following representation:

(RBp)X) =D Ak () Bk, f) L2

k=1
4.2)

Kp(x.y) =Y Ao ()i (1),

k=1

where n may be finite or infinite, {¢ }x € L?(M) are orthonormal eigenfunctions,
and the eigenvalues (A2)7_, of Kp are positive and satisfy Y z_; A2 < co. We
call R good if for all compact D and all 1 <k <n, )L]? € (0, 1]. For a determinantal
point process with locally admissible and good correlation kernel, for any compact

18Recall the Airy function Ai(x) := L Jo< cos(tx +t3/3)dt.
19This follows from a calculation like in Proposition 1.3 which shows that, almost surely, there are infinitely
many particles in x*' but only finitely many to the right of any given point.
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set D C R, y(D) equals in distribution the sum of n (same » as in (4.2)) independent
Bernoulli random variables with the respective probabilities of equality to 1 given by
the AlD, ... ,/\,? (see [5, Section 4.2]).

LEMMA 4.1
The kernel (4.1) of the Airy point process KA is locally admissible and good.

We use this result in proving Theorem 1.5 (see [5, Proposition 4.2.30] for a
proof).

4.2. Proof of Proposition 3.1
As above, let a; > a; > -+ denote the Airy point process. Denote

1
ds(x) = and

1+ exp(T% (s +x)) (4.3)
Fs(x) := log(l + exp(T%(s + x)))

so that for any x € R, we have J;(x) = exp(—gs(x)). Proposition 1.2 connects
Eniry[[ 1= 4s(ax)] with the Laplace transform of the SHE. We now state upper
and lower bounds on this expectation and then subsequently complete the proof of
Proposition 3.1.

PROPOSITION 4.2

Fix any €,6 € (0, %) and Ty > 0. Then there exist sg = so(€,6, Ty), an absolute con-
stant C >0, K1 = Kq(€,68,Ty) > 0, and K, = K»(Ty) > 0 such that for all s > s¢
and T > Ty,

> —copt 3 _ —ce
EAiry[l—[ Js(ak)] < e_4(115n )T 352 + e_K1S3 S_eT1/35 + e_(l B 53 4.4
k=1
and
ad _sutcopi 3 P
EAiry[l_[ Js(ak)] > o~ e (4.5)
k=1
Proof of Proposition 3.1
Using (1.7), (3.1)—(3.2) follows from (4.4)—(4.5). O

4.3. Stochastic Airy operator
As observed in [62] and proved in [128], the Airy point process equals in distribution
the negated spectrum of the stochastic Airy operator. This yields a way to compute
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the typical locations of the points and establish a uniform bound (see Proposition 4.5)
on the deviations from those locations. This bound is used in the proof of (4.5) of
Proposition 4.2. It is not, however, tight enough to suffice for all of our needs, hence
our need for Theorems 1.4 and 1.5.

Definition 4.3 (Stochastic Airy operator)

Let D = D(R™) be the space of the generalized functions, that is, the continuous dual
of the space C° of all smooth compactly supported test functions endowed with the
topology of compact convergence. For any function f, we denote its kth derivative
by the symbol f*) and define its action on any test function ¢ € Cg° by

<. FP (> = (—Dk / F)$® (x) dox.

Define the space of functions H,!, = H,!.(R), where for any / € H_ and any com-

pact set I C R, we have f(V1; € L2(R). The B > 0 stochastic Airy operator Jg is
a linear map

2
Hg: H. — D with Hgf=—f® 4 xf + ﬁfB/.
Here, B is a standard Brownian motion and B’ is its derivative which belongs to the
space D.”’ The nonrandom part of ¥y is the Airy operator A = —9 + x. Define the
Hilbert space

L*:={f:f(0)=0.]Ifll« <oo} where ||f||i=[0 ((f)2+ A +x)f?)dx.

A pair (f, A) € L* xR is an eigenfunction/value pair for g if #g f = A f (likewise
for #A).

PROPOSITION 4.4 ([128, Theorem 1.1])
Let a = (a; > ap > ---) denote the Airy point process, and let A = (A1 <A, <---)
denote the eigenvalues of #,. Then a and —A are equal in distribution.

Results obtained in [128] and [138] show that the spectrum of #g lies within a
uniform random band around the spectrum of the Airy operator . The following is
a strengthening of such a result wherein the tail decay of the band width (here C)
is controlled. This result is proved for generic 8, although we need it later only for

B=2.

2To see that fB’ € D, observe that f; fB’dx =— [j Bf’dx + f(»)B, — f(0)Bo by integration by
parts. One can now see that the latter is a continuous function. Thus, its derivative f B’ belongs to the space D.
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PROPOSITION 4.5

Denote the eigenvalues of the Airy operator 4 by (A1 < A, < ---), and denote the
eigenvalues of #g by (A’g , Ag, ...). Forany € € (0, 1), we define the random variable
Ce as the minimal real number such that for all k > 1,

(1—e)Ar —Ce < AP <(1 + ) + Ce.
Then for all €,6 € (0, 1) there exist sg = so(€,08), and k = k (€, 8) such that for s > s,

IP’(Ce > %) < exp(—Ksl_‘g). (4.6)

Notice that (4.6) demonstrates a concentration inequality for the supremum of
the deviations of the eigenvalues of g around their typical locations. We defer the
proof of this proposition until Section 4.7.

Finally, we state a result on the position of the eigenvalues of the Airy operator .
For the Airy operator, A; coincides with the kth zero of the Airy function. Classical
works (see, e.g., [112], [133]) have addressed this question for more general operators
—8)26 + V(x) for V(x) satisfying certain regularity conditions. Those works are not
formulated in the style of theorem and proof, so we also mention that Proposition 4.6
is a special case of the result proved in [83, Theorem 3.3] for a general class of V(x).

PROPOSITION 4.6
Denote the eigenvalues of the Airy operator A by A = (A1 <Ay <---). Then for any
n > 1, A, satisfies

1 An

- v()tn—x)dxzn—%—i-gﬂ(n), or

T Jo
A, = (37”(;1—%+52(n))) ,

(4.7)

WIN

where |R(n)| < K/n for some large constant K.

4.4. Heuristics for Proposition 4.2
There are two main contributions to Eiy[[ T2 4s(ax)]—typical and atypical values
of a. Owing to Proposition 4.5, the typical values of a are close to the negatives of the
Airy operator eigenvalues, whose locations are estimated in Proposition 4.6.

The asymptotic formula in (4.7) leads (as we now show) to the exp(—% T3 %)
term in (4.4) and (4.5).”' Replacing a; by —A yields

2I'The € error factor comes from various approximation errors and the fact that the replacement is only true with
high probability.
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log<l_[ Js(ak)> ~ 3 oA == log(1 + exp(T 3 (s — Ap)).
k=1

k=1 k=1

When s 3> A and T is bounded away from 0, log(1 + exp(T% (s —Ax))) =~ T3 (s —
2
Ax). By Proposition 4.6, A &~ (3wk/2)3, hence

Z log(1 + exp(T% (s — k)

{k:Ar<s}

2
3

Y (-(3))

wln
U

w\»—
I\)

2
SUERE N SNER DR
3n 5 2 3n 157
To obtain the last approximation, we replace the sum <xk% by the integral

fox Z% dz which is equal to % ~x§. Thus (4.8) accounts for the first term in (4.4) and
(4.5).

To complete the above heuristic, we must show that the sum of $s(—Ax) over

all A > s can be ignored. For all A; > s, one has 0 < gs(—Ag) < exp(T%(s — Ar)).
Using this,

(4.8)

{k:Ax>s} kz%s%
0o 3 2
<[ sen(ri (- (5) )
3l 2

The final integrand is less than 1 inside [—s > , 0], and thanks to the inequality (see
Lemma 5.6)

3 2 3m(z — 2=52)\ % 2 2
s—(£)3 <— (¥)3 forallzZ(—)s% + —s%,
2 2 3 3

we obtain the following bound:

e 1 3nz / L 3mz\1/3
/ﬁsgexp(T3(s—( d < —s4—|—/ exp T3 2) )dz.

The final integral evaluates to a constant times (T/2)_% Ooo z2exp(—z)dz =

(T/ 2)_%F(3). Thus, when T is bounded away from 0, the contribution of the
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eigenvalues which are greater than s is of the order (9(s73i), which is certainly less
than s% for enough large s.

The other terms in the bounds (4.4) and (4.5) come from the atypical deviations
of the Airy points from their typical locations. For instance, if a; is very negative, then
this will clearly affect the validity of the above heuristic. The proof of Proposition 4.2
boils down to controlling these atypical deviations and measuring their effect on the
multiplicative functional in question.

Before we prove Proposition 4.2, we give proofs of Theorems 1.4 and 1.5 and
Proposition 4.5 which provide important control over the atypical deviations of the
Airy point process.

4.5. Proof of Theorem 1.4
Let us denote A := {y"([—s,00)) — E[}A!([—s,00))] < —cs%}. Using Markov’s
inequality, we find that for any A > 0,

P(A) < exp(—kcs% + AE[x™ ([—s.00))]) E[exp(—Ax™ ([-s, 00)))]-
Set A = s%_s. Owing to Proposition 1.3 and Theorem 1.7,
Ai 2 3
E[x*([-s.00))] = 3= + D(s),
Ai 24 3 3138
Elexp(—Ax*([—s,00)))] = F(=s;4) < exp(—gﬁ + Ks 0 ),
where K = K(§) is a large constant and s is large enough. Thus

P(4) < exp(—cs?™ + K> +D(s)).

Since |D(s)| is uniformly bounded for all s > 0, the theorem is proved. O

4.6. Proof of Theorem 1.5
Fix any k € Zs¢. By Lemma 4.1, the kernel of the Airy point process is locally
admissible and good. Thus (as discussed before Lemma 4.1) for any compact set D,

xA(D) 4 >"7° X; where the X;’s are independent Bernoulli random variables satis-
fying P(X; =1)=1-P(X; =0) = AZD. Here the )Ll-D’s are the eigenvalues of the
operator 1 p KA1 p. Choose a sequence of compact sets D,, increasing to the interval
8. By Bennett’s concentration inequality in [16],

3

P(x"(Dy) — E[xN(Dy)] = cs%) < exp(—o,fh(cz—;)), (4.9)

n
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where h(u) := (1 + u)log(l + u) — u. By the dominated convergence theo-
rem, as n — o0, Uy := E[}*(Dy)] = E[yA(Bx)] and o2 := Var(y*(D,)) —
Var(y*1(B)). By Proposition 1.3, for s large enough,

Var(y* (%)) < C logs

for some constant C > 0. Therefore, for any given € > 0, there exist So = So(¢) and
No = Ny(¢) such that for all s > Sg and n > Nj,

o,f <C(1+¢€)logs. (4.10)

Since h(u) > u(logu — 1), we find that U,%h(CS%/O,%) > cs3 (log(cs%) —logo2 —1).
Plugging the upper bound (4.10) on 62 into this inequality and exponentiating yields

exp(—o,%h(cs%/o,%)) < exp(—cs% (log(cs%) —(1+¢€)loglogs)) (4.11)
for all n > Ny and s sufficiently large. Now, Fatou’s lemma shows that

P(xM(Br) —E[xY(Br)] = ¢s5°)
< liln_l)gfIP()(Ai(Dn) —E[x*(Dn)] = es5?). (4.12)

Owing to (4.9) and (4.11), we find that

. 2 3, 2
RHS of (4.12) < limsupexp(—o, h(cs2 /o;))

n—>oo

3 3
< exp(—cs2 (log(cs2) — (1 + €)loglogs)). O

4.7. Proof of Proposition 4.5
We start with a lemma about the tails of the distribution of Brownian motion oscilla-
tions.

LEMMA 4.7
Let B, be a Brownian motion on [0, 00), and define
|Bx+y - Bx|

Z :=sup sup ————. (4.13)
x>0 yefo,1) 64/10g(3 + x)

Then, letting By = f;“ B, dy and BJ’C = %Ex(z By+1 — By), we have that (1)
max{|l§;|, |Bx — By|} <6Z/log(3 + x), and (2) there exist K, K3,s0 > 0 such

that for all s > s,

P(Z > s) < Kye K257, (4.14)
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Proof
The proof of (1) follows from the following inequalities:

- | x+y B |
|B.| =|Bx+1 — Bx| <6+/log(3+ x) sup
* * ¥ ye[o,1) 64/10g(3 + x)
<6Z+/log(3 + x),

1
BBl = [ |Buiy = Buldy = sup |Bys, — Bl <62 iog( 1),
0

ye[o,1)
Turning to (2), for any y € [0, 1),
|Bx+y - Bx| = |Bx+y - B[x]l + |B[x] - BLxJ| + |Bx - BLxJ|

<2 sup |B[x]+y Brail+2 sup [Bixj+y — Bix)l.
ye[o,1 y€l[0.1)

Therefore,
sup |Bx+y_Bx|52 sup |B[x]+y_fo]|
yelo,)) v10g(3+x)  yefo,1] +/log(3 + x)
B - B
42 sup |B|x)+y ijl'

yelo,11  +/log(3 + x)

To study Z, we must take the sup over all positive real x of the above bound. However,

(4.15)

at the cost of replacing 3 + x by 2 4 x in the denominator, using (4.15) we can bound

Z < 4W where
W := max W where W, := Z |B Bu|
«.— - — n-— n+y N nh
neZ=1 6,/log(2 + n) yelo,1)

The {Wy}nez.., are independent and identically distributed, and an application of the
reflection principle shows that

2
P(W, > a) <2P(|Bys1 — Ba| = a/2) < Ze @78, (4.16)

IS}

The union bound shows that

P(Z >5) <P@EW >s) = (GL>E)

o 0v/log2+n) 4
< ZIP’(W,, > %s Vl1og(2 + n)).
n=0

Combining this with (4.16) yields the desired decay bound as long as s is large
enough. U
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Proof of Proposition 4.5
We will make use of the following convention. For any two operators A4, B : le)c —
D,wewrite A < Bifforall f € L*, <f,Af = < <f.Bf>.If A< B,then Al <AB,
where A ]f and A f are kth lowest eigenvalues of the operators A and B, respectively.
In our proof we bound g above/below by the Airy operator plus/minus an error
with well-controlled tails. This requires establishing a random operator bound on
B’. Decomposing the Brownian motion By = B, + (Bx — Bx) (By is defined in
Lemma 4.7), we find that for f € C°,

<f.B f>= /Ooo f?BLdx + /Ooo F(x)f'(x)(Bx — By)dx. (4.17)

CLAIM
Fixe,§ € (0,1). Let K1 = K1(8) > 1 (resp., K = K2(8) > 1) be a constant such that
Vi1og(3 + x) < x% (resp., log(3 + x) < x%) for all x > K, (resp., x > K»). Define
. A=) 5\ of(Z\Tom 5
Ue=ma{Z((Z)"7 + k7). 22((7) "7 + K3}

Then
I , |-
—106,A—6(1+56 )‘uegB 5106A+6(1+§e )‘ue (4.18)

Proof of Claim
Recall that B!, = By 41 — B,. From Lemma 4.7, | B.| < 6Z /log(3 + x) (see (4.13)
for Z). Thus, we will start by establishing the following bound, valid for all x > 0:

i
Z/log(3 + x) <max{Z((Z/e)T® + K?) +ex,

Z\(2) 75 4 kI + ex). (4.19)

8
We explain the derivation of the first bound by Z((Z/€) -9 + K f) + €x, as the

1
second bound follows a similar type of argument. Let zo := max{(Z/¢) 1=, K;}.
For x < zy,

s
ZV1ogB3+x) < ZlogB+z20) < Z-z§ < Z((Z /)T + K?)
- §
<Z((Z/e)T=» + K7) + ex.

The second inequality uses /log(3 + zg) < Zg, and the third uses max{a,b} <a +b
fora,b > 0. For x > zg,
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ZV1og(3 +x) < Z(1 + y/log(3 + x)) < Z + ex' 79 \/log(3 + x)
_8
<Z+ex<Z((Z/e)T® + K?) +ex.

The second inequality uses Z < ex'™® (as (Z /e)ﬁ < x), the third uses

s
Viog(3+x) < x8 (since x > K1), and the fourth uses (Z/¢) -8 + Kf > 1.
Combining (4.19) with the definition of U, we see that for all x > 0,

Z+/10g(3 + x) < max{U¢ + €x, v Ue + €2x}.
This along with Lemma 4.7 establishes that for all x > 0,

|B| <6Z \/log(3 + x) < 6(Uec + €x),

_ (4.20)
|B, — By| < 6Z+/log(3 + x) < 64/ U + €2x.

Using the formula for <f, B’ f> in (4.17), along with the inequality
| £/ () f(x)(Bx — Bx)| < 3€(f'(x))* + (12€) " f(x)*| Bx — Bx|* (which follows by
applying ab < 1(a® + b?)) we have that

oo oo
</ B f>] 5/ f2(x)(e+|3;|)dx+3e/ (/')
0 0
o0 2 -
+(12€)_1/ (f(x))"|Bx — Bx|*dx.
0
Plugging the bounds from (4.20) into the above expression yields
o0
£ B SOUNS I+ el AS) + 3¢ [ (£/00) " dx
0

o0
+3e—1/ F2(Ue + €*x)dx
0

<6(1+26) ) Uell £ + 106 (£ A ),

which implies (4.18), as claimed. O

Now, we turn to complete the proof of Proposition 4.5. In (4.18), we have shown
that, for any f € L*,

20 12
- = 9A _—ué 2
TS AT U
c<f 2B < 2 A+ U

VB T T VB VB
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Adding < f, 4 f> on each side of the above inequalities and combining those with

the definition that #g = A + ﬁB’ yields

A(1_£€)_£(l+i)uefﬂﬂfﬁ(l—i—ﬁ

NN AN

which shows that

(1= 22 = 2 (14 - Y ue < Af = (1= 2 b= = (14 - ue

VBTN e VRN

for all k € N. Replacing € — “2/—0?6 and using the tail bound (4.14) on U, yields
Proposition 4.5. 0

+ i)‘ue,

12
\/ge) + ﬁ(l 2e

5. Proof of Proposition 4.2

We prove the upper bound (4.4) in Section 5.1 and the lower bound (4.5) in Sec-
tion 5.2. Before giving these proofs, we recall the behavior of the tail of a; (the GUE
Tracy—Widom distribution). Numerous works (see, e.g., [7], [28], [58], [128]) have
focused on finding the exact tails of a; and the following proposition follows from
these (e.g., [128, Theorem 1.3]).

PROPOSITION 5.1
Let a; denote the top particle in the Airy point process (which follows the GUE Tracy—
Widom distribution). Then (0(1) goes to zero as s goes to infinity)

Lo+ o()). 5.1)

P(a; <—s) = exp(—ﬁ

5.1. Proof of the upper bound (4.4)

Recall d4(-) and gs(-) from (4.3), related by d5(-) = exp(&s(-)). Thus, in order to
obtain an upper bound on E[[ ]2, 45 (ax)], we derive a lower bound on Y72 | &s(ax)
by comparing the Airy point process with the corresponding eigenvalues A of the
Airy operator (see Section 4.3). Let us denote Dy := (—Ax — ag)4 = max{—A; —
ar, 0}.

LEMMA 5.2 R
Fix some € € (0,1/3). Denote 0y = [252 /3n]. There exist So = So(€) > 0 and a
constant R > 0 such that for all s > Sy,

00 k) 6o
> ol = T3 (T (1 -89~ 3 i~ ). 52)

k=1 k=1
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Proof

Using monotonicity of s(-) and the inequality (1.11), we obtain the following:

D gs@) =) ds(—Ak — (—Ak — )+ + (A —ag)-)
k=1

k=1

> D do(—h — D). (5.3)
k=1

We divide the sum on the right-hand side of (5.3) into three ranges: [1, 6],
(01,0,), and [6,,00), where 0; and 6, are defined as (recall R(n) from Proposi-
tion 4.6)

2532 ]
Lo 0= 4], 92;[3” +ﬂ.

K= sup{|n$(n)
n>1

Note that as 6; does not depend on s, but 6, does, we choose s large enough so that
91 < 92.

CLAIM
We have

3 pcn-o0= (e (ZUEELY) S o).

k=1

Proof of Claim

1
Since log(1 + exp(a)) > a for any a € R, s(-) = T3 (s + -). Using this and the
monotonicity of Ax in k, we find that

01 61 61
DA =D =Y T = A= D) = T3 (01— Ro,) = Y Di).

k=1 k=1 k=1

From (4.7), Ag, < (37 (01 — % + JC/Ql)/Z)% <@Brn4X + 1)/2)%; hence (5.4) fol-
lows immediately. O

CLAIM
We have

6,—1 6,—1

Y Ak D0 =TT (1=~ 61+ s - > D). 69

k=61+1 k=601+1
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Proof of Claim
2
We assume that s > (3we~!/4)3 (1 + €). Observe that

6>—1 6>—1

k; fo(—h— D)= T3 Y ((s—(#)g)— 922—:1 D). (56)
=0, +1 k=0, +1 k=0 +1

This uses log(1 + exp(a)) > a foralla € R and A} < (3nk/2)% for all k > 6;. Now
we bound

6>—1 k % 0>—1 k % 6,—1 %
kzezlﬂ(s‘(%) )EMZ]H(S‘(%) )ffw (= (55))d=
[ (5
=B~ 1)(s- m(92—1) 5 =1+ s

3 3
Noting that (1 — e)% <6,—1< % + 1, we may bound the above expression such
that combining with (5.6) we arrive at the claimed inequality (5.5). O

Plugging the bounds (5.4), (5.5), and Z]iozgz Fs (A — Dy ) = 0 into (5.3) yields

6,—1

i T3 /45> 371(JC+1)
];gs(ak)iz—%<ﬁ(l_3f)_s_ Z:ok—el( ). 6

To finally arrive at the desued inequality in (5.2), we use two more bounds. Since we
may assume that s < 4;;2 for all s > Sg := Bme™ 1/4) (1 + €), we can replace —s

5
by —% in the right-hand side of (5.7). Finally, for all € < 1, 8; 3 (X + 1)/2)%/2
can be bounded above by a large constant R (independent of s and €). Incorporating
these bounds into (5.7) yields (5.2). O

Proof of (4.4) in Proposition 4.2
Multiplying (5.2) by —1 and exponentiating yields

00 5 9
[T %) < exp(—T% (%(1 —80) =) Dy - R)).
k=1 k=1

Recalling 6y = f2s% /37 and defining 84, := ZZ":I Dy, we have that
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5
452
157

o
1{8, < esbo} 1_[ ds(ag) < exp(—T%
k=1

(1— 116)).

If Sq, > €50y, then there exists at least one k € [1,6p] N Z such that Dy is greater
than es. Thus, {85, > €56} C UZO=1{‘Dk > es}. Summarizing the discussion above,
we have that

E[,}j 5 (@) |

- E[]l{&;o < esGO}kljl Js(ak)] + E[ﬂ{&% > eso) [ | Js(ak)]

6o

k=1
f;i(l - 116)) T E[ﬂ{U{@k > GS}} ﬁ Js(ak)]. (5.8)
k=1

k=1

1
<exp (—T 3
We may bound indicator functions

90 90
]l{U{i)k > es}} < ]l{U{éDk >estN {al >—(1 —e)s}} + ]l{al <—(1 —e)s}.

k=1 k=1

Since ds(ag) <1 for all k € Z~o, when a; > —(1 —€)s,

1

: < exp(—esT%).
1 +exp(T3(s+ay))

1_[ Js(ak) =<
k=1

Combining these observations and taking expectations implies that

E[E{Q{Qk > es}} lﬁ Js(ak)]

o

< exp(—esT%)]P’(U {Dy > es}) + IP’(al <—(1—e)s). (5.9)
k=1

By Proposition 5.1, there exists C > 0 such that for s large enough P(a; < —(1 —
€)s) < exp(—%(l — Ce¢)). Combining (5.8), (5.9), and (5.10) in Lemma 5.3, we find
(4.4). d

LEMMA 5.3
Fixe,8 €(0,1/3). There exist So = So(n,8) > 0and K1 = K1(n,8) > 0 such that the
following holds for all s > Sy. Divide the interval [—s,0] into [2¢ 1] segments Q; :=



1366 CORWIN and GHOSAL

[—jes/2,—(j — Des/2) for j =1,...,[2¢"1]. Denote the right and left endpoints
of Q; by qj and p;. Define k; :=inf{k : —Ar > q;} (A1 <Ay <--- are the Airy
operator eigenvalues). Then (recalling 6y = |'2s% /37])

P(ag, < p;) <exp(—K1s°%) Vje{l....[2n7"1} (5.10)

6o

]P’(U {Dy > es}> <exp(—K1s37%).
k=1

Proof
We prove the first line of (5.10). For 1 < j < [2¢™'], when a, <p;= —271(jes),

xM([~27"(Jes),00)) <kj <#{k :—Ar = —27'(j — Des}. (5.11)

Owing to Propositions 1.3 and 4.6, we have

2
#lk: —Ap < —x}=: §x3 + C1(x)
(5.12)

E[x*([—x.00))] = %)ﬁ + Ca(x),

where sup,.>¢{|C1(x)], |C2(x)[} < 0o. Combining (5.11) and (5.12) shows that when
A, = Ppj,
1M ([271 Ges), 00)) —E[x ™ ([-27 (Ges), 00))]
<#{k:—Ax>=—27"(j — Des} —#{k : =2 = —27" jes}
+ C1(27 jes) — Co (27 jes)
%
< (€s)
327
<—M\/j(es)? +C1(27" jes) — C2(27 jes)

((G=D3=j3)+ G127 jes) = (27 jes)

for some M > 0. Therefore,
P(ag, <pj) < P()(Ai([pj, 00)) —E[x*([p).0))]

cz(x)|}).

El

< _M\/f(es)% + 2 sup{|C1(x)
x>0

- 3 M = 3
For large enough s, —M /j (€5)2 + 2sup,5o{|C1(X)|. |C2(x)|} < =7/ (€5)2 for
all j €{1,...,[2¢"1]}. The first line of (5.10) follows by applying (1.10) of The-
orem 1.4 which shows that there exist So(¢,8) and K1 = K;(€,8) such that for all
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s> So,

B ([ es)oo0)) — Bl ([(es).o0))] =~ Vi (e9)2) < expl—Kis™™).

Turning to the second line of (5.10), we assume (as allowed by (4.7)) that s is
large enough so that A4, < s. We claim then that

bo r2e=!
Utdiezesic |J (a, < pi). (5.13)
k=1 Jj=1

To see this, consider any integer 1 < k < 6y, and assume that Dy > €s. Let j be
such that —A; € @;_,. Since @;_; is to the right of @; = [pj,q;], it follows that
ay < —Ax — €s. Moreover, a;; < ai because —Ax; < —Ax. Combining these yields
€s

akj <ag S—)\,k_GS = (Akj _kk)_lkj — €S S_Akj - E’
where the last inequality uses 0 < (Ag, — Ag) < S (as Ak ;> Ak € @j—1). Hence, the
distance between ag; and A, is greater than or equal to €s/2. This shows that ag ; <
pj,and hence (5.13).

The first line of (5.10) along with (5.13) implies that

0o

0o
P(|{Dk = es}) =D Play, < pi) = 27 Texp(—K15° 7).

k=1 i=1
As long as s is sufficiently large, the [2¢ 1] prefactor can be absorbed into the expo-

nent at the cost of slightly modifying K. O

5.2. Proof of the lower bound (4.5)
In order to obtain a lower bound on E[[[7—, 45(ax)], we derive an upper bound on

ZZO=1 Is(ag).

LEMMA 5.4
There exist B > 0 and Sg such that for all € € (0,1/3) and all s > Sy,

3 ds(ar) < Lre(s + CL), (5.14)
k=1

where
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Nw

5
4x2
157

. \F X3 L4
b4 (1—6)231 Tr(l—e€)3
Proof

Using the monotonicity of g (-) and the inequality (1.11), we obtain

X

3(1—€)>

(1+3e)+2x+B)+

D gs(a) <D go(—(1 — A + CA) = (D) + (D) + (1), (5.15)
k=1 k=1

where (T) (ﬁ), and (ﬁi) equal the sum of gs(—(1 —€)Ax + CAY) over all integers k
in the intervals [1, 61], (6],65) and [0}, 00), respectively, and (similar to Section 5.1)
61 and 6] are

2s + CAY 1
, 0, = — "+ —|.
—| 2 { (1 —e)% 2-‘

61 =6, =[4 sup n|R(n)

n€Zlso

For any integer 1 <k < 0], $5(—(1 — )Ax + CA) < gs(—(1 — e)A1 + CH).
Using this upper bound and the inequality log(1 + exp(a)) <a + 7 /2 for a > 0, we
obtain

/

_ 4 . 0
(D <01ds(—(1 —e)r1 + CN) < G{T%(s —(I—e)A +CH) + T

(5.16)
CLAIM
We have
5
~ _1/4(s+CA)2 , A 303m)23(6))%3
6. — o
+ M. (5.17)
2
Proof of Claim
For integers k € (67, 00), it follows from the definition of 6] that
3n(k — 7 = [RK)D\F _ (3n(k—3)\3
M= ( 5 ) = ()" (5.18)
This and the monotonicity of () implies that
A 3wk — 1)\ 2
Fs(-(1 =k + €N = g5 (-1 —o(—52) " +Co).
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Leveraging this and using the inequality Js(a) <a + /2 for any a > 0, we obtain
0,—1
~ 1 b4
@M= Y (T340 +3).
k=0{+1
3n(z — 2
where f;(z) :=s + CH — (1 - )( ( 2))* (5.19)
Bounding the sum in (5.19) by the corresponding integral, we find that
6/

i) < T3 / fi(z)dz + M (5.20)

To bound |, 90,2 fs(z)dz, we observe that
1

5 . Ai)
/ ﬁv(z)dZS(S+Cf1)(%+%)
i m(l—e€)2

3 3m0\2 205 + CA)3\ 3
—0-oz(5) (1)
3n(l —¢)2
.. 5
A(s + CA)2 3 ‘
:—( E)3+—(S+C€A1)
157(1—¢)2 2

.5

4(s + CN)3 3 N
< T )P L3+ 2 (s 4 CA
ST sy U39+ 6+,

[ji f(z)dz> (s + cﬁi)(eg - %) - /ji (M)% dz

2

Seret(ieg) -3 (5) ()

2
Combining these bounds with (5.20) yields the upper bound on (ﬁ) in (5.17)

]
CLAIM
We have
—  [2(s+cr)i 4
(1) < \/j < —+ 3 (5.21)
To(1—e€)t Tr(l—e€)
Proof of Claim

Using the inequality log(1 + z) < z for all z > 0, we find that
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Fs(—(1 = )Ag + CN) <exp(T 3 (s — (1 — ) Ay + CN)). (5.22)

Plugging the lower bound on A from (5.18) into (5.22), we find (recalling fs(z) from
(5.19)) that

@) < Y exp(T3 (k). (5.23)
k=0§

Noting that f(k) < f5(65) <0 for all k > 6}, we find that for all k > 6, + /36,
3m(0,— 3\ 3 3m(k —3)\3 3r(k —05)\3
<= (MG oD <o)

The first inequality uses f;(65) < 0 and the second follows from Lemma 5.6 (we
assume that s is large enough so that 6} — % > 27). Utilizing this estimate yields

k=0}+/360;
—_— 1 1
@< Y exp(T3fik)+ > exp(T3 fi(k))
k=6} k>05+ /36,
> L 3m(k —6)\3
=3 (-a-om (Z5)7)
= b+ Z exp|—(1—¢€)T'3 5
k=0}+ /305
0o 3 1
< 39§+f exp(—(l—e)T%( ZZ)S)dZ
0
4 \/7(s + CAYE 4
=,/30,+ ————— <4/— £ + . 5.24
2t Trn(l—e€)3 ~ Vnm (1 _6)% Trn(l—e¢)3 (5.24)
The first inequality follows from (5.23); the second follows from the bound
1 1 ke€l[0,,0,+ /365],
exp(T'3 f5(k)) < 1 3m(k—0}), 1 e Y
exp(—(1 —e)T3(—52)3) ke[t + /30;,00);

the third uses that the sum is bounded by the integral; and the last inequality uses that

3
for s large enough, /360] < /2 GHCNT Thig completes the proof of (5.21). O
s s 2 ™ (1-oi
—€

Plugging the upper bounds of (T), (ﬁ), and (ﬁi) obtained in (5.16), (5.17), and
(5.21), respectively, into (5.15), we arrive at (5.14). O
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Proof of (4.5)
CLAIM

Fix any €,8 € (0,1/3) and Ty > 0. Then there exist k = k(€,8,Tg) > 0 and Sy =
So(€,8, Ty) > 0 such that for all s > Sg and T > T,

Eaiy[1(a1 = —5) [T 9 @]
k=1

5

4s2
1+ 96)). (5.25)

> (1 —2exp(—ks'72%)) exp(—T%

Proof of Claim
Negating both sides of (5.14) and exponentiating yields [[r—,d(ax) >
exp(—L7.c(s + CAY)). Along with the monotonicity of £7(-), this implies that

Eairy [1(31 > —s) ﬁ J’(ak)]

k=1
>P(a; > —s,CA < s17) exp(—Lr.e(s + s179)). (5.26)

Taking s large enough, we have the bounds

5
452

N

5
14(s +s17%)2 1 1 1-5 14s
73— <T53 14 5¢), T3(2 B)<T:s ,
157 - 1571( +5¢) ((S+S )+ )_ 15716
1-5 3 1-§ 3
(s+s )2§T%4s2€’ 2(s+s )4§T%4s2€’
3(1—¢)2 157 T (1—e) 157
4 <Tl 4s§
Tn(l—e¢)3 — 157
Using these bounds, we find that
455
1
Lre(s+s70) <T3. %(1 + 9). (5.27)
b4

Thanks to (1.12) of Theorem 1.6, there exist k = k (€, §) and Sy = S (€, 8) such that
for all s > S}, P(CA < s'7%) > 1 — exp(—«s'2%). Moreover, using (5.1), we find
that for large enough s, P(a; < —s) < k exp(—ks'~2%). This implies that for large
enough s,

P(a; > —s, CA < 517%) > P(a; > —s5) + P(CA < 5'7%) — 1 > 1 — 2exp(—ks'72%).

Plugging this and (5.27) into (5.26) yields (5.25). O
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CLAIM
Fixe € (0,1/3) and Ty > 0. Then there exist K = K(¢, To) > 0 and Sy = So (€, Tp) >
0 such that for all s > S,

Eniy[1@1 <—5) [ ] 4@0)] = exp(—Ks?). (5.28)
k=1

Proof of Claim
We begin with a brief description of our proof technique. Let us denote 6 := [s1+87.
We consider a finite sequence of intervals

Ty = [—s%,—5), T2 1= [-252, —5?),. o Jgp = [—9(’)s2,—(9(’) — 1)s2).

The length of each of the intervals is s2 and there are 6, intervals. For any inte-
ger L € (1,6p] N Z (resp., = 1), note that }_, .5, #s(ax) is less than or equal to
D apen, Fs (= — 1)s?) (resp., > ar e, Fs(—s)) with equality when all the a’s in
the interval J; coincide with the right endpoint —(£ — 1)s? (resp., —s). We show that
with high probability the number of Airy points inside the interval J, cannot differ
considerably from its expected value. Based on this, we argue that the probability of
an abundant accumulation of the Airy points inside any of the intervals J, ... ’396 is
small in comparison to P(a; < —s). Moreover, the contributions of those Airy points
which fall into any of those intervals are bounded from above by the result of moving
the points to the right endpoint of the interval. Finally, using the upper tail estimate
of CGAi (see (1.12) of Theorem 1.6), we show that the ai’s which fall in the region
(—00, —6;s?) hardly contribute to the product ) _po; ds(ag).

Now we provide the details o/f the above sketch. First, we find an upper bound
on Zak &5 Is(ak), where J := U?&l J¢. Recall that the number of a;’s in a Borel set
D is given by y*i(D). By replacing all the a;’s inside the interval J; by the right
endpoint of the interval, we obtain

1A (T log(1 +exp(T3 (s — (€ — 1)s2)))  when £> 1,
Z #a) =< {)(Ai(Jl)log(Z) when £ = 1.

ag€dy

Next, using Theorem 1.5, we observe that for large enough s, y*'(J;) is bounded
above by E[x*1(Jy)] + es with probability greater than 1 — K exp(—K3s> logs).
Owing to Proposition 1.3, there exists a constant M such that for large enough s,

Ms3

V3

E[x¥(30]= %(ﬁ% — (L= 1)3)s> + D(Ls?) —D((C — 1)s?) <

Consequently, with probability exceeding 1 — 6} K; exp(—K»,s3logs),
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%
Z Fs(ag) < (MTS3 + 6S3) (10g2 + Z Vielog(1+ exp(T%(s — (- 1)s2)))).

ay 3 (=2

Since log(1 + x) < x forall x > 0 and (£ — 1)s®> —s > (I — 1)s?>(1 —¢€) for all s >
€1, we conclude that there exists a constant C such that for large enough s, with

probability exceeding 1 — 6] K exp(—K2s> logs),

65
3 dolap) < s3(% + e) (10g2 + 3 Veexp(~(¢ — 1)(1 - e)T%sZ))
ap €l =2
<Csd. (5.29)

We now turn to bound the remaining sum ), <—6)s2 ds(ay). For this, we con-
sider the following decomposition:

> dea) =A)+ B).

k:ag <—6)s2
(A):= > s (ar).
k:ak <—9652,Ak 59652
(B) := > s (ar).

k:ag <—0)s2, A >0

1]
Proposition 4.6 shows that #{A; < 6)s*} < C 533 for large enough s and some
constant C > 0. This along with the bound log(1 4 a) < a for all a > 0 implies that

Is(ag) < exp(T%(s —6gs?)) <exp(—(1— e)T%s3)
when a; < —9(’)s2 and s > e_%. Thus, for large enough s,
2+ﬁ 14 3
(A) <Cs272 exp(—(1 —€)T35°) <s°. (5.30)

Now we turn to bound (B). Recall the inequality $s(ag) < s(—(1 — €)Ar +
CA1) which we obtain by using the monotonicity of g and the inequality (1.11). We
will now employ Theorem 1.6, but to avoid confusion in notation, let us temporarily
rename the variables s and § in the statement of Theorem 1.6 by § and §. Then, taking

§=s° +5 and § = the corollary implies that there exist k = k(€,§) > 0 and

8
2(3+38/2)°
. 3 s
So = So(€,8) > 0 such that for all s > Sp, P(CA < $3T2) > 1—exp(—1<s3+1). Since

S
0ps2 ~ 533 we have s 4+ s>12 < (1 — €)6)s? for large enough s. Consequently, for



1374 CORWIN and GHOSAL

large enough s,

IF’((B)f 3 gs((1—e)(9g,s2—xk)—s))zl—exp(—;cs”%). (5.31)

7 g2
Ax>0)s

Plugging the inequality (5.35) in Lemma 5.5 into (5.31) and using (5.30) along
with the fact that (9()52)% < Cs3 for some constant C, we find that for large enough s,

P((A) + (B) < Cs%) > 1 —exp(—ks>*4).

Combining this with the probability bound computed on the event in (5.29) implies
that there exists a constant C = C(e, §, Tg) > 0 such that for s large enough,

P(A) > 1 — 0K exp(—Kas® logs) — exp(—ks>T 1), (5.32)

where A 1= {} 7o, s(ax) < Cs>}. Negating both sides above, exponentiating, then
multiplying by 1(a; < —s) and taking expectations, we obtain

o0
EAiry[]l(al <[] J(S(ak)] > P({ay < —s} N A) exp(—Cs?). (5.33)
k=1
It thus remains to estimate
P({a; < —s} N ) >P(a; < —s) + P(A) — 1 (5.34)
3+%).

> exp(—s?) — 0y K1 exp(—K2s> logs) — exp(—ks

The first inequality uses P(4 N B) > P(A) + P(B) — 1 for any events A and B. The
second inequality uses the lower bound on P(a; < —s) in (5.1) and the lower bound
in (5.32). Combining (5.34) with (5.33) readily yields the claimed inequality (5.28)
for some K and s large enough. O

Now we may complete the proof of (4.5) by combining (5.25) and (5.28) with
o0 (o @] o0
E[ [T s(@0) | =E[1@1 = -9 [T 4@ | + E[1@1 <) [T (@) | O
k=1 k=1 k=1

LEMMA 5.5
As above, set 0 = [s'737. Then for all s such that 9}s* > 27,

Z Is((1—e)(Bfs* — Ag) —5) < \/g(%sz)ilogZ—i- ;. (5.35)

— )3
Ars? Trn(l—e¢)
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Proof
For s large enough, (4.7) implies that
/o2 2 ’ 2y 3
(ki hg > 052y C {k k> (0)s )z}.
3n
From this, we may deduce the first inequality listed below

D ds((1—e)(0hs® — i) —5)

/g2
),k>90S

< D (=B —r) —s)

2 72 %
ng(%S )

Py exp(~(1 - )T (%)” ). (5.36)

To show the second inequality, let 6] := %(Gész)%, and let 0" := %(G(’)sz)% +

@(%sz)%. Using ¢s(x) < log2 and log(l + x) < x for x < 0, along with
Lemma 5.6 (similarly to (5.24)),

Is((1 =€) (0hs* — Ax) —5)
{log2 kelby,001NZ,
= 3 (k—6)/—1) ,//
exp(—(1 — ) T3 (222 5y ke (g2, 00) N Z.

Using this bound and substituting k' = k — 6, we obtain

Z Is ((1—6)(60s —Ak) =)

k>2 0/2%
ZE(OS)

= (O =0 log2+ ) exp(—(l—e)rs(&)%)
k'>0)" 6/ 2

which implies the second inequality in (5.36). Bounding the sum by a corresponding
integral and evaluating yields the bound in (5.35). O

LEMMA 5.6
2 2 1
Fix a > 27. Then we have (a + x)3 > a3 + x3 for all x > +/3a.
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Proof

Observe that for all x > V3a and a > 27, one can write x < x2, and using 3a% <a,

one has 3a%x% <ax and 3a%x% < ax% < ax. Combining these inequalities yields

2 2 2 2 4 1 2 2 2 1.5

(a+x)y"=a"+x"+2ax>a”+x+3a3x3 +3a3x3 =(a3 +x3)°. O

6. Ablowitz—Segur solution of Painlevé II

Recall (see Section 1.3) the Ablowitz—Segur solution uas(x;y) of Painlevé II. We

restate [30, Theorem 1.10] which provides the asymptotic form of uas(x;y) as x —

—o0. Lemmas 6.3 and 6.4 result from the analysis of this form. We will combine those

two lemmas in Section 6.2 to yield a proof of Theorem 1.7.

6.1. Asymptotic form for the Ablowitz—Segur solution of Painlevé I1
In order to restate [30, Theorem 1.10], we introduce a few special functions. For a
real variable R € (0, 00), define k = xk(R) € (0, 1) implicitly as

Nz%\'l—f/cz( () - )

where k¥’ := /1 —«2, and K and E are standard complete elliptic integrals

— d§ o
K(k) .—[0 D and E (k) .—/(; g2 d

It follows from [30, Proposition 3.2] that « is uniquely defined for all 8 € (0, 2+/2).
Further, define (using k = k(X))

2
V= V(&)——%,/lsz(E(K) 11+ 2K(;c)) and

K(K)
K( 0l

t=1t(R):=
Define the Jacobi theta and elliptic functions (with ¢ = ¢'** and z € C)

o0
0(z,q) =2 Z q(m"'%)2 cos((2m + )z z),

m=0

o0
O3(z,q)=1+2 Z qm2 cos(2nmz),

m=1
— — 03(0,9)02(z,
cd(22K(i+Z),11+I;)=92(8’29282, e C\ U { + = +m+rn}.

m,n€’
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The asymptotic formula below follows immediately from [30, Theorem 1.10].>
In order to state it, let us define a bit more notation which will also be used in the
subsequent lemmas.

Fix, throughout what follows, some § € (0, %). For s > 0, define y = y(s) :=

1 — exp(— s%_‘s) v =w(s) := —log(l — y(s)) = s%_‘g, and an interval ¥, :=
[—s,—ﬂ 1__) For x € (—00,0) and s > 0, define R = R(x,s) := U()s3)/2. For

x € Wy, it follows that R(x,s) € (0, 2+/2) and hence ¥ = k(R(x,s)) is a function”
of s > 0 and x € W;. In fact, in Proposition 6.1 and Lemmas 6.3 and 6.4 we will
generally deal with functions of s and x, although we will often suppress the explicit
dependence (mainly, to keep equations from growing too lengthy).

PROPOSITION 6.1

For any fixed* ¢ € (0, 4) there exist so = s0(£) > 0, co = co(¢) > 0 such that for
all s > s (using k = k(R(x,s)), V=VR(x,s)), y =y(s), v="v(s) as above, and
J1 = Ji(x,5)),

x 1—« Kk 11—«
) e 2(—x)3?VK Ji, (6.1
uas(x17) 2T od(2(-) (1+ )1+K)+ v
where”
2
|J1|§c0(—x)_%, for all x € Wy which satisfy (—x)2 (i—§)>v (6.2)

Continuing with the notation introduced above, the following result controls the
small R behavior of k(X) and V(R). The bound (6.3) follows immediately from equa-
tion (3.5) in [30, Proposition 3.2], and the bound (6.4) follows immediately from
equation (3.9) in [30, Corollary 3.3].

22Since our notation is slightly different from that of [30], let us match it here. The parameter & in [30] is equal
to 1 in our case. Bothner [30] has parameters s and § which do not correspond to our notation. Let us denote
them as s and §. Then in terms of our notation, s =y and § = {. In contrast to [30], we treat v as being
parameterized by an underlying s, whereas Bothner treated v as a free variable in its own right. Finally, since
we only utilize equation (1.26) from [30], we do not need to make use of his constants vy, f1, or ¢y. His v
translates into our §1 constant, and his cq is the same as ours.

23This follows from [30, Proposition 3.2] as noted above.

24The result, in fact, holds for ¢ € (0, 2—‘35) The more restrictive range (0, %) in [30, Theorem 1.10] is only
needed for equation (1.27) therein, not (1.26). However, since we only need this result for small ¢ we do not
provide the explanation for this wider range’s validity.

25The condition assumed on x in (6.2) is equivalent to < —-¢.
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PROPOSITION 6.2
Define Q1 (R) and Q,(R) via

/
ey =12,/ 4 B2 g ) (6.3)
b4 b4 8 \m
VR) = —— -3 21og(x)+ 2 (1+1og(16n))+532(x) (6.4)

Then there exist Rg € (0, 2+/2) and C = C(Ro) such that for all R < Ry,
CR? and |Q,(R)| < CR2.

QiR =

Combining Propositions 6.1 and 6.2, we may simplify the asymptotic formula of
Uas(x:y).

LEMMA 6.3
Recall the notation from Proposition 6.1 (namely, X = R(x, s), k = k(R(x,s)), V =
V(IR(x,s)), y =y(s), v=uv(s), and V). Define p = ¢(x,s) via the relation

3 2 3 v 3
7(=x)2V = —g(—x)z + o log(8(—x)2) + ¢. (6.5)

Fix any no € (0, %) Then there exist so = so(10) >0, C = C(no) > 0, and C' =
C’(no) > 0 such that for all pairs (x,s) which satisfy s > sg, x € Wy, and R =
(—x)™" for some n € (no, %) we have that (with the notation J, = Jy(x,s) and
J3 = J3(x.5))

ups(x;y) = (—x)_i \/gcos(n(—x)g V) + Ja, (6.6)

¢ = %(1 —log(v/27) + J3), 6.7)

3n

where |J2| < C(— x)5_7 and |J5| < C'(—x)™".
Proof
It follows from [123, (22.11.4)] that

~n-i-1

cd(z,k) = K( )/c Z(— )"Wcos((%t + 1)¢), (6.3)

where ¢ := 2K(K) and G := exp(—n K (k") /K (x)).
We claim that there exist 0 < kg < 1 and C; = C1(kg) > 0 such that for all ¥ <
KO?
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cos(mz/2K(k)) — C1k* < cd(z,k) < cos(mz/2K(k)) + Cik2. (6.9)

Owing to [65] and [123, (19.5.5), (19.5.8)], there exist 0 < kp <1 and 0 < C; =
C, (ko) < C3 = C3(k9) such that for all ¥ < ko,
2 2
Cokc* + '1(—6 <g< ':—6 + Ck*, % + Co? < K(k) < g +C32. (6.10)

When « < kg, substituting (6.10) into (6.8) yields

o (C3r)*

cd(z,k) —cos 2K < — 4 G
led(z. k) — cos(z/2K (x))| Zl_%_czﬁ 2

n=1

For small enough «, the right-hand side above is bounded by C;«? (for C; = Cj (o)),
which proves (6.9).

Return to the proof of the lemma, and define k := ;%’; (recall k = k(R) as above).
If we further define $; = $;(R) by the relation k = \/N/—n + 91, then (6.3) implies
that there exists a constant C4 > 0 such that for small enough R > 0, || < C4R.
Thus, as R goes to zero, so too does .

Now, recall that we have assumed that R satisfies & = (—x)7 for some 71 €
(no, %) This implies that X < (—x)"° and hence, as —x goes to co, X and K both
go to zero. Combining this deduction with (6.9), we conclude that there exist x; =
x1(no) > 0 and Cs = Cs(1n9) > 0 such that (with the notation $); = $(x, s) defined
by the relation below)

cd(2(—x)¥2VK (). &) = cos(m(—x)3 V) + 92. 6.11)

where |$),| < Cs(—x)~" for all (—x) > x;.
Using (6.11) along with the expansion for k provided by (6.3), we see that there
exist x» = x2(19) > 0 and Cg = Cg(19) such that (with the notation $3 = $3(x, 5))

—g%cd(2(—x)%VK(E),E)= n(_”x)é cos(w(=x)2V) + $3, (6.12)

where |$)3] < C6(—x)%_37n for all (—x) > x5.

We may now apply (6.1) and combine that with the deduction above in (6.12).
The first result requires that s > 59, x € Wy, and (—x)% (¥ — ) > v, and the second
requires that (—x) > x5. This second condition can be ensured by possibly increasing
the value of s¢. In applying (6.1), we may use the inequality |J;| < co(—x)_llio <
co (—x)%—%" (thanks to (6.2) and 1 — 32 > —-L). Combining this bound with the
bound on $3 in (6.12), we see that J, := J; + $)3 satisfies the desired bound |J,| <

3
C(—x) 3% for some constant C. This proves the bound on the error J5 in (6.6).
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Now we turn to prove (6.7). Owing to (6.4), there exist s, = s¢(170) > 0 and
C7 = C7(no) > 0 such that for all s > s and x € Wy satisfying R(x,s) = (—x)~7" for
some 1 € (1o, %), one has

: 2 :
n(—x)% V= ——(—x)% + Llog(S(—x)%) _2 log(v/2m) + 24 vJ3, (6.13)
3 2 b4 2w

where J3 = J3(R) := Q,(R)/v. By substituting (6.13) into (6.5), we arrive at the
desired error bound on J3 in (6.7). O

The next lemma highlights the critical oscillatory cancellation which enables us
to prove Theorem 1.7 (done in Section 6.2). Let us introduce a shorthand notation (the
first equality is the definition and the second follows from (6.5)):

V(x,s):= 2n(—x)% V(R(x,s)) = —g(—x)% + %log(S(—x)%) +2¢(x,5).

LEMMA 6.4
Recall that we have fixed § € (0, 2) throughout this section. For 6 € (0,8), there exist
so =50(8,0) > 0and C = C(6,0) > 0 such that for all s > s,

[
Proof

We will apply Lemma 6.3 to provide an asymptotic expansion for ¥ (x,s) (via
V(X(x,s))). To do this, fix 7o = § — 6, which is in (0,2) since § € (0,2) and

0 € (0,8). We must verify two conditions to apply the lemma: for large enough S,

and for x in the domain of integration [—s, —s' -30 1, (1) x € U5 = [—s, —ﬂ 17*)

3

and (2) R(x,s) = Ls); = 82 T equals (—x)~" for some 7 € (1o, g). Condition

cos( (x.5)) dx‘ < Cs35~ 60 (6.14)

—X 2 —x)2
(1) is immediate. Condition (2) follows by considering the two endpoints x = —s
2
and x = —s' 3%, In the first case, we find that n = § and in the second case,

n=¢-0)/1- %9), which is bounded below by 6 — . Clearly, for intermediate x,
1 ranges between these two extremes which are contained in the interval [§ — 6, 2),
as desired. Thus, conditions (1) and (2) are both confirmed. By applying Lemma 6.3,
there exist 5o = 59(8,60) > 0 and C’' = C’(§,0) > 0 such that for all s > s,

|J3(x,9)| = ‘Zanﬁ(x,s) —1+1log(v/2m)| < C'(—x)~ @9 (6.15)

for any x € [—s, —sl_%e) (here we use J3 as in (6.7) and the fact that no = 6 — 0).
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Given this control over the expansion for ¢ (and hence ), we now turn to esti-
mating the integral in (6.14). In order to capture the scale of oscillations and hence
bound their net effect, it will be necessary for us to divide the domain of integration
[—s,—s' 3]
vals 1, d>,...,dx. Here K and the intervals are chosen by the following prescription.

into a disjoint (except for endpoints) union of consecutive closed inter-
2
Denote dj =[a;.b;], and let b; = —s175% Inductively in j > 1, let

aj =bj—7'[(—bj)_% and bj+1=aj.

Let K denote the minimal integer k such that by < —s. Finally, reassign bg = —s.
This produces the desired intervals. Note that each interval has length of order
between s_% and S%G_%, and the total number of intervals K is of order s%. These
intervals are chosen so as to contain roughly one period of oscillation. This enables
us to control the sum of oscillatory effects.

Forany 1 < j < K, we may parameterize the interval J ; via the function J ; (t) =
b— n(—b)_%t, as t ranges over [0, 1]. Let us fix some j and for the moment drop
the subscriptson a, b, and 4 ; (). We claim the following bounds. There exist s; =
51(8,0) > 0 and C = C(8,0) > 0 such that for all s > s; (note, the error terms Jy4,
Js, Jg, J7, Jg, Jo below are functions of ¢, b, and s),

4 3 4 3 -3
g(—J(t))2 :§(—b)2 + 27t + Jy where |J4| = C(—b)" 2,

¢(J(1),s) = ¢(b,s) + Js where |Js| = C(—b)" =9,

%log(S(—J(t))%) = Llog(8(=h)2) + %(_b)—% ny

T

where | Jg| < C(—b)2~¢=/0-36),

The first bound above follows from Taylor’s expansion of (1 + x)% ; the second bound
follows directly from (6.15); and the third bound needs a bit more argument. Com-
bining Taylor’s expansion of (1 + x)% with that of log(1 + x) yields the first two
terms and an error of order v(—b) 3. Since b € [—s, —sl_%e], it follows that we may
upper bound s < (—b)(l_%e)_l, and hence v < (—b)(%_s)(l_%e)_l
to reexpress the order of v(—b)~3 entirely in terms of b, as claimed.

Observe that of J4, J5, and Jg, the largest error term is J5. This is because § —6 <
%, whereas all other exponents have negative powers exceeding % Thus, combining
the three bounds with the definition of ¥, we find that for all s > s,

. This enables us
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Y (9(t).s) =Y (b.s) + 2t + 3%’(_19)—% +J

= (b,s)
where |J7| <3C(=b)"¢=9, (6.16)
We may now use (6.16) to bound the integral on the left-hand side of (6.14)

over the interval J (i.e., d; for any 1 < j < K). As we show below, there exist s, =
52(6,0)>0and C = C(8,0) such thatforalls > s, andall d =d; for 1 < j <K,

‘[J ((x ;:)Sz) cos(y (x.s)) dx‘

B C|b—|—s|(v|b|_
- 1o §(D,s)

+ [p26=0) 4 Clp| 27T, 6.17)

where £(b,s) =2 + %v|b|_%.
To show this, observe first that by parameterizing the interval d via J(¢) for ¢ €
[0, 1] we have

/(X+ )cos(W(x 5)) dx
4 (—=x)2

b Vib+s
B (—b)é/o ((—b); +Is)eos(p (IO dr. (@19

where the error term Jg = Jg(¢,b,s) comes from Taylor’s expansion and can be
bounded uniformly in ¢ and for all intervals d by

7| < C(=n)17307' 2 < ¢ (-py T

for some constant C > 0. The second bound comes by taking the worst value of
6 €(0,2).

Using (6.16), cos(y (d(¢),s)) = cos(y(b,s) + J7). Expanding the sum in the
cosine yields

cos(Y (4(2),s)) = cos(¥¢(b,s)) cos(J7) — sin( (b, s)) sin(J7). (6.19)

The bound on J7 in (6.16) implies that for some C = C(6,60) > 0,

max { } < C(=b)2670),
Substituting this into (6.19) yields

cos(Y (4(2),5)) = cos(y (b, s5)) + Jo  where |Jo| < C(—b) 20~
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We may finally substitute this back into (6.18) and evaluate the main contribution to
the integral as well as the error terms. This yields (recall £(b, s) defined below (6.17)
and note that the value of the constant C may change between lines)

LHS of (6.17)
w|b+s 1_7
< '( 5 '(‘/ cos(: (b, s))dz(+(:|b| 26~ 9>)+C|b| L7
_ 7t|b+s ( Sm(‘ﬁ(bss))_sm(‘/f(b’s)‘i‘%U|b|_5)| +C|b|_2(5_9))
£(b.s)
L ClpT
3
m|b + 5| |%v|b|_§| 2(8—6) 1_7
+Clb Clb
= gy +CIIPe”) - cpiim,

where in the third line we have used the inequality | sin(x) — sin(x + y)| < |y| which
holds for all y. Redefining C to absorb all needed constants yields the right-hand side
of (6.17), as desired.

Now we turn to the final step of the proof where we sum the contributions over
all the intervals J1,...,dx. Summing (6.17) over 1 < j < K yields

)Z/J —— cos 1//(x s)) dx’

K—1 —

Clbj +s| (vlbj 2(5-6) 1z

<> ( - (E(b',S) + 1)) by 72TT). (6.20)
j=1 J J

-1 n(b +s) 2f

0
We may use the bound Zl (—x)_% (x+s)dx < %s% to see
that (the constant C may change from the left-hand side to the right-hand side below)

K-—1 _3
Clb; +S|(v|bj| 2 +|b,~|‘2(5‘9))
bl Ej,s)

Jj=1

N[

<Cs

v|b; 2 1—2(—6)
Py 1<g(b], 5 T 1l )

< (525760 6.21)

3_ .
The second inequality comes from noting that v = v(s) = 52 3, the maximal value

. . . . . . _2
of |bj| to a negative power is realized when j = 1, in which case |b;| = s1739,
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and —(§ —0) = -2 — 0)(1 — %9) for0<6<é< % As for the other term in the
summation on the right-hand side of (6.20), we may bound it via an integral as

_2
1 30

Kl 1_7 s 7 7
> Clpy| 72 gcf (—x) 1T dx < Cs' 711,
j=1

—S
Combining this bound with (6.21) shows that

LHS (6.20) < Cs25~ =9

_1 3 7 _1_7
Here we have used that s'~1T = 52572711 and that clearly s 2711 < s—(6-0)

Finally, we must deal with the summand when j = K. However, this is clearly
bounded by a constant. Thus, we arrive at the desired bound (6.14) and complete the
proof of the lemma. U

6.2. Proof of Theorem 1.7
3
Recall from (1.14) that (for v = v(s) = 5270 with § € (0, %) fixed)

[e.¢]
v

log F(—s;v) = — (x +s)uis(x;y)dx, withy =1—e7".
)
We seek to prove that

o 2 2 3 3128
(x +)upg(x;y)dx > —vs2 + O(s™ 11).
s 3
Most of the contribution to the left-hand side integral comes from x near —s.
With this in mind, for 6 € (0, §), divide the integral into two parts:

o0
(a)::/ 1_ze(x—|—s)uf\s(x;y)dx and
3

—s
_s1—%e
(b) ::/ (x + )uig(x;y) dx.
—

We use the obvious lower bound (a) > 0. For (b) we use the asymptotic expansion
for ug given in Lemma 6.3. The assumptions of this lemma were previously verified
for this range of x in the beginning of the proof of Lemma 6.4, so we do not repeat
them here. We may now use the expansion provided in (6.6) for uag to show (using
no = 6 — 6 in the lemma) that there exist so = 5¢(5,60) > 0 and C = C(6,6) > 0 such
that for all s > s,

= oo Zenreniv) ¢ n)

S
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where |J5| < C (—x)%_%(‘g_e). Squaring the expansion term and using the identity
that 2 cos(y)? = 1 + cos(2y), we can write
_sl—%e _Sl—%e
(b)::i/ S g XS
= (=02 s (—x)

cos(27r(—x)% V)dx

2

(b1) (b2)

1-26

+/_S 3 (x+s)(2(—x)—i\/gcos(n(—x)%V)JﬁJg) dx.

—S

(b3)
By extending the domain of integration to [—s, —1], we may lower bound
-1 -1
v xX+s v xX+s 2
(b1)=—/ lex——/l 5 lexz—vs%—i-ho,
2w )¢ (—x)2 2w J_g'73° (—x)2 3

where the term J;¢ comes from bounding the second integral along with an order
vs residual from evaluating the first integral. It can be bounded (for some constant
C >0) by

1
[J10] < Cs¥9739,

3 . . o
The term % vs2 will constitute the main contribution.

The oscillatory integral in (b,) is lower bounded by applying Lemma 6.4 which
shows that |(by)| > Cus25~6=9 for some constant C > 0. We may bound

|(b3)|§f_ * (x+s>(2(—x)‘i\/g|fz|+|Jz|2)dx

—S
< S%C(S%—%(s—e)—%s + S%—3(8—9))’
where the second inequality follows from our bound on |J5| along with extending the

integral from —s to zero and evaluating.
Combining the above bounds we find that

(b) > %vs% + Ju1,
where there is a constant C > 0 such that
11| < Cs3_3(s_§9 4 g8+0 +S—8+§0 +S—2s+39).
We are given § € (0, %) but we are free to choose 6 € (0,§) so as to minimize |J11].

Choosing 6 = 1%8 results in the best (i.e., lowest) upper bound of |J11| < Ss—%s_

This is small compared to % vs% (which is of order s3~%); the proof is complete. []
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