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Abstract: We study the stochastic six vertex model and prove that under weak asym-
metry scaling (i.e., when the parameter � → 1+ so as to zoom into the ferroelec-
tric/disordered phase critical point) its height function fluctuations converge to the solu-
tion to theKardar–Parisi–Zhang (KPZ) equation.We also prove that the one-dimensional
family of stochastic Gibbs states for the symmetric six vertex model converge under the
same scaling to the stationary solution to the stochastic Burgers equation. Our proofs
rely upon the Markov (self) duality of our model. The starting point is an exact micro-
scopic Hopf–Cole transform for the stochastic six vertex model which follows from the
model’s known one-particle Markov self-duality. Given this transform, the crucial step
is to establish self-averaging for specific quadratic function of the transformed height
function. We use the model’s two-particle self-duality to produce explicit expressions
(as Bethe ansatz contour integrals) for conditional expectations from which we extract
time-decorrelation and hence self-averaging in time. The crux of our Markov duality
method is that the entire convergence result reduces to precise estimates on the one-
particle and two-particle transition probabilities. Previous to our work, Markov dualities
had only been used to prove convergence of particle systems to linear Gaussian SPDEs
(e.g. the stochastic heat equation with additive noise).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1946
1.1 KPZ equation as a limit of the stochastic six vertex model . . . . . . . 1947
1.2 Stochastic Burgers equation as a limit of symmetric six vertex model . . . 1950
1.3 KPZ equation as a limit of ASEP . . . . . . . . . . . . . . . . . . . . 1957
1.4 Markov duality method . . . . . . . . . . . . . . . . . . . . . . . . . 1959
1.5 Further literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1961

2. Stochastic and Symmetric Six Vertex Models . . . . . . . . . . . . . . . . 1964
2.1 Stochastic six vertex model as a particle system and its height function . . 1964

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03678-z&domain=pdf
http://orcid.org/0000-0002-1499-3969


1946 I. Corwin, P. Ghosal, H. Shen, L.-C. Tsai

2.2 Stochastic Gibbs states for the symmetric six vertex model . . . . . . 1968
3. Self Duality for Stochastic Six Vertex Model . . . . . . . . . . . . . . . . 1968
4. Hopf–Cole Transform: Reformulation of Theorem 1.1 . . . . . . . . . . . 1971

4.1 Microscopic Hopf–Cole transform . . . . . . . . . . . . . . . . . . . 1971
4.2 The SHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975

5. Proof of Theorems 1.1* and 1.8 . . . . . . . . . . . . . . . . . . . . . . . 1977
5.1 Moment bounds and tightness . . . . . . . . . . . . . . . . . . . . . 1977
5.2 Proof of Theorem 1.1* . . . . . . . . . . . . . . . . . . . . . . . . . 1987
5.3 Proof of Theorem 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 1991

6. Estimating the Two-Point Semigroup . . . . . . . . . . . . . . . . . . . . 1994
6.1 Estimating the free part Vfr

ε . . . . . . . . . . . . . . . . . . . . . . . 1996
6.2 Estimating the interacting part Vin

ε , an overview . . . . . . . . . . . . 2000
6.3 Estimating the interacting part Vin

ε , the (+−)-case . . . . . . . . . . . 2006
6.4 Estimating the interacting part Vin

ε , the (−−)-case . . . . . . . . . . . 2011
6.5 Estimating the interacting part Vin

ε , the (++)-case . . . . . . . . . . . 2016
7. Controlling the Quadratic Variation: Proof of Proposition 5.6 . . . . . . . 2020

7.1 Expanding the quadratic variation . . . . . . . . . . . . . . . . . . . 2020
7.2 Time decorrelation via duality . . . . . . . . . . . . . . . . . . . . . 2026

Appendix A. Quadratic variation in ASEP . . . . . . . . . . . . . . . . . . . . 2031

1. Introduction

The 6V model and the Kardar-Parisi-Zhang (KPZ) equation are widely studied models
in equilibrium and non-equilibrium statistical mechanics. In this paper we demonstrate
how a certain scaling limit of the former model converges to the later equation. This
limit comes from scaling into the critical point dividing the ferroelectric and disordered
phases of the model. Our results apply for both the stochastic and symmetric 6V models
(Theorems 1.1 and 1.8 respectively). The technical core of this paper is the Markov
duality method: One-particle duality allows us to perform a microscopic Hopf–Cole
transform of the model’s height function process into a discrete stochastic heat equation,
and prove tightness of that resulting equation; and two-particle duality controls the
quadratic variation of the martingale part and proves precise self-averaging in time.

The structure of this introduction is as follows: Sect. 1.1 introduces the stochastic
6V model and records our first main result, its convergence to the KPZ equation (Theo-
rem 1.1). Section 1.2 introduces the symmetric 6V model and records our second main
result, the convergence of the one-parameter family of stochastic Gibbs states to the
stationary solution to the stochastic Burgers equation (Theorem 1.8). This section also
describes the model with external fields and how the stochastic Gibbs states arise in
the (conjectural) phase diagram for the model’s Gibbs states. Section 1.3 recalls how
the KPZ equation arises as a scaling limit for ASEP (a well studied continuous-time
limit of the stochastic 6V model). The purpose of this is to highlight (in the simplest
case possible) the key technical challenge in proving such results—self averaging of
the quadratic variation. Section 1.4 briefly introduces our Markov duality method in the
context of ASEP and provides some historical context for it. This approach is developed
fully for the stochastic 6V model in the main body of the paper. Section 1.5 provides a
brief review of related literature studying the symmetric and stochastic 6V models, KPZ
equation, and Markov dualities.
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Non-crossing paths
Stochastic weights 1 1 b1 b2 1− b1 1− b2
Symmetric weights a a b b c c

Asymmetric weights e−H−V a eH+V a e−H+V b eH−V b c c

Fig. 1. Six vertices with their stochastic, symmetric and asymmetric weights

1.1. KPZ equation as a limit of the stochastic six vertex model. The stochastic 6V
model is a discrete time interacting particle system introduced in 1992 by Gwa and
Spohn [GS92]. The model depends on two parameters b1, b2 ∈ (0, 1) which are used to
define (positive) weights on six type of vertices—see the top row of Fig. 1. Treating the
solid lines entering a vertex from below or the left as inputs and those exits above or to
the right as outputs, these vertices are conservative (i.e., the number of input lines equals
the number of output lines) and stochastic (i.e., for fixed inputs, the sum of weights over
outputs is always 1, and the individual weights are non-negative). Given a down-right
path inZ2 and a specification of boundary condition inputs along the path, the stochastic
6V model is a measure on the vertices to the up and right of the path, or equivalently a
measure on the collection of solid lines which leave the boundary inputs and continue in
the up and right directions. Themeasure is defined recursively: startingwith verticeswith
inputs given, the outputs are randomly and independently chosen amongst all possible
outputs with probabilities given by the associated vertex weights. The left-side of Fig. 2
illustrates when the boundary condition inputs are specified on the coordinate axes for
the first quadrant. See Sect. 2.1 for a more precise definition of the model (including a
bi-infinite version) and Sect. 1.5.2 for a brief review of related literature.

If the boundary condition inputs are specified entirely on the horizontal axis, it is
natural to think of vertical solid lines as particles evolving in time (as measured by
the y-coordinate) via the following Markovian update. Start with left-most particle.1

With probability b1 it stays put, and with 1− b1 it moves one to the right. The particle
continues to move right with probability b2 per step until it either stops, or it hits the
next particle. When no collision happens, repeat these rules for the next particle to the
right. If a collision occurs, the moving particle stops at that site and the next particle
starts moving to the right with probability 1, and continues to move with probability b2
(as usual). See Sect. 1.5.2 for a discussion of some limit of the stochastic 6V model.

Define the height function N (t, x) for the stochastic 6V model to be equal to the
net number of particles which have moved across the time-space line between (0, 0)
and (t, x) (i.e., summing 1 for each left-to-right move and −1 for each right-to-left
move—see Fig. 3). For a precise definition as well as a construction of N (t, x) for bi-
infinite configurations, see Sect. 2.1. Given such N (t, x), we first linearly interpolate in
x ∈ Z and then linearly interpolate in t ∈ Z≥0 to make N (t, x) ∈ C([0,∞),C(R)).
Hereafter, we endow the spacesC(R) andC([0,∞),C(R))with the topology of uniform
convergence over compact subsets, and write⇒ for the weak convergence of probability
laws.

Ourmain result for the stochastic 6Vmodel states that, underweak asymmetry scaling
where

b1 ∈ (0, 1) is fixed and τ = τε = b2/b1 = e−
√

ε, (1.1)

1 If there is no left-most particle, the dynamics can be still be defined with some care—see Sect. 2.1.
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Fig. 2. Left: Particle trajectories for the stochastic 6V model with boundary condition inputs along the coor-
dinate axes. Right: Periodic boundary conditions
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Fig. 3. The stochastic 6V particle trajectories and associated height function. Here we assume a left-most
particle and label the first five particles x1, . . . , x5. The lines represent their temporal trajectories. The dark
grey numbers represent the height function N (t, y) for different regions. The height function changes value
when crossing particle trajectories (increasing as one crosses from left to right)

the height function N (t, x) has a limit as ε → 0 to the KPZ equation. This is an analog
of the result of [BG97] for ASEP which we recall in (1.28).

To setup notations, we fix any density ρ ∈ (0, 1) hereafter, and let

λ = 1− b2τ−ρ

b1 − (b1 + b2 − 1)τ−ρ
= 1− b1τ 1−ρ

b1 − (b1 + b1τ − 1)τ−ρ
, (1.2)

μ = τ−ρ(1− b1)(1− b2)

(b1 − (b1 + b2 − 1)τ−ρ)(1− b2τ−ρ)
= τ−ρ(1− b1)(1− b1τ)

(b1 − (b1 + b1τ − 1)τ−ρ)(1− b1τ 1−ρ)
.

(1.3)

Whywe choose these values of the parametersλ,μwill be clear in Sect. 4.1. Specifically,
under the weak asymmetry scaling (1.1), we have λ = λε and μ = με, which, up to first
order in

√
ε, read
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λε = 1− ρ
√

ε +O(ε), (1.4)

με = 1 + b1−2b1ρ
b1−1

√
ε +O(ε). (1.5)

We adopt standard notationO(a) to denote a generic quantity such that sup0<a<1 |O(a)|
a−1 < ∞. Recall the KPZ equation (see Sect. 4.2 for its definition and Sects. 1.3 and
1.5.3 for a review of some relevant literature)

∂tH(t, x) = ν∗
2

∂2xH(t, x)− κ∗
2

(
∂xH(t, x)

)2 +
√
D∗ξ(t, x), (1.6)

with coefficients defined via the fixed parameters b1 and ρ as

ν∗ := 2b1
1− b1

, κ∗ := 2b1
1− b1

, D∗ := 2b1ρ(1− ρ)

1− b1
. (1.7)

We are now prepared to state our main result regarding the stochastic 6V model.

Theorem 1.1. Fix b1 ∈ (0, 1) and ρ ∈ (0, 1). Consider the stochastic 6V model with
ε-dependent weak asymmetry parameters as in (1.1). Let λ and μ depend on ε as in
(1.4) and (1.5).

(a) (Near stationary initial conditions) Start the stochastic 6Vmodel from a sequence of
initial conditions {Nε(0, x)}ε>0, and let Nε(t, x) denote the resulting height function.
Assume that {Nε(0, x)}ε>0 is near stationary with density ρ (Definition 4.4), and
that for some C(R)-valued process Hic(x),

√
ε
(
Nε(0, ε

−1x)− ρε−1x
) 	⇒ Hic(x), in C(R). (1.8)

Then,

√
ε
(
Nε

(
ε−2t, ε−1x + μεε

−2t
)− ρ(ε−1x + μεε

−2t)
)
− ε−2t log λε 	⇒ H(t, x),

in C([0,∞),C(R)), (1.9)

where H(t, x) is the Hopf–Cole solution (defined in Sect. 4.2) of the KPZ equa-
tion (1.6) with initial condition Hic(x).

(b) (Step initial condition) Start the stochastic 6V model from the step initial condition
N (0, x) = (x)+ := max(0, x), and let Nε(t, x) denote the resulting height function.
Then

√
ε
(
Nε

(
ε−2t, ε−1x + μεε

−2t
)− ρ(ε−1x + μεε

−2t)
)
− ε−2t log λε

− log ρ(1−ρ)√
ε

	⇒ H(t, x), in C((0,∞),C(R)),

where H(t, x) is the Hopf–Cole solution of the KPZ equation (1.6) with narrow
wedge initial condition (see Sect. 4.2).

Remark 1.2. It is worth remarking on the freedom to choose arbitrary ρ ∈ (0, 1) in the
theorem. For the near stationary initial conditions, ρ controls the density of particles
(or vertical lines) as well as the characteristic velocity around which we focus. For step
initial data, ρ determines a velocity within the rarefaction fan (and gives the density
around that velocity).
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Remark 1.3. [CT17] proves KPZ equation convergence for a portion of the class of
higher spin stochastic vertex models introduced in [CP16]. Those models come in two
types – those with spin parameters I, J ∈ Z≥1 in which case the number of particles or
arrows per edge is bounded by I or J (depending on the edge’s orientation) and those
with non-integer spin parameters in which there may be an infinite number of particles
or arrows per edge. [CT17] analyzes this second class, specifically under scaling in
which the expected number of particles per site diverges with ε. This simplifies analysis
quite dramatically since [CT17] is able to Taylor expand the quadratic martingale in the
density parameter. This enables them to completely avoid the key complexity which we
encounter here. The stochastic 6Vmodel, considered here, comes from taking I = J = 1
and hence the number of particles per site is either 0 or 1. We do not address the general
I, J ∈ Z≥1 case herein. However, in follow up work, [Lin19a] shows how to apply
our Markov duality method to that case. Interestingly, the higher spin case requires
employing an additional duality from [Kua18] which was not needed in the I = J = 1
case (see [Lin19a] for further discussion on this).

Remark 1.4. The height function in (1.9) is shifted by −√ερ(ε−1x + μεε
−2t) and

−ε−2t log λε. Using the expansions for λε and με given in (1.4) and (1.5), we see

that each of these height shifts is of leading orderO(ε− 3
2 ). However, a closer inspection

reveals that theseO(ε− 3
2 ) terms perfectly cancel, and what remains is of orderO(ε−1)t .

Proof sketch.. Proposition 4.1 provides an exact microscopic Hopf–Cole transform
through which the stochastic 6V model height process is related to a microscopic
Stochastic Heat Equation (SHE). This transformation is readily seen to be a conse-
quence of the (one-particle) Markov self-duality given in Corollary 3.4. Theorem 1.1*
proves convergence of this microscopic SHE to the continuum SHE. When translated
back into the stochastic 6V model height function, this implies Theorem 1.1. 
�

The proof of Theorem 1.1* boils down to showing tightness and identifying the lim-
iting linear and quadratic martingale problem. The first two items follow in a standard
manner frommoment bounds provided in Proposition 5.4. Controlling the quadratic vari-
ation is the hard part. Proposition 5.6 does this by proving a form of self-averaging for the
quadratic variation (which itself is quadratic in the solution to themicroscopic SHE). The
proof of the self-averaging relies upon the two-particle duality through Proposition 4.3.
That duality reduces the calculation of conditional expectations to computations involv-
ing the transition probability for a two-particle version of the stochastic 6V model. Such
transition formulas can be written explicitly using the Bethe ansatz—see Proposition 3.5
or the formula in (4.17). Proposition 6.1 contains very precise estimates on the two-point
transition probabilities which are proved via involved steepest descent analysis on the
double-contour integral formulas encoding these probabilities.

In Sects. 1.3 and 1.4 (and Appendix A) we explain how these ideas work in the
simpler context of ASEP. For ASEP, there are other methods which can be used to prove
self-averaging. Presently, our Markov duality method is the only approach which works
for the 6V model.

1.2. Stochastic Burgers equation as a limit of symmetric six vertex model. The symmet-
ric 6Vmodel is a foundationalmodel in 2Dequilibrium statisticalmechanics. It is defined
with respect to a pre-imposed choice of boundary conditions on a compact domain in
Z
2, e.g. periodic boundary conditions on a rectangular domain as in Fig. 2. Given said

boundary conditions, one chooses an assignment of vertices inside the domain which
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fit together (i.e., output lines match input lines from vertices to the right or above) with
probability proportional to the product of vertex weights. These weights are specified
by three parameters a, b, c > 0 (in fact, by scaling, only two of these matter) as in Fig. 1
and the model is called symmetric since reflecting the vertices over the diagonal does not
change their weight. To go from such a product of weights to a probability distribution
requires dividing by a normalizing constant (also called a partition function) which is
the sum over all configurations of the product of weights. The need to normalize was
not present in the case of stochastic weights.

1.2.1. Conjectural phase diagram for symmetric six vertexmodelGibbs states Howdoes
the symmetric 6V model behave as the mesh size goes to zero? Is there a limit shape?
How does the height function fluctuate around it? How much do boundary conditions or
external fields effect these limits? These questions are intertwined with understanding
the extremal, translation invariant, ergodic infinite volumeGibbs states (or simplyGibbs
states for short) and their associated free energies. These can be thought of as distributions
on configurations of vertices on Z

2 which satisfy the symmetric 6V Gibbs property—
the marginal distribution restricted to any compact subdomain, given the state of the
boundary vertices, is given by the above symmetric 6V model probability prescription
(i.e., product over weights of vertices normalized to be a probability distribution).

While much has been conjectured about the symmetric 6V Gibbs states (e.g. their
phase diagram, free energy, uniqueness, and fluctuations) very little has been proved—
see Sect. 1.5.1 for some further discussion. The description we provide here can be
found, for instance, in [Nol92,BS95,Res10] and is essentially conjectural. We include it
here to motivate the importance of studying the “stochastic Gibbs states” in Sect. 1.2.2.
The discussion in this Sect. 1.2.1 will not be used in any proofs.

The Gibbs states for the symmetric 6V model (with a given choice of a, b, c) are
believed to arise as infinite volume limits of the periodic boundary condition asymmetric
6Vmodel in which there are horizontal and vertical external fields of strength H, V ∈ R

whichmodify the symmetric 6Vweights (see Fig. 1). These fields reward the occurrence
of horizontal or vertical lines by factors of eH/2 and eV/2 and penalize the absence
of lines by e−H/2 and e−V/2. Consider any rectangle enclosed in the interior of the
fundamental domain of the periodic model. Then, regardless of the choices of external
fields, conditioned on the vertices on the boundary of the rectangle, the law of the
configuration inside is given by the symmetric, zero-field 6V model weights. This is
because all possible vertex configurations inside the rectangle have the same number of
vertical and horizontal lines. This is analogous to the fact that for a simple random walk
with drift, the marginal distribution of the walk given a fixed starting and ending level
is drift-independent.

Gibbs states are believed to be uniquely indexed by their average density (h, v) ∈
[0, 1]2 of horizontal and vertical lines (respectively). It is not necessary that every (h, v)

will have a corresponding Gibbs state which realizes those densities. [Res10] describes
the conjectural mapping (derived based on Bethe ansatz calculations) between (H, V )

and (h, v). The nature of this mapping depends on the parameter

� = a2 + b2 − c2

2ab
. (1.10)

We will focus on the case when � > 1 and a > b + c (the other possible case when
� > 1 is b > a + c and that can be recovered by a simple transformation of vertices)
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(B)(A)

Fig. 4. The 6V model with parameters (a, b, c) ≈ (.201, .1, .1) (or u, η = .1) and � ≈ 1.005. Subfigure (A)
shows which regions of the (H, V ) plane get mapped into different types of Gibbs states. Subfigure (B) shows
the average densities of horizontal and vertical lines (h, v) ∈ [0, 1]2 which arise as (H, V ) varies. The entire
A1 phase maps to the point (h, v) = (1, 1), A2 to (0, 0), B2 to (0, 1), B1 to (1, 0). The disordered phase D2
maps to the grey area above the diagonal in the (h, v) plot, and D1 to the reflected area. The disordered phase
extends asymptotically vertically and horizontally so as to separate the A and B phases. The two conical points
are where D2/D1, A1 and A2 touch. Each conical point maps to the entire boundary of the white lens around
the (h, v) diagonal. Inside the lens there should be no (extremal) Gibbs states with those specified densities

in which the conjectural phase diagram is given in Fig. 4.2 The caption beneath that
figure describes how different regions in (H, V ) picture are mapped into regions of the
(h, v) picture. In particular, there are four frozen phases A1,A2,B1,B2 which arise when
H and V are sufficiently positive or negative. Between them are two disordered phases
D1,D2 which map onto values of (h, v) in the grey region. [Nie84] (see more recently
[KMSW17]) conjectured that the fluctuations in the disordered phase are log-correlated
and related to the Gaussian free field (or central charge 1 CFT). Such a result has only
been proved at the free-fermion (� = 0) point, see [Ken00,Ken01,Ken09].

In Fig. 4a the disordered regions D1 andD2 terminate near the origin at conical points
connected by a line dividing the A1 and A2 phases. In Fig. 4b these two conical points
are mapped to the entire boundary between the grey disordered phase and the white
excluded phase (i.e., the lens around the diagonal which do not have corresponding
extremal Gibbs states). Different Gibbs states arise at a conical point depending on the
angle in the (H, V )-plane along which one approaches the conical point; these Gibbs
states have different line densities (h, v) as parameterized by the boundary of the lens
in Fig. 4b. [BS95] argued that the one-parameter family of Gibbs states arising in this
manner at the conical points should coincide with the one-parameter family of so-called
“stochastic Gibbs states” which we now discuss.

1.2.2. Stochastic Gibbs states and their scaling limits For � = 0, the existence of
disordered Gibbs states is only conjectural. On the other hand, for any� > 1 symmetric
6Vmodel, [Agg16] constructs a one-parameter family of “stochasticGibbs states”which

2 When |�| < 1 the conical points in the phase diagram disappear and the two disordered phases merge.
When � < −1 a new antiferroelectric phase emerges for H, V near zero. The associated Gibbs state is
composed of diagonal bands of zig-zags made up only of the c-type vertices.
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Fig. 5. A sample of a stochastic Gibbs state on a finite box

enjoy the symmetric (a, b, c) Gibbs property. These stochastic Gibbs states are readily
constructed via studying the invariant measure of a related stochastic 6V model. As we
describe, these Gibbs states should correspond to those which arise at the conical points.

Fix (a, b, c) and consider the stochastic 6V model with parameters

b1 = b
a

(
� +

√
�2 − 1

)
, and b2 = b

a

(
�−

√
�2 − 1

)
. (1.11)

Note that this relation can be reversed to give � = b1+b2
2
√
b1b2

. [Agg16] observes that

the stochastic 6V model with these parameters enjoys the symmetric (a, b, c) Gibbs
property.

Now, choose (h, v) ∈ [0, 1]2 such that
v

1− v
(1− b1) = h

1− h
(1− b2). (1.12)

There is a one-parameter family of solutions (h, v) to this relation, and we will assume
below that (h, v) are chosen from the family.

Consider boundary condition inputs for the stochastic 6V model on the first quadrant
where, with probability h, there are horizontal lines coming in from the y-axis, and,
with probability v, there are vertical lines coming in from the x-axis. All these events
are chosen independently (i.e., the arrows form Bernoulli point processes). [Agg16]
proves that this boundary condition is stationary so that if one shifts the coordinates
of the origin into the third quadrant, the marginal distribution restricted to the first
quadrant remain unchanged. Shifting the origin back to (−∞,−∞) defines a Gibbs
state for the symmetric (a, b, c) 6V model which we referred to as a stochastic Gibbs
state with line densities (h, v). We denote this Gibbs state by SG(b1, b2; h, v). See
Lemma 2.6 and Proposition 2.7 for precise statements regarding this construction.
Figure 5 illustrates the restriction of such a stochastic Gibbs state to a rectangular
region.

The densities (h, v) in this one-parameter family of stochasticGibbs statesSG(b1, b2;
h, v) coincide with the densities which are conjectured to arise from the conical point
(i.e., the boundary of the white lens in Fig. 4).3 Let us briefly explain how to make this
matching to the formula for that lens boundary as given in [RS18]. When � > 1 and

3 In fact, (1.12) only gives upper boundary of the lens. The other boundary comes from applying the
diagonal symmetry of the symmetric model.
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a > b + c, Baxter introduced a convenient (projective) parametrization of (a, b, c) in
terms of two parameters4 u, η > 0:

a = sinh(u + η), b = sinh(u), c = sinh(η). (1.13)

Note that under this parametrization,

� = cosh(η), b1 = eη sinh(u)

sinh(u + η)
, b2 = e−η sinh(u)

sinh(u + η)
, τ = b2/b1 = e−2η.

(1.14)

In terms of this parametrization, the conjectural (see, for example, [RS18]) one-
parameter family of Gibbs states arising from the conical points have horizontal and
vertical line densities given by the relation5

h = v
(
1± tanh(u)

)

1± tanh(u)(2v − 1)
(1.15)

and the conical points arise from choosing (H, V ) = (±η/2,∓η/2). We may now
compare the relation (1.12) satisfied by the horizontal and vertical line densities for
SG(b1, b2; h, v)with the equation (1.15) for the lens boundary.Matching the parameters
as given above, we find that the curves agree.

Thus, in terms of theBaxter parametrization, the stochasticGibbs statesSG(b1, b2; h,

v) are determined by parameters u, η > 0 via (1.14) and a solution (h, v) to (1.15).
Our main theorem on the symmetric 6V model (Theorem 1.8) describes the large

scale behavior of the stochastic Gibbs state when the parameters u and η are both scaled
to zero. In particular, we will take both parameters to be of order

√
ε and take v ∈ (0, 1)

fixed, letting h be determined from (1.15). This defines an ε-dependent family of Gibbs
state (for ε-dependent versions of (a, b, c) as in (1.13)), which we then scaled like ε−2
along its characteristic direction (see Remark 1.6), and like ε−1 transversal to it. Our
aim is to describe the ε ↓ 0 limit of this family of fields.

Before stating this result more precisely, let us provide some further explanation
for what these scalings amount to. The scaling of η → 0 corresponds to taking � =
cosh(η) → 1. In terms of the symmetric 6V phase diagram shown in Fig. 4a, the distance
between the conical points is precisely η, and hence this scaling amounts to bringing
together the two disordered and ferroelectric phases together at the origin. The parameter
u controls the distance of the lens in Fig. 4b from the diagonal so that as u → 0, the
distance scales like u to zero as well. From the perspective of the symmetric 6Vmodel, it
is not particularly natural to call this a weakly asymmetric scaling limit. However, from
the perspective of the stochastic 6V model where these Gibbs states serve as stationary
measures, this scaling is precisely weakly asymmetric (in terms of the parameter b1
and b2 converging to the same limiting constant at a particular ε-dependent speed).
Besides going through the stochastic 6V model, we do not presently have a satisfying
explanation for why the KPZ equation should arise under this type of scaling for the
symmetric 6V model. That would be quite interesting, and may suggest more general

4 Recall, the symmetric 6V model only depends on (a, b, c) through two parameters b/a and c/a. Also,
note that we have used bold symbols here for u and η since later in the text, u and η will be used for occupation
variables. Even though theBaxter parameterizations is limited to this discussion,we prefer not to risk confusion
here.

5 In [RS18], t = 2h− 1 and s = 2v− 1. There was a transcription error in [RS18, Eq. (34)] (which related
a result from [BS95]). What was written there as tanh(u + η) should be tanh(u) (as stated here) [Pri18].
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circumstances under which the KPZ equation should arise in relation to a scaling limit
of a two-dimensional equilibrium statistical mechanical model.

Let us now precisely formulate our scaling limit result for the stochastic Gibbs states.
A natural quantity to describe large scale behavior of a Gibbs state is the empirical dis-
tributions of vertical or horizontal lines. We will focus on vertical lines as the analogous
result for horizontal lines can be obtained through exchanging the x- and y-axes.

Definition 1.5. Given a tiling on Z
2 by the six vertices from Fig. 1, for each point

(x, y) ∈ Z
2, we let u(x, y) denote the indicator function6 for having an incoming (i.e.,

from below) vertical line at (x, y). More explicitly,

(1.16)

We consider throughout this definition and Theorem 1.8 a stochastic Gibbs state SG(b1,
b2; h, v) where b1 and b2 are parameterized by u, η > 0 as in (1.14) and (h, v) are a
solution to (1.15) with the ± symbol fixed to be −. Thus, there are three parameters
u, η, v. We will treat v ∈ (0, 1) as fixed.

Now we introduce a scaling parameter ε > 0 which will go to zero as well as
ζ ∈ (0,∞) which will remain fixed. We parameterize u and η in terms of ε and ζ

as follows. Take η = ηε = 1
2

√
ε. [Via (1.14), this corresponds to taking τ = e−

√
ε.]

Specifying the u parameter is slightly trickier. In order to be able to directly apply our
stochastic 6V result, we will choose u = uε to be such that b1 [as defined in terms of
u and η = ηε in (1.14)] is a fixed constant in (0, 1), independent of ε. This condition

implies that u takes the form7 u = uε = 1
2ζ
√

ε+O(ε− 3
2 ) for some ζ ∈ (0,∞) and some

lower orderO(ε− 3
2 ) term. More precisely, for our fixed ζ , we set b1 = ζ

1+ζ
. Solving for

u in (1.14) in terms of b1 and η, we find that (recalling that η and b1 are parameterized
by ε and ζ )

u = 1

2
log

( b1 − 1

b1e−2η − 1

)
.

Taylor expanding in ε, we recover the expansion8 u = uε = 1
2ζ
√

ε +O(ε− 3
2 ). Finally,

note that though we have fixed v ∈ (0, 1), the corresponding h which solves (1.15) will
depend on ε through u, hence we write h = hε.

Recalling that v ∈ (0, 1) denotes the average density of vertical lines, we define the
scaled empirical distribution Uε, acting on functions f ∈ C∞c (R2) (i.e., C∞ functions
on R

2 with compact support) as

6 This indicator function is essentially the occupation variable η which is used later in the text, see (2.2).
Note that the meaning of the coordinates in η and u are opposite.

7 We could have made the choice of parameter (uε, ηε) = ( 12 ζ
√

ε, 1
2
√

ε) (without the lower order part in

uε). This would lead to the parameter b1 which also depends on ε, though the relation b2/b1 = e−
√

ε would
still hold. Our proof and result should still go through with extra notational complexity, though we do not
pursue this direction here.

8 In terms of the ε and ζ , the (a, b, c) parameterization has a similar expansion of the form a = (1 +

ζ ) 12
√

ε +O(ε
− 3

2 ), b = ζ 1
2
√

ε +O(ε
− 3

2 ), c = 1
2
√

ε +O(ε
− 3

2 ).
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〈Uε, f 〉 := ε
5
2
∑

x,y∈Z

(
u(x, y)− v

)
f (ε−1x − μεε

−2y, ε−2y) (1.17)

where, the centering parameter με is defined via (1.3) by substituting ρ = v and using
the values of b1, b2 and τ specified in terms of ε and ζ as earlier in this definition.

Remark 1.6. The centering ofUε in (1.17) by με is the proper centering of the reference
frame in order to observe KPZ-type fluctuations and can be understood as moving
along the characteristic velocity. Indeed, solving (1.12) for h as a function of v defines
the flux h(v) in the density v stationary measure for the stochastic 6V model, and the
characteristic direction is given by h′(v) which agrees with our expression for με. Note
that the hydrodynamic limit of the stochastic 6V model was recently proved in [Agg19],
where the limiting PDE is an inviscid Burgers-type equation with this flux. Note also

that in (1.17), the ε
5
2 prefactor comes from the fact that space is scaled like ε−1, time

like ε−2 and the fluctuations around v should live on the scale ε
1
2 . Multiplying these

together yields ε− 5
2 , which is thus compensated by the ε

5
2 prefactor.

Informally speaking, the ε → 0 limit of the empirical distribution Uε defined above
is described by the stationary solution of the Stochastic Burgers Equation (SBE):

∂tU = ν∗
2

∂2xU −
κ∗
2

∂x
(U2) +

√
D∗∂xξ, (1.18)

with appropriately chosen values of the constants ν∗, κ∗ and D∗.
To formulate our result precisely, first note that the solution U of the SBE (1.18)

is a distribution (i.e., generalized function) valued process. In the following we will
work with the space C−1(R2) of distributions. For f ∈ C∞c (R2), write fδ(x, y) :=
f (δ−1x, y) for the corresponding scaled function. This scaling probes only the regularity
in x . For linear functionals U,U ′ on C∞c (R2), define

‖U‖C−1(R2),[−�,�]2 := sup
{|〈U, fδ〉|δ : δ ∈ (0, 1), f ∈ C∞c (R2),

supp( f ) ⊂ [−�, �]2, ‖ f ‖∞ + ‖∂x f ‖∞ ≤ 1
}
, (1.19)

dC−1(R2)(U,U ′) :=
∞∑

�=1

(
2−� ∧ ‖U −U ′‖C−1(R2),[−�,�]2

)
. (1.20)

The spaceC−1(R2) consists of linear functionalsU : C∞c (R2) → R satisfying dC−1(R2)

(U, 0) < ∞, endowed with the metric dC−1(R2)(·, ·).
To define the stationary solution of the SBE (1.18), consider the stationary Hopf–

Cole solution Hstat(t, x) ∈ C([0,∞),C(R)) of the KPZ equation (1.6), with initial
condition

Hstat(0, x) =
√

ρ(1− ρ)B(x), with ρ = v, (1.21)

where B(x) denotes a two-sided standard Brownian motions (i.e., B(0) = 0 and
x �→ B(x) as well as x �→ B(−x) are independent standard Brownian motions). It
is known [BG97,FQ15] that the Brownian motion (1.21) is quasi-stationary for the

KPZ equation (1.6). This means that for any t0 ∈ [0,∞), Hstat(t0, ·)−Hstat(t0, 0)
law=√

ρ(1− ρ)B(·). This and the uniqueness of the Hopf–Cole solutions implies that

Hstat(t + t0, x)−Hstat(t0, 0)
law= Hstat(t, x), as C([0,∞),C(R))-valued processes

(1.22)
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for any t0 > 0. Utilizing (1.22), we show in Sect. 5.3 that the centered height process
(Hstat(t, x)−Hstat(t, 0)) can in fact be extended to all values of t > −∞.

Proposition 1.7. There exits a C(R,C(R))-valued process K(t, x) such that, for any
fixed t0 ∈ R,

K(t − t0, x)
law= Hstat(t, x)−Hstat(t, 0), as C([0,∞),C(R))-valued processes in (t, x).

(1.23)

Note that in the above proposition K(t, x) is a process with t ∈ R. Given this, the
solution U of the SBE is defined as

U : C∞c (R2) → R, 〈U , f 〉 := −
∫

R2
∂x f (x, y)K(y, x)dxdy. (1.24)

Given that Hstat ∈ C(R+ × R), it is straightforward to check U ∈ C−1(R2).
The following is our main result on the scaling limit of the symmetric 6V model.

Theorem 1.8. Consider the symmetric 6V model with vertex weights (a, b, c) given via
Baxter’s projective parameters (u, η) as in (1.13). As in Definition 1.5, we can further
parameterize (u, η) in terms of a scaling parameter ε > 0 and a fixed parameter
ζ ∈ (0,∞). Fix the vertical line density parameter v ∈ (0, 1). Recall that the other
parameters u, η, b1, b2, h, με are functions of ε, ζ and v. As in Definition 1.5, consider
the stochastic Gibbs state SG(b1, b2; h, v) and the empirical distribution Uε defined in
(1.17). Then

Uε 	⇒ U in C−1(R2) as ε → 0

where U is the solution to SBE (1.24), with coefficients

ν∗ = 2ζ, κ∗ = 2ζ, D∗ := 2ζv(1− v). (1.25)

Theorem 1.8 is proved in Sect. 5.3. Since the stochastic Gibbs states come from a
suitably chosen stochastic 6V model, we can apply Theorem 1.1 to prove convergence.
The convergence is for positive times, but using the stationarity, we can extend it easily
to all time.

1.3. KPZ equation as a limit of ASEP. Stochastic PartialDifferential Equations (SPDEs)
describe the evolution of systems in the presence of random noise. The construction
and approximation theory for non-linear SPDEs has attracted significant attention and
enjoyed major breakthroughs in recent years (see, for instance, [BG97,Hai13,Hai14,
GP17a,GJ14,GP17b]). Such equations are believed to describe the fluctuations of mi-
croscopic systems around their hydrodynamic limits.

The KPZ equation is a model for random growth processes, interacting particle sys-
tems, and directed polymers [Cor12,QS15]. WritingH(t, x) for the height at time t ≥ 0
above x ∈ R, the equation reads:

∂tH(t, x) = ν
2∂2xH(t, x)− κ

2

(
∂xH(t, x)

)2 +
√
Dξ(t, x), (1.26)

where ξ(t, x) denotes the Gaussian space-time white noise, κ = 0 ∈ R and ν, D > 0
are constants measuring the strength of each term in (1.26).
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Fig. 6. An ASEP particle configuration with the associated height function above it. Left jumps correspond
to adding a rhombus and right jumps do the opposite

Making sense of (1.26) is confounded by the non-linearity—solutions are rough
enough that this does not make classical sense. The simplest, though indirect, approach
is through the Hopf–Cole transform—one simply defines H(t, x) = − ν

κ
logZ(t, x)

where Z solves the SHE (with multiplicative noise)9:

∂tZ(t, x) = ν
2∂2xZ(t, x) + κ

√
D

ν
ξ(t, x)Z(t, x). (1.27)

There are two other definitions which have been introduced recently and yield equivalent
solutions: energy solutions [GJ14,GP17a] and the regularity structures [Hai14]/para-
controlled distributions [GP17b]. See also renormalization group techniques in [Kup16].

How does the KPZ equation arise from microscopic systems? Fixing (b, z) ∈ R
2

and letting (for the moment) Hε(t, x) := εbH(ε−z t, ε−1x) one sees that Hε satisfies
a version of (1.26) with scaled coefficients (see, for instance, [Qua11]). There are no
choices for (b, z) besides (0, 0) which leave the equation invariant. One may, however,
simultaneously scale coefficients in (1.26) to compensate for the effects of the (b, z)-
scaling. This is a proxy for understanding how discrete models may converge to (1.26)
when one performs (b, z)-scaling while also scaling model parameters to effectively
tune coefficients. This is called weak scaling, and significant efforts have sought to
show weak KPZ universality, meaning that general classes of processes converge to
(1.26) under such weak scaling.

Even though the focus of this work is on the 6V model, we focus for the moment on
ASEP since it is a simpler process and allows us to cleanly identify the key challenge in
proving the KPZ equation limit for the stochastic 6V model. The Asymmetric Simple
Exclusion Process (ASEP) is a continuous-time particle system inwhich particles inhabit
sites indexed by Z and jump left and right according to continuous-time exponential
clocks with rates � ≥ 0 and r ≥ 0 (fix � ≥ r and � + r = 1) subject to exclusion (jumps
to occupied sites are suppressed). The ASEP height function NASEP(t, x) is defined
just as for the stochastic 6V model and has 1/0 slopes entering occupied/vacant sites
(see Fig. 6). ASEP arises as a continuous-time limit of the stochastic 6V model when
b1 = ε�, b2 = εr , time is scale to be ε−1t and particles are viewed in a moving frame
with velocity ε−1 (see [BCG16,Agg17]).

The ASEP was the first discrete space system proved to converge to the KPZ equa-
tion: [BG97] proved that for nearly stationary initial condition with density ρ = 1

2
(Definition 4.4), under weak asymmetry scaling where �− r = √

ε,
√

ε
(
NASEP(ε

−2t, ε−1x)− 1
2ε
−1x − 1

4ε
− 3

2 t
)

ε→0	⇒ H(t, x), (1.28)

9 The positivity and well-posedness of (1.27) follows classical methods, see [Cor12,Qua11] for further
details.
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as a space-time process. The starting point for this result was an observation in [Gar88]
that ASEP admits a microscopic Hopf–Cole transform:

Setting τ = r/�, and Q(t, x) = τ NASEP(t,x),

dQ(t, x) = L1
r,�Q(t, x) + Q(t, x)dM(t, x). (1.29)

Here L1
r,� is the generator of a simple continuous-time random walk with left and right

jump rates given by r and � (note the exchange in left and right rates), and dM(t, x) is
a martingale with explicit quadratic variation (see Appendix A).

The convergence in (1.28) is shown not at the level of the height function, but rather
its exponential, by showing that the above microscopic SHE (1.29) converges under the
scalings in (1.28) to its continuum version (1.27). Given tightness of the exponential
process (which follows from detailed estimates on the random walk transition proba-
bility), the convergence to (1.27) is achieved via martingale problems (see Sect. 5.2).
That is, the SHE is uniquely characterized by a linear and quadratic martingale problem
which, respectively, identify the drift and the noise.

Convergence of the linear problem follows easily by approximating L1
r,� with the

Laplacian. The convergence of the quadratic problem is rather involved and ultimately
boils down to showing that

∇Q(t, x + 1)∇Q(t, x) self-averages in t. (1.30)

Such expressions arise from the quadratic variation of the dM(t, x). Here (∇ f )(x) =
f (x+1)− f (x). In (1.30), “self-averaging” refers to a phenomenawhere themoments of
the average (i.e., the integral divided by the length of the time interval) of the expression
over a long time interval of length O(ε−2) will vanish as ε → 0, see (A.4). For ASEP,
this phenomena is explained more in Appendix A, in particular, see (A.10). In the case
of the stochastic six vertex model, the precise statement of “self-averaging” is given in
Proposition 5.6. See Remark 5.8.

The statement (1.30) is natural from the perspective of hydrodynamic limit theory.
Indeed, [Qua11] demonstrated how the replacement lemma (i.e., local equilibrium) can
be used to prove (1.30). The proof in [BG97] proceeded through a different, itera-
tive scheme. Roughly speaking, it seeks to close a sequences of inequalities starting
from (1.29). Crucial to the closing of inequalities (and hence to this scheme as a whole)
is a non-trivial summation identity for the random walk transition probability.

1.4. Markov duality method. TheMarkov duality method that we employ in this article
provides a new way to obtain optimal control over the conditional expectation of the
expression in (1.30) (and related terms). More importantly, the method also applies
to the general class of discrete time stochastic vertex models introduced in [CP16]
(see Remark 1.3)—in particular, to the stochastic 6V model. Presently, none of the
other methods used for KPZ equation convergence results seem to be applicable to the
stochastic 6V model. The quadratic variation for the stochastic 6V model takes a more
complicated form (as in (4.15)–(4.16)) than that of ASEP. This being the case, the
approach of [BG97] for closing inequalities does not appear to generalize.

Hydrodynamic theory methods like energy solutions [GJ14,GP17a] or the approach
to self-averaging given in [Qua11] relies heavily upon continuous-time Markov process
methods. In fact, hydrodynamic theory for discrete-time processes is not particularly
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well-developed as many of the basic tools that work in continuous time fail to general-
ize. The model considered here is updated sequentially in discrete time (see Sect. 2.1),
so, from the perspective of Markov chains, the update of each particle depends on
configurations of infinitely many other particles. This intricate feature further impedes
generalizing methods of continuous-time Markov process and hydrodynamic limit the-
ory. Note, that in very recent work [Agg19] has made significant progress in developed
some of the hydrodynamic theory for the stochastic 6V model.

Othermethods like regularity structures [Hai14], paracontrolleddistributions [GP17b]
and renormalization group methods [Kup16] have not yet been sufficiently developed
to deal with processes that are driven by a process-dependent noise (see, however, the
recent work of [Mat18] for progress on this in the context of regularity structures).
More precisely, this refers to the fact that the martingale in (1.29) have a Q-dependent
quadratic variation. The Markov duality method works for discrete time processes with
general initial condition on the full line. Its obvious and significant shortcoming is that it
requires the existence of (at least k = 1, 2) Markov dualities like below. See Sect. 1.5.3
for further discussion on literature related to KPZ equation convergence results.

The microscopic Hopf–Cole transform [Gar88] is the k = 1 case of ASEP Markov
duality [BCS14]:

For k ≥ 1 and �x = (x1 < · · · < xk) ∈ Z
k,

d

dt
E

[ k∏

i=1
Q(t, xi )

]

= Lk
r,�E

[ k∏

i=1
Q(t, xi )

]
. (1.31)

Here E is the expectation of the ASEP height process, and Lk
r,� acts on �x as the

space-reversed generator of k-particle ASEP with locations �x . For k = 1, remov-
ing expectations yields (1.29). Replacing Q(t, x) by its discrete derivative Q̃(t, x) :=
Q(t, x)− Q(t, x − 1) yields a similar duality due to [Sch97].

TheMarkov duality method uses the Q and Q̃ duality for k = 2 to prove convergence
of the discrete quadratic martingale problem to that of the SHE. For example, the key
term in (1.30) can be rewritten as Q̃(t, x + 1)Q̃(t, x) and duality shows that for x1 < x2
and t > s,

E
[
Q̃(t, x1)Q̃(t, x2)

∣
∣F (s)

] =
∑

y1<y2

pt−s(�x → �y)Q̃(s, y1)Q̃(s, y2)

where pt−s(�x → �y) is the two-particle space-reversed ASEP transition probability from
�x = (x1, x2) to �y = (y1, y2) in time t − s. Once in this form, the discrete differentiation
can be transferred to the transition probabilities and the proof of self-averaging reduces to
fine estimates on such derivatives of the two-particle heat kernel. In essence, duality turns
a hydrodynamic problem (involving the local equilibration in the collective behavior of
many particles) into a diffusive problem (involving the fluctuations of a handful of
particles).

The Bethe ansatz (for ASEP, see [TW08,TW11] or Appendix A) provides a means
to extract very precise estimates for finite particle system transition probabilities.

The major downside of our Markov duality method is that such dualities like (1.31)
do not hold for generic systems and their occurrence is often due to algebraic structures
which are not very flexible to perturbations (see Sect. 1.5.4 for further discussion).
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However, it was shown in [CP16,CP19,Kua18,Lin19b] that the stochastic 6V model
enjoys the same sort of duality as in (1.31) (see Sect. 3). We see the main technical
accomplishment of this paper to be the use of this duality method to control the quadratic
martingale.

Let us attempt to put the Markov duality method into historical context. The first
instance where Markov duality was used to prove an SPDE limit was in the work of
[DMPS89]which focused on the veryweakly asymmetric simple exclusion process (with
weaker asymmetry than in [BG97]). Since the asymmetry in that work was sufficiently
weak, the limiting SPDEwas a linear (Gaussian) SPDE– the additive SHE. The approach
of [DMPS89] relied on estimates for occupation variable correlation functions. For the
symmetric (SSEP) model, these functions satisfy closed equations due to a Markov
self-duality for SSEP. In the presence of asymmetry, [DMPS89] derived an infinite
hierarchy of relations for correlation functions which, for very weak asymmetry, they
could control in a perturbative manner using the SSEP duality (see [DMP91,Rav92] for
further discussion of this approach).

For stronger asymmetry (as considered in [BG97] and herein), the [DMPS89] pertur-
bationmethod breaks down. Instead,we use theASEP self-dualities (which are non-local
and generalize the SSEP correlation functions in certain cases) which yield a closed hi-
erarchy. Moreover, we only need to use the one and two particle duality, as opposed to
the full hierarchy (i.e., arbitrarily many dual particles).

1.5. Further literature

1.5.1. Symmetric six vertex model Introduced in 1935 by Pauling [Pau35] as a model
for 2D ice and then in its general form in 1941 by Slater [Sla41] to model potas-
sium dihydrogren phosphate, the symmetric 6V model found many applications across
physics and mathematics as well as prompted the discovery of new algebraic struc-
tures such as quantum groups and new symmetric functions. The 6V model was ex-
actly solved in Lieb’s breakthrough work [Lie67] which was the first time the ideas of
Bethe ansatz were applied to a statistical mechanics model. This work immediately (e.g.
[Sut67,YY66]) opened up the field to many important developments including coordi-
nate/algebraic Bethe ansatz, quantum groups, domain-wall boundary conditions, con-
nections to symmetric functions—see the reviews/books [Bax89,Nol92,Fad96,KBI93,
JM93,Res10,BL14,Gau14,Koz15,BP15a]). The results of this paper probe the behav-
ior of the 6V model as � ↘ 1. There are many other interesting phase transitions in
the 6V model—for instance when a = b (i.e., the Fierz, or F model—studied first in
[Rys63]), as c → 2a (or equivalently � → −1) there is a remarkable infinite order
phase transition in the free energy (see [LW72] for further information).

1.5.2. Stochastic six vertex model Study of this special case of the asymmetric 6V
model was initiated in 1992 byGwa and Spohn [GS92]. The relation between the conical
points and the stochastic 6V model was conjectured in 1995 by Bukman and Shore
[BS95], though there was earlier discussion about the existence of these conical points
in [JS84]. The Bethe ansatz calculation in [GS92] were further considered in [Kim95]
and used in [DL98] (see also [DA99]) to compute the large deviations for the total current
of ASEP. (Note, for open ASEP, the matrix product ansatz of [DEHP93] has provided an
alternative and effective route to such results; see [Der98] for a review of these results).

The study of the stochastic 6V model was recently reinitiated in [BCG16] wherein
they proved the prediction from [GS92] that the stochastic 6V model was in the KPZ
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universality class. This was demonstrated at the level of convergence of the one-point
distribution (to the GUE Tracy-Widom distribution) for a special boundary condition
on the first quadrant with no lines coming from the y-axis and only lines coming from
the x-axis (i.e., step initial condition). This result did not involve any special weak
scaling, hence convergence to the GUE Tracy-Widom distribution and not the one-
point distribution for the KPZ equation. [AB19,Agg16] then extended the one-point
convergence to other initial condition, including the stationary case (i.e., the stochastic
Gibbs state).

In that case, [Agg16] computed an exact one-point formula and proved convergence
to the stationary KPZ distribution (the Baik-Rains distribution) in the characteristic
direction. In principle one could take theweakly asymmetric scaling limit of that formula
and match it with the formula for the stationary KPZ equation proved in [BCFV15]
(though that would only prove a one-point convergence result, as opposed to the process
level result herein). In a similar spirit, [BO17] showed that under weakly asymmetric
scaling, one point distribution of the stochastic 6V model converges to that of the KPZ
equation (see also [BG16]). The scaling considered in [BO17] is different than here—
essentially they also tune b1, b2 → 1 (herein they converge to a value strictly less than
1). It is quite likely that our approach could apply under the scaling used in [BO17],
though we do not pursue that here.

[BBCW18] recently studied a half-space version of the stochastic 6V model and
demonstrated that its one-point asymptotics match the prediction from other models
in the KPZ universality class. It may be possible to adapt methods from [CS18] (see
also [Par18]) to connect the half-space stochastic 6V model to the KPZ equation under
weakly asymmetric scaling, though we do not pursue that here.

The stochastic 6V model admits a higher spin analog wherein more than one line can
move along each edge in Z

2 (i.e., multiple particles can occupy the same site, or move
together). These models have recently been studied in [CP16,BP16] and admit some
similar asymptotics as the stochastic 6Vmodel. TheMarkov duality method should also
apply to these models (as they all enjoy the same duality as the stochastic 6V model).
In fact, in a followup work [Lin19a] this has been achieved (see Remark 1.3).

There are other limits of the stochastic 6Vmodel besides theKPZ equation andASEP.
These include the Hall-Littlewood PushTASEP [BP15b,BCG16,BBW16,Gho17] and
Brownianmotionswith oblique reflection [SS15]. Another limit was considered recently
in [BG18]. They consider a different type of limit in which b1 and b2 both tend to 1
quickly. [BG18] proves a law of large numbers and some Gaussian fluctuation results
under this scaling. Moreover, they conjecture (and prove in a certain low density regime)
convergence to the stochastic telegraph equation—a linear hyperbolic SPDE driven by
additive space-time white noise. That conjecture has now been proved in [ST19]. It
would be natural to try to fill-out the scaling limits which sit between our results and
those of [BG18,ST19].

1.5.3. Kardar-Parisi-Zhang equation The KPZ equation (1.26) was introduced in
1986 by Kardar, Parisi and Zhang [KPZ86]. In 1995 Bertini and Cancrini [BC95] pro-
vided the first justification for the Hopf–Cole solution to the KPZ equation. Bertini and
Giacomin [BG97] soon after proved the first discrete convergence result (for ASEP)
to the KPZ equation. This converge result has more recently been extended in works
of [ACQ11,Qua11]. [DT16] extended the convergence to certain non-nearest-neighbor
exclusion processes which do not satisfy an exact microscopic Hopf–Cole transform.
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The first convergence result to the KPZ equation for a discrete time particle system
was recently proved in [CT17]. As explained in Remark 1.3, the systems considered
therein were infinite spin versions of the higher spin vertex models studied in [CP16].
Other recent KPZ equation convergence works, following the style of [BG97], have
included the ASEP-(q, j) [CST18], Hall-Littlewood PushTASEP [Gho17], open ASEP
[CS18,Par18], and ASEP with reflecting boundaries [Lab17].

The energy solution method for KPZ equation convergence was initiated in the work
of the Jara and Gonçalves [GJ10] (cf. [Ass13]). Initially this approach only provided
tightness and it was not known whether energy solutions were unique. Uniqueness (and
hence the identification with the Hopf–Cole solution) was proved in [GP17a]. This
approach has been applied to prove that a wide variety of particle systems converge
to the KPZ equation, see [GJ14,GJS15,FGS16,GJ13,GJ17,GPS17]. Those results re-
quire stationary initial condition and the method of proof relies heavily upon having
well-developed hydrodynamic theory estimates available. Quite recently, [Yan18] has
extended this method to include more general initial data such as flat.

Regularity structures and paracontrolled distributions provide another route to prove
convergence results to the KPZ equation. These notions of solutions were introduced
by Hairer [Hai13,Hai14] and Gubinelli and Perkowski [GP17b] (cf. [GIP15]), and have
since been used to prove convergence for some space-time regularized versions of the
equation [HS17,HQ18,DGP17]. [HM18,CM16,EH17] has recently developed a dis-
crete space-time version of regularity structures, which may prove useful in demonstrat-
ing convergence of various discrete processes to the KPZ equation. Though initially
the methods of regularity structures and paracontrolled distributions were restricted to
periodic settings, they have since been extended to the full line (see, e.g. [PCR19])
and finite intervals with boundary conditions (see, e.g. [GH19]). Finally, there is also a
renormalization group method which has been applied to the KPZ equation in [Kup16].

Let us close this discussion by noting that in the literature, there are two different
types of weak asymmetry scaling. The scaling pioneered in [BG97], involves a stronger
(though still weak) asymmetry than that considered earlier in of [DMPS89]. The scaling
in [DMPS89] was inspired by the scaling under which the viscous Burgers equation
arises as a hydrodynamic limit; the fluctuations around that end up being a generalized
Ornstein-Uhlenbeck process.

1.5.4. Markov duality Markov dualities are extremely useful notions within probabil-
ity. An early example of a self-duality was for the simple symmetric exclusion processes
(SSEP) [Lig05] where it played a key role in proving that the only extremal, transla-
tion invariant, ergodic invariant distributions of SSEP on Z

d are the Bernoulli product
distributions. Whereas that duality applied to SSEP on any graphs, asymmetric particle
system dualities seem to be much more rigid and dependant upon algebraic structures
only present in one spatial dimension. The first such example was found in [Sch97]
where the Q̃ version of the duality in (1.31) was first discovered based on the affine
quantum groupUq [sl2] symmetry of ASEP (see also [SS94]). The self duality of ASEP
has played an important role in demonstrating that ASEP belongs to theKPZ universality
class (see, for instance, [BCS14,Cor14] and the reference therein).

Recently, a generalized version of ASEP (called ASEP-(q, j)) which enjoys a gen-
eralization of the ASEP self-duality was introduced in [CGRS16] based on higher spin
representations of Uq [sl2]. Self duality has been also proved [BS15,Kua16] in certain
multi-species versions ofASEPusing higher rank quantumgroup symmetries in the spirit
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of [CGRS16] (see also [CdGW18]which relates duality to theKnizhnik-Zamolodchikov
equation).

The stochastic 6Vmodel (aswell as higher spin vertexmodels) dualitywas discovered
and proved in [CP16] (see [Kua18] for an algebraic proof of some of the dualities from
[CP16] based on properties of the R matrix and quantum group co-product, and see
[Lin19b,CP19] for a discussion of an fix to a mistake present in [CP16]). It is this
duality for the stochastic 6Vmodel that plays a pivotal role in this paper and is discussed
in more detail in Sect. 3.

Outline In Sect. 2we briefly discuss the stochastic and symmetric 6Vmodels, including
the definition of the stochastic model with bi-infinite configurations, as well as the
construction of stochasticGibbs states, and how they fit into the stochastic and symmetric
models. Then, to setup the premise of our analysis, in Sect. 3 we recall the self-duality of
the stochastic model, and in Sect. 4, we introduce the microscopic Hopf–Cole transform.
Specifically, once the transform is introduced, Theorem 1.1, on the convergence of
the stochastic model to KPZ, naturally translates into the corresponding, equivalent
statement in terms of convergence toward the SHE, Theorem 1.1*. In Sect. 5, we settle
the main results Theorems 1.1* and 1.8 while assuming Proposition 5.6. The latter is a
statement on self-averaging of the relevant quadratic variation. Proving Proposition 5.6
makes up the core of our analysis. In Sect. 6, we perform steepest-decent analysis on the
given contour integral formula for the semigroup. The analysis produces estimates on
the semigroup and its gradients, jointly over all relevant points in space-time. Finally, in
Sect. 7, we incorporate these estimates into the stochastic model via duality and prove
Proposition 5.6.

To make connection with ASEP, in Appendix A, we briefly recall its Hopf–Cole
transform and the structure of the relevant martingale. Given this setup, we explain how,
for ASEP, our duality approach could serve as an alternative to the approach of [BG97]
for controlling the quadratic variation.

2. Stochastic and Symmetric Six Vertex Models

We now provide more detailed definitions of the stochastic and symmetric 6V models.

2.1. Stochastic six vertex model as a particle system and its height function

2.1.1. Defining the left-finite process In [BCG16, Section 2], the stochastic 6V model
is defined on the first quadrant Z2

>0 by first specifying the configuration of lines coming
from the bottom and left boundary and then inductively filling in the quadrant. Specif-
ically, once it is determined whether lines are entering a given vertex from below and
from the left, the stochastic weights in Fig. 1 specify the probability according to which
one chooses (independently over vertices) the outgoing line configuration. Proceeding
recursively in this manner defines the stochastic 6V model distribution on the entire
quadrant (for the given boundary condition).

If we restrict ourselves to boundary conditions where there are no lines coming
from the left boundary, then the lines from the bottom can be seen as the trajectories of a
discrete time sequential update exclusion-type particle system. Under this interpretation,
time is measured by the y-axis, and the particles are identified with vertical lines and
their moves are identified with the horizontal lines. We define below this particle system
and allow particles to start anywhere on Z as long as there is always a left-most particle.
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After doing that, we explain how to extend our definition to two-sided infinite particle
configurations (as will be necessary to state our main results).

Definition 2.1. For w ∈ Z define the space of left-finite ordered particle configurations
with left-most label w to be

X≥w :=
{
�x = (−∞ = xw−1 < xw < xw+1 < . . .) : xi ∈ Z ∪ {±∞}, for i ∈ Z≥w

}
.

(2.1)

Here xi represents the location of the particle labeled i . Notice that we have placed a
virtual particle xw−1 at −∞. We allow X≥w to contain configurations with infinitely
many particles as well as finitely many particles. In the later case, there will be some w′
such that xi = +∞ for all i > w′.

Having defined our state spaceX≥w we proceed to describe the discrete timeMarkov
chain

(�x(t))t∈Z≥0 where �x(t) ∈ X≥w for each t . Fix b1, b2 ∈ (0, 1) and let

τ = b2/b1 ∈ (0, 1)

denote their ratio. We will assume that b2 < b1 so that τ ∈ (0, 1) throughout. The
algebraic results do not generally depend on this, but when we perform asymptotics
we will use this asymmetry. Given �x(t), we choose �x(t + 1) according to the following
sequential (left to right) procedure. For each i ≥ w (starting with i = w and progressing
sequentially to i = w + 1, i = w + 2, etc), choose xi (t + 1) so that (recall that x j (t + 1)
for j < i have already been updated)

(a) if xi−1(t + 1) < xi (t), then

P
(
xi (t + 1) = xi (t) + j

) =

⎧
⎪⎪⎨

⎪⎪⎩

b1, if j = 0;
(1− b1)(1− b2)b

j−1
2 , if 1 ≤ j ≤ xi+1(t)− xi (t)− 1;

(1− b1)b
j−1
2 , if j = xi+1(t)− xi (t);

0, otherwise;
(b) if xi−1(t + 1) = xi (t), then

P
(
xi (t + 1) = xi (t) + j

) =
⎧
⎨

⎩

(1− b2)b
j−1
2 , if 1 ≤ j < xi+1(t)− xi (t);

b j−1
2 , if j = xi+1(t)− xi (t);
0, otherwise.

Sincewe have assumed the convention xw−1(t) = −∞, the particle xw is always updated
by rule (a).

In words, sequentially (starting with particle xw) each particle xi wakes up andmoves
one to the right with probability 1−b1. Once awake, the particle continues moving right
with probability b2 for each step. If xi eventually moves into the location occupied
already by xi+1, then xi stops moving and stays put, while xi+1 is forced to wake up and
move one to the right (after which it continues with the probability b2 rule as above).
Once the particle xi stops, that is its new position xi (t + 1).

To each state �x(t) ∈ X≥w wemayassociate occupation variables and a height function
as follows: Define the {0, 1}-valued occupation variables

η(t, y) := 1{xn(t)=y for some n∈Z≥w} (2.2)
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where the indicator function is 1 if the site y is occupied by a particle at time t , and 0
otherwise. Likewise, define the height function

N (t, y) := Ny
(�x(t))− N0

(�x(0)).
(We have centered N so that N (0, 0) = 0.) In the above definition, we have used the
following notation. For y ∈ Z, Ny : X≥w → Z≥w−1 and (for later use) ηy : X≥w →
{0, 1}) are defined by10

Ny(�x) := max
{
n : xn ≤ y

}
and ηy(�x) := Ny(�x)− Ny−1(�x). (2.3)

In particular, one has Nxn (�x) = n, and Ny(�x) = w − 1 if y is to the left of all particles
in �x . It follows that N (t, y)− N (t, y − 1) = η(t, y), so that the space-time level-lines
of N (t, y) correspond with the trajectories of �x(t). See Fig. 3 for an illustration.

Under the dynamics described above in Definition 2.1, the height function N (·, t)
evolves in t as a Markov chain. We may describe its transitions explicitly.

Definition 2.2. Let X ∼ Ber(ρ) mean that X is a Bernoulli random variable taking
values in {0, 1} with P(X = 1) = ρ. Let

{
B(t, y; η), B ′(t, y; η) : t ∈ Z≥0, y ∈

Z, η ∈ {0, 1}} denote a countable collection of independent Bernoulli variables, with

B(t, y; η) ∼ Ber
(
1− bη

1

)
and B ′(t, y; η) ∼ Ber

(
b1−η
2

)
.

Using the Bernoulli random variables from the above definition we see that

N (t + 1, y)
law=

{
N (t, y)− B ′(t, y; η(t, y)), if N (t + 1, y − 1) = N (t, y − 1)− 1,
N (t, y)− B(t, y; η(t, y)) , if N (t + 1, y − 1) = N (t, y − 1).

(2.4)

2.1.2. Defining the bi-infinite process Since the stochastic 6V model is sequentially
updated, it is not a priori clear how to define it when there are infinitely many particles to
the left and right of the origin. [CT17] showed that it is possible to restate the stochastic
6V model in terms of a parallel update rule which readily admits a bi-infinite extension.
We restate this result below as well as include a convergence result showing how to
approximate the bi-infinite process with left-finite ones.

Definition 2.3. Denote the space of bi-infinite order particle configurations by

X = { · · · < x−1 < x0 < x1 < · · · : xi ∈ Z ∪ {−∞,+∞}}.
Notice that we have included left and right finite configurations inX by having imaginary
particles at −∞ or∞.

Lemma 2.4. Consider a bi-infinite configuration �x ∈ X and let �x≥w = (
xi : i ≥ w

) ∈
X≥w for any w ∈ Z. Let N (0, y) = Ny

(�x) − N0
(�x) and Nw(t, y) = Ny

(�x≥w(t)
) −

N0
(�x≥w(0)

)
where �x≥w(t) is the stochastic 6V Markov chain at time t with initial

condition �x≥w . Likewise, letη(0, y) = N (0, y)−N (0, y−1) andηw(t, y) = Nw(t, y)−
Nw(t, y−1). Let B(t, y, η) and B ′(t, y, η) be as in Definition 2.2. Then for any t ∈ Z≥0
and w, y ∈ Z, we have that

Nw(t, y)− Nw(t + 1, y)

10 Note that η(t, y) = ηy(�x(t)). We distinguish the notation η(t, y) as a process and the notation ηy as a
function on particle configurations �x merely for convenience.
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=
y∑

y′=xw

y∏

z=y′+1

(
B ′
(
t, z; ηw(t, z)

)− B
(
t, z; ηw(t, z)

))
B
(
t, y′; ηw(t, y′)

)
.

Furthermore for any y ∈ Z, as w → −∞, Nw(t, y) → N (t, y) in L p for all p ≥ 1
and in probability. The limit N (t, y) is specified inductively in t (with t = 0 as the base
case) by the (convergent) relation

N (t, y)− N (t + 1, y) =
∑

y′≤y

y∏

z=y′+1

(
B ′
(
t, z; η(t, z)

)− B
(
t, z; η(t, z)

))
B
(
t, y′; η(t, y′)

)

(2.5)

and hence satisfies (2.4). From N (t, y) we define η(t, y) = N (t, y)− N (t, y − 1), and
we may uniquely define �x(t) so that the particles of �x(t) track the level lines of N (t, y).

Proof. The result is a special case of the statement and proof of [CT17, Lemma 2.3
and Remark 2.5]. In [CT17] the authors consider a more general higher-spin version of
the stochastic 6V model [CP16] with arbitrary horizontal spin J as well as parameters
α, q, ν. Our stochastic 6Vmodel corresponds with taking J = 1 (spin- 12 ), ν = 1/q = τ ,

and matching b1 = 1+qα
1+α

and b2 = α+q−1
1+α

. 
�
Unless specified otherwise, the stochastic 6Vmodel nowmeans the bi-infinite version

of Lemma 2.4.

2.1.3. Stationary initial condition A key aspect of studying an interacting particle
system is to identify its stationary distributions, in particular those which are translation
invariant and ergodic. These distributions are the first step towards identifying the hydro-
dynamic equations and non-universal constants which arise in the KPZ scaling theory
(see, for instance, [Spo14] and references therein). For ASEP these are characterized
by one parameter ρ ∈ [0, 1] and given by product distribution Ber(ρ) on occupation
variables. The same distributions turn out to be stationary of the stochastic 6V model. In
fact, as shown in [Agg16], the stationary stochastic 6V model enjoys a sort of station-
arity along down-right paths very much akin to that of certain exactly solvable directed
polymer and last passage percolation models (see, for instance, [Sep12]).

Definition 2.5. Consider the stochastic 6Vmodelwith parametersb1, b2.Choose (h, v) ∈
[0, 1]2 such that (1.12) holds, namely v

1−v
(1−b1) = h

1−h (1−b2). The stationary stochas-
tic 6V model on the first quadrant is defined relative to (h, v) by specifying that on the
y-axis (x-axis) horizontal (vertical) lines enter from the boundary independently with
probabilities h (v).

Lemma 2.6. Consider the stationary stochastic 6V model on the first quadrant from
Definition 2.5. Then, along any fixed down-right lattice path in the first quadrant (i.e., a
collection of vertices inZ2≥0 so that each vertex follows the previous one by adding (1, 0)
or (0,−1) to its coordinates) the sequence of incoming line occupancy variables (i.e.,
whether a horizontal or vertical line enter vertices along the path) are independent and
incoming horizontal lines are present with probability h while incoming vertical lines
are present with probability v. Consequently, we can define the stationary stochastic 6V
model on all of Z2 by taking the distributional limit as n → ∞ of the model on the
first quadrant with the origin shifted to (−n,−n). We refer to this distribution (of vertex
configurations on Z2) as the stochastic Gibbs states with densities (h, v), and denote it
by SG(b1, b2; h, v).
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Proof. This is the content of [Agg16, Lemma A.2]. 
�
The distribution SG(b1, b2; h, v) does not treat the x-axis and y-axis directions dif-

ferently. In terms of the particle process interpretation for the stochastic 6V model, this
stationary distribution corresponds to starting with particles independently at each site
of Z with probability v. The parameter h = h(v) then corresponds to the probability
that a particle crosses a given vertical column at a given time, and the stationarity says
that these events are all independent. The function h(v) is called the flux.

2.2. Stochastic Gibbs states for the symmetric six vertex model As discussed in the
introduction, the stochastic Gibbs states constructed in Lemma 2.6 are Gibbs states for
a symmetric 6V model in the ferroelectric phase with parameters matched accordingly.

Proposition 2.7. Consider positive (a, b, c) such that a > b + c and such that � > 1
(recall� from (1.10)). Let b1, b2 be given as in (1.11), and (h, v) ∈ [0, 1]2 satisfy (1.12),
namely, v

1−v
(1 − b1) = h

1−h (1 − b2). Then, the stationary stochastic 6V distribution
SG(b1, b2; h, v) from Lemma 2.6 is a extremal, translation invariant, ergodic infinite
volume Gibbs state for the symmetric 6V model on Z2 with weights (a, b, c), and (h, v)

gives the density of horizontal and vertical lines under this Gibbs state.

Proof. Aversionof this result seems tohavebeenfirst observed in [BS95].More recently,
it appeared in [RS18]; [Agg16, Proposition A.3] provides a proof. 
�

3. Self Duality for Stochastic Six Vertex Model

The Markov duality method we introduce in this paper for showing convergence of
the stochastic 6V model to the KPZ equation relies upon the model’s self-duality (in
particular the one and two-particle duality), which we present in this section. This result
was first proved for the stochastic 6V model with left-finite initial condition in [CP16].
We recall that result first, and then extend it by approximation to the bi-infinite stochastic
6V model defined in Lemma 2.4.

Let us first recall the general definition of Markov duality.

Definition 3.1. Given two Markov chains (in discrete time) or processes (in continuous
time) x(t) ∈ X and y(t) ∈ Y , we say x(t) and y(t) are dual with respect to a duality
function H : X × Y → R if for all x ∈ X , y ∈ Y and t ≥ 0

E
x
[
H
(
x(t), y

)] = E
y
[
H
(
x, y(t)

)]
.

Here, Ex denotes the expectation when the process x(t) has been started with the initial
condition x(0) = x , and E

y likewise for the y variables.

Our stochastic 6V self duality theorem is actually a duality between the stochastic
6V model and its k-particle space reversal (k ≥ 1 is arbitrary), which we define now.

Definition 3.2. Let Yk = {(y1 < · · · < yk) ∈ Z
k} denote the state space of ordered

k-particle configurations (sometimes called a discrete Weyl chamber). The reversed
stochastic 6V (or

←−−
S6V) model with k-particles is the Markov chain �y(t) = (y1(t) <

. . . < yk(t)) ∈ Y
k defined such that −�y(t) := (−yk(t) < · · · < −y1(t)) ∈ Y

k evolves
according to the stochastic 6V dynamics given in Definition 2.1. For �x, �y ∈ Y

k , let
P←−−
S6V

(�x → �y; t) denote the transition probability that the reversed stochastic 6V started
from �y(0) = �x has �y(t) = �y. Likewise, we let P−−→

S6V
(�x → �y; t) denote the transition

probability that the (usual) stochastic 6V started from �y(0) = �x has �y(t) = �y.
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Proposition 3.3. Fix k ∈ Z≥1,w ∈ Z and parameters b1, b2 ∈ (0, 1) with b2 < b1 (and
recall that τ = b2/b1). Let �x(t) ∈ X≥w denote the stochastic 6V model with left-finite
configurations (recall Definition 2.1, as well as the notation Ny(�x) and ηy(�x) defined
therein) and let �y(t) ∈ Y

k denote the (reversed)
←−
S6V model with k-particles (Definition

3.2). Then �x(t) and �y(t) are dual with respect to the following two duality functions
(recall Definition 3.1)

H(�x, �y) :=
k∏

i=1
τ Nyi (�x), and H̃(�x, �y) :=

k∏

i=1
ηyi+1(�x) τ Nyi (�x).

Proof. This is a special case of the dualities proved for the higher spin stochastic vertex
models in [CP16, Theorem 2.23] (see also Section 5.5 therein). In fact, [Lin19b] found
a mistake in the proof of the Ĝn(�g, �n) duality (our H̃ duality herein) and provided
a correct proof for that case. Note that the corresponding duality function H̃ (called
Ĝn(�g, �n) therein) takes a slight different form here. Under current notation, the duality
function in [CP16, Theorem 2.23] corresponds to H̃ ′(�x, �y) :=∏k

i=1 ηyi (�x) τ Nyi (�x).One
readily sees that

H̃
(�x, (y1, . . . , yk)

) = τ k H̃ ′(�x, (y1 + 1, . . . , yk + 1)
)
,

so the duality of the latter readily implies that of the former. 
�
For our applications, we need to extend this duality to the bi-infinite stochastic

6V model. This is accomplished by appealing to the approximation result given in
Lemma 2.4. Let (F (t))t∈Z≥0 denote the canonical filtration of the stochastic 6V model.

Corollary 3.4. Fix k ∈ Z≥1, b1, b2 ∈ (0, 1) with b2 < b1, and let τ = b2/b1. The result
of Proposition3.3also hold for the bi-infinite stochastic 6Vmodel �x(t) ∈ X. In particular,
letting N (t, y) denote the height function associated in Lemma 2.4 to �x(t), and recall
the reversed stochastic 6V model transition probability P←−

S6V
from Definition 3.2, this

implies that

E

[ k∏

i=1
τ N (t+s,yi )

∣∣∣F (s)
]
=

∑

�y′∈Yk

P←−
S6V

(�y → �y ′; t)
k∏

i=1
τ N (s,y′i )

=
∑

�y′∈Yk

P−→
S6V

(�y ′ → �y; t)
k∏

i=1
τ N (s,y′i ),

E

[ k∏

i=1
η(t + s, yi + 1)τ N (t+s,yi )

∣∣∣F (s)
]
=

∑

�y′∈Yk

P←−
S6V

(�y → �y ′; t)
k∏

i=1
η(s, y′i + 1)τ N (s,y′i )

=
∑

�y′∈Yk

P−→
S6V

(�y ′ → �y; t)
k∏

i=1
η(s, y′i + 1)τ N (s,y′i ).

Above, the expectation is over the height function N (t + s, ·) conditioned on its values
N (s, ·) at time s, and η is coupled to N so that η(t, y) = N (t, y)− N (t, y − 1).
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Proof. We will give the proof for the H duality as the H̃ duality follows identically.
Without loss of generality we assume that s = 0. It suffices also to show that the duality
holds for just t = 1 since general t follows inductively.

Recall the notation �x≥w and �x≥w(t) from Lemma 2.4 for the bi-infinite stochastic 6V
model cutoff to be left-finitewith first particle xw. Applying the duality in Proposition 3.3
implies that

E

[ k∏

i=1
τ Nyi (�x≥w(1))

]
=

∑

�y′∈Yk

P←−−
S6V

(�y → �y,′ ; 1)
k∏

i=1
τ
Ny′i (�x≥w)

,

where the expectation is over �x≥w(t) at t = 1 with initial condition �x≥w at t = 0. In
order to prove the corollary, we must show that taking w → −∞, both sides of the
above equation converge to their bi-infinite version. The left-hand side converges as
w →−∞ to E[∏k

i=1 τ Nyi (�x(1))]. This is because, by Lemma 2.4 Ny(�x≥w(t)) converges
in probability to Ny(�x(t)) and in a single time step Ny(�x≥w(t)) may change by at most
one, hence the argument of the expectation is a bounded function. To show the right-hand
side convergence, we bound (for some constant C < ∞)

P←−−
S6V

(�y → �y ′; 1) ≤ C
k∏

i=1
b
yi−y′i
2 1{yi≥y′i }

and then use the fact that τ−1b2 = b1 < 1 to apply dominated convergence. The above
bound follows since for the reversed stochastic 6V model �y(t), the increments (up to
a minus sign) −(yi (0) − yi (1)) can be stochastically upper bounded by 1 + geo(b2),
where geo(b2) is a geometric random variable with values in Z≥0 with parameter b2.
This proves the first identity for the H duality.

For the second identity, by definition of space-reversed stochastic 6Vmodel, we have

P←−−
S6V

(�y → �y ′; t) = P−−→
S6V

(−�y →−�y ′; t),
where, for �y = (y1 < . . . < yk) ∈ Y

k , −�y := (−yk < . . . < −y1) ∈ Y
k denotes

the space-reversed configuration. Further, the stochastic 6V model enjoys a space-time
reversal symmetry:

P−−→
S6V

(−�y →−�y ′; t) = P−−→
S6V

(�y ′ → �y; t).
To see this, notice that (−�y,−�y ′) �→ (�y ′, �y) amounts to a vertical and horizontal flip in

the vertex model configration. Under such flips, the weights for remain

unchanged, while the weights for swap. Given fixed initial and terminal condi-
tions (�y, �y ′), it is readily checked that 6V measures are invariant under the prescribed
swap. From these consideration we conclude

P←−−
S6V

(�y → �y ′; t) = P−−→
S6V

(−�y →−�y ′; t) = P−−→
S6V

(�y ′ → �y; t).
This proves the second claimed identity. 
�

Owing to its Bethe ansatz solvability, the k-particle (reversed) stochastic 6V model
admits explicit integral formulas for transition probabilities.Wewill make use of the k =
1, 2 cases of these formulas, but since the general k result is not any more complicated,
we record it below.Note that in the below formula (and subsequent calculations involving
it) we will use �x and �y to denote k-particle configurations (as opposed to �y and �y′ as in
our discussion on duality).
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Proposition 3.5. Fix k ∈ Z≥1 and parameters b1, b2 ∈ (0, 1) with b2 < b1. Then for
any �x, �y ∈ Y

k (where Yk is the discrete Weyl Chamber defined in Definition 3.2) and
t ∈ Z≥0,

P−→
S6V

(�y → �x; t) = U(�y, �x; t) (3.1)

where U(�y, �x; t) is defined for all �y, �x ∈ Z
k by

U(�y, �x; t) =
∮

Cr
· · ·

∮

Cr

∑

σ∈Sk

(−1)σ
∏

1≤i< j≤k
F̃(zi , z j , σ )

k∏

i=1
z
xσ(i)−yi−1
i D̃(zi )

t dzi
2π i

.

(3.2)

Here Cr is a circular contour (counter-clockwise oriented) centered at the origin with
a large enough radius r so as to include all poles of the integrand, Sk is the set of all
permutations on the set {1, . . . , k}, (−1)σ ∈ {−1, 1} is the sign of the permutation, and

F̃(zi , z j , σ ) := 1− (1 + τ−1)zσ(i) + τ−1zσ(i)zσ( j)

1− (1 + τ−1)zi + τ−1zi z j
, D̃(z) :=

(
b1 + (1− b1 − b2)z−1

1− b2z−1

)
.

Proof. This is a special case of [BCG16, Theorem 3.6, Eq. (26)] with c1 = 1 − b1,
c2 = 1− b2 and a1 = a2 = 1. 
�

4. Hopf–Cole Transform: Reformulation of Theorem 1.1

One-particle H duality (Proposition 3.3) implies that E[τ N (t,x)] solves the evolution
equation for a one-particle stochastic 6V model. As is true for general finite variance
homogeneous random walks on Z, this evolution equation is a discrete heat equation
and after proper centering and scaling, it will go to the continuous heat equation on R.
In this section we describe (see Proposition 4.1) the martingale part that is left when
ones does not take expectations, as well as the proper centering of the process τ N (t,x)

that gives Z(t, x), the microscopic Hopf–Cole transform of N (t, x).
Given such a transform, we reformulate the convergence to KPZ equation (i.e., The-

orem 1.1) as an equivalent statement of convergence to SHE (see Theorem 1.1*).

4.1. Microscopic Hopf–Cole transform Recall that ρ ∈ (0, 1) is a fixed parameter
representing the average density. Referring back to Theorem 1.1, we notice that the
convergence results involve centering and tilting of the height function N (t, x). Our
first step here is hence to introduce the corresponding centering and tilting of τ N (t,x).
To setup notation, consider the stochastic 6V model with a single particle starting from
x = 0. This is simply a discrete-time random walk X (t) = S(1) + . . . + S(t), with i.i.d.

increments S(1), . . . , S(t) that have distribution S(i)
law= S, where

P (S = n) =
⎧
⎨

⎩

(1− b1)(1− b2)b
n−1
2 , when n > 0,

b1, when n = 0,
0, otherwise.

(4.1)

Now, with N (t, x) being tilted by −ρx in (1.9), we consider the analogous tilt of S:

P
(
S′ = n

) := λE[τ−ρS1{S=n}] = λτ−ρn
P(S = n). (4.2)
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The parameter λ = (E[τ−ρS])−1 is in place to ensure (4.2) defines a random variable,
and the variable S′ has meanμ = E[S′] > 0. From (4.1), it is straightforward to check11

that λ and μ are given by (1.2)–(1.3). We further consider the corresponding centered
variable R := S′ − μ. With μ being the centering parameter (in Theorem 1.1) that sets
the reference frame along the characteristic, we let

�(t) = Z− tμ (4.3)

denote a shifted integer lattice to accommodate the centering by μ. Given this notation,
we define the (microscopic) Hopf–Cole (i.e., Gärtner) transform of the stochastic 6V
model as

Z(t, x) := λtτ N (t,x+μt)−ρ(x+μt), x ∈ �(t), (4.4)

where λ and μ are given in (1.2)–(1.3).
It is straightforward to verify that the k = 1 duality for τ Ny(�x) (Proposition 3.3)

implies that

E
[
Z(t + 1, x − μ)

∣∣F (t)
] = (

pZ(t)
)
(x − μ), (4.5)

where p acts on functions f : �(t) → R as

(p f )(x) :=
∑

y∈�(t)

p(x − y) f (y) =
∑

y: x−y∈�(1)

p(x − y) f (y), x ∈ �(t + 1),

with a kernel p(·) given by the probability mass function of R, i.e.,

p(x) := P(R = x) =
⎧
⎨

⎩

λ(1− b1)(1− b2)b
x+μ−1
2 τ−ρ(x+μ), when x + μ ∈ Z>0,

λb1, when x + μ = 0,
0, otherwise.

(4.6)

While the kernel p(·) is independent of t , strictly speaking the domain and range of the
operator p depends on t because it maps functions on �(t) to functions on �(t +1). We
however drop this dependence in our notation p. We will consider also the t-the power
of p (viewed as an operator), i.e., p(t) := pt (so in particular p = p(1)), namely

· · · p−→ R
�(t) p−→ R

�(t+1) p−→ R
�(t+2) p−→ R

�(t+3) p−→ · · ·
p3

and pt has kernel

p(t, x) =
∑

xi∈�(1),x1+...+xt=x

p(x1) · · · p(xt ), x ∈ �(t). (4.7)

Since p(x) is the probability mass function of R, the kernel p(t, x) is exactly the t-step
transition probability of a random walk with i.i.d. increment R. Given this interpretation
and the aforementioned relation between S and R, we have

11 The computation for λ simply boils down to a geometric series. The computation for μ boils down to a
sum of the form

∑
n≥0(n + 1)(b2τ−ρ)n ; this multiplied by (1− b2τ

−ρ) again gives a geometric series.
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p(t, x) = P
[
R(1) + · · · + R(t) = x

] = λtE
[
1{S(1)+···+S(t)=x+μt}e−ρ(S(1)+...+S(t))]

= λt e−ρ(x+μt)
P−−→
S6V

[
0→ x + μt; t].

Combining this with Proposition 3.5 for k = 1 gives the following contour integral
expression:

p(t, x) =
∮

Cr
zx+(μt−�μt�) (D(t, z))t dz

2π iz
, (4.8)

where Cr denotes a counter-clockwise oriented, circular contour that is centered at origin,
and

D(t, z) := z�μt�
(
λ
(b1 + (1− b1 − b2)/(τρz)

1− b2/(τρz)

))t
. (4.9)

Equation (4.5) states that Z(t +1, x−μ)−(pZ(t))(x) is anF -martingale increment.
We now provide a precise description of this martingale increment. Recall that the height
function N (t, x) either decreases byoneor remains constantwithin eachupdate t �→ t+1.
This being the case,

K (t, x) := N (t, x)− N (t + 1, x) (4.10)

defines a {0, 1}-valued (i.e., Bernoulli) random variable. Consider further the centered
variables

K (t, x) := K (t, x)− E[K (t, x)|F (t)]. (4.11)

Proposition 4.1. For any t ∈ Z≥0 and x ∈ �(t), we have

Z(t + 1, x − μ) = (
pZ(t)

)
(x − μ) + M(t, x), (4.12)

where

M(t, x) := λ(τ−1 − 1)Z(t, x)K (t, x + μt) (4.13)

is an F -martingale increment, i.e., E[M(t, x)|F (t)] = 0, t ∈ Z≥0, with

E [M(t, x1)M(t, x2)|F (t)] = (b1τ
1−ρ)|x1−x2|�1(t, x1 ∧ x2)�2(t, x1 ∧ x2),

(4.14)

�1(t, x) := λτ−1Z(t, x)− (
pZ(t)

)
(x − μ), (4.15)

�2(t, x) := −λZ(t, x) +
(
pZ(t)

)
(x − μ). (4.16)

Proof. The result is a special case of the statement and proof of [CT17, Proposition 2.6].
In [CT17] the authors consider a more general higher-spin version of the stochastic 6V
model [CP16] with arbitrary non-negative integer valued horizontal spin J as well as
parameters α, q, ν. Our stochastic 6V corresponds with taking J = 1 and ν = 1/q = τ

therein, and matching b1 �→ 1+qα
1+α

and τ−ρ �→ ρ. 
�
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More generally, for k ≥ 2, Z(t, x) inherits a duality from τ N (t,x), analogous to Corol-
lary 3.4 and Proposition 3.5. The analogous semigroup integral formulas are obtained
by a centering and tilting of U (as in Proposition 3.5). We state the duality and integral
formula result for Z only for k = 2 (as we will only need that case). For y1 < y2 ∈ �(s)
and for x1 < x2 ∈ �(s + t), we define

V
(
(y1, y2), (x1, x2); t

) :=
∮

Cr

∮

Cr

(
zx1−y1+(μt−�μt�)
1 zx2−y2+(μt−�μt�)

2

− F(z1, z2)z
x2−y1+(μt−�μt�)
1 zx1−y2+(μt−�μt�)

2

) 2∏

i=1

D(t, zi )dzi
2π izi

.

(4.17)

Here Cr is a counter-clockwise oriented, circular contour that is centered at origin, with
a large enough radius r so as to include all poles of the integrand, D(t, z) is defined
in (4.9), and

F(z1, z2) := 1 + τ−1+2ρz1z2 − (1 + τ−1)τρz2
1 + τ−1+2ρz1z2 − (1 + τ−1)τρz1

. (4.18)

Remark 4.2. One could rewrite the formula (4.17) in a seemingly simpler form:

V
(
(y1, y2), (x1, x2); t

) =
∮

Cr

∮

Cr

(
zx1−y1
1 zx2−y2

2 − F(z1, z2)z
x2−y1
1 zx1−y2

2

) 2∏

i=1

(D̃(zi ))t dzi
2π izi

,

where D̃(z) := zμλ
b1+(1−b1−b2)/(τρ z)

1−b2/(τρ z) . The expression, however, involves non-integer
powers of zi , because xi − y j ∈ Z and μ ∈ Z in general, and having non-integer
powers is undesirable for our analysis in the sequel. With xi − yi ∈ �(t), we have that
xi − y j + (μt − �μt�) ∈ Z, so the formula (4.17) involves only integer powers of zi .

We adopt the following shorthand notation for centered occupation variables:

ηc(t, x) := η(t, x + μt), η+c (t, x) := ηc(t, x + 1), x ∈ �(t). (4.19)

Proposition 4.3. With Z being the Hopf–Cole transform of the stochastic 6V model with
parameters b1 > b2 ∈ (0, 1), for all x1 < x2 ∈ �(t + s) and t, s ∈ Z≥0, we have

E

[
Z(t + s, x1)Z(t + s, x2)

∣∣∣F (s)
]

=
∑

y1<y2∈�(s)

V
(
(y1, y2), (x1, x2); t

)
Z(s, y1)Z(s, y2), (4.20)

E

[
(η+c Z)(t + s, x1)(η

+
c Z)(t + s, x2)

∣∣∣F (s)
]

=
∑

y1<y2∈�(s)

V
(
(y1, y2), (x1, x2); t

)(
η+c Z

)
(s, y1)

(
η+c Z

)
(s, y2). (4.21)
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Proof. Recall from (4.4) that Z(t, x) is obtained from τ N (t,x+μt) through centering and
tilting. Translating the k = 2 duality (from Corollary 3.4 and Proposition 3.5) in terms
of the centered and tilted process Z(t, x), we see that (4.20)–(4.21) holds where

V
(
(y1, y2), (x1, x2); t

)

= λ2tτ−ρ(x1+x2−y1−y2+2μt)U
(
(y1 + μs, y2 + μs), (x1 + μ(t + s), x2 + μ(t + s)); t).

(4.22)

Our goal now is to show that V given in (4.22) can, indeed, be written as the contour
integral in (4.17). Referring back to the formula (3.2) forU, and combining it with (4.22),
we find that

V((y1, y2), (x1, x2); t)
=
∮

Cr

∮

Cr

(
(τ−ρz1)

x1−y1+(μt−�μt�)(τ−ρz2)
x2−y2+(μt−�μt�)

− 1− (1 + τ−1)z2 + τ−1z1z2
1− (1 + τ−1)z1 + τ−1z1z2

(τ−ρz1)
x2−y1+(μt−�μt�)(τ−ρz2)

x1−y2+(μt−�μt�))

2∏

i=1

D̂(zi , t)dzi
2π izi

,

where D̂(t, z) := (τ−ρz)�μt�λtD̃(z)t . Given this, the claimed result now follows by the
change of variable τ−ρzi := z̃i . 
�
4.2. The SHE Proposition 4.1 states that Z solves a discrete-time, discrete space
SPDE. Examining this equation suggests that, under appropriate scaling, Z should con-
verge to the solution of the SHE:

∂tZ(t, x) = ν∗
2

∂2xZ(t, x) +
κ∗
√
D∗

ν∗
ξ(t, x)Z(t, x). (4.23)

The coefficients ν∗, κ∗ and D∗ are given in (1.7). (Although ν∗ = κ∗, we prefer to write
the equation as above to better track the limiting coefficients.)

To formulate the convergence to SHE precisely, recall that aC([0,∞),C(R))-valued
process Z is a mild solution of (4.23) with initial condition Z ic(x) if

Z(t, x) =
∫

R

p(ν∗t, x − y)Z ic(y)dy

+
∫ t

0

∫

R

p(ν∗(t − s), x − y)Z(s, y)
κ∗
√
D∗

ν∗
ξ(s, y)dsdy, (4.24)

for all t ∈ [0,∞) and x ∈ R. Given non-negative Z ic ∈ C(R) that is not identically
zero, the SHE permits a unique mild solution that stays positive for all t > 0. See, for
example, [Cor12, Proposition 2.5] and the references therein. With the SHE being an
informal exponentiation of the KPZ equation, we sayH is a Hopf–Cole solution of the
KPZ equation (1.6) if

e−
κ∗
ν∗H(t,x) = e−H(t,x) (4.25)
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is a mild solution of (4.23). So far our discussion has been for aC(R)-valuedZ ic, which
is the proper setup for near stationary initial conditions (defined in the following). To
accommodate the step initial condition, η(0, x) = 1{x≥0}, we need to also consider the
SHE starting from delta function δ(x). The mild solution is defined analogously:

Z(t, x) = p(ν∗t, x − y) +
∫ t

0

∫

R

p(ν∗(t − s), x − y)Z(s, y)
κ∗
√
D∗

ν∗
ξ(s, y)dsdy,

for t > 0 and x ∈ R. For delta initial condition, there exists a unique C((0,∞),C(R))-
valued solutionZ ,which is positive.12 For suchZ ,we thendefineH(t, x) := log(Z(t, x))
as the solution of the KPZ equation (1.6) with narrow wedge initial condition.

As discussed above Theorem 1.1, we will prove convergence to the Hopf–Cole so-
lution to the KPZ equation under weak asymmetry scaling, where

ρ ∈ (0, 1), b1 ∈ (0, 1) are fixed, τ = τε = b2/b1 = bε
2/b1 := e−

√
ε

and (λ, μ) = (λε, με) are defined in (1.2)–(1.3) which behave asymptotically as (1.4)–
(1.5). Under this scaling, the microscopic Hopf–Cole transform (4.4) reads

Z(t, x) = Zε(t, x) := et log λε−√ε(Nε(t,x+με t)−ρ(x+με t)), x ∈ �(t). (4.26)

Hereafter, we adopt the standard notation ‖X‖n := (E[|X |n]) 1
n , and say for all ε > 0

small enough if the referred statement holds for all ε ∈ (0, ε0), for some generic but
fixed threshold ε0 > 0 that may change from line to line. Following [BG97], we define
near stationary initial conditions for the stochastic 6V model:

Definition 4.4. Fix any density parameter ρ ∈ (0, 1). With ε → 0 being the scaling
parameter, consider a sequence of possibility random initial conditions {Nε(0, x)}ε>0,
and let Zε(0, x) denote the corresponding Hopf–Cole transformed initial data defined
through (4.4). We say the initial condition is near stationary with density ρ if, for any
given n < ∞ and α ∈ (0, 1

2 ), there exist constants C = C(n, α) and u = u(n, α), such
that

‖Zε(0, x)‖n ≤ C exp (uε|x |) , (4.27)

‖Zε(0, x)− Zε(0, x
′)‖n ≤ C

(
ε|x − x ′|)α exp (uε(|x | + |x ′|)) , (4.28)

for all x, x ′ ∈ Z, and small enough ε > 0.

We now state our result on the convergence of Z(t, x) to the SHE. Due to the round-
about definition of the Hopf–Cole solution (4.25), it is readily checked (see (4.26))
that, Theorem 1.1* in the following is an equivalent formulation of Theorem 1.1. Given
Z(t, x), t ∈ Z≥0, x ∈ �(t), we first linearly interpolate in x and then linearly interpolate
in t to obtain13 a C([0,∞),R)-valued process.

12 For reference, see [Par18, Proposition 4.3] where existence, uniqueness and positivity in a more compli-
cated case (i.e., with boundaries) are proved.
13 This is different from exponentiating the interpolated height function. Nevertheless, under the weak

asymmetry scaling τ = exp(−√ε), it is straightforward to verify that the difference between these two
interpolation schemes is negligible as ε → 0.
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Theorem 1.1*. Consider the stochastic 6V model, with parameter b1 > b2 ∈ (0, 1).

(a) (Near stationary initial conditions) Fix a density ρ ∈ (0, 1). Start the stochastic 6V
model from a sequence (parameterized by ε) of near stationary with density ρ initial
conditions, and let Zε(t, x) denote the resulting Hopf–Cole transform. If, for some
C(R)-valued process Z ic, we have

Zε(0, ε
−1x) 	⇒ Z ic(x), in C(R), (4.29)

then, under the weak asymmetry scaling we have

Zε(ε
−2t, ε−1x) 	⇒ Z(t, x), in C([0,∞),C(R)),

where Z(t, x) is the mild solution of the SHE (4.23) with initial condition Z ic(x).
(b) (Step initial condition) Start the stochastic 6V model from the step initial condition

N (0, x) = (x)+, and let Zε(t, x) denote the resulting Hopf–Cole transform. Let
ρ ∈ (0, 1) be fixed. Under the weak asymmetry scaling we have

ρ(1−ρ)√
ε

Zε(ε
−2t, ε−1x) 	⇒ Z(t, x), in C((0,∞),C(R)),

whereZ(t, x) is the mild solution of the SHE (4.23)with delta initial condition δ(x).

5. Proof of Theorems 1.1* and 1.8

Hereafter, we will be assuming the weak asymmetry scaling τ = τε = e−
√

ε (for
the stochastic model), and the scaling η = ηε = 1

2

√
ε (for the symmetric model under

Baxter’s projective parametrization (1.13)). To highlight this dependence, for parameters
we write λ = λε, μ = με, etc. On the other hand, to simplify notation, for processes
we often omit this dependence, and write Zε = Z , etc. We also adopt the notation
C(α, β, . . .) < ∞ for a generic deterministic finite constant that may change from
line to line, but depends only on the designated variables α, β, . . .. The dependence on
(ρ, b1) ∈ (0, 1)2 will not be indicated as they are fixed throughout the article.

To prove Theorem 1.1*, in Sect. 5.1 we establish the tightness of {Z(ε2·, ε·)}ε, and
then, in Sect. 5.2, we identify the limit point via martingale problems. As noted earlier,
the major technical step here is to establish self-averaging of the quadratic variation in
the martingale problem. We state this as Proposition 5.6 (postponing its proof to Sect. 7)
and give the rest of the proof of Theorem 1.1* in Sect. 5.2.

Given Theorem 1.1 (or equivalently Theorem 1.1*), Theorem 1.8 follows as a rather
straightforward consequence. In Sect. 5.3, we establish Theorem 1.8.

5.1. Moment bounds and tightness In this subsectionweprove the tightness of {Z(ε2·,
ε·)}ε by establishing moment bounds on the process. A useful tool in this context is the
following bounds on the transition kernel p(t, x) (defined in (4.6)–(4.7)).

Lemma 5.1. For any u, T ∈ (0,∞) and α ∈ (0, 1], there exist constants C(u, T ),C(u)

> 0 such that

p(t, x) ≤ C (t + 1)−
1
2 , (5.1)

∑

x∈�(t)

p(t, x)eεu|x | ≤ C(u), (5.2)
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∑

x∈�(t)

|x |αp(t, x)eεu|x | ≤ C(α, u)(t + 1)
α
2 , (5.3)

∣∣p(t, x)− p(t, x ′)
∣∣ ≤ C(T )|x − x ′|αt− α+1

2 , (5.4)

for all x, x ′ ∈ �(t) and t ∈ [0, ε−2T ] ∩ Z.

Proof. Given the contour integral expression (4.8) for p(t, x), these bounds can be
obtained by steepest-decent-like analysis. This type of analysis is carried out in greater
generality in Sect. 6 sowe use a few results developed there in the following. In particular,
setting (xi − yi , α) �→ (x, u + 1) in (6.12) gives

p(t, x) ≤ C(u, T )√
t + 1

e
−(u+1)|x |√
t+1+C(u) .

From this pointwise estimate the bounds (5.1)–(5.3) follow. As for (5.4), we set (xi −
yi , α) �→ (y, 1) in (6.14) (where ∇ f (x) := f (x + 1)− f (x)) to get

|p(t, y + 1)− p(t, y)| ≤ C(T )e
−|y|√
t+1+C

1

t + 1
. (5.5)

Assume without lost of generality that x < x ′. Summing (5.5) over y ∈ [x, x ′ −1] gives
|p(t, x ′)− p(t, x)| ≤ C(T )

t + 1

∑

y∈[x,x ′−1]
e

−|y|√
t+1+C . (5.6)

On the r.h.s. of (5.6), bounding the exponential factor exp( −|y|√
t+1+C

) ≤ 1 gives the bound
C(T )|x ′−x |

t+1 . On the other hand, keeping the exponential factor but summing over y ∈ Z

instead gives the bound C(T )√
t+1

. Taking the minimum of these two bounds we conclude

|p(t, x ′)− p(t, x)| ≤ C(T )
( 1√

t + 1
∧ |x ′ − x |

t + 1

)
≤ C(T )√

t + 1

(
1 ∧ |x ′ − x |√

t + 1

)
.

Given that u ∈ (0, 1], the last expression is bounded by C(T )√
t+1

(
|x ′−x |√

t+1
)u , which yields

(5.4). 
�
Amajor ingredient in proving moment bounds is a discrete analog of (4.24), i.e., the

mild form of the SHE. To derive it, fix t1 ≤ t2 ∈ Z≥0. Since p(t) := pt , iterating (4.12)
(t2 − t1)-times starting from t = t1 gives

Z(t2, x) =
(
p(t2 − t1)Z(t1)

)
(x) + Zmg(t2, t1, x), (5.7)

where Zmg(t2, t1, x) :=
t2−1∑

t=t1

(
p(t2 − t − 1)M(t)

)
(x + μ). (5.8)

Recall the definitions of K and K from (4.10) to (4.11), and recall from (4.13) that M is
defined in terms of K . To pave the way for bounding moments of Zmg, in the following
lemma we construct a useful bound on conditional moments of K . Let P2,3(n) denote
the set of partitions of {1, . . . , n} into intervals of 2 or 3 elements. Here intervals refers
to set of the form U = [a, b] := [a, b] ∩ Z, a ≤ b ∈ Z. For example,

P23(6) =
{{[1, 2], [3, 4], [5, 6]}, {[1, 3], [4, 6]}, {[1, 4], [5, 6]}, {[1, 2], [3, 6]}}.

Given an interval U = [a, b] and �y ∈ Z
n , we write |�y|U := |yb − ya |.
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Lemma 5.2. Fix n ∈ Z>0. For all t ∈ Z≥0 and y1 ≤ . . . ≤ yn ∈ Z, we have

∣
∣∣E
[ n∏

i=1
K (t, yi )

∣
∣∣F (t)

]∣∣∣ ≤ C(n)
∑

π∈P23(n)

∏

U∈π

e−
1

C(n)
|�y|U .

Proof. Fix n ∈ Z>0, t ∈ Z≥0, and y1 ≤ . . . ≤ yn ∈ Z. Throughout this proof, we write
C = C(n) and E

′[ · ] := E[ · |F (t)] to simplify notation. We invoke the expression
of K (t, y) from (2.5), where B(t, η) and B ′(t, η) are independent Bernoulli variables
defined in Definition 2.2. To reduce notation, we set

I (y′, y) :=
y∏

z=y′+1

(
B ′
(
t, z; η(t, z)

)− B
(
t, z; η(t, z)

))
B
(
t, y′; η(t, y′)

)

for the term within the sum in (2.5), and write I (y′, y) := I (y′, y)−E[I (y′, y)|F (t)].
This gives K (t, y) =∑

y′≤y I (y
′, y), and hence

E
′[

n∏

i=1
K (t, yi )

]
=

∑

�y′∈Y
E
′[

n∏

i=1
I (y′i , yi )

]
, (5.9)

where Y := {
(y′1, . . . , y′n) ∈ Z

n : y′i ≤ yi , i = 1, . . . , n
}
. The r.h.s. of (5.9) is

summable. To see this, note from Definition 2.2 (together with b1, bε
2 being bounded

away from 0 and 1 under our scale) that we have E
′[I (y′, y)�] ≤ exp(− 1

C |y′ − y|),
� ∈ Z>0, which gives

E
′[|I (y′, y)|�] ≤ Ce−

1
C |y−y′|, � ∈ Z>0. (5.10)

From this we see that the r.h.s. of (5.9) is summable.
It is useful to arrange the r.h.s. of (5.9) according to how the I ’s are dependent.

To this end, let P = P(n) denote the set of partitions of {1, . . . , n} into intervals.
For (y′1, . . . , y′n) ∈ Y , we say a pair of coordinates yi , y j , i = j , are connected if
[y′i , yi ] ∩ [y′j , y j ] = ∅. Recall that the y’s are ordered y1 ≤ · · · ≤ yn , and recall that for
�y′ ∈ Y we have y′i ≤ yi . This being the case, we see that if yi and y j are connected, for
i < j , then yi+1, . . . , y j−1 must also be connected to y j . Group indices (the i’s) together
if the corresponding coordinates (the yi ’s) are connected. This grouping procedure maps
each �y′ ∈ Y into a partition p(�y′) ∈P(n). We then rewrite (5.9) as

E
′[

n∏

i=1
K (t, yi )

]
=

∑

π∈P

∑

�y′∈Y (π)

E
′[

n∏

i=1
I (y′i , yi )

]
, (5.11)

where Y (π) := {�y′ ∈ Y : p(�y′) = π}. Since conditioning on F (t) (so that η(t) is
fixed) the Bernoulli variables {B(t, y; η(t, y)), B ′(t, y; η(t, y)) : t ∈ Z≥0, y ∈ Z} are
independent, the variables I (y′i , yi ) are independent among unconnected coordinates.
Consequently, the r.h.s. of (5.11) factorizes among unconnected coordinates

E

[ n∏

i=1
K (t, yi )

∣∣
∣F (t)

]
=

∑

π∈P

∑

�y′∈Y (π)

∏

U∈π

E

[∏

i∈U
I (y′i , yi )

∣∣
∣F (t)

]
. (5.12)
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For the special case of a singleton interval U = {i∗}, one has E[I (y′i∗ , yi∗)|F (t)] = 0.
This implies the expectation on r.h.s. of (5.12) vanishes if anyU ∈ π is a singleton. We
hence need only to sum over partitions consisting of non-singleton intervals, i.e.,

E
′[

n∏

i=1
K (t, yi )

]
=

∑

π∈P≥2

∑

�y′∈Y (π)

∏

U∈π

E
′[∏

i∈U
I (y′i , yi )

]
, (5.13)

where P≥2(n) := {π ∈P : #U ≥ 2,∀U ∈ π}.
On the r.h.s. of (5.13), using Hölder’s inequality |E′[∏i∈U I (y′i , yi )]| ≤

∏
i∈U (E′[I

(y′i , yi )#U ])
1
#U , followed by using (5.10) and 1

#U ≥ 1
n = C , we find that

∣∣
∣E′

[ n∏

i=1
K (t, yi )

]∣∣
∣ ≤ C

∑

π∈P≥2

∑

�y′∈Y (π)

exp
(
− 1

C

n∑

i=1
|yi − y′i |

)
. (5.14)

Fix a partition π = {U1, . . . ,U#π }. We claim that the sum over �y′ ∈ Y (π) in (5.14) will
lead us to the bound

∣∣∣E′
[ n∏

i=1
K (t, yi )

]∣∣∣ ≤ C
∑

π∈P≥2

∏

U∈π

e−
1
C |�y|U . (5.15)

To prove this claim, letting U = [a, b] ∈ π , we define a subset {i0 ≤ · · · ≤ iq} ⊂ U
inductively. First, let i0 := a. Suppose that i0, · · · , i p have been defined. If i p = b we
stop the induction with q := p; otherwise, let

i p+1 := max{ j ∈ (i p, b] ∩ Z : ∃i ≤ i p s.t. yi and y j are connected}.
The set on the right hand side is non-empty by definition of a group. In fact choosing i p+1
to be any element in this set (not necessarily themax), the following argumentwill still be
valid, and what is important is that by construction y′i p+1 ≤ yi p ≤ yi p+1 . Hence each sum

over y′ik in (5.14), with ik ∈ {i0, · · · , iq}, produces a factor of C exp(− 1
C |yik − yik−1 |).

On the other hand, each sum over y′i , with i ∈ U \ {i0, · · · , iq}, produces a factor of C .
Thus the sum over all y′i with i ∈ U produces a factor

C exp
(
− 1

C

q∑

k=1
|yik − yik−1 |

)
= Ce−

1
C |yb−ya |.

The claimed bound (5.15) immediately follows.
This is almost the desired result except that the sum is over P≥2(n) instead of

P23(n). To go from the former to the latter, we ‘chop’ longer intervals into shorter
intervals of length 2 or 3. For example, ifU = [1, 5], we indeed have exp(− 1

C |�y|[1,5]) ≤
exp(− 1

C |�y|[1,2]) exp(− 1
C |�y|[3,5]). More generally, for #U ≥ 4, we always have exp(− 1

C
|�y|U ) ≤ ∏

V exp(− 1
C |�y|V ), where the V ’s partition U into intervals of length 2 or 3.

This completes the proof. 
�
We now proceed to derive moment bounds on Zmg (defined in (5.8)) which we view

as a weighted sum of M(t, x). In fact, we will consider a generic weighted sum with
weight f (t, x). Recall that ‖ · ‖n := (E[ (·)n ])1/n .
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Lemma 5.3. Fix n ∈ Z>0, t ∈ Z≥0, t1 < t2 ∈ Z≥0, and let f (t, x) be a deterministic
function defined on t ∈ [t1, t2] ∩ Z and x ∈ �(t). Write f∞(t) := supx∈�(t) | f (t, x)|.
We have

∥∥
∥
t2−1∑

t=t1

∑

x∈�(t)

f (t, x)M(t, x)
∥∥
∥
2

2n
≤ εC(n)

t2−1∑

t=t1

∑

x∈�(t)

| f∞(t) f (t, x)| ∥∥Z(t, x)
∥∥2
2n .

Proof. Throughout this proof we write C = C(n). Recall from Proposition 4.1 that
M(t, x) is a martingale increment. Hence the process

∑t
s=t1

∑
x∈�(t) f (t, x)M(t, x),

t = t1, . . . , t2 − 1, is a martingale. Burkholder’s inequality applied to this martingale
gives

∥∥
∥
t2−1∑

t=t1

∑

x∈�(t)

f (t, x)M(t, x)
∥∥
∥
2

2n
≤ C

t2−1∑

t=t1

∥∥
∥

∑

x∈�(t)

f (t, x)M(t, x)
∥∥
∥
2

2n
. (5.16)

Recall that M(t, x) is given in terms of Z(t, x) and K (t, x + μt) as (4.13). Under our
scale λε|1− τε| ≤ C

√
ε. Set G(t) :=∑

x∈�(t) f (t, x)K (t, x + μt), we then have

∥∥∥
t2−1∑

t=t1

∑

x∈�(t)

f (t, x)M(t, x)
∥∥∥
2

2n
≤ εC

t2−1∑

t=t1
‖G(t)‖22n . (5.17)

To bound the last expression in (5.17), we proceed to estimate

E[G(t)2n] =
∑

�x∈�(t)2n

E

[ 2n∏

i=1
f (t, xi )Z(t, xi )K (t, xi + μt)

]
.

Let us evaluate the r.h.s. byfirst conditioningonF (t). Since Z(t, xi ) isF (t)-measurable,
we may apply Lemma 5.2 to bound the conditional expectation over K . This yields, for
x1 ≤ . . . ≤ x2n ∈ �(t),

E

[ 2n∏

i=1
f (t, xi )Z(t, xi )K (t, xi + μt)

∣∣∣F (t)
]
≤

∑

π∈P 23

∏

U∈π

e−
1
C |�x |U

∏

i∈U
| f (t, xi )Z(t, xi )|,

(5.18)

where we write P23 := P23(2n) to simplify notation. Sum both sides of (5.18) over
the xi ’s. By paying a factor of n! = C we may and shall restrict the sum to ordered
tuples (x1 ≤ . . . ≤ x2n). Rewriting the resulting (2n)-fold sum over (x1, . . . , x2n) into
iterated sums over (xi )i∈U ,U ∈ π , and rearranging the result accordingly, we then have

E[G(t)2n|F (t)] ≤
∑

π∈P23

∏

U∈π

( ∑

�x∈�(t)#U≤

e−
1
C |x#U−x1|

#U∏

i=1
| f (t, xi )Z(t, xi )|

)
,

where �(t) j≤ := {(x1 ≤ . . . ≤ x j ) ∈ �(t) j } denotes the set of ordered j tuples. Within

the last expression, apply Young’s inequality
∏

U∈π aU ≤ ∑
U∈π

#U
2n |aU |

2n
#U . Together

with #U = 2, 3, we have

E[G(t)2n|F (t)] ≤ C
∑

j=2,3

( ∑

�x∈�(t) j≤

e−
1
C |x j−x1|

j∏

i=1
| f (t, xi )Z(t, xi )|

) 2n
j
.
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Further bound exp(− 1
C |x j − x1| ≤ exp(− 1

C j

∑ j
i=1 |xi − x1|) (because x1 ≤ . . . ≤ x j ),

and then release the sum from ordered tuples �(t) j≤ to unordered tuples �(t) j . Take
(E[ · ])1/n onboth sides of the result, and then apply (

∑
j=2,3 |a j |)1/n ≤ 2

∑
j=2,3 |a j |1/n .

From this we obtain

‖G(t)‖22n ≤ C
∑

j=2,3

∥∥
∥

∑

�x∈�(t) j

j∏

i=1
e−

1
C |xi−x1|| f (t, xi )Z(t, xi )|

∥∥
∥

2
j

2n
j

.

Pass ‖ ·‖2n into the sum by the triangle inequality, and use Hölder’s inequality to write
‖∏2n

i=1 Z(t, xi )‖2n/j ≤∏2n
i=1 ‖Z(t, xi )‖2n . We then obtain

‖G(t)‖22n ≤ C
∑

j=2,3
g j (t)

2
j , g j (t) :=

∑

�x∈�(t) j

j∏

i=1
e−

1
C |xi−x1|| f (t, xi )|

∥∥Z(t, xi )
∥∥
2n .

(5.19)

Recall that f∞(t) := supx∈�(t) | f (t, x)|. Set g̃(t) := ∑
x∈�(t) | f∞(t) f (t, x)|

‖Z(t, x)‖22n . For the term g3, using the Cauchy-Schwarz inequality over
∑

x3 gives

g3(t) ≤
∑

x1,x2∈�(t)

2∏

i=1
e−

1
C |xi−x1|| f (t, xi )Z(t, xi )|

∥∥∥
2
j

2n
j

.
( ∑

x3∈�(t)

| f (t, x)|2‖Z(t, x)‖22n
) 1

2

( ∑

x3∈�(t)

e−
1
C |x3−x1|

) 1
2

≤C g2(t)g̃(t)
1
2 .

As for g2(t), since τε = e−
√

ε under current scaling, referring to (4.4) we see that
Z(t, x2) ≤ Z(t, x1)e

√
ε|x2−x1|.Using this to bound‖Z(t, x2)

∥∥
2n , andbounding | f (t, x2)|

by f∞(t), we have

g2(t)
∑

x1∈�(t)

| f∞(t) f (t, x1)|
∥∥Z(t, x1)

∥∥2
2n

∑

x2∈�(t)

e−( 1
C−C

√
ε)|x2−x1| ≤ Cg̃(t).

Combining the preceding bounds on g2(t) and g3(t) with (5.19), we arrive at

‖G(t)‖22n ≤ Cg̃(t) := C
∑

x∈�(t)

| f∞(t) f (t, x)| ‖Z(t, x)‖22n .

Inserting this back into (5.16) gives the desired result. 
�
Given Lemma 5.3, we are now ready to establish moment bounds on Z .

Proposition 5.4. (a) Start the stochastic 6V model from near stationary initial condi-
tions (as Definition 4.4, with ρ ∈ (0, 1) fixed as declared previously), let u = u(n, α)

be the corresponding exponent, and let Z(t, x) denote the resultingHopf–Cole trans-
form (with respect to a fixed density ρ ∈ (0, 1)). For any α ∈ (0, 1

2 ), n ∈ Z>0, and
T < ∞, there exist C = C(n, α, T ) < ∞ such that

‖Z(t, x)‖2n ≤ euε|x |, (5.20)
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‖Z(t, x)− Z(t, x ′)‖2n ≤ C
(
ε|x − x ′|)α euε(|x |+|x ′|), (5.21)

‖Z(t, x)− Z(t ′, x)‖2n ≤ C
(
ε2|t − t ′|

) α
2
e2uε|x |, (5.22)

for any t, t ′ ∈ [0, ε−2T ] and x, x ′ ∈ R.
(b) Start the stochastic 6V model from the step initial condition N (0, x) = (x)+, and

let Z(t, x) denote the resulting Hopf–Cole transform (with respect to a fixed density
ρ ∈ (0, 1)). For each given n ∈ Z>0 and α ∈ (0, 1

4 ), there exist C = C(n, α) < ∞
and τ = τ(n, α) > 0 such that

∥
∥ρ(1−ρ)√

ε
Z(t, x)

∥
∥
2n ≤ (ε2t)−

1
2 , (5.23)

∥
∥ρ(1−ρ)√

ε
(Z(t, x)− Z(t, x ′))

∥
∥
2n ≤ C

(
ε|x − x ′|)α (ε2t)−

1+α
2 (5.24)

for any t ∈ (0, ε−2τ ] and x, x ′ ∈ R.

Proof. Fix n, α ∈ (0, 1
4 ), and u = u(α, n). Throughout this proof we write C =

C(n, α, T ). Recall that Z(t, x) is defined on [0,∞) × R by linear interpolations. This
being the case, it suffices to consider the lattice t, t ′ ∈ Z≥0 and x, x ′ ∈ �(t). General-
ization to continuum t, x , etc., follows easily. Hence throughout this proof we assume
t, t ′ ∈ Z≥0 and x, x ′ ∈ �(t), etc.

(a) We begin with (5.20). On the space of functions f : �(t) → R, it is convenient
to consider the norm [ f ]2u := supx∈�(t) | f (x)|e−2uε|x |. Our goal is to bound

D(t) := ∣∣‖Z(t, ·)‖22n∣∣2u = sup
x∈�(t)

‖Z(t, x)‖22ne−2uε|x |.

To this end, take ‖ · ‖22n on both sides of (5.7) to obtain

‖Z(t2, x)‖22n ≤
(∥∥(p(t)Z(t)

)
(x) + Zmg(t2, t1, x)

∥∥
2n

)2 ≤ 2(Adr(x)
2 + Amg(x)

2),

(5.25)

where

Adr(x) :=
∑

y∈�(t1)

p(t2 − t1, x − y)‖Z(t1, y)‖2n, (5.26)

Amg(x) := ‖Zmg(t2, t1, x)‖2n . (5.27)

Applying [ · ]2u to both sides of (5.25) yields

D(t) ≤ 2
[
A2
dr

]
2u + 2

[
A2
mg

]
2u . (5.28)

We proceed to bound the r.h.s. of (5.28). Write

‖Z(t1, y)‖2n ≤
(
D(t1)e

2uε|y|)
1
2 ≤ D(t1)

1
2 euε|y−x |euε|x |. (5.29)

In (5.26), use the bound (5.29), and then sum over y ∈ �(t2) with the aid of (5.2).
We obtain Adr(x)2 ≤ C D(t1)e2uε|x |, and hence [A2

dr]2u ≤ C D(t). Next, recall the
definition of Zmg(t2, t1, x) from (5.8), and write x−μ := x − μ to simplify notation.
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We apply Lemma 5.3 with f (t, y) = p(t2 − t1 − 1, x−μ − y). With the aid of (5.1)
and (5.29), we have

Amg(x)
2 ≤ εC

t2−1∑

t=t1

∑

y∈�(t)

1√
t2 − t + 1

p(t2 − t − 1, x−μ − y)e2uε|x−y|e2uε|x |D(t).

Further using (5.2) to bound the sum over y ∈ �(t), we obtain

Amg(x)
2 ≤ e2uε|x |C ε2

t2−1∑

t=t1
(ε2(t2 − t1))

− 1
2 D(t). (5.30)

This gives [A2
mg]2u ≤ C ε2

∑t2−1
t=t1 (ε2(t2 − t1))−

1
2 D(t). Inserting the preceding bounds

on [Adr]2u and [Amg]2u into (5.28) gives

D(t2) ≤ C D(t1) + C ε2
t2−1∑

t=t1
(ε2(t2 − t1))

− 1
2 D(t). (5.31)

Now, set E(t) := sups∈[0,t]∩Z D(t). From (5.31)wehave E(t2) ≤ CE(t1)+E(t2)C ε2

∑t2−1
t=t1 (ε2(t2 − t1))−

1
2 . Given that t1 ≤ t2 ≤ ε−2T , the last sum can be estimated by

comparison to an integral, yielding E(t2) ≤ CE(t1) + C∗((ε2(t2 − t1))
1
2 E(t2), for

some constant C∗ = C∗(u, n, T ). Fixing δ > 0 small enough so that C∗
√

δ < 1
2 .

We then have E(t2) ≤ CE(t1), for all t1 < t2 ∈ Z≥0 with t2 − t1 ≤ ε−2δ. Iterate
this inequality starting from t1 = 0. After %T/δ& = C iterations we conclude that
E(%ε−2T &) ≤ CC E(0) = CE(0). From the assumption (4.27) of near stationary initial
conditions,wehave E(0) ≤ C , so E(%ε−2T &) ≤ C ,whichgives the desired result (5.20).

Next we turn to (5.21). In (5.7), set (t1, t2) = (0, t), take the difference for x = x ′
and x = x , and then take ‖ · ‖22n on both sides of the result. We obtain

‖Z(t, x ′)− Z(t, x)‖22n ≤ 2(A2∇,dr + A2∇,mg), (5.32)

where A∇,dr := ∑
y∈Z p(t, x − y)‖Z(0, y + x ′ − x) − Z(0, y)‖2n and A∇,mg :=

‖Zmg(t, 0, x ′)− Zmg(t, 0, x)‖2n . To bound A∇,dr, use (4.27) in conjunction with (5.2)
to get A∇,dr ≤ C |ε(x − x ′)|α(eεu(|x |+|x ′|)). As for A∇,mg, similar to the preceding pro-
cedure for bounding Amg(x)2, here we apply Lemma 5.3 with f (t, y) = p(t − s −
1, x ′−μ − y)− p(t − s − 1, x−μ − y). With the aid of (5.4) and (5.29), we obtain

A2∇,mg ≤ εC
t−1∑

s=0

∑

y∈�(t)

|x − x ′|2α
(t − s + 1)

1
2 +α

(
p(t − s − 1, x−μ − y)e2uε|x−y|+2uε|x | + p(t − s − 1, x ′−μ − y)e2uε|x ′−y|+2uε|x ′|) D(s).

(5.33)

Further using (5.2) to bound the sum over y ∈ �(t), together with D(s) ≤ C (which
we showedpreviously),we obtain A2∇,mg ≤ Ce2uε|x ′|+2uε|x ′|ε2

∑t−1
s=0(ε|x−x ′|)2α(ε2(t−

s))− 1
2−α . The last sum can be estimated by comparison to integrals, yielding
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A2∇,mg ≤ Ce2uε|x ′|+2uε|x ′||ε(x − x ′)|2α . Inserting the preceding bounds on A∇,dr and

A2∇,mg into (5.32) gives the desired result (5.21).
Next, to show (5.22), subtract Z(t1, x) from both sides of (5.7), and take ‖ · ‖2n of

the result to get

‖Z(t2, x)− Z(t1, x)‖2n ≤ Ap−I (x) + Amg(x), (5.34)

where Ap−I (x) := ‖(p(t2 − t1)Z(t1))(x) − Z(t1, x)‖2n . From (5.30) and D(t) ≤ C

(which we showed previously) we have Amg(x) ≤ C (ε2(t2− t1))
1
4 ≤ C (ε2(t2− t1))

α
2 .

As for Ap−I (x), using
∑

y∈�(t1) p(t2 − t1, x − y) = 1 we write

Ap−I (x) =
∥∥∥

∑

y∈�(t1)

p(t2 − t1, x − y)
(
Z(t1, y)− Z(t1, x)

)∥∥∥
2n

≤
∑

y∈�(t1)

p(t2 − t1, x − y)
∥∥∥Z(t1, y)− Z(t1, x)

∥∥∥
2n

.

Within the last expressionwe apply the bound (5.21) with (x ′, x) = (y, x)�(t1)×�(t2).
As noted previously, the bound (5.21) extends to all x ′, x ∈ R via linear interpolation.
Further using (5.3) to bound the resulting sum over y ∈ �(t1). We then obtain

Ap−I (x) ≤ C
∑

y∈�(t1)

p(t2 − t1, x − y)|ε(x − y)|αeuε(|x |+|y|) ≤ C |ε2(t2 − t1)| α2 e2uε|x |.

Inserting the preceding bounds on Ap−I (x) and Amg(x) into (5.34) gives the desired
result (5.22).

(b) Set Ẑ(t, x) := ρ(1−ρ)√
ε

Z(t, x) to simplify notation. On the space of functions

f : �(t) → R, it is convenient to consider the norm

[ f ]∗,t := (ε2t) sup
x∈�(t)

| f (x)| + (ε2t)
1
2 ε

∑

x∈�(t)

| f (x)|.

We write D̂(t) := [‖Z(t)‖22n]∗,t = [‖Z(t, ·)‖22n]∗,t , so in particular
ε

∑

x∈�(s)

‖Ẑ(s, x)‖22n ≤ (ε2s)−
1
2 D̂(s), (5.35)

‖Ẑ(s, x)‖22n ≤ (ε2s)−1 D̂(s). (5.36)

Multiplying both sides of (5.25) by ρ(1− ρ)ε− 1
2 , here we have

∥∥Ẑ(t, x)
∥∥2
2n ≤ 2 Âdr(t, x)

2 + 2 Âmg(t, x)
2, (5.37)

where Âdr(t, x) :=∑
x∈�(t) p(t, x− y)Ẑ(0, y) (note that here Ẑ(0, y) is deterministic),

and Âmg(t, x) := ρ(1−ρ)√
ε
‖Zmg(t, 0, x)‖2n . Apply [ · ]∗,t to both side of (5.37) yields
D̂(t) ≤ 2

[
Âdr(t)

2]
∗,t + 2

[
Âmg(t)

2]
∗,t . (5.38)
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We proceed to bound the r.h.s. of (5.38). Recall that N (0, x) = x+ under the step

initial condition, so Ẑ(0, x) = ε− 1
2 ρ(1− ρ)e−ε(ρ(x)+−x). From the last expression, it is

straightforward to verify that

ε
∑

x∈Z
Ẑ(0, y) ≤ C. (5.39)

Using this in conjunction with (5.1) and (5.2) yields

| Âdr(t, x)| ≤ C

ε
√
t + 1

≤ C (ε2t)−
1
2 , ε

∑

x∈�(t)

| Âdr(t, x)| ≤ C.

From these properties we deduce
[
Âdr(t)

2]
∗,t ≤ C. (5.40)

Next, apply Lemma 5.3 with f (t, y) = p(t − s − 1, x−μ− y) with the aid of (5.1)
to get

Âmg(t, x)
2 ≤

t−1∑

s=0

C ε2

(ε2(t − s))
1
2

∑

y∈�(s)

p(t − s − 1, x−μ − y)‖Ẑ(s, y)‖22n . (5.41)

Webound the sumover y ∈ �(s)byusing
∑

y | f1(y) f2(y)| ≤ (supy | f1(y)|)
∑

y | f2(y)|
for twodifference choices of ( f1, f2). For ( f1, f2) = (p, ‖Ẑ‖22n),weuse (5.1) and (5.36),
and for ( f1, f2) = (‖Ẑ‖22n,p), we use (5.35) and

∑
z p(t − s − 1, z) = 1. Taking the

minimum of the results from two cases gives
∑

y∈�(s)

p(t − s − 1, x−μ − y)‖Ẑ(s, y)‖22n

≤ C
( 1

(ε2(t − s))(ε2s)
1
2

∧ 1

(ε2(t − s))
1
2 (ε2s)

)
D̂(s). (5.42)

Set Ê(t) := sup[0,t]∩Z D̂(s). In (5.42), bound D̂(s) by Ê(t), and bound the remaining
integral by comparison to an integral. Inserting the result in (5.42), we obtain

Âmg(t, x)
2 ≤ C Ê(t)(ε−2t)−

1
2 . (5.43)

On the other hand, sum (5.41) over x ∈ �(t), using
∑

z p(t − s − 1, z) = 1 and (5.36).
We obtain

∑

x∈�(t)

Âmg(t, x)
2 ≤ C ε2

t−1∑

s=0
(ε2(t − s))−

1
2 (ε2s)−

1
2 Ê(t) ≤ C Ê(t). (5.44)

Combining (5.43)–(5.44) gives

Âmg(t, x)
2 ≤ C Ê(t)(ε2t)

1
2 . (5.45)

Inserting the bounds (5.40) and (5.45) into (5.38), we arrive at Ê(t) ≤ C + C∗ Ê(t)

(ε2t)
1
2 , for some fixed constant C∗ = C∗(n). Fix τ = τ(n) > 0 so that C∗δ

1
2 < 1

2 , we
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then have Ê(t) ≤ C , for all t ≤ τε−2. This conclude the desired moment bound (5.23)
on Ẑ(t, x).

We now turn to showing (5.24). Multiply both sides of (5.37) by ρ(1− ρ)ε− 1
2 to get

∥
∥Ẑ(t, x)− Ẑ(t, x)

∥
∥2
2n ≤ 2 Â2∇,dr + 2 Â2∇,mg, (5.46)

where Â∇,dr(t, x) := ∑
y∈Z(p(t, x − y) − p(t, x ′ − y))Ẑ(0, y), and Â∇,mg(t, x) :=

ρ(1− ρ)ε− 1
2 ‖(Zmg(t, x)− Zmg(t, x ′))‖2n . Using (5.39), in conjunction with (5.2) and

with (5.4), we bound

| Â∇,dr| ≤ C ε−1|x − x ′|2α(1 + t)−
1
2−α, | Â∇,dr| ≤ Cε−1(1 + t)−

1
2 .

Multiplying the results gives Â2∇,dr ≤ C |ε(x ′ − x)|2α(ε2t)−1−α . As for Â∇,mg, multi-

plying both sides of (5.33) by (ρ(1− ρ)ε− 1
2 )2, here we have

Â2∇,mg ≤|ε(x ′ − x)|2αC ε2
t−1∑

s=0

∑

y∈�(s)

(ε2(t − s))−
1
2−α

(
p(t − s − 1, x−μ − y) + p(t − s − 1, x ′−μ − y)

) ∥∥Ẑ(s, y)
∥∥2
2n .

Use (5.42) to bound the sum over y ∈ �(s), noting that D̂(s) ≤ C . Then estimate the
resulting sum over s ∈ [0, t − 1] by comparison to an integral. We obtain Â2∇,mg ≤
|ε(x ′ − x)|2αC (ε2t)− 1

2−α. Inserting this and the preceding bounds on Â2∇,dr into (5.46)
yields the desired result (5.24). 
�

An immediate consequence of Proposition 5.4 is the tightness of Z(ε−2·, ε−1·).
Corollary 5.5. (a) (Near stationary initial conditions) Under the same assumptions

in Proposition 5.4(a), The collection of processes {Z(ε−2·, ε−1·)}ε>0 is tight in
C([0,∞),C(R)).

(b) (Step initial conditions) Under the same assumptions in Proposition 5.4(b), The
collection of processes {ρ(1−ρ)√

ε
Z(ε−2·, ε−1·)}ε>0 is tight in C((0,∞),C(R)).

Proof. Given Proposition 5.4(a), Part (a) follows the Kolmogorov–Chentsov criterion
(see, e.g., [Kun97, Theorem 1.4.1]). We now turn to Part (b). The moment bounds from

Proposition 5.4(b) asserts that, the process Ẑ = ρ(1 − ρ)ε− 1
2 Z , when initiated from

t = ε−2δ, for small enough δ, satisfies the near stationary properties (4.27). This this
being case, from Part (a), we infer that {Ẑ(ε−2·, ε−1·)}ε>0 is tight in C(δ,∞,C(R)).
Since this holds for all small enough δ > 0, we conclude the desired result. 
�
5.2. Proof of Theorem 1.1*

5.2.1. Part (a): near stationary initial conditions Given the tightness result from
Corollary 5.5, it remains to show that the limit points are the mild solution of SHE.
We achieve this through martingale problems. Recall from [BG97] that, we say a
C([0,∞),C(R))-valued process Z(t, x) solves the martingale problem associated
with the SHE (4.23) if, for any given T < ∞, there exists C(T ) < ∞ such that

sup
t∈[0,T ]

sup
x∈R

e−|x |C(T )
E

[
Z2(t, x)

]
< ∞, (5.47)
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and if, for any φ ∈ C∞c (R), the processes Mφ(t) and Nφ(t), t ∈ R+,

Mφ(t) :=
( ∫

R

φ(x)Z(s, x)dx
)∣∣∣

s=t
s=0 −

ν∗
2

∫ t

0

∫

R

φ′′(x)Z(s, x)dsdx, (5.48)

Nφ(t) :=M2
φ(t)− D∗κ2∗

ν2∗

∫ t

0

∫

R

φ2(x)Z2(s, x)dsdx (5.49)

are local martingales. It is shown in [BG97] that any solution Z of the prescribed mar-
tingale problem is a solution14 of the SHE (4.23). Moreover, they show that there is a
unique such solution.

Hence, it suffices to show that any limit point of Z(ε−2·, ε−1·) solves the martingale
problem. As mentioned earlier, the major technical step occurs in establishing (5.49)
(i.e., the quadratic martingale problem), where we need self-averaging of the quadratic
variation. We now state the desired estimate on such self-averaging. To this end, recall
the expressions �1,�2 from (4.15) to (4.16), which are associated with the quadratic
variation of the martingale increment M in Proposition 4.1.

Proposition 5.6. Start the stochastic 6V model from near stationary initial conditions.
Given any fixed T < ∞, we have that, for all t ∈ [0, ε−2T ] ∩ Z, x� ∈ Z, and all ε > 0
small enough,

∥∥∥∥ε
2

t∑

s=0

(
ε−1�1�2 − 2b1ρ(1− ρ)

1 + b1
Z2

)
(s, x� − μεs + �μεs�)

∥∥∥∥
2

≤ ε
1
4C(T )eCε|x�|.

(5.50)

Remark 5.7. In (5.50), we compensate the space variable x� ∈ Z byμεs−�μεs� ∈ [0, 1)
to ensure the resulting variables is in �(s).

Remark 5.8. Proposition 5.6 demonstrates a self-averaging upon integrating over long
time interval, namely, the quadratic variation of the martingale M(t, x) subtracting the
leading order term (that is, a constant multiple of Z2), vanishes as ε → 0. This is
not obvious at all and is the linchpin of the analysis of the present paper. The remain-
der of this subtraction is given in Lemma 7.2, which consists of terms of the form

(ε− 1
2∇Z)(t, x1)Z(t, x2), and (ε− 1

2∇Z)(t, x1)(ε−
1
2∇Z)(t, x2) for x1 < x2. By the def-

inition of Z , see (4.26), ∇Z behaves as ε
1
2 Z , so these remainder terms seem to be of

the same order as the leading order term. Self-averaging is key to showing that they are,
in fact, of lower order. The proof of Proposition 5.6 is given in Sect. 7, which relies on
duality argument in Sect. 7 and estimates of two-point transition kernels given in Sect. 6.
The heuristic on how duality and estimates of transition kernels lead to the proof of such
a self-averaging is discussed in Appendix A with the simpler example of ASEP.

Postponing the proof of this proposition to Sect. 7, we now finish the proof of Theo-
rem 1.1*(a):

Proposition 5.9. Any limit point of {Z(ε−2·, ε−1·)}ε>0 solves the martingale problems
(5.48)–(5.49).

14 In fact this is a weak solution. But solving (4.23) in the weak and mild senses are equivalent as shown in
[BG97, Proposition 4.11].
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Proof. Fix a limit pointZ , and, after passing to a subsequence,weassume Z(ε−2·, ε−1·)
converges in distribution to Z . The condition (5.47) is readily verified from the moment
bounds in Proposition 5.4.

We now turn to verifying the condition (5.48), i.e., showing that Mφ is a local
martingale. To this end, fixing a test function φ ∈ C∞c (R), we consider the discrete,
microscopic analog of Mφ . Recall from (4.6) that p denote the one-step transition
kernel. Define the corresponding generator

(L f )(x) :=
∑

y∈�(t)

(
p(x − y)− 1{x+μ=y}

)
f (y), x ∈ �(t + 1). (5.51)

We now consider

Mφ(t) := ε
∑

x∈�(s)

φ(εx)Z(s, x)
∣∣∣
s=t
s=0 + ε

t∑

s=1

∑

x∈�(s)

φ(εx)
(
LZ(s − 1)

)
(x).

Recall the definition of M(t, x) from (4.13). From Proposition 4.1, we have

Mφ(t) = ε

t−1∑

s=0

∑

x∈�(s)

φ(εx)M(s, x).

Since M(s, x) is anF martingale increment (from Proposition 4.1), the process Mφ(t),
t ∈ Z≥0, is a martingale. Given the assume Z(ε−2·, ε−1·) ⇒ Z(·, ·), with the aid of
moment bounds from Proposition 5.4(a), it is standard (see for instance [CS18, proof
of Proposition 5.6]) to show that Mφ(ε−2·) ⇒Mφ(·), under the topology of uniform
convergence over bounded intervals in [0,∞). This concludes that Mφ(t) is a local
martingale. The factor ν∗ arises as the variance of the Brownian motion which is the
limit of the random walk R associated to the generator L. More precisely, from (4.6)
to (1.4)–(1.5), with bε

2 = e−
√

εb1, we calculate

Var(Rε) = μ2
ελεb1 +

∑

n≥1
(n − με)

2λε(1− b1)(1− bε
2)(b

ε
2)

n−1τ−nρε

= μ2
ελεb1 + λε(1− b1)(1− bε

2)τ
−ρ
ε

( μ2
ε

1− bε
2τ
−ρ
ε

− 2με + 1

(1− bε
2τ
−ρ
ε )2

+
2

(1− bε
2τ
−ρ
ε )3

)

−→ ν∗ = 2b1
1− b1

, as ε → 0. (5.52)

Here we used the fact that the sum over n multiplied by a factor (1 − bε
2τ
−ρ
ε )2 gives a

quantity that can be summed as geometric series.
The proof of (5.49) follows by a discrete-to-continuous scheme. Specifically, the

process

Mφ(t)− 〈Mφ〉(t), t ∈ Z≥0

is an F -martingale, where 〈Mφ〉(t) is the quadratic variation of Mφ(t), given by

〈Mφ〉(t) :=
t∑

s=1
E
[
(Mφ(s)− Mφ(s − 1))2

∣∣F (t)
]
.
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The major step here is to argue that 〈Mφ〉(t) is well-approximated by a discrete analog

of D∗κ2∗
ν2∗

∫ t
0

∫
R
(Z2φ2)(s, x)dsdx . To this end, using (4.14), we calculate 〈Mφ〉(t) as

〈Mφ〉(t) = ε2
t−1∑

s=0

( ∑

x,x ′∈�(s)

φ(εx)φ(εx ′)(b1e−
√

ε(1−ρ))|x−x ′|�1(t, x ∧ x ′)�2(t, x ∧ x ′)
)
.

With b1 < 1, the factor (b1e−
√

ε(1−ρ))|x−x ′| introduces an exponential decay in |x− x ′|.
Since φ ∈ C∞c (R), one can bound |φ(εx) − φ(εx ′)| by a constant times ε|x − x ′|, so
one can show that the previous expression is well-approximated by the corresponding
expressionwhereφ(εx)φ(εx ′) is replaced byφ2(ε(x∧x ′)). More precisely, letting Eε(t)
denote a generic process such that

lim
ε→0

sup
t∈Z∩[0,ε−2T ]

‖Eε(t)‖2 = 0, for any given T < ∞, (5.53)

the continuity of φ gives that

〈Mφ〉(t) = ε2
t−1∑

s=0

( ∑

x,x ′∈�(s)

φ2(ε(x ∧ x ′))(b1e−
√

ε(1−ρ))|x−x ′|�1(t, x ∧ x ′)�2(t, x ∧ x ′)
)

+ Eε(t).

With
∑

y∈Z(b1e−
√

ε(1−ρ))|y| = 1+b1e−
√

ε(1−ρ)

1−b1e−
√

ε(1−ρ)
→ 1+b1

1−b1 , we now have

〈Mφ〉(t)− 1 + b1
1− b1

ε2
t−1∑

s=0
ε

∑

x∈�(s)

ε−1�1(t, x)�2(t, x)φ
2(εx) = Eε(t). (5.54)

Further, fixing some large enough L < ∞ with supp(φ) ⊂ [−L , L], we have
∥∥∥ε2

t∑

s=0
ε

∑

x∈�(s)

(
ε−1�1�2 − 2b1ρ(1−ρ)

1+b1
Z2)(s, x)φ2(εx)

∥∥∥
2

=
∥∥∥ε

∑

x�∈Z
ε2

t∑

s=0

(
ε−1�1�2 − 2b1ρ(1−ρ)

1+b1
Z2)(s, x� + μεs − �μεs�)φ2(ε(x� + μεs − �μεs�))

∥∥∥
2

≤ C(L , φ) sup
x�∈[−εL ,εL]∩Z

∥∥∥ε2
t∑

s=0

(
ε−1�1�2 − 2b1ρ(1−ρ)

1+b1
Z2)(s, x� + μεs − �μεs�)

∥∥∥
2
.

The last expression, by Proposition 5.6, is bounded by C(T, L , φ)ε
1
4 , for all t ∈ Z ∩

[0, ε−2T ], for each fixed time horizon T < ∞. Consequently,

ε2
t∑

s=0
ε

∑

x∈�(s)

(
ε−1�1�2 − 2b1ρ(1−ρ)

1+b1
Z2)(s, x)φ2(εx) = Eε(t).

Inserting this into (5.54), together with

2b1ρ(1− ρ)

1 + b1

1 + b1
1− b1

= D∗κ2∗
ν2∗

,
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we now arrive at

〈Mφ〉(t)− D∗κ2∗
ν2∗

ε2
t−1∑

s=0
ε

∑

x∈�(s)

φ2(εx)Z2(s, x) = Eε(t). (5.55)

So far, we have only shown that the expression (5.55) converges to zero (in L2) point-
wise in t , (i.e., (5.53)). Given the moment bounds from Proposition 5.4, a standard
argument (see for instance [BG97, Section 4]) leverages such pointwise convergence to
convergence at process level, yielding

sup
t∈Z∩[0,ε−2T ]

∣∣
∣〈Mφ〉(t)− D∗κ2∗

ν2∗
ε2

t−1∑

s=0
ε

∑

x∈�(s)

Z2(s, x)φ2(εx)
∣∣
∣ −→P 0.

Given this, the rest of the proof is standard. We omit the details. 
�

5.2.2. Part (b): step initial condition Consider Ẑ(t, x) := ρ(1−ρ)√
ε

Z(t, x) under the

step initial condition N (0, x) = (x)+. From (4.4),

Ẑ(0, x) =
{

ρ(1−ρ)√
ε

e−
√

ε(1−ρ)x , for x ≥ 0,
ρ(1−ρ)√

ε
e−

√
ερx , for x < 0.

In particular ε
∑

x∈Z Ẑ(0, x) = ρ(1−ρ)√
ε

( 1
1−e−√ε(1−ρ)

+ e−
√

ερ

1−e−√ερ
) → 1. This together with

the exponential decay (in |x |) of Ẑ(0, x) shows that Ẑ(0, ε−1x) converges to δ(x). Given
this and the convergence result for near stationary initial conditions (i.e., part (a)), Part (b)
follows by a procedure of two-step convergence: first working on t ∈ [ε−2δ,∞) and
sending ε → 0 with δ > 0, and then sending δ → 0. This procedure is now standard,
and is carried out in [ACQ11, Section 3] for the ASEP, so we do not repeat the argument
here.

5.3. Proof of Theorem 1.8 Recall that Proposition 1.7 asserts an extension of the
stationary solution of the SBE to all values of t > −∞. We begin by giving this
construction.

Proof of Proposition 1.7. The construction of K follows a standard, Kolmogorov-type
argument. To begin with, given (1.22), we have that

(Hstat(t, ·)−Hstat(t, 0)
)
t≥0 =:

(K̃(t, ·))t≥0
is a stationary (in t ≥ 0) process. Consider the space X := ∏

R
C(R), endowed with

the product σ -algebra and with the product topology. For each t1 < . . . < tn ∈ R, we
define a probability distribution Pt1,...,tn on

∏
{t1,...,tn} C(R) given by that of

(
K̃(0, ·), K̃(t2 − t1, ·), . . . , K̃(tn − t1, ·)).

Thanks to the stationarity ofK(t, ·), the laws Pt1,...,tn are consistent among {t1 < . . . <

tn} ∈ R. Thus, the Kolmogorov extension theorem gives an X -valued process K̂(t, x),
such that, for any t0 ∈ R,

K̂(t − t0, ·) = Hstat(t, ·)−Hstat(t, 0), in finite dimensional (in t ∈ R) distributions.
(5.56)
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The next step is to further construct a continuous version of K̂. That is, aC(R,C(R))-
valued process that shares the same finite dimensional (in t) distributions as K̂(t, x).
To this end, for each n ∈ Z>0, we construct a C(R,C(R))-valued process Kn by
setting Kn(

i
2n , x) := K̂( i

2n , x), for i ∈ Z, and linearly interpolate in t . For such dyadic
approximations, given any fixed [t1, t2] × [x1, x2] := D ⊂ R

2, we have that

sup
(t,x)∈D

∣∣Kn(t, x)−Kn+m(t, x)
∣∣

≤ sup
{∣∣K̂(t, x)− K̂(s, x)

∣∣ : s, t ∈ [t1, t2] ∩ 2−(m+n)
Z, |t − s|

≤ 2−n, x ∈ [x1, x2]
}
.

AsHstat is continuous, with (5.56), we see that the r.h.s. converges to zero in distribution
(and hence converges to zero in probability) as (n,m) → (∞,∞). This being the
case, using the first Borel–Cantelli lemma, it is standard to construct a subsequence
of {Kn}n that is almost surely Cauchy in C(R,C(R)). The resulting limiting process
K ∈ C(R,C(R)) gives the desired continuous version of K̂. With K and Hstat both
being continuous, the desired property (1.23) follows from (5.56). 
�

We now prove Theorem 1.8.

Proof of Theorem 1.8. Recall the definition of ‖·‖C−1(R2),[−�,�]2 from (1.19). Referring
to (1.20), we see that Uε → U in C−1(R2), if and only if, for every fixed � ∈ Z>0,
‖Uε−U‖C−1(R2),[−�,�]2 → 0.With this in mind, we henceforward fix � ∈ Z>0. Further,
even though the relevant test functions in (1.19) have support in [−�, �]2, since both U
and stochastic Gibbs state are translation invariant in y, after a suitable translation, we
may assume without lost of generality that our test functions are supported in (x, y) ∈
[−�, �] × [0, 2�].

The next step is to translate the statement in Theorem 1.8 regarding the symmetric
6V model into the context of the stochastic 6V model so we can apply Theorem 1.1.
This is essentially done in Sect. 1.2.2 and the scalings of Definition 1.5, though we
quickly recall the main ideas here. Recall that, for a given (a, b, c)-symmetric 6V
model with � > 1, defining b1, b2 ∈ (0, 1) by the relation (1.11), the stochastic Gibbs
state SG(b1, b2; h, v) for the (a, b, c)-symmetric model is equivalent to the stationary
(b1, b2)-stochastic model. Here (h, v) ∈ (0, 1)2 is an one parameter family of param-
eters satisfying (1.15), and the corresponding stationary measure for the vertical lines
in the (b1, b2)-stochastic 6V model is the product Bernoulli measure

⊗
x∈ZBer(ρ) with

ρ := v. While for the symmetric model we have used coordinates (x, y) for the x and
y axes, for the stochastic model it was more natural to use (x, t) with y replaced by t
to represent the temporal axis. Moreover, we also wrote these coordinates as (t, x) with
time first and then space. The purpose of the shifting in y described above is to ensure
that t ≥ 0 for the stochastic model. This enables us to apply Theorem 1.1 with Bernoulli
initial data at time t = 0.

Recall from (1.16) to (1.17) that u(x, y) denotes the indicator of an incoming vertical
line, and that Uε is the corresponding empirical measure. Under the mapping between
the symmetric and stochastic models, the former becomes the occupation variable (2.2)

u(x, y) = 1{having a particle at (t=y,x)} = η(t, x).

Fix a function f ∈ C∞(R2) with support (x, y) ∈ [−�, �] × [0, 2�]. From here on
out, we will use the (t, x) coordinates, though the function f will consequently have
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arguments f (x, t) to stick with its original definition. The occupation variables can be
written in terms of the height function N (t, x) as η(t, x) := N (t, x) − N (t, x − 1).
Thus, we have

〈Uε, f 〉 = ε
5
2
∑

t,x∈Z

(
N (t, x)− N (t, x − 1)− ρ

)
f (ε−1x − μεε

−2t, ε−2t). (5.57)

In order to apply Theorem 1.1, we observe (as explained in Definition 1.5) that the
scaling in the statement of Theorem 1.8 was chosen precisely so that

b2/b1 = τ = e−2η = e−
√

ε and b1 = ζ

1 + ζ
∈ (0, 1) remains fixed.

We are thus in the scope of Theorem 1.1, from which we know that the centered scaled
height function

Ñ (t, x) := √
ε
(
Nε

(
ε−2t, ε−1x + μεε

−2t
)− ρ(ε−1x + μεε

−2t)− ε−2t log λε

)

converges to solution of KPZ equation with coefficients ν∗, κ∗, D∗ given by (1.7). With
(1.14) and our choice of (uε, ηε)withmatchingρ = v, these coefficients can be rewritten
in terms of ζ and v and precisely match those in (1.25).

Rewriting (5.57) in terms of Ñ instead of N , and apply summation by parts in x
yields (recalling the shifted integer lattice �(t) defined in (4.3) with μ = με)

〈Uε, f 〉 = ε2
∑

t∈ε2Z≥0

(
ε

∑

x∈ε�(t)

ε−1
(
Ñ (t, x)− Ñ (t, x − ε)

)
f (x, t)

)

= −ε2
∑

t∈ε2Z≥0

(
ε

∑

x∈ε�(t)

Ñ (t, x)
(
ε( f (x + ε, t)− f (x, t))

))
.

The last expression is indeed similar to 〈U , f 〉 defined in (1.24), with integrations re-
placed by sums, and derivative on f replaced by difference. Recall that N (t, x) is linearly
interpolated onto (t, x) ∈ R+×R to give a C(R+,C(R))-valued process. This being the
case, we further write

〈Uε, f 〉 = −
∫ ∞

0

∫

R

Ñ (t, x)∂x f (x, t)dxdt + Aε(t, x), (5.58)

where Aε(t, x) denotes a residue term with |Aε(t, x)| ≤ √
εC(�)(‖ f ‖∞ + ‖∂x f ‖∞).

Recall that the stochastic model starts from Bernoulli initial condition

(η(0, x))x ∼
⊗

x∈Z
Ber(ρ), N (0, x) :=

∑

y∈(0,x]
(η(0, y)− ρ).

It is standard to check that such an initial condition indeed satisfies the conditions in
Definition 4.4. Further, as ε → 0, we have Ñ (0, ·) ⇒√

ρ(1− ρ)B(·) in C(R), where
B denotes a standard Brownian motion. Given these properties, Theorem 1.1 asserts that

Ñ (·, ·) 	⇒ Hstat(·, ·), in C(R+,C(R)).
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By Skorokhod’s representation theorem, we further assume that this convergence holds
in probability under a suitable coupling of Ñ and Hstat, whereby

sup
t∈[0,2�]

sup
x∈[−�,�]

∣∣Ñ (t, x)−Hstat(t, x)| −→P 0. (5.59)

Recall that fδ(x, y) := f (δ−1x, y). Now, under the aforementioned coupling, take
the difference of (1.24) and (5.58), and replace f with fδ . This gives

∣∣〈Uε − U , fδ〉
∣∣ ≤ ‖∂x fδ‖∞ sup

t∈[0,2�]
sup

x∈[−�,�]
∣∣Ñ (t, x)−Hstat(t, x)|

+ C(�)ε
(‖∂x fδ‖∞ + ‖ fδ‖∞

)

= δ−1‖∂x f ‖∞ sup
t∈[0,2�]

sup
x∈[−�,�]

∣∣Ñ (t, x)−Hstat(t, x)|

+ C(�)ε
(
δ−1‖∂x f ‖∞ + ‖ f ‖∞

)
.

As this holds true for all f ∈ C∞(R2) with supp( f ) ⊂ [�, �] × [0, 2�], referring
to (1.19), we see that

‖Uε − U‖C−1(R2),[−�,�]2 ≤ sup
t∈[0,2�]

sup
x∈[−�,�]

∣∣Ñ (t, x)−Hstat(t, x)| + C(�)ε.

Taking ε → 0, we thus conclude ‖Uε−U‖C−1,[−�,�]2 →P 0. This being true for arbitrary
� ∈ Z>0, we conclude the desired result: dC−1(R2)(Uε,U) →P 0. 
�

6. Estimating the Two-Point Semigroup

Recall from (4.17) thatVε denotes the semigroup for the two-point functions of Z , where
we put ε in the notation of Vε to emphasize the dependence. In order to complete the
proof of Theorem 1.1*, it remains to prove Proposition 5.6. The proof will be carried
out in Sect. 7 with the aid of duality. Key to this proof is certain estimates on Vε and its
gradients, which are the subjects of this section.

Recall that ∇ f (x) := f (x + 1) − f (x) denotes discrete gradient. In the sequel we
use notation such as ∇x to highlight the variable on which the gradient acts. Recall
that Vε

(
(y1, y2), (x1, x2); t

)
is related to the stochastic 6V model only within the Weyl

chamber: x1 < x2 and y1 < y2. Thus, for expressions such as

∇x1Vε

(
(y1, y2), (x1, x2); t

) = Vε

(
(y1, y2), (x1 + 1, x2); t

)− Vε

(
(y1, y2), (x1, x2); t

)

to be relevant, we must impose an additional constraint x1 + 1 < x2. In this case we
say (x1, x2, y1, y2) is in the ∇-Weyl chamber, which is understood with respect to
whichever gradient is taken.

The goal of this section is to establish:

Proposition 6.1. For any α, T ∈ (0,∞), there exist constants C(α, T ),C(α) > 0 such
that

∣∣Vε

(
(y1, y2), (x1, x2); t

)∣∣ ≤ C(α, T )

t + 1
e
−α(|x1−y1 |+|x2−y2 |)√

t+1+C(α) ,

∣∣∇x jVε

(
(y1, y2), (x1, x2); t

)∣∣,
∣∣∇y jVε

(
(y1, y2), (x1, x2); t

)∣∣ ≤ C(α, T )

(t + 1)3/2
e
− α(|x1−y1 |+|x2−y2 |)√

t+1+C(α) ,

for all x1 < x2 ∈ �(t + s), y1 < y2 ∈ �(s), s, t ∈ [0, ε−2T ] ∩ Z, j = 1, 2, and
(x1, x2, y1, y2) in their respective Weyl or ∇-Weyl chamber.
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In proving Proposition 6.1, it is convenient to consider ‘small t’ and ‘large enough
t’ separately. More precisely, in the following we use the phrase for large enough t if
the referred statement holds for all t ≥ t0, for some generic threshold t0 < ∞ that may
change from line to line, but depends only on α and T . This is not to be confused with
the global assumption t ≤ ε−2T .

The case with t ≤ t0 is simple. Let us first settle it.

Proof of Proposition 6.1, the case with t ≤ t0 = t0(α, T ) Fix an arbitrary t0 < ∞,
and assume t ≤ t0 throughout the proof. Since (t + 1) is bounded away from zero and
infinity, it suffices to show

∣
∣Vε((y1, y2), (x1, x2); t)

∣
∣ ≤ C(t0)e

−1
C(t0)

(|x1−y1|+|x2−y2|)
. (6.1)

From this the desired estimates on |Vε| and |∇Vε| both follow.
Instead of directly proving this bound for Vε, let us first consider U and prove that

∣∣U((y1, y2), (x1, x2); t)
∣∣ ≤ C(t0)e

−1
C(t0)

(|x1−y1|+|x2−y2|)
. (6.2)

Recall fromProposition 3.5 thatU
(
(y1, y2), (x1, x2); t

) = P−−→
S6V

(
(y1, y2) → (x1, x2); t

)

denotes the transition probability of stochastic 6V particle system with two particles.
Here we will appeal to the probabilistic interpretation of U = P−−→

S6V
, and not rely upon

contour integral formulas. Let (x1(t) < x2(t)) ∈ Z
2 denote the time t locations of the

particles, starting from xi (0) = yi . To show (6.2), it suffices to show such a statement
with t = 1. To see this, observe that U

(
(y1, y2), (x1, x2); t

)
can be written as a t-fold

convolution of one-step transition probabilities. The convolution can be expanded into a
sum over all trajectories (x1(·), x2(·))with xi (0) = yi and xi (t) = xi . The contribution
to each trajectory can be bounded by t products of the one-step bound, leading to the

contribution Cte
−1
C (|x1−y1|+|x2−y2|) for some C > 0. (Note that the exponential terms

came from telescoping.) The total number of trajectories to sum over is upper-bounded
by

(|x1−y1|+t
t

)(|x2−y2|+t
t

)
which, for t < t0, is bounded by C(t0)|x1 − y1|t |x2 − y2|t .

Combining these two bounds and using that t < t0, we arrive at (6.2). The t = 1 version
of (6.2) is easy shown directly from the definition of the dynamics of the stochastic
6V model. Finally, recall that Vε is related to U through (4.22). Given that λε → 1,
με → 1, τε → 1, and t ≤ t0, the preceding bound on |U| immediately yields the desired
result (6.1). 
�

Having settled Proposition 6.1 for short time, we now turn to the case for large
enough t . For this we appeal to the contour integral representation, and analyze the
integrals therein. To begin with, referring back the expression (4.17), we decompose
Vε = Vfr

ε − Vin
ε into the difference of a ‘free part’ and an ‘interacting part’, where

Vfr
ε

(
(y1, y2), (x1, x2); t

) :=
2∏

i=1

∮

Cr
zxi−yi+(με t−�με t�)
i

Dε(t, zi )dzi
2π izi

, (6.3)

Vin
ε

(
(y1, y2), (x1, x2); t

) :=
∮

Cr

∮

Cr
zx2−y1+(με t−�με t�)
1 zx1−y2+(με t−�με t�)

2 Fε(z1, z2)

2∏

i=1

Dε(t, zi )dzi
2π izi

. (6.4)



1996 I. Corwin, P. Ghosal, H. Shen, L.-C. Tsai

Here Fε andDε are given by (4.18) and (4.9) under the weak asymmetry scaling. Recall
from (4.6) to (4.7) thatp(t, x)denotes the one-particle transition kernel. Comparing (6.3)
with (4.8), we see that Vfr

ε is exactly the product of one-particle transition kernels, i.e.,

Vfr
ε

(
(y1, y2), (x1, x2); t

) = p(t, x1 − y1)p(t, x2 − y2). (6.5)

Given this decomposition, we breakdown the proof of Proposition 6.1 into proving:

Proposition 6.2. For any α, T ∈ (0,∞) and t0 = t0(α, T ), there exist C(α, T ),C(α) >

0 such that

(a)
∣∣Vfr

ε

(
(y1, y2), (x1, x2); t

)∣∣ ≤ C(α, T )

t + 1
e
−α(|x1−y1|+|x2−y2 |)√

t+1+C(α) ,

(b)
∣∣∇x jV

fr
ε

(
(y1, y2), (x1, x2); t

)∣∣,
∣∣∇y jV

fr
ε

(
(y1, y2), (x1, x2); t

)∣∣≤ C(α, T )

(t + 1)3/2

e
−α(|x1−y1|+|x2−y2 |)√

t+1+C(α) ,

(c)
∣
∣Vin

ε

(
(y1, y2), (x1, x2); t

)∣∣ ≤ C(α, T )

t + 1
e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) ,

(d)
∣∣∇x jV

in
ε

(
(y1, y2), (x1, x2); t

)∣∣,
∣∣∇y jV

in
ε

(
(y1, y2), (x1, x2); t

)∣∣≤ C(α, T )

(t + 1)3/2

e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) ,

for all x1 < x2 ∈ �(t + s), y1 < y2 ∈ �(s), s ∈ [0, ε−2T ] ∩ Z, t ∈ [t0, ε−2T ] ∩ Z,
j = 1, 2, and (x1, x2, y1, y2) in their respective Weyl or ∇-Weyl chamber.

Note that in Proposition 6.2(c)–(d), the pairing of xi ’s and y j ’s is swapped compared
to Proposition 6.1. This arises naturally from the contour integral structure of Vin

ε , and
in fact gives a stronger bound than the one in the original pairing. To see this, under the
assumption x1 < x2 and y1 < y2, considering separately the four cases distinguished
by the signs of x1 − y1 and x2 − y2, we check that

|x1 − y1| + |x2 − y2| (++)= (x1 − y1) + (x2 − y2) = (x1 − y2) + (x2 − y1) ≤ |x1 − y2| + |x2 − y1|,
|x1 − y1| + |x2 − y2| (−−)= (y1 − x1) + (y2 − x2) = (y1 − x2) + (y2 − x1) ≤ |y1 − x2| + |y2 − x1|,
|x1 − y1| + |x2 − y2| (+−)= (x1 − y1) + (y2 − x2) ≤ (x2 − y1) + (y2 − x1) ≤ |x2 − y1| + |y2 − x1|,
|x1 − y1| + |x2 − y2| (−+)= (y1 − x1) + (x2 − y2) ≤ (y2 − x1) + (x2 − y1) ≤ |y2 − x1| + |x2 − y1|.

Throughout the rest of this section, we fix an exponent α ∈ (0,∞), a time horizon
T ∈ (0,∞), and assume t ≤ ε−2T is large enough. In the sequel we will frequently use
polar coordinates z = reiθ to parametrize complex numbers. Throughout this section
we will operator under convention θ ∈ (−π, π ].

6.1. Estimating the free part Vfr
ε Let us explain the strategy before starting the es-

timate. We plan to deform Cr × Cr to some suitable contours, along which we easily
extract the spatial exponential decay. To this end, for β ∈ R set

u(t, β) := exp
( β√

t+1+|β|C∗
)
. (6.6)
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We fixed the constant C∗ ∈ (0,∞) large enough so that u(t, β) ≥ exp(−1/C∗) ≥
1+b1
2 . This is to avoid the pole of Dε(t, z) (given in (4.9)) at z = b1e

√
ε(ρ−1). Now, let

sgn(x) := 1{x>0} denote the sign function, and let

ri = u(t,−sgn(xi − yi )α)

whereα ∈ (0,∞) is the parameter given in Proposition 6.2. Along the contour (z1, z2) ∈
Cr1 × Cr2 , we have the desired exponential decay:

|zi |xi−yi = exp
(− α|xi−yi |√

t+1+αC∗

)
.

Given the exponential decay, we still need to show that each of the remaining integrals
(for i = 1, 2)

∫ π

−π

|D(t, zi (θi ))| dθi

2π |zi (θi )|
are bounded by (t + 1)− 1

2C . This is achieved by steepest decent analysis. Under weak
asymmetry scaling, the function Dε(t, z) (given in (4.9)) reads

Dε(t, z) = z�με t�
( 1− b1e

√
ε(ρ−1)

b1 + e
√

ερ − b1e
√

ερ − b1e
√

ε(ρ−1)
b1 + (e

√
ερ − b1e

√
ερ − b1e

√
ε(ρ−1))z−1

1− b1e
√

ε(ρ−1)z−1
)t

.

(6.7)

As we show in Lemma 6.3 below, along the contour Cri , under the polar parametrization
zi = ri eiθi ,

• |Dε(t, zi (θi ))| has Gaussian decay in θi of the form exp(− 1
C θ2i (t + 1)) in a neigh-

borhood of θi = 0,
• |Dε(t, zi (θi ))| has an exponential decay in t of the form exp(− 1

C (t +1)) away from
θi = 0.

The first bullet point is done by Taylor expansion, and relies only on local properties of
Dε(t, zi ) and Cri near θi = 0. The second bullet point holds because of global properties
of D(t, zi ). More precisely, set

D∗(z) := b1z + 1− 2b1
1− b1/z

. (6.8)

Referring to the Definition (4.9) of Dε(t, z), with με → 1 as ε → 0, we have that

lim
(t,ε)→(∞,0)

|Dε(t, z)| 1t = |D∗(z)|, uniformly over z ∈ C1.

Now, with ri = u(t,±α) → 1 as t →∞, we see that the second bullet point holds only
if

|D∗(z)| < 1, ∀z ∈ C1 \ {1}. (SD.C1)
Conditions of the type (SD.C1) will turn out to be decisive in showing that steepest

decent analysis works. The condition (SD.C1) can be verified by interpreting D∗(z) as
a probability generating function E[zX ] of a random variable X . We will, instead, ver-
ify (SD.C1) (Lemma 6.3) by viewingD∗(z) as a rational function and directly calculating
its modulus along the unit circle C1. This approach has the advantage of generalizing to
the case for the interacting part Vin

ε .
We now begin the steepest-decent-like bound on |Dε(t, z)|.
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Lemma 6.3. Given any β ∈ R and T < ∞, there exists C(β, T ),C > 0 such that

|Dε(t, z)| ≤ C(β, T ) exp
(− 1

C θ2(t + 1)
)
, with z = u(t, β)eiθ ∈ Cu(t,β),

for all θ ∈ (−π, π ], large enough t ≤ ε−2T , and small enough ε > 0.

Proof. Our first step is to recognize Dε(t, z) as the t-th power of a given function. To
this end, referring to (4.9), observe that

Dε(z) := Dε(t, z)
1
t = z

�με t�
t λε

b1 + (1− b1 − bε
2)(τ

ρ
ε z)−1

1− bε
2(τεz)−1

.

Indeed,Dε(z) has a t-dependence through z
�με t�

t , but sinceμε → 1 as ε → 0, we expect
the t-dependence to be ‘weak’ and hence suppress it in notation. Due to the non-integer

power z
�με t�

t , the function Dε(z) is not meromorphic on C. However, since με → 1 as
ε → 0, there exists a fixed neighborhood O of z = 1, such that Dε(z) is analytic on
z ∈ O . Throughout the proof we will operate on O whenever we refer to the function
Dε(z).

As in the statement of Lemma 6.3, set z(θ) = u(t, β)eiθ . The proof follows a three-
step procedure:

(Zero θ ) Show that |Dε(z(0))| ≤ exp(C(β, T ) 1
t+1 ), for all t ≤ ε−2T large enough and

ε > 0 small enough. Note that the right hand side of this bound also ‘weakly’
depends on t for t sufficiently large.

(Small θ ) Show that there exists θ0 > 0, such that |Dε(z(θ))| ≤ |Dε(z(0))| exp(− θ2

C ),
for all |θ | ≤ θ0, and ε > 0 small enough.

(Large θ ) Show that |Dε(t, z(θ))| ≤ exp(− t
C ), for |θ | > θ0, t ≥ 0 large enough, and

ε > 0 small enough.

Once these have been established, withDε(t, z) = Dε(z)t , the desired result follows
immediately. Our task is hence to carry out the steps (Zero θ ), (Small θ ), and (Large θ ).

(Zero θ ): First, since the functionDε(z) is invoked here, let us check that the claimed
assumption z(0) ∈ O holds. Indeed,withu(t, β) → 1 as t →∞, we have that z(0) ∈ O ,
for all t large enough.

Recall that Rε := S′ε−με, and that S′ε is defined in (4.1)–(4.2) withμε = E(S′ε). One
readily checks that Dε(z) = z

�με t�
t −μεE[z−Rε ], z ∈ O . Given this, it is straightforward

to calculate

∂z
(
logDε(z)

) = �μεt�
t

− με − E[Rεz−Rε−1]
E[z−Rε ] , (6.9a)

∂2z
(
logDε(z)

) = E[Rε(Rε + 1)z−Rε−1]
E[z−Rε ] −

(
E[Rεz−Rε−1]

E[z−Rε ]
)2

, (6.9b)
∣
∣∂3z

(
logDε(z)

)∣∣ ≤ C, (6.9c)

for all z ∈ O . Using (6.9a)–(6.9c)we see that
∣∣∂z

(
logDε(z)

)|z=1
∣∣ ≤ t−1 and

∣∣∂2z
(
logDε

(z)
)|z=1

∣∣ ≤ C for some C > 0. Using this, along with logDε(1) = 0, we may Taylor
expand around z = 1 and bound

∣∣ logDε(z)
∣∣ ≤ t−1|z − 1| + C |z − 1|2. Now, set

z = z(0) = u(t, β), and use the fact that |u(t, β) − 1| ≤ C(β, T )(t + 1)−1/2 to bound
(after exponentiating)

|Dε(z(0))| ≤ exp
(
t−1|u(t, β)− 1| + C |u(t, β)− 1|2) ≤ exp

(
C(β, T ) 1

t+1

)
.
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(Small θ ): First, with u(t, β) → 1 as t → ∞, it is readily verified that there exists
a small enough θ0 > 0 such that the assumption z(θ) ∈ O holds for all |θ | ≤ θ0 and t
large enough. From (6.9a) to (6.9c), we calculate (recall ν∗ from (1.7))

∂θ (logDε(z(θ)))|θ=0 ∈ iR,

lim
ε→0

∂2θ (logDε(z(θ)))|θ=0 = −u(t, β)2 lim
ε→0

Var(Rε) ≤ − 1
C ν∗,

∣
∣∂3θ (logDε(z(θ)))

∣
∣ ≤ C.

Given these properties, Taylor expanding logDε(t, z(θ)) in θ around θ = 0 to the second
order yields

Re
[
logDε(t, z(θ))− logDε(t, z(0))

] ≤ − 1
C θ2, |θ | ≤ θ0,

for some fixed θ0 > 0. Further exponentiating this gives the desired result

∣
∣Dε(z(θ))

∣
∣ ≤ |Dε(z(0))|e− 1

C θ2 , ∀|θ | ≤ θ0,

and ε > 0 small enough.
(Large θ ): Recall the definition ofD∗(z) from (6.8).Withμε → 1 as ε → 0, referring

to the expression (6.7) for Dε(t, z), we readily verify that

lim
(t,ε)→(∞,0)

|Dε(t, z(θ))| 1t = |D∗(eiθ )|, uniformly over θ ∈ (−π, π ]. (6.10)

The r.h.s. of (6.10) leads us to want to show (SD.C1). To verify (SD.C1), we calculate
∣
∣D∗(eiθ )

∣
∣2 =

(
1 +

b1(w + w−1 − 2)

1− b1w−1
)(

1 +
b1(w−1 + w − 2)

1− b1w

)∣∣
∣
w=eiθ

= 1 +
(w + w−1 − 2)(2b1 + 2− (b21 + 1)(w + w−1))

|1− b1w|2
∣∣∣
w=eiθ

= 1− 4(1− cos θ)(1 + b1 − (1 + b21) cos θ)

|1− b1eiθ |2 < 1, ∀θ ∈ (−π, π ] \ {0}.

This calculation shows |D∗(eiθ )| < 1 − 1
C for |θ | > θ0. Combining with (6.10) gives

the desired result:

|Dε(t, z(θ))| 1t ≤ 1− 1
C , ∀|θ | > θ0,

for t ≤ ε−2T large enough, and ε > 0 small enough. 
�
Proof of Proposition 6.2(a)–(b). Given the expression (6.5), it suffices to analyze each
piece of p(t, xi− yi ). Wewill do son using the contour integral expression given in (4.8).
To begin with, we deform the contours Cr �→ Cr1×Cr2 , where ri := u(−sgn(xi − yi )α).
With ri ≥ 1+b1

2 as explained below (6.6), the deformation does not cross any pole, and
gives

p(t, xi − yi ) =
∮

Cri
zxi−yi+(με t−�με t�)
i

Dε(t, zi )dzi
2π izi

. (6.11)
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Along the new contour Cri , we have the desired exponential decay |zi |xi−yi = exp
( −

α|xi−yi |√
t+1+αC∗

)
. Hence, under the parametrization zi = ri eiθi , we have

∣∣p(t, xi − yi )
∣∣ ≤ e

−α(|xi−yi |)√
t+1+C(α)

∫ π

−π

|Dε(t, zi )|dθi

2πri
.

Now, using the bound on Dε(t, zi ) from Lemma 6.3, we have

∣∣p(t, xi − yi )
∣∣ ≤ C(α, T )e

−α(|xi−yi |)√
t+1+C(α)

∫

R

e−
1
C (t+1)θ2i dθi = C(α, T )e

−α(|xi−yi |)√
t+1+C(α)

1√
t + 1

.

(6.12)

Inserting this bound for i = 1, 2 into (6.5) yields desired estimate on |Vfr
ε |.

Turning to the gradients, since the expression (6.5) is symmetric in the indices i =
1, 2, without lost of generality we assume j = 1. Taking gradient∇x1,∇y1 in (6.5) gives

∇x1V = (∇p(t, x1 − y1))p(x1 − y1), ∇y1V = (−∇p(t, x1 − y1 − 1))p(x1 − y1).
(6.13)

Given this expression, it suffices to analyze ∇p(t, xi − yi ). To this end, take ∇ in (4.8)
to get

∇p(t, xi − yi ) =
∮

Cri
(zi − 1)

2∏

i=1
zxi−yi+(με t−�με t�)
i

Dε(t, zi )dzi
2π izi

.

With ri = u(t,±α), we have |z±i − 1| ≤ C(α)√
t+1

+ θi for zi = ri eiθ j . Using this bound and

the preceding procedure for bounding |p(t, xi − yi )|, we obtain
∣∣∇p(t, xi − yi )

∣∣ ≤ C(α, T )e
−α(|xi−yi |)√

t+1+C(α)

∫

R

( 1√
t + 1

+ θi

)
e−

1
C (t+1)θ2i dθi

= C(α, T )e
−α(|xi−yi |)√

t+1+C(α)
1

t + 1
.

(6.14)

Inserting (6.14) for i = 1 and (6.12) for i = 2 into (6.13) yields the desired bound on
∇x1V

fr
ε and ∇y1V

fr
ε . 
�

6.2. Estimating the interacting part Vin
ε , an overview In this subsection, we give an

overview of the
strategy for estimating Vin

ε . Compared to the estimate for Vfr
ε , the major difference

is that the expression Fε(z1, z2) introduces a pole during contour deformations. More
explicitly, under weak asymmetry scaling, Fε(z1, z2) (defined in (4.18)) reads

Fε(z1, z2) = 1 + e
√

ε(1−2ρ)z1z2 − (e−
√

ερ + e
√

ε(1−ρ))z2
1 + e

√
ε(1−2ρ)z1z2 − (e−

√
ερ + e

√
ε(1−ρ))z1

. (6.15)

This expression has a pole at z2 = pε(z1), where

pε(z) := (e
√

ε(ρ−1) + e
√

ερ)− e
√

ε(2ρ−1)z−1. (6.16)
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For the variable z1, we will devise a suitable contour �(t, ε), on a case-by-case basis
depending on the signs of x2 − y1. Starting with the expression (6.4), we deform the
contours in two steps. First, with z2 ∈ Cr being fixed, we deform the contour of z1:
Cr �→ �(t, ε). For the suitable �(t, ε) so constructed in the sequel, we will check that

no pole is crossed during the deformation z1 ∈ Cr �−→ �(t, ε), if r is large enough.
(No Pole)

In particular, here r must be so large that Cr contains pε(�(t, ε)). Next, for the z2-contour,
consider

r2 := u(t, sgn(x1 − y2)k2α), r ′2 := u(t, sgn(x1 − y2)2k2α), r ′′2 := u(t, sgn(x1 − y2)3k2α),

(6.17)

where k2 ∈ Z>0 is an auxiliary parameter, irrelevant for the general discussion in this
subsection. With z1 ∈ �(t, ε) being fixed, we shrink the contour of z2 from the large
circle Cr to Cr̃2(z1), where the radius r̃2(z1) depends on the location of pε(z1), given by

r̃2(z1) := 1{|pε(z1)|≤r ′2}(r2 ∨ r ′′2 ) + 1{|pε(z1)|>r ′2}(r2 ∧ r ′′2 ). (6.18)

That is, for a fixed z1 ∈ �(t, ε), we examine the location of pε(z1), and if it sits outside
of Cr ′2 , we shrink the large circle z2 ∈ Cr to a smaller circle with radius r2 ∧ r ′′2 ≤ r ′2,
otherwise shrink Cr to a circle with radius r2 ∨ r ′′2 > r ′2.

During the second deformation z2 ∈ Cr �→ C̃r2(z1), we cross a pole at z2 = pε(z1) if
r ′2 < |pε(z1)|. This is a simple pole from the term Fε(z1, z2), with

Res
z2=pε(z1)

Fε(z1, z2) =
(
e
√

ε(ρ−1) + e
√

ερ
)(pε(z1)

z1
− 1

)
.

Set

Hε(t, z) := Dε(t, z)Dε(t, pε(z)) (6.19)

J(z1) := zx2−y1+(με t−�με t�)
1 pε(z1)

x1−y2+(με t−�με t�)

= zx2−y1−1+(με t−�με t�)
1 pε(z1)

x1−y2+1+(με t−�με t�)

− zx2−y1+(με t−�με t�)
1 pε(z1)

x1−y2+(με t−�με t�). (6.20)

For each fixed z1 ∈ �(t, ε), applying the residue theorem to calculate the resulting
expression after the deformation z2 ∈ Cr �→ Cr̃2(z1), we have

Vin
ε = Vblk + Vres,

whereVblk andVres respectively contribute the ‘bulk’ and ‘residue’ parts of the deformed
integral:

Vblk :=
∮

�(t,ε)

(∮

C̃r2(z1)

zx2−y1+(με t−�με t�)
1 zx1−y2+(με t−�με t�)

2 Fε(z1, z2)
Dε(t, z2)dz2

2π iz2

)

Dε(t, z1)dz1
2π iz1

, (6.21)

Vres :=
∮

�(t,ε)
1{|pε(z1)|>r ′2}

(
e
√

ε(ρ−1) + e
√

ερ
)
J(z1)

Hε(t, z1)dz1
2π iz1pε(z1)

. (6.22)

The integral in (6.21) is iterated because r̃2(z1) depends on z1.
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Recall that |Fε(z1, z2)| = ∞ at z2 = pε(z1). By having r̃2(z1) as in (6.18), we avoid
the point z2 = pε(z1) in the integral (6.21). More precisely, from (6.18), together with
(6.6), we have that

|z2 − pε(z1)| ≥ (|r ′′2 − r ′2| ∧ |r ′2 − r2|) ≥ 1
C
√
t+1

, (z1, z2) ∈ �(t, ε)× C̃r2(z1).
(6.23)

(Alternatively, one could also fix the radius r̃2(z1) = r ′2 for the z2 contour. The resulting
integrand in (6.21) in this case has a singularity at z2 = pε(z1), which is integrable over
(z1, z2) ∈ �(t, ε) × Cr ′2 . Proceeding this way however, requires elaborated estimates
near the singularly jointly as (t, ε) varies. We avoid doing so by constructing r̃2(z1) in
such a way that (6.23) holds.)

The contour �(t, ε) needs be constructed in such a way that both Vblk and Vres
are controlled by steepest decent analysis. In particular, a steepest decent condition
analogous to (SD.C1) needs to hold here. To formulate the condition, assume that �(t, ε)
converges to a limiting contour �∗ as (t, ε) → (∞, 0). Given limε→0 pε(z) = 2− z−1
from (6.16), we define

H∗(z) := D∗(z)D∗(2− z−1) = b1z + 1− 2b1
1− b1z−1

b1(2− z−1) + 1− 2b1
1− b1/(2− z−1)

. (6.24)

The analogous steepest decent condition we must check here is

|D∗(z)| < 1 for all z ∈ �∗ \ {1}, |H∗(z)| < 1 for all z ∈ �∗ \ {1}.
Figure 7 shows the region in C where |D∗(z)| < 1 and where |H∗(z)| < 1, for

b1 = 0.7. In particular, we see that |H∗(z)| < 1 fails for a portion of the unit circle C1.
This being the case, we need to devise a different type of contour than the contour Cr1
used in the preceding subsection. We begin with a prototype

M := {z : |z − 1
2 | = 1

2 }.
This contour M satisfies the steepest decent condition

|D∗(z)| < 1 for all z ∈M \ {1}, |H∗(z)| < 1 for all z ∈M \ {1}, (SD.M)

which we verify now.
Proof of (SD.M) First, express D∗(z) and H∗(z) (defined in (6.8) and (6.24)) as

D∗(z) = b1z + 1− 2b1
1− b1z−1

= 1 +
b1z + b1z−1 − 2b1

1− b1z−1
.

H∗(z) = b1z + 1− 2b1
1− b1z−1

b1(2− z−1) + 1− 2b1
1− b1/(2− z−1)

= 1 +
2b1z + 2b1z−1 − 4b1

2− b1 − z−1

under the parametrization z(θ) := 1+eiθ
2 ∈ C̃, we calculate

∣∣
∣D∗

(1 + eiθ

2

)∣∣
∣
2 =

(
1 +

b1(w − 1)2

2(w + 1− 2b1)

)(
1 +

b1(w−1 − 1)2

2(w−1 + 1− 2b1)

)∣∣
∣
w=eiθ

= 1 +
b1(w − 2 + w−1)((2− 3b1)(w + w−1) + 4− 2b1)

|2(w−1 + 1− 2b1)|2
∣∣
∣
w=eiθ
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Fig. 8. The contourM′ and its parametrization

Fig. 9. The contourM′′ and its parametrization

= 1− b1(1− cos θ)(2− b1 + (2− 3b1) cos θ)

|(w−1 + 1− 2b1)|2 .

∣∣∣H∗
(1 + eiθ

2

)∣∣∣
2 =

(
1 +

b1(w − 1)2

(2− b1)w − b1

)(
1 +

b1(w−1 − 1)2

(2− b1)w−1 − b1

)∣∣∣
w=eiθ

= 1 +
4b1(1− b1)(w − 2 + w−1)

|(2− b1)w − b1|2
∣∣
∣
w=eiθ

= 1− 8b1(1− b1)(1− cos θ)

|(2− b1)eiθ − b1|2 . (6.25)

It is now readily checked that these expressions are strictly less than 1 for all θ ∈
(π, π ] \ {0} (and b1 ∈ (0, 1)), which gives exactly the desired properties. 
�

Even thoughM enjoys the desired property (SD.M), it cuts through the point z = 0.
This could cause issues, as the integrals (6.21)–(6.22) generally contain poles at z1 = 0.
To circumvent this problem, we consider modifications M′ and M′′ of M:

M′ =M′(u∗) := ∂
({|z| ≤ 1

} ∩ {|z − 1
2 | ≤ 1

2 + u∗
})

, (6.26)

M′′ =M′′(u∗) := ∂
({|z − 1

2 | ≤ 1
2

} ∪ {|z − u∗| ≤ 2u∗
})

, (6.27)
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counterclockwise oriented; see Figs. 8, 9. Here u∗ ∈ (0, 1
12 ∧ b1) is a parameter, which

we fix in Lemma 6.4 so that the resulting contours M′ and M′′ also enjoy the steepest
decent condition. We now verify the steepest decent condition forM′ and M′′.

Lemma 6.4. There exists u∗ ∈ (0, 1
12 ∧ b1) such that, for the contours M′(u∗) and

M′′(u∗) we have

|D∗(z)| < 1, |H∗(z)| < 1 z ∈M′ \ {1}, (SD.M′)

|D∗(z)| < 1, |H∗(z)| < 1 z ∈M′′ \ {1}. (SD.M′′)

Proof. We will show that for all small enough u > 0,

|D∗(z)| < 1, |H∗(z)| < 1 z ∈M′(u) \ {1},
|D∗(z)| < 1, |H∗(z)| < 1 z ∈M′′(u) \ {1}.

We begin with the statement for M′′(u). Indeed, this contour differs from M only
in the neighborhood O(3u) := {z ∈ C : |z| < 3u} of z = 0. This being the case, instead
of the entire contour M′′(u), we need only to consider the part M′′(u) ∩ O(3u). We
already know from (SD.M) that |D∗(0)| < 1 and |H∗(0)| < 1. It is readily checked
from (6.8) to (6.24) that D∗(z) and H∗(z) are continuous at z = 0, hence we see that
|D∗(z)| < 1, |H∗(z)| < 1 holds on z ∈M′′(u) ∩ O(3u) for all small enough u > 0.

We now turn to M′(u). Let us first analyze the local behaviors of D∗(z) and H∗(z)
near z = 1. Straightforward calculation gives

D∗(1) = 1, ∂zD∗(1) = 0, ∂2zD∗(1) = ν∗, H∗(1) = 1, ∂zH∗(1) = 0, ∂2zH∗(1) = 2ν∗,

so Taylor expansion of D∗(z) around z = 1 gives 1 + 1
2ν∗(z − 1)2 up the second order,

and Taylor expansion of H∗(z) around z = 1 gives 1 + ν∗(z − 1)2 up the second order.
The expression ν∗(z − 1)2 is real and negative along the vertical direction: z − 1 ∈ iR.
Since D∗(z) and H∗(z) are analytic in a neighborhood of z = 1, we have

∣∣D∗(z)
∣∣,

∣∣H∗(z)
∣∣ ≤ 1− 1

C |z − 1|2, ∀ z ∈ A,

where A := {z = veiφ : v ∈ [0, v0], |φ ± π
2 | ≤ φ0} is an ‘hourglass-shape’ region

centered at z = 1, and v0, φ0 > 0 are fixed. See Fig. 10. This property ensures that
|D∗|, |H∗| < 1 within A \ {1}, so instead of the entire contour M′(u), it suffices to
consider the part (M′(u) \A).

Instead of (M′(u) \A), let us first consider (M \A). Since the contour M passes

through the point z = 1 vertically, under the parametrization z(θ) = 1+eiθ
2 , the part

(M \A) avoids a neighborhood of θ = 0. This being the case, referring to the calcula-
tions (6.25), we see that

sup
z∈M\A

|D∗(z)| < 1, sup
z∈M\A

|H∗(z)| < 1.

Let dist(A, B) := inf{|z1 − z2| : z1 ∈ A, z2 ∈ B} denotes the distance of two sets
A, B ⊂ C. Referring to the Definition (6.26) of M′(u), we see that

lim
u→0

dist
(
(M \A), (M′(u) \A)

) = 0.
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Fig. 10. The hourglass-shape regionA

Further, it is readily verified (from (6.8) to (6.24)) that D∗ and H∗ are uniformly
continuous M. These properties together give

lim
u→0

(
sup

z∈M′(u)\A
|D∗(z)|

)
= sup

z∈M\A
|D∗(z)| < 1, lim

u→0

(
sup

z∈M′(u)\A
|H∗(z)|

)

= sup
z∈M\A

|H∗(z)| < 1,

which concludes the proof. 
�
In the following subsections we prove Proposition 6.2(c)–(d), namely establishing

the desired estimates on Vin
ε and its gradients. To this end, we treat separately the cases

distinguished by the signs of x2− y1 and x1− y2, which we refer to as the (+−), (−−),
and (++)-cases:

x2 − y1 > 0 and x1 − y2 ≤ 0, the (+−)-case;
x2 − y1 ≤ 0 and x1 − y2 ≤ 0, the (−−)-case;
x2 − y1 > 0 and x1 − y2 > 0, the (++)-case.

The (−+)-case (i.e., x2 − y1 ≤ 0 and x1 − y2 > 0) is irrelevant due the assumption
x1 < x2 and y1 < y2.

Let us introduce one more convention about Taylor expansion which will be used
in the subsequent arguments. Recall the assumption t ≤ ε−2T which ensures that ε ≤
C(T )(t+1)−1/2. At timeswewill Taylor expand expressions in the variables (

√
ε, 1√

t+1
).

In the course of doing so, we adopt the following ordering convention in light of the
aforementioned condition on ε.

Definition 6.5. To Taylor expand a given expression f (
√

ε, 1√
t+1

), we assign
√

ε the

order of (t + 1)−1/4. For example, Taylor expansion of f (
√

ε, 1√
t+1

) up to order 1√
t+1

reads

f (0, 0) + ∂1 f (0, 0)
√

ε + 1
2∂

2
1 f (0, 0)ε + ∂2 f (0, 0) 1√

t+1
.

6.3. Estimating the interacting part Vin
ε , the (+−)-case We begin by constructing the

contour�(t, ε). For the (+−)-case considered here,�(t, ε) is constructed as perturbation
ofM′. More precisely, recall the definition of u(t, β) from (6.6). For β ∈ R, set

M′(t, β) := ∂
({|z| ≤ u(t, β)} ∩ {|z − 1

2 | ≤ 1
2 }
)
, (6.28)
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Fig. 11. The contourM′(t, β) and its parametrization. The figure shows the case β < 0

counterclockwise oriented; see Fig. 11 and compare it with Fig. 8. Under these notation,
we set15

�(t, ε) :=M′(t,−k1α),

where k1 = k1(α, T ) ∈ Z>0 is an auxiliary parameter to be fixed later.
Hereafter we parametrize z1 = z1(θ1) ∈M′(t,−k1α) as depicted in Fig. 11. As for

the z2-contour, we fix k2 := 1 in (6.17). Recalling r̃2(z1) from (6.18), we parametrize
z2(θ) := r̃2(z1)eiθ2 ∈ C̃r2(z1).

The parameter k1 ∈ Z>0 is to ensures that

r ′2 ≥ pε(z1(0)) + 1√
t+1

∈ R. (6.29)

To see why this holds for large enough k1, recall from Definition 6.5 the announced
convention on Taylor expansion, and expand the expression r ′2−pε(z1(0)) = u(t, 2α)−
pε(u(t,−k1α)) in (

√
ε, 1√

t+1
) to the leading order in 1√

t+1
to get

z2(0)− pε(z1(0)) = 0 · √ε − ρ(1− ρ)ε + (k1+2)α√
t+1

+ . . . .

From this, together with ε ≤ C(T )√
t+1

under current assumptions, we see that the con-

dition (6.29) holds for a large enough k1 = k1(α, T ), and we fix such a k1 ∈ Z>0
hereafter.

The purpose of imposing the condition (6.29) is to control the region {z1 : |pε(z1)| >
r ′2}, as will be relevant toward controlling the integral Vres (6.22). Under the aforemen-
tioned parametrization z1 = z1(θ), the condition (6.29) ensures a lower bound on |θ1|
for which |pε(z1(θ))| > r ′2. That is,

|pε(z1(θ1))| > r ′2 holds only if |θ1| ≥ 1

C(α)(t + 1)1/4
. (6.30)

Proof of (6.30) Set f (θ1) := |pε(z1(θ1))| − r ′2. Our goal is to obtain a lower bound on

those |θ1| such that f (θ1) ≥ 0. Given the explicit expression pε(z1(θ1)) = e
√

ε(ρ−1) +
15 Here �(t, ε) does not depend on ε, but we keep this notation to be consistent throughout all cases.
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e
√

ερ−e√ε(2ρ−1)u(t, k1α)e−iθ1 , one readily checks that d
dθ1

f (0) = 0, and that | ddθ1
f (θ1)|

≤ C(α), for all (θ1, t, ε) ∈ (−π, π ]×Z≥0×(0, 1). Taylor expanding f (θ1) accordingly
as

f (θ1) = f (0) +
∫ θ1

0
(θ1 − θ) d

dθ
f (θ)dθ,

we see f (θ1) ≥ 0 only if f (0) + C(α)θ21 ≥ 0. Now, the condition (6.29) ensures that
f (0) ≤ − 1√

t+1
. From this we conclude (6.30). 
�

Recall that Hε(t, z) := Dε(t, z)Dε(t, pε(z)). Let us check that, along the contour
M′(t,−k1α), we do have the desired Gaussian decay of |Dε| and |Hε|.
Lemma 6.6. Given any T ∈ (0,∞) and β ∈ R,

∣
∣Dε(t, z)

∣
∣,

∣
∣Hε(t, z)

∣
∣ ≤ C(β, T ) exp(− θ2

C (t + 1)), z = z(θ) ∈M′(t, β),

for all θ ∈ (−π, π ], large enough t ≤ ε−2T , and small enough ε > 0.

Proof. The proof follows the same three-step procedure as the proof of Lemma 6.3.
Given the identities (6.9a)–(6.9c), the proof of the first two steps (Zero θ )–(Small θ )
follows the same argument via Taylor expansion as in Lemma 6.3, and we do not repeat
it here.

We now focus on establishing the last step (Large θ ). First, the contour M′(t, β)

converges, as t → ∞, to M′. More precisely, write zM′(t,β)(θ; t, β) and zM′(θ)

for the respectively polar parametrization as depicted in Figs. 8 and 11. We have
limt→∞ zM′(t,β)(θ; t, β) = zM′(θ), uniformly over θ ∈ (−π, π ]. This being the case,
from the given expressions (6.7)–(6.8), (6.19) and (6.24) ofDε(t, z),D∗(z), Hε(z), and
H∗(z), it is readily checked that

lim
t→∞

∣∣Dε(t, zM′(t,β)(θ))
∣∣
1
t = ∣∣D∗(zM′(θ))

∣∣,

lim
t→∞

∣
∣Hε(t, zM′(t,β)(θ))

∣
∣
1
t = ∣

∣H∗(zM′(θ))
∣
∣,

uniformly over θ ∈ (−π, π ]. The limiting expressions on the r.h.s. put us into the
considerations of the steepest decent condition (SD.M′), which has been verified in
Lemma 6.4. From this we conclude the desired conclusion: there exists t0 < ∞ such
that, for any given θ0 > 0,

∣
∣Dε(t, z)

∣
∣
1
t ≤ 1− 1

C(θ)
,

∣
∣Dε(t, z)

∣
∣
1
t ≤ 1− 1

C(θ)
, ∀z = zM′(t,β)(θ) ∈M′(t, β), |θ | ≥ θ0.


�
We have all the necessary ingredients for estimating Vin

ε .

Proof of Proposition 6.2(c)–(d), the (+−)-case, with large enough t The proof begins
with the contour deformation described inSect. 6.2. Let us check the condition (No Pole).
For a fixed z2 ∈ Cr , the integrand in (6.4) has poles in z1 = 0, z1 = e

√
ε(ρ−1)b1, and

pε(z1) = z2. Referring to the Definition (6.28) of M′(t,−k1α) (or Fig. 11), we see
that the first two poles are contained in M′(t,−k1α). As for the pole pε(z1) = z2, the
function pε(z) (defined in (6.16)) is uniformly bounded (in (ε, z)) away from z = 0.
This being the case, by making r large enough, we ensure that |pε(z1)| < r = |z2|
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throughout the contour deformation z1 ∈ Cr �→ M′(t,−k1α). Having checked the
condition (No Pole), we are now given the decomposition Vin

ε = Vblk +Vres. The proof
amounts to bounding Vblk and Vres, as well as their gradients.

We begin with Vblk (6.21). The proof consists of a sequence of bounds on terms ap-
pearing in the integrand (6.21). In the following we assume z1 = z1(θ1) ∈M′(t,−k1α)

and z2 = z1(θ2) ∈ C̃r2(z1).
(Vblk.z1) Show that |z1|x2−y1+με t−�με t� ≤ exp(− α|x2−y1|√

t+1+C(α)
):

Referring to the Definition (6.28) of M′(t,−k1α) (or Fig. 11), we see that
M′(t,−k1α) is contained in Cu(t,−k1α), so

|z1|x2−y1+με t−�με t� ≤ u(t,−k1α)|x2−y1| ≤ C(α)e
− α|x2−y1|√

t+1+C(α) .

(Vblk.z2) Show that |z2|x1−y2+με t−�με t� ≤ C(α) exp(− α|x1−y2|√
t+1+C(α)

):

Recall the current assumption x1− y2 ≤ 0. The power x1− y2 +μεt −�μεt�
would have a definitive sign (i.e., non-positive) if we offset it by −(μεt −
�μεt�). Since |z2| ≤ C(α) is bounded along its contour z2 ∈ C̃r2(z1), offsetting
the exponent costs only a factor of C(α):

|z2|x1−y2+με t−�με t� ≤ C(α)|z2|x1−y2 = C(α)|z2|−|x1−y2|.

Recall the definitions of the r2’s and of r̃2 from (6.17) to (6.18), and recall
that k2 := 1 here. We see that r̃2(z2) ≥ u(t, α), so

|z2|x1−y2+με t−�με t� ≤ C(α)u(t, α)−|x1−y2| ≤ C(α)e
−α|x1−y2 |√
t+1+C(α) .

(Vblk.Fε) Show that |Fε(z1, z2)| ≤ C(α)(1 + |θ1|
√
t + 1 + |θ2|

√
t + 1):

Recall the expression (6.15) of Fε, and rewrite it as

Fε(z1, z2) = 1 +
(
e
√

ε(ρ−1) + e
√

ερ
) z2/z1 − 1

z2 − pε(z1)
. (6.31)

Referring to the Definition (6.28) of M′(t,−k1α) (or Fig. 11), we see that
M′(t,−k1α) coincides with the circle Cu(t,−k1α) for small θ1, i.e., |θ1| ≤ φ∗1 ,
fixed φ∗1 > 0. Also z2(θ2) = r̃2(z1)eiθ2 = u(t, (2 ± 1)α)eiθ2 , where the ±
depends on whether pε(z1(θ1)) > r ′2 or not. Taylor expanding (z2/z1 − 1) in
θ1, θ2 then yields

|z2/z1 − 1| ≤ C(α)√
t+1

+ C(α)|θ2 − θ1|
≤ C(α)√

t+1
+ C(α)|θ1| + C(α)|θ2| (6.32)

for all θ1 and θ2 small enough. Further, since both |z1| and |z2| are bounded
away from 0 and∞ along their relevant contours, the bound (6.32) actually
extends to all values of θ1, θ2. Using (6.32) and (6.23) on the r.h.s. of (6.31),
we conclude the desired bound on |Fε(z1, z2)|.

(Vblk.Dε) Show that |Dε(zi )| ≤ C(α, T ) exp(− θ2i
C (t + 1)): This is the content of

Lemma 6.6.
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Expressing (6.21) as an integral over (θ1, θ2) ∈ (−π, π ]2, and inserting the bounds
from (Vblk.z1)–(Vblk.z1) into the resulting expression, we arrive at

|Vblk| ≤ C(α, T )

∫ π

−π

∫ π

−π

e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) (1 +
√
t + 1|θ1| +

√
t + 1|θ2|)e− 1

C (t+1)θ2i dθi .

Performing the change of variables
√
t + 1θi �→ θi , and extending the integration domain

to R2 (which only increases its value) we obtain the desired bound on |Vblk|:

|Vblk| ≤ C(α, T )e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α)
1

t + 1

∫

R2
(1 + |θ1| + |θ2|)e− 1

C θ2i dθi

= C(α, T )

t + 1
e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) .

As for Vres, the proof similarly consists of bounds on terms involved in the inte-
gral (6.22). In the following we always assume z1 = z1(θ1) ∈M′(t,−k1α).

(Vres. 1
z1pε

) Show that 1
|pε(z1)||z1| ≤ C(α):

Referring to the Definition (6.28) of M′(t,−k1α) (or Fig. 11), we see that
|z1| is bounded away from 0 and ∞ along M′(t,−k1α). This being the
case, referring to the Definition (6.16) of pε(z), we see that the same holds
for |pε(z1)|. Hence the claim follows.

(Vres.J) Show that 1{|pε(z1)|>r ′2}|J(z1)| ≤ exp(−α(|x2−y1|+|x1−y2|)√
t+1+C(α)

):

Recall from (6.20) that J(z1) consists of products of powers of z1 and pε(z1).
As argued in the previous step (Vres. 1

z1pε
), the terms |z1|, |z1|−1, |pε(z1)|,

|pε(z1)|−1 ≤ C(α) are bounded along M′(t,−kα1). This being the case,
we alter the powers in (6.20) by some fixed amount, at the cost of C(α), and
write

1{|pε(z1)|>r ′2}|J(z1)| ≤ C(α)1{|pε(z1)|>r ′2}|z1||x2−y1||pε(z1)|−|x1−y2|.

In the last expression, using |z1| ≤ u(t,−k1α) (as argued in (Vblk.z1)) and the
given constraint |pε(z1)| > r ′2 = u(t, 2α), we obtained the desired property:

1{|pε(z1)|>r ′2}|J(z1)| ≤ C(α)u(t,−k1α)|x2−y1|u(t, α)−|x1−y2|

≤ C(α)e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) .

(Vres.Hε) Show that |Hε(z1)| ≤ C(α, T ) exp(− θ21
C (t + 1)):

This is the content of Lemma 6.6.

Express (6.22) as an integral over θ1 ∈ (−π, π ], and insert the bounds from (Vres. 1
z1pε

)–
(Vres.Hε) into the resulting expression. This together the derived lower bound (6.30) on
|θ1| gives

|Vres| ≤ C(α, T )e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α)

∫

(−π,π ]
1{|θ1| ≥ 1

C(α)(t+1)1/4
}e− 1

C (t+1)θ21 dθ1.
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Extending the integration domain toR, and performing a change of variable
√
t + 1θ1 �→

θ1 yields

|Vres| ≤ C(α, T )e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α)
1√
t + 1

∫

R

1{|θ1| ≥ (t+1)1/4

C(α)
}e− 1

C θ21 dθ1.

Here, unlike in the case for Vfr
ε , we get

1√
t+1

instead of 1
t+1 in front of the integral. This

insufficiency is compensated by having the constraint |θ1| ≥ (t + 1)1/4/C(α). Indeed,
∫

R

1{|θ1| ≥ (t+1)1/4

C(α)
}e− 1

C θ21 dθ1 ≤ exp
(− 1

C(α)
(t + 1)1/4

)
,

and fractional exponentials such as exp(− 1
C(α)

(t + 1)1/4) decay faster than any power
(t + 1)−n . From this we conclude the desired bound on |Vres|:

|Vres| ≤ C(α, T )

t + 1
e
− α(|x2−y1|+|x1−y2 |)√

t+1+C(α) .

So far we have derived bounds on |Vblk| and |Vres|, and this concludes the proof of
Proposition 6.2(c). Part (d) amounts to performing similar estimates on the gradients,
e.g., |∇x jVblk| and |∇x jVres|. Taking a gradient merely introduces a factor of (z±j − 1)
in the contour integrals (6.21)–(6.22). It is straightforward to check that

|z±j − 1| ≤ 1√
t+1

+ |θ j |, z1 = z1(θ) ∈M′(t,−k1α), z2 = z2(θ) ∈ C̃r2(z1).
(6.33)

Incorporate this bound into the preceding analysis gives the desired bounds on the
gradients. Compared to the bounds on |Vblk| and |Vres|, an additional factor of 1√

t+1
arises due to (6.33). 
�
6.4. Estimating the interacting part Vin

ε , the (−−)-case The case considered here is
more involved than the (+−)-case: we face a conflict in the choice of the z1-contour. As
discussed in Sect. 6.2, in order to control the term Hε(t, z) in Vres by steepest decent
analysis, we favor contours of the type M′(t, β). On the other hand, with x2 − y1 ≤
0 under current assumptions, we need |z1| > 1 in Vblk to obtain the desired spatial
exponential decay exp(− α|x2−y1|√

t+1+C(α)
). Referring to the Definition (6.28) ofM′(t,−k1α)

(or Fig. 11), we see that |z1| > 1 fails for a portion of M′(t, β), regardless of the sign
of β—i.e., the bulk part Vblk and the residue part Vres favor different contours.

In view of the preceding discussion, we choose

�(t, ε) := Cu(t,3α),

which is preferred for controlling Vblk but not Vres, and then, re-deforming contour
Cu(t,3α) �→M′(t, 3α) in Vres. Let us check that doing so does not cross a pole.

Lemma 6.7. For all t > 0 large enough and ε > 0 small enough, we have Vres = V′res,
where

V′res :=
∮

M′(t,3α)

1{|pε(z1)|>r ′2}J(z1)
1

z1pε(z1)
Hε(t, z1)dz1 (6.34)

is the same as Vres except the contour is replaced by M′(t, 3α).
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Fig. 12. The region G(t)

Proof. Referring to the Definition (6.28) of M′(t, 3α) (or Fig. 11), we see that the
difference Cu(t,3α) −M′(t, 3α) is the boundary of the crescent

G(t) := {
z ∈ C : |z| ≤ u(t, 3α)

} \ {z ∈ C : |z − 1
2 | < 1

2 + u∗
}
.

See Fig. 12. We write ∂G(t) for the boundary, counterclockwise oriented. This gives

Vres − V′res =
e
√

ε(ρ−1) + e
√

ερ

2π i

∮

∂G(t)
1{|pε(z1)|>r ′2}J(z1)

1

z1pε(z1)
Hε(t, z1)dz1.

Along ∂G(t), the indicator 1{|pε(z1)|>r ′2} is in fact irrelevant. More precisely, setting

H(t, ε, β) := {|pε(z)| ≤ u(t, β)}, (6.35)

let us check that

given any β ∈ R and u > 0, H(t) ⊂ {|z − 1
2 | ≤ 1

2 + u
}
, (6.36)

for all t large enough and ε small enough. Referring to the Definition (6.16) of pε(z), we
have limε→0 pε(z) := p∗(z) = 2−z−1. ConsiderH∗ := {z ∈ C : |p∗(z)| ≤ 1}, which is
the (t, ε) → (∞, ε) limit ofH(t, ε, β). Indeed, along the contourM := 1

2 +C 1
2
,we have

|zp∗(z)| = 2|z− 1
2 | = 1 and |z| > 1 except when z = 1. Consequently,M∩H∗ = {1}.

Also, it is readily checked that 1
2 ∈ H∗ and thatH∗ is connected. From these properties,

we deduce thatH∗ ⊂ {|z− 1
2 | ≤ 1

2 }. SinceH∗ is the (t, ε) → (∞, 0) limit ofH(t, ε, β),
for all t large enough and ε small enough, the claim (6.36) follows.

Given (6.36), we drop the indicator 1{|pε(z1)|>r ′2} and write

V′res − Vres = e
√

ε(ρ−1) + e
√

ερ

2π i

∮

∂G(t)

J(z1)

z1pε(z1)
Hε(t, z1)dz1.
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Our goal is to show that the integral is zero. To this end, set qε(z) := zpε(z) := (e
√

ερ +
e
√

ε(ρ−1))z − e
√

ε(2ρ−1), recall the Definition of J(z1) from (6.20), that Hε(t, z1) :=
Dε(t, z1)Dε(t, pε(z1)), and recall the definition of Dε(t, z) from (4.9). We express the
integrand of the last integral as

J(z1)

z1pε(z1)
Hε(t, z1) =

(
z(x2−y1)−(x1−y2)−2+(με t−�με t�)
1

− z(x2−y1)−(x1−y2)+(με t−�με t�)
1

)
qε(z1)

x1−y2−1+�με t�,
(
λε

( z1b1 + (1− b1 − bε
2)τ

−ρ
ε

z1 − bε
2τ
−ρ
ε

))t(
λε

(pε(z1)b1 + (1− b1 − bε
2)τ

−ρ
ε

pε(z1)− bε
2τ
−ρ
ε

))t
.

(6.37)

It suffices to check that this expression has no poles within z1 ∈ G(t). The assumption
x1 < x2 and y1 < y2 ensures that (x2− y1)− (x1− y2) ≥ 2. Thus, the expression (6.37)
can only have poles at q−1ε (0), bε

2τ
−ρ
ε , or p−1ε (bε

2τ
−ρ
ε ). With bε

2 → b1, τε → 1, and
pε(z) → 2− z−1, we have

q−1ε (0) −→ 1
2 , bε

2τ
−ρ
ε −→ b1, p−1ε (bε

2τ
−ρ
ε ) −→ 1

2−b1 , as ε → 0.

Referring to Fig. 12, we see that 1
2 , b1, and

1
2−b1 , all sit strictly outside of G(t). Conse-

quently, no poles enter into G(t) as long as t > 0 is large enough and ε > 0 is small
enough. 
�

Having introduced the contours Cu(t,3α) andM′(t, 3α), hereafter we write z1(θ1) =
u(t, 3α)eiθ1 ∈ Cu(t,3α), and write z̃1(θ1) ∈ M′(t, 3α) for the parametrization depicted
in Fig. 11.

To controlVres in the following, similarly to the (+−)-case done previously, we need
the analogous condition (6.29) to hold:

r ′2 ≥ pε(̃z1(0)) + 1√
t+1

∈ R. (6.29’)

We achieve this by making the auxiliary parameter k2 ∈ Z>0 in (6.17) large enough.
Recall from Definition 6.5 the announced convention on Taylor expansion, and expand
the expression r ′2 − pε(̃z1(0)) = u(t, 2k2α)− pε(u(t, 3α)) in (

√
ε, 1√

t+1
) to the leading

order in 1√
t+1

to get

z2(0)− pε(̃z1(0)) = 0 · √ε − ρ(1− ρ)ε + (k2−3)α√
t+1

+ . . . .

With ε ≤ C(T )√
t+1

, from the expansion we see that (6.29’) does hold for some large enough

k2 = k2(α, T ), and we fix such a k2 ∈ Z>0 hereafter. Given this condition, following
the same procedure of deriving (6.30) as in the (+−)-case, here we have

|pε(̃z1(θ1))| > r ′2 holds only if |θ1| ≥ 1

C(α)(t + 1)1/4
. (6.30’)

Proof of Proposition 6.2(c)–(d), the (−−)-case, with large enough t The proof begins
with the contour deformation described in Sect. 6.2. The condition (No Pole) is checked
the same way as in the (+−)-case, which gives the decomposition Vin

ε = Vblk + Vres.
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We next perform the aforementioned re-deformation Cu(t,3α) �→ M′(t, 3α) in Vres.
Lemma 6.7 ensures that no pole is crossed during this step, giving Vin

ε = Vblk + V′res.
The proof amounts to bounding Vblk, V′res, and their gradients. We begin with Vblk,

given by the integral expression (6.21). In the following we check a sequence of bounds
on terms involved in (6.21), and we always assume z1 = z1(θ1) ∈ Cu(t,3α) and z2 =
z1(θ2) ∈ C̃r2(z1) in the course of doing so.

(Vblk.z1) Show that |z1|x2−y1+με t−�με t� ≤ exp(− α|x2−y1|√
t+1+C(α)

):

This is so because |z1| = u(t, 3α) and x2− y1 ≤ 0 under current assumptions.
(Vblk.z2) Show that |z2|x1−y2+με t−�με t� ≤ C(α) exp(− α|x1−y2|√

t+1+C(α)
):

With k2 ≥ 1 andwith r̃2 defined in (6.18), we have |z2| ≥ u(t, k2α) ≥ u(t, α).
This and the assumption x1 − y2 ≤ 0 gives the desired claim.

(Vblk.Fε) Show that |Fε(z1, z2)| ≤ C(α)(1 + |θ1|
√
t + 1 + θ2

√
t + 1):

This is established by the same argument as in the (+−)-case.We do not repeat
it here.

(Vblk.Dε) Show that |Dε(zi )| ≤ C(α, T ) exp(− θ2i
C (t + 1)):

This is the content of Lemma 6.3.

Given (Vblk.z1)–(Vblk.Dε), the desired bound on Vblk follows by inserting the bounds
into (6.21), and integrating the result. The procedure is the same as the (+−)-case, and
we do not repeat it here.

We now turn to Vres. In the following we always assume z̃1 = z̃1(θ1) ∈M′(t, 3α).

(V′res. 1
z1pε

) Show that 1
|pε (̃z1 )̃z1| ≤ C(α):

Referring to the Definition (6.28) ofM(t, 3α) (or Fig. 11), we see that |̃z1| is
bounded away from 0 and∞ alongM′(t, 3α). This being the case, referring
to the Definition (6.16) of pε(z), the same holds for |pε(̃z1)|.

(V′res.J) Show that |J(̃z1)| ≤ C(α) exp(−α(|x2−y1|+|x1−y2|)√
t+1+C(α)

):

Recall from (6.20) that J(z1) consists of products of powers of z̃1 and
pε(̃z1). As argued in the previous step (V′res. 1

z1pε
]) , the terms |̃z1|, |̃z1|−1,

|pε(̃z1)|, |pε(̃z1)|−1 ≤ C(α) are bounded along M′(t, 3α). This being the
case, we alter the powers (6.20) in by some fixed amount, at the cost ofC(α),
and write

|J(̃z1)| ≤ C(α)|̃z1|−|x2−y1||pε(̃z1)|−|x1−y2|.

Set n1 := |x2 − y1| and n2 := |x1 − y2|. Instead of bounding |̃z1|−n1 and
|pε(̃z1)|−n2 separately, here we need to ‘bundle’ part of them together. The
assumption y1 < y2, x1 < x2 in the (−−)-case yields n2 > n1. Given this,
we write

|J(̃z1)| ≤ C(α)|̃z1|−n1 |pε(̃z1)|−n2 = C(α)|̃z1pε(̃z1)|−n1 |pε(̃z1)|−(n2−n1).

We claim that, for all t ≤ ε−2T large enough and ε > 0 small enough,

|̃z1pε(̃z1)| ≥ u(t, α), |pε(̃z1)| ≥ u(t, 2α), z̃1 ∈M′(t, 3α). (6.38)

Once these bounds are established, it follows that

|J(̃z1)| ≤ C(α)u(t, α)−n1u(t, 2α)−(n2−n1) ≤ C(α)e
− 2αn1√

t+1+C(α) e
− α(n2−n1)√

t+1+C(α) .
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This concludes the desired bound on |J(̃z1)|, and it hence suffices to verify
the claim (6.38).
Recall from (6.28) that M′(t, 3α) is given by Cu(t,3α) near z = 1, and the
rest by M̃ := {|z− 1

2 | = 1
2 + u∗}. With this in mind, let us check the bounds

separately on Cu(t,3α) and M̃.
We begin with Cu(t,3α). Adopt the parametrization Cu(t,3α) ( z̃1(θ1) =
u(t, 3α)eiθ1 and write

z̃1pε(̃z1) = u(t, 3α)eiθ1(e
√

ερ + e
√

ε(ρ−1))− e
√

ε(2ρ−1), (6.39)

pε(̃z1) = (e
√

ερ + e
√

ε(ρ−1))− e
√

ε(2ρ−1)u(t,−3α)e−iθ1 . (6.40)

As θ1 varies, the r.h.s. of (6.39)–(6.40) trace out circles, denoted by C̃(t, ε)
and C̃′(t, ε) respectively. The circle C̃(t, ε) is centered at a point in (−∞, 0).
For such circles, the nearest point to the origin occurs at the right-end. This
gives

inf
z̃1∈Cu(t,3α)

|̃z1pε(̃z1)| = u(t, 3α)(e
√

ερ + e
√

ε(ρ−1))− e
√

ε(2ρ−1).

A similarly geometric reasoning gives

inf
z̃1∈Cu(t,3α)

|pε(̃z1)| = (e
√

ερ + e
√

ε(ρ−1))− e
√

ε(2ρ−1)u(t,−3α).

To bound the r.h.s., under the convention announced in Definition 6.5, we
Taylor expand the r.h.s. in (

√
ε, 1√

t+1
) up to the leading order in 1√

t+1
to get

u(t, 3α)(e
√

ε(ρ−1) − e
√

ε(ρ−1))− e
√

ε(2ρ−1)

= 1 + 0 · √ε + ρ(1− ρ)ε + 3α√
t+1

+ . . . ,

(e
√

ε(ρ−1) − e
√

ε(ρ−1))− e
√

ε(2ρ−1)u(t,−3α)

= 1 + 0 · √ε + ρ(1− ρ)ε + 3α√
t+1

+ . . . .

From this, together with ε ≤ C(T )√
t+1

(because t ≤ ε−2T ), we see that the

desired bounds |̃z1pε(̃z1)| ≥ u(t, α), |pε(̃z1)| ≥ u(t, 2α) hold on Cu(t,3α),
for all large enough t ≤ ε−2T and small enough ε > 0.
We now turn to M̃. Recall that p∗(z) := 2 − z−1 denotes the ε → 0
limit of pε(z). Along the contour M̃ := {|z − 1

2 | = 1
2 + u∗} we have

|zp∗(z)| = 1 + 2u∗ > 1. This being the case, the bound |̃z1pε(̃z1)| ≥ u(t, α)

holds on M̃ for large enough t . The other bound |pε(̃z1)| ≥ u(t, 2α) follows
from (6.36).

(V′res.Hε) Show that |Hε(̃z1)| ≤ C(α, T ) exp(− θ21
C (t + 1)):

This is the content of Lemma 6.6.
Given (V′res. 1

z1pε
])–(V′res.Hε), and the derived constraint (6.30’) on |θ1|, the desired

bound on Vres follows the same integration procedure as the (+−)-case.
As for the gradient, similarly to the (+−)-case, here we have

|z±j − 1| ≤ 1√
t+1

+ |θ j |, z1 = z1(θ) ∈ Cu(t,3α) or M′(t, 3α), z2 = z2(θ) ∈ C̃r2(z1).
(6.33’)

Incorporate this bound into the preceding analysis gives the desired bounds on the
gradients. 
�
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Fig. 13. The contourM′′(t, ε, β) and its parametrization

6.5. Estimating the interacting partVin
ε , the (++)-case Before heading to the construc-

tion of �(t, ε), we begin with some general discussion that motivates the construction.
As it turns out, the analysis of the residue part Vres favors contours of the type:

N (t, ε, β) :=
{∣∣∣z − e

√
ε(2ρ−1)

e
√

ερ + e
√

ε(ρ−1)
∣∣∣ = u(t, β)

e
√

ερ + e
√

ε(ρ−1)
}
. (6.41)

First, it is readily checked that N (t, ε, β) is the u(t, β)-level set of |zpε(z)|, i.e.,
N (t, ε, β) = {|zpε(z)| = u(t, β)

}
.

This property is useful toward extracting the spatial exponential decay exp(−
α(|x2−y1|+|x1−y2|)√

t+1+C(α)
) fromVres. Further,N (t, ε, β) is itself a circle, and, as (t, ε) → (∞, 0),

converges to M := {|z − 1
2 | = 1

2 }. With M satisfying the steepest decent con-
dition (SD.M), it is conceivable that Hε(t, z1) will be controlled along the contour
N (t, ε, β).

However, if we choose �(t, ε) to beN (t, ε, β) (with β ∈ R), for all ρ > 1
2 , the first

stage of contour deformation Cr �→ �(t, ε) will inevitably cross a pole at pε(z1) = z2
no matter how large r is. To avoid this issue, we consider a modificationM′′(t, ε, β) of
N (t, ε, β). This modification is similar to how we modified M to get M′′. Recall that
u∗ > 0 is a fixed parameter in the definition ofM′ andM′′ (see (6.26)–(6.27)). We set

M′′(t, ε, β) := ∂
({|z − u∗| ≤ 2u∗

} ∪
{∣∣∣z − e

√
ε(2ρ−1)

e
√

ερ + e
√

ε(ρ−1)
∣∣∣ ≤ u(t, β)

e
√

ερ + e
√

ε(ρ−1)
})

,

(6.42)

counterclockwise oriented. See Fig. 13.
We now define the z1-contour

�(t, ε) :=M′′(t, ε,−k1α).

As for the z2-contour, we fix k2 := 1 in (6.17). Recall the definition of r̃2(z1) from (6.18),
we parametrize z2(θ) := r̃2(z1)eiθ2 ∈ C̃r2(z1).

The auxiliary parameter k1 = k1(α) ∈ Z≥2 is in place for technical purpose. We
delay specifying k1, and first explain the contour deformation we need here. Similar
to the (−−)-case, here we need a re-deformation M′′(t, ε,−k1α) �→ N (t, ε,−k1α)

for Vres. As explained earlier, the analysis of Vres favors the contour N (t, ε,−k1α).
Unfortunately, we could not have chosen �(t, ε) to be N (t, ε,−k1α) in the first place,
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because the bulk partVblk is sensitive to crossing z1 = 0 (due to the pole at pε(z1) = z2).
On the other hand, Vres is not. We utilize this fact to deliver the desired contour to Vres
via re-deformation. Let us verify that re-deformation for Vres does not cross a pole.

Lemma 6.8. For all t > 0 large enough and ε > 0 small enough, we have Vres = V′res,
where

V′′res :=
∮

N (t,ε,−k1α)

1{|pε(z1)|>r ′2}
(
e
√

ε(ρ−1) + e
√

ερ
)
J(z1)

Hε(t, z1)dz1
2π iz1pε(z1)

(6.43)

is the same as Vres except the z1-contour is replaced by N (t, ε,−k1α).

Proof. Referring to the Definitions (6.41)–(6.42) ofN (t, ε,−k1α) andM′′(t, ε,−k1α)

(see also Fig. 13), we see that the difference N (t, ε,−k1α) −M′′(t, ε,−k1α) is the
boundary of the crescent

G(t, ε) := {
z ∈ C : |z − u∗| ≤ 2u∗

} \
{∣∣∣z − e

√
ε(2ρ−1)

e
√

ερ + e
√

ε(ρ−1)
∣∣∣ ≤ u(t,−k1α)

e
√

ερ + e
√

ε(ρ−1)
}
.

See Fig. 14. With ∂G(t, ε) denoting the boundary, counterclockwise oriented, we have

Vres − V′′res =
e
√

ε(ρ−1) + e
√

ερ

2π i

∮

∂G(t,ε)
1{|pε(z1)|>r ′2}J(z1)

1

z1pε(z1)
Hε(t, z1)dz1.

Recall that p∗(z) = 2− z−1 denotes the ε → 0 limit of pε. Since G(t, ε) ⊂ {|z| ≤ 3u∗}
and u∗ < 1

12 , on G(t, ε) we have |p∗(z)| ≥ |z|−1 − 2 ≥ 2. Consequently, |pε(z)| > r ′2,
z ∈ z ∈ G(t, ε), for all t > 0 large enough and ε > 0 small enough. We hence drop the
indicator 1{|pε(z1)|>r ′2} and write

Vres − V′′res =
e
√

ε(ρ−1) + e
√

ερ

2π i

∮

∂G(t)

J(z1)

z1pε(z1)
Hε(t, z1)dz1.

It suffices to check that the integrand J(z1)
z1pε(z1)

Hε(t, z1) has no poles within z1G(t, ε).
This was carried out in the proof of Lemma 6.7 already. There we found that the ε → 0
limit of the poles occurs at 1

2 , b1, and 2− b1. With u∗ < 1
12 ∧ b1, these points sit strictly

outside of G(t, ε) for all t > 0 large enough and ε > 0 small enough. Hence, no poles
of J(z1)

z1pε(z1)
Hε(t, z1) enters G(t, ε), as long as t > 0 is large enough and ε > 0 is small

enough. 
�
Having introduce the contoursM′′(t, ε,−k1α) andN (t, ε,−k1α), hereafterwewrite

z1(θ1) ∈M′′(t, ε,−k1α) for the parametrization depicted in Fig. 13, and write z̃1(θ1) ∈
N (t, ε,−k1α) for the parametrization give in (6.41). We now turn to the auxiliary
parameter k1 = k1(α) ∈ Z≥2. Similar to previous cases, the parameter k1 is chosen
large enough to ensure that

r ′2 = u(−2α) ≥ pε(̃z1(0)) + 1√
t+1

∈ R.

Such a condition holds for a large enough k1 = k1(α, T ), as can be checked by the same
calculations by Taylor expansion as in the (+−)-case. We do not repeat the calculations,
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Fig. 14. The region G(t, ε)

andfix such k1 ∈ Z≥2.Given this condition, using the same argument for obtaining (6.30)
in the (+−)-case, here we have

|pε(̃z1(θ1))| > r ′2 holds only if |θ1| ≥ 1

C(α)(t + 1)1/4
. (6.30”)

Let us check that, along the contours z1 ∈M′′(t, ε,−k1α) and z1 ∈ N (t,−kα), and
we do have the desired Gaussian decay of |Dε| and |Hε|.
Lemma 6.9. Given any T ∈ (0,∞) and β ∈ R,

∣∣Dε(t, z)
∣∣,

∣∣Hε(t, z)
∣∣ ≤ C(β, T ) exp(− θ2

C (t + 1)), z = z(θ) ∈M′′(t, ε, β),
∣∣Dε(t, z)

∣∣,
∣∣Hε(t, z)

∣∣ ≤ C(β, T ) exp(− θ2

C (t + 1)), z = z(θ) ∈ N (t, ε, β),

for all θ ∈ (−π, π ], large enough t ≤ ε−2T , and small enough ε > 0.

Proof. The proof follows the same three-step procedure as the proof of Lemma 6.3.
Given the identities (6.9a)–(6.9c), the proof of the first two steps (Zero θ )–(Small θ )
follows the same argument via Taylor expansion as in Lemma 6.3, and we do not repeat
it here. As for the last step (Large θ ), as argued in the proof of Lemma 6.6, it amounts
to checking the corresponding limiting condition. Recall that M = {|z − 1

2 | = 1
2 } and

recall the definition ofM′′ from (6.27). It is readily checked thatM′′(t, ε, β) converges
uniformly to M′′ as (t, ε) → (∞, 0), under their respective polar parametrization, and
similarlyN (t, ε, β) converges uniformly toM as (t, ε) → (∞, 0). This being the case,
the proof reduces to checking the steepest decent condition (SD.M) and (SD.M′′),
which have been verified. 
�

We have all the necessary ingredients for estimating Vin
ε .

Proof of Proposition 6.2(c)–(d), the (++)-case,with large enough t The proof beginswith
the contour deformation described in Sect. 6.2. The condition (No Pole) is checked by the
same argument in the (+−)-case, which gives the decomposition Vin

ε = Vblk +Vres. We
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next perform the aforementioned re-deformation M′′(t, ε,−k1α) �→ N (t, ε,−k1α) in
Vres. Lemma 6.8 ensures that no pole is crossed during this step, givingVin

ε = Vblk+V′′res.
The proof amounts to bounding Vblk, V′′res, and their gradients. We begin with Vblk.

In the following we check a sequence of bounds on terms involved in (6.21), and we
always assume z1 = z1(θ1) ∈ M′′(t, ε,−k1α) and z2 = z1(θ2) ∈ C̃r2(z1) in the course
of doing so.

(Vblk.z1) Show that |z1|x2−y1+με t−�με t� ≤ exp(− α|x2−y1|√
t+1+C(α)

):

With x2 − y1 > 0 under current assumptions, we need an upper bound on
|z1|.
To this end, instead of z1 ∈ M′′(t, ε,−k1α), let us first consider z̃1 ∈
N (t, ε,−k1α). This contourN (t, ε,−k1α) is a circle with a center in (0,∞).
For such circles, the farthest point to the origin occurs at the right-end. This
gives

sup
z̃1(θ1)∈N (t,ε,−k1α)

|̃z1(θ1)| = z̃1(0) = e
√

ε(2ρ−1) + u(t,−k1α)

e
√

ερ + e
√

ε(ρ−1) .

Recall from Definition 6.5 the announced convention on Taylor expansion,
and expand the last expression in (

√
ε, 1√

t+1
) up to the leading order in 1√

t+1
.

This gives

sup
z̃∈N (t,ε,−k1α)

|̃z1| = 1 + 0 · √ε − 1
2ρ(1− ρ)ε − k1α√

t + 1
+ . . .

With k1 ≥ 2, and ε ≤ C(T )√
t+1

under current assumptions, we have

sup
z̃1∈N (t,ε,−k1α)

|̃z1| ≤ u(t,−α), (6.44)

for all large enough t .
Now, recall from (6.42) that M′′(t, ε,−k1α) differs from N (t, ε,−k1α)

only in {|z − u∗| ≤ 2u∗} ⊂ {|z| ≤ 3u∗}. With 3u∗ < 1, the bound (6.44)
readily implies

sup
z1(θ1)∈M′′(t,ε,−k1α)

|̃z1(θ1)| ≤ u(t,−α) ∨ (3u∗) = u(t,−α),

for all t large enough. Consequently, |z1|x2−y1+με t−�με t� ≤ u(t,−α)|x2−y1| ≤
exp(− α|x2−y1|√

t+1+C(α)
).

(Vblk.z2) Show that |z2|x1−y2+με t−�με t� ≤ C(α) exp(− α|x1−y2|√
t+1+C(α)

):

With k2 := 1 and with r̃2 defined in (6.18), we have |z2| ≤ u(t,−α). This
and the assumption x1 − y2 > 0 gives the desired claim.

(Vblk.Fε) Show that |Fε(z1, z2)| ≤ C(α)(1 + |θ1 − θ2|
√
t + 1):

This bound is establish by the same argument as in the (+−)-case. We do not
repeat it here.

(Vblk.Dε) Show that |Dε(zi )| ≤ C(α, T ) exp(− θ2i
C (t + 1)):

This is the content of Lemma 6.9.
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Given (Vblk.z1)–(Vblk.Dε), the desired bound on Vblk follows by inserting the bounds
into (6.21), and integrating the result. The procedure is the same as the (+−)-case, and
we do not repeat it here.

Wenow turn toV′′res. In the followingwealways assume z̃1 = z̃1(θ1) ∈ N (t, ε,−k1α).

(V′′res. 1
z1pε

) Show that 1
|pε (̃z1 )̃z1| ≤ C(α):

This is true because |pε(̃z1)̃z1| = u(t,−k1α).
(V′′res.J) Show that |J(̃z1)| ≤ C(α) exp(−α(|x2−y1|+|x1−y2|)√

t+1+C(α)
):

Set n1 := |x2 − y1| and n2 := |x1 − y2|. The assumption y1 < y2, x1 < x2
in the (++)-case yields n1 − 2 ≥ n2 > 0. Given this, recalling the definition
of J from (6.20), we write

|J(̃z1)| ≤ (|̃z1|n1−n2−2 + |̃z1|n1−n2)|̃z1pε(̃z1))|n2 .
Given the bound (6.44) on |̃z1| and given that |pε(̃z1)̃z1| = u(t,−k1α), we
have

|J(̃z1)| ≤ 2u(t,−α)n1−n2−2u(t,−k1α)n2 .

With k1 ≥ 2, the desired result follows:

|J(̃z1)| ≤ C(α)e
−α(n1−n2)√
t+1+C(α) e

− 2αn2√
t+1+C(α) = C(α)e

− α(n1+n2)√
t+1+C(α) .

(V′′res.Hε) Show that |Hε(̃z1)| ≤ C(α, T ) exp(− θ21
C (t + 1)):

This is the content of Lemma 6.9.

Given (V′′res. 1
z1pε

)–(V′′res.Hε), and the derived constraint (6.30”) on |θ1|, the desired bound
on Vres follows the same integration procedure is the same as the (+−)-case.

As for the gradient, similarly to the (+−)-case, here we have

|z±j − 1| ≤ 1√
t+1

+ |θ j |, z1 = z1(θ) ∈M′′(t, ε,−k1α) or N (t, ε,−k1α), (6.33”)

z2 = z2(θ) ∈ C̃r2(z1).
Incorporate this bound into the preceding analysis gives the desired bounds on the
gradients. 
�

7. Controlling the Quadratic Variation: Proof of Proposition 5.6

Based on the estimates from Sect. 6 and the duality of the stochastic 6V model from
Sect. 3, here we prove Proposition 5.6.

7.1. Expanding the quadratic variation The first step toward proving Proposition 5.6
is to find an expression for ε−1�1(t, x)�2(t, x) that exposes the limiting behavior
2b1ρ(1−ρ)

1+b1
Z2(t, x). Recall the definition of �1(t, x) and �2(t, x) from (4.15) to (4.16).

With
∑∞

i=0 pε(i − μ) = 1, we rewrite them as

ε−
1
2 �1(t, x) = ε−

1
2 (λετ

−1
ε − 1)Z(t, x)− ε−

1
2

∞∑

i=0
pε(i − μ)

(
Z(t, x − i)− Z(t, x)

)
,

(7.1)
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ε−
1
2 �2(t, x) = ε−

1
2 (1− λε)Z(t, x) + ε−

1
2

∞∑

i=0
pε(i − μ)

(
Z(t, x − i)− Z(t, x)

)
.

(7.2)

In order the extract the relevant limiting behaviors, in the sequel we will perform a
sequence of expansions on the r.h.s. of (7.1)–(7.2). Here, let us prepare some no-
tation to express various error terms throughout the subsequent expansions. We use
Gε(t, x1, . . . , xn; x) to denote a generic (random) process that has a uniform exponential
decay off the point x ; and use Bε(t, x1, . . . , xn) to denote a generic uniformly bounded
(random) process. More precisely, there exists deterministic a > 0, C < ∞ such that,
for all ε ∈ (0, 1), t ∈ Z≥0 , x1, . . . , xn, x ∈ �(t),

|Gε(t, x1, . . . , xn; x)| ≤ C exp(−a|x1 − x | − . . .− a|x1 − x |).
|Bε(t, x1, . . . , xn)| ≤ C.

With these notation we write Xbdd(t, x) for a generic expression of the form

Xbdd(t, x) =
∑

x1,x2∈�(t)

Gε(t, x1, x2; x)Z(t, x1)Z(t, x2), (7.3)

where ‘bdd’ stands for ‘bounded’. In the sequel Gε, Bε and Xbdd may differ from line to
line, as they refer to generic expressions of the declared type. Under this notation, we
view expression of the type εuXbdd(t, x), u > 0, small and negligible.

We will also consider expressions that involve gradients. To motivate the definitions
of the following expressions, let us first consider an expansion of ∇Z(t, x). Recall
that ∇ f (x) := f (x + 1) − f (x) denotes the (forward) discrete gradient, and recall
from (4.19) that ηc(t, x) ∈ {0, 1}, x ∈ �(t), denote the centered occupation variable.
Referring back to theDefinition (4.4) of Z , with τε = exp(−√ε), we see that∇Z(t, x) =
(e−

√
ε(η+c (t,x)−ρ) − 1)Z(t, x). Taylor expanding the exponential gives

ε−
1
2∇Z(t, x) = −(η+c Z

)
(t, x) + ρZ(t, x) +

√
εBε(t, x)Z(t, x). (7.4)

In particular,

ε−
1
2∇Z(t, x) = Bε(t, x)Z(t, x). (7.5)

Such a bound (7.5) is pointwise. As it turn out, after a suitable time averaging, expressions

that involves ε− 1
2∇ acting on Z decay to zero (except for a product of two ε− 1

2∇Z
evaluated at the same site, see (7.8) and Lemma 7.1 below). The underlying mechanism
arises from the structure for the semigroup Vε: referring to Proposition 6.1, we see that

Vε gains an extra factor (t + 1)− 1
2 upon taking gradient. This being the case, we view

expressions of the type

Z∇(t, x1, x2) := (ε−
1
2∇Z(t, x1))Z(t, x2)

as small, and consider generic linear combinations of them

Y∇(t, x) =
∑

x1,x2∈�(t)

γε(t, x1, x2; x)Z∇(t, x1, x2), (7.6)
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with some deterministic coefficients γε(t, x1, x2; x) that decay exponentially off x :

|γε(t, x1, x2; x)| ≤ C exp(−a|x1 − x | − a|x2 − x |). (7.7)

We will also consider generic expressions that involves two pieces of gradient:

Y∇,∇(t, x) =
∑

x1<x2∈�(t)

γε(t, x1, x2; x)(ε− 1
2∇Z)(t, x1)(ε

− 1
2∇Z)(t, x2), (7.8)

for some generic deterministic coefficients γε(t, x1, x2; x) satisfying (7.7), (and may
differ from line to line in the sequel).

Note that in (7.8), the sum ranges over distinct x1 and x2. In fact, diagonal terms
x1 = x2 contains non-negligible contributions:

Lemma 7.1. We have that

(ε−
1
2∇Z)2(t, x)− ρ(1− ρ)Z2(t, x) = −Z∇(t, x, x + 1) + ε

1
2Bε(t, x)Z

2(t, x).

Proof. To expose the relevant contribution from this expression, we appeal the expan-

sion (7.4) of ε− 1
2∇Z , square it, followed by using η2c = ηc. This gives (recall ηc from

(4.19))

(ε−
1
2∇Z(t, x))2 =

(
− ηc(t, x + 1)Z(t, x) + ρZ(t, x) + ε

1
2Bε(t, x)Z(t, x)

)2

=
(
ηc(t, x + 1)Z2(t, x)− 2ρηc(t, x + 1)Z2(t, x) + ρ2Z2(t, x)

)
+ ε

1
2
(Bε(t, x)Z

2(t, x)
)

=
((

(1− 2ρ)η+c Z
2 + ρ2Z2) + ε

1
2BεZ

2
)∣∣∣

x
.

Use (7.4) in reverse: η+c Z = −ε− 1
2∇Z + ρZ + ε

1
2BεZ , we rewrite the expression η+c Z

2

as −(ε− 1
2∇Z)Z + ρZ2 + ε

1
2BεZ2. Inserting this into the last displayed equation gives

the desired result. 
�
Having introduced the necessary notation and tools, we now begin to expand �1 and

�2.

Lemma 7.2. We have that

ε−1�1(t, x)�2(t, x)− 2b1ρ(1−ρ)
1+b1

Z2(t, x) = √
εXbdd(t, x) + Y∇(t, x) + Y∇,∇(t, x).

Proof. The starting point of the proof is the expressions (7.1)–(7.2) for �1(t, x) and

�2(t, x). First, from (1.4) and τ−1ε = e
√

ε, we have that ε− 1
2 (λετ

−1
ε − 1) = (1 −

ρ) + O(ε
1
2 ) and that ε− 1

2 (1 − λε) = ρ + O(ε
1
2 ). Given this, in (7.1)–(7.2) we replace

ε− 1
2 (λετ

−1
ε − 1) with (1− ρ) and replace ε− 1

2 (1− λε) with ρ, up to errors of the form

ε
1
2Bε(t, x). Further, telescope the expression Z(t, x − i) − Z(t, x) into −∇Z(t, x −

i)−∇Z(t, x − i + 1)− . . .− ∇Z(t, x − 1). This, combined with (1.4), gives

ε−
1
2 �1(t, x) = (1− ρ)Z(t, x) +

∞∑

i=0

∑

0< j≤i
pε(i − με)ε

− 1
2∇Z(t, x − j)

+ ε
1
2Bε(t, x)Z(t, x),
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ε−
1
2 �2(t, x) = ρZ(t, x)−

∞∑

i=0

∑

0< j≤i
pε(i − με)ε

− 1
2∇Z(t, x − j)

+ ε
1
2Bε(t, x)Z(t, x).

To simplify notation, set uε( j) :=∑∞
i= j pε(i − με), we write

ε−
1
2 �1(t, x) = (1− ρ)Z(t, x) +

∞∑

j=1
uε( j)ε

− 1
2∇Z(t, x − j) + ε

1
2Bε(t, x)Z(t, x).

(7.9)

ε−
1
2 �2(t, x) = ρZ(t, x)−

∞∑

j=1
uε( j)ε

− 1
2∇Z(t, x − j) + ε

1
2Bε(t, x)Z(t, x).

(7.10)

The next step is to take the product of (7.9)–(7.10). Let A1,Z , A1,∇ , A1,err denote the
respective terms on the r.h.s. of (7.9), and similarly A2,Z , A2,∇ , A2,err for (7.10). In the
following we expand

ε−1�1(t, x)�2(t, x) =
(
A1,Z + A1,∇ + A1,err

)(
A2,Z + A2,∇ + A2,err

)
,

and analyze the resulting terms.

• Indeed, A1,Z A2,Z = ρ(1− ρ)Z2(t, x).
• Next, the term A1,Z A2,∇ + A1,∇ A2,Z .

Indeed A1,Z A2,∇ + A1,∇ A2,Z is a linear combination of Z(t, x)ε− 1
2∇Z(t, x − j),

with coefficients (2ρ − 1)uε( j). Let us check that uε( j) decays exponentially in | j |.
Referring back to (4.6), with με, λε → 1 as ε → 0, the kernel pε decays geometrically,
uniformly over ε ∈ (0, 1):

pε(x) ≤ Cb−|x |1 . (7.11)

From this we see that

|uε( j)| =
∑

i∈Z≥ j

pε(i − με) ≤ C | j |b| j |1 ≤ Ce−
1
2 | log b1|| j |. (7.12)

Given this property (7.12),we conclude that A1,Z A2,∇+A1,∇ A2,Z is a linear combination

of Z(t, x)ε− 1
2∇Z(t, x − j), with deterministic coefficients that decay exponentially in

| j |, whereby
A1,Z A2,∇ + A1,∇ A2,Z = Y∇(t, x).

• We now turn to A1,∇ A2,∇ .
With A1,∇ and A2,∇ both being sums, in the produce of A1,∇ A2,∇ , we separate

the diagonal and off-diagonal term. Off-diagonal terms form a linear combination of

ε− 1
2∇Z(x − j)ε− 1

2∇Z(x − j ′), j = j ′, with coefficient uε( j)uε( j ′). Thanks to (7.12),
this coefficient decays exponentially in | j |+ | j ′|. This being the case, off-diagonal terms
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jointly contribute an expression of the type Y∇,∇(t, x). We hence keep track of only the
diagonal terms, and write

A1,∇ A2,∇ = −
∞∑

j=1
uε( j)

2(∇Z(t, x − j))2 + Y∇,∇(t, x).

• Lastly, everything else: (A1,Z + A1,∇)A2,err + A1,err(A2,Z + A2,∇) + A1,errA2,err.

First, by (7.5), in Ai,∇ we replace each ε− 1
2∇Z(t, x− j)withBε(t, x− j)Z(t, x− j).

Once this is done, expanding the expression (A1,Z + A1,∇)A2,err + A1,err(A2,Z + A2,∇)+
A1,errA2,err gives

ε
1
2
(
linear combination of Bε(t, x, x − j)Bε(t, x, x − j ′)

)
Z(t, x)2.

Thanks to (7.12), the coefficients within the linear combination decays exponentially in
| j | + | j ′|. This gives

(A1,Z + A1,∇)A2,err + A1,err(A2,Z + A2,∇) + A1,errA2,err = ε
1
2Xbdd(t, x).

Given the preceding discussion, we now have

ε−1�1(t, x)�2(t, x) = ρ(1− ρ)Z2(t, x) +
√

εXbdd(t, x) + Y∇(t, x) + Y∇,∇(t, x)

−
∞∑

j=1
uε( j)

2(ε−
1
2∇Z(t, x − j))2. (7.13)

As shown in Lemma 7.1, the last term in (7.13) contains a non-negligible contribution
to Z2(t, x). The rest of the proof consists of extracting this contribution. First, using
Lemma 7.1, we write

∞∑

j=1
uε( j)

2(ε−
1
2∇Z(t, x − j))2 − ρ(1− ρ)A = Y∇(t, x) + ε

1
2Xbdd(t, x), (7.14)

where A :=∑∞
j=1 uε( j)2Z2(t, x − j). The focus now is on the term A. We argue that,

replacing Z(t, x − j) with Z(t, x) in A only produces an affordable error. To see this,
write
∣∣Z(t, x − j)− Z(t, x)

∣∣ = ∣∣e
√

ε
∑ j−1

i=0 (ηc(t,x−i)−ρ) − 1
∣∣Z(t, x) ≤ √

ε| j |e
√

ε| j |Z(t, x).
(7.15)

Now,write Z(t, x− j) as Z(t, x)+Z(t, x− j)−Z(t, x), with the aid of (7.15) and (7.12),
we have

A = Z2(t, x)
∞∑

j=1
u2ε( j) + ε

1
2Bε(t, x)Z

2(t, x). (7.16)

With (1.4), and b2 = e−
√

εb1, a straightforward calculation from (4.6) gives

∞∑

j=1
u2ε( j) =

1− b1
1 + b1

+O(
√

ε).
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Using this in (7.16), and inserting the result back into (7.14), we conclude

∞∑

j=1
uε( j)

2(ε−
1
2∇Z(t, x − j))2 − ρ(1− ρ)

1− b1
1 + b1

Z2(t, x) = Y∇(t, x) + ε
1
2Xbdd(t, x).

This together with (7.13) gives the desired result. 
�
Lemma 7.2 provides the relevant decomposition of ε−1�1�2 into its limiting ex-

pression and residual terms. While we do expect the residual terms ε
1
2Xbdd, Y∇ , and

Y∇,∇ to tend to zero, bounds on the last two terms are not immediate. To see this,
recall from Proposition 4.3 that the duality functions for the stochastic 6V model are
Z(s, x1)Z(s, x2) and (η+c Z)(s, x1)(η+c Z)(s, x2), for x1 < x2. On the other hand, the ex-
pressionsY∇ andY∇,∇ (as in (7.6) and (7.8)) are linear combinations of Z(s, x1)Z(s, x2).
that generally involve x1 = x2.

To circumvent this ‘diagonal’ issue, recalling from (7.7) that γε denotes generic
deterministic coefficients with an exponential decay, we consider a slight modification
X∇ ofY∇ , which is the same type of expressionswith an additional constraint |x1−x2| >
1:

X∇(t, x) =
∑

x1,x2∈�(t),|x2−x1|>1

γε(t, x1, x2; x)Z∇(s, x1, x2).

Next, set

Z̃(t, x1, x2) :=
(
η+c Z

)
(t, x1)

(
η+c Z

)
(t, x2)− ρ2Z(t, x1)Z(t, x2). (7.17)

In place of Y∇,∇ , we consider expressions XZ̃ of the type

XZ̃ (t, x) =
∑

x1<x2∈�(t)

γε(t, x1, x2; x)Z̃(t, x1, x2). (7.18)

The next lemma allows us to trade in Y∇ and Y∇,∇ for X∇ and XZ̃ .

Lemma 7.3. We have that

Y∇,∇(t, x) = XZ̃ (t, x) + Y∇(t, x) + ε
1
2Xbdd(t, x), (7.19)

Y∇(t, x) = X∇(t, x) + ε
1
2Xbdd(t, x). (7.20)

Proof. Indeed, Y∇,∇(t, x) denotes a generic linear combination of

A := (ε−
1
2∇Z)(t, x1)(ε

− 1
2∇Z)(t, x2), x1 < x2,

and XZ̃ (t, x) denotes a generic linear combination of Z̃(t, x1, x2), x1 < x2. This being
the case, to prove (7.19), it suffices to show that A − Z̃(t, x1, x2) is written as a linear

combination of Z∇(t, x1, x2) and negligible terms that carry an outstanding ε
1
2 factor.

To this end, we use (7.4) to expand

A = (− η+c Z + ρZ + ε
1
2BεZ

)
(t, x1)

(− η+c Z + ρZ + ε
1
2BεZ

)
(t, x2)

= Z̃(t, x1, x2) + ρ
(− η+c Z + ρZ

)
(t, x1)Z(t, x2) + ρZ(t, x1)

(− η+c Z + ρZ
)
(t, x2)

+ ε
1
2Bε(t, x1, x2)Z(t, x1)Z(t, x2). (7.21)
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In (7.21), further use (7.4) in reverse to write −η+c Z + ρZ = ε− 1
2∇Z + ε

1
2BεZ . We get

A − Z̃(t, x1, x2) = ρZ∇(t, x1, x2) + ρZ∇(t, x2, x1) + ε
1
2Bε(t, x1, x2)Z(t, x1)Z(t, x2).

This gives the desired result (7.19).
As for (7.20), recall that both X∇ and Y∇ denote generic linear combinations of the

same terms. The only difference is in that the former misses those terms with |x1−x2| ≤
1. Consequently, the result (7.20) follows once we show

Z(t, x + 1)
(
ε−

1
2∇Z(t, x)

) = Z(t, x + 2)
(
ε−

1
2∇Z(t, x)

)
+ ε

1
2
(BεZ

2)(t, x),

Z(t, x)
(
ε−

1
2∇Z(t, x + 1)

) = Z(t, x − 1)
(
ε−

1
2∇Z(t, x + 1)

)
+ ε

1
2
(BεZ

2)(t, x),

Z(t, x)
(
ε−

1
2∇Z(t, x)

) = Z(t, x − 2)
(
ε−

1
2∇Z(t, x)

)
+ ε

1
2
(BεZ

2)(t, x).

Going from the l.h.s. to the r.h.s. amounts to changing Z(t, x + 1) �→ Z(t, x + 2) or
changing Z(t, x) �→ Z(t, x − 1); note that the ∇Z factor is never changed. Thanks

to (7.4), these changes introduce only error of the form ε
1
2 (BεZ)(t, x). Also, by (7.5),

ε− 1
2∇Z(t, x) = (BεZ)(t, x), ε− 1

2∇Z(t, x + 1) = (BεZ)(t, x). Hence, the overall error
caused by the aforementioned changes is indeed of the form ε

1
2 (BεZ2)(t, x). 
�

Lemmas 7.2 and 7.3 immediately yield.

Corollary 7.4. We have

ε−1�1(t, x)�2(t, x)− 2b1ρ(1− ρ)

1 + b1
Z2(t, x) = √

εXbdd(t, x) + X∇(t, x) + XZ̃ (t, x).

7.2. Time decorrelation via duality Given the decomposition from Corollary 7.4, our
goal toward proving Proposition 5.6 is to argue that, each type of expression on the r.h.s.
is negligible as ε → 0. This is straightforward for

√
εXbdd(t, x) due to the outstanding

ε
1
2 factor. On the other hand, as mentioned earlier, the termsX∇ andXZ̃ converge to zero

only after time averaging. This being the case,withX∇ andXZ̃ being linear combinations
of Z∇ and Z̃ , we direct our focus onto bounding

BX∇ (t, x�
1, x

�
2) := E

[(
ε2

t−1∑

s=0
Z∇(s, x�

1(s), x
�
2(s))

)2]
, (7.22)

BXZ̃
(t, x�

1, x
�
2) := E

[(
ε2

t−1∑

s=0
Z̃(s, x�

1(s), x
�
2(s))

)2]
, (7.23)

for t ∈ Z∩ [0, ε−2T ] and x�
1 = x�

2 ∈ Z, and x�
i (s) := x�

i −μεs + �μεs� ∈ �(s). These
expressions are expanded into conditional expectations as

BX∇ (t, x�
1, x

�
2) = ε4

(
2

∑

s1<s2<t

+
∑

s1=s2<t

)
E

[
E
[
Z∇(s2, x1, x2)

∣
∣F (s1)

]
Z∇(s1, x1, x2)

]
,

(7.24)

BXZ̃
(t, x�

1, x
�
2) = ε4

(
2

∑

s1<s2<t

+
∑

s1=s2<t

)
E

[
E
[
Z̃(s2, x1, x2)

∣∣F (s1)
]
Z̃(s1, x1, x2)

]
,

(7.25)
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where xi := x�
i − μεsi + �μεsi� and the notation (

∑
+
∑

)(·) := ∑
(·) + ∑

(·).
Given (7.24)–(7.25), we set out to bounding the following conditional expectations

E
[
(Z∇(t + s, x1, x2)|F (s)

]
Z∇(s, x1, x2), E

[
Z̃(t + s, x1, x2)|F (s)

]
Z̃(s, x1, x2),

and show that they decay as t becomes large. We begin by relating these conditional
expectations to the semigroupVε via duality. Recall that∇x denotes the discrete gradient
acting on a designated variable x .

Lemma 7.5. Let t, s ∈ Z≥0. For all x1 + 1 < x2 ∈ �(t), we have

E
[
Z∇(t, x1, x2)

∣∣F (s)
] =

∑

y1<y2∈�(s)

ε−
1
2∇x1Vε

(
(y1, y2), (x1, x2); t

)
Z(s, y1)Z(s, y2),

(7.26)

E
[
Z∇(t, x2, x1)

∣∣F (s)
] =

∑

y1<y2∈�(s)

ε−
1
2∇x2Vε

(
(y1, y2), (x1, x2); t

)
Z(s, y1)Z(s, y2).

(7.27)

For all x1 < x2 ∈ �(t), with

Vε∇+∇((y1, y2), (x1, x2); t) := ∇y1Vε((y1 − 1, y2), (x1, x2); t)
+∇y2Vε((y1, y2 − 1), (x1, x2); t),

we have

E[Z̃(t + s, x1, x2)|F (s)]
= −

∑

y1+1<y2∈�(s)

ε−
1
2Vε∇+∇((y1, y2), (x1, x2); t) Z(s, y1)Z(s, y2) (7.28a)

+
∑

y1+1<y2

ε
1
2Vε

(
(y1, y2), (x1, x2); t

))Bε(s, y1, y2)Z(s, y1)Z(s, y2) (7.28b)

+
∑

|i |,| j |,|i ′|,| j ′|≤3
i< j

( ∑

y∈�(s)

Vε

(
(y + i, y + j), (x1, x2); t

))Bε(s, y)Z(s, y + i ′)Z(s, y + j ′)
)
.

(7.28c)

Remark 7.6. Recall the discussion regarding ∇-Weyl chamber from the beginning of
Sect. 6. With the assumption x1 + 1 < x2, the expressions in (7.26)–(7.27) that involve
∇Vε are indeed within their ∇-Weyl chambers, and similarly for those in (7.28).

Proof. Roughly speaking, the proof amounts to translating the duality result fromPropo-
sition 4.3, i.e., (4.20)–(4.21), to the relevant context considered.

First, in (4.20), set (x1, x2) to be (x1 + 1, x2) and (x1, x2), and take the difference
of the results. We obtain (7.26). Note that the assumption x1 + 1 < x2 guarantees that
(x1 + 1, x2) lies in the Weyl chamber. The identity (7.27) follows the same way.

We now turn to proving (7.28). To simplify notation, we use “(7.28a)” to denote
the expression written therein. Likewise, we use “(7.28b)-type” and “(7.28c)-type” to
denote the types (note the Bε’s therein) of expressions written in (7.28b) and (7.28c).
First, with Z̃ defined in (7.17), taking the difference of (4.20) and (4.21) gives

E

[
Z̃(t + s, x1, x2)

∣∣∣F (s)
]
=

∑

y1<y2∈�(s)

Vε

(
(y1, y2), (x1, x2); t

)
Z̃(s, y1, y2).
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Separate the terms with y1 +1 = y2. With Z̃(s, y1, y2) = Bε(s, y1, y1)Z(s, y1)Z(s, y2),
we have

E

[
Z̃(t + s, x1, x2)

∣
∣∣F (s)

]
=

∑

y1+1<y2

Vε

(
(y1, y2), (x1, x2); t

)
Z̃(s, y1, y2) + (7.28c)-type.

(7.29)

Next, with Z̃(s, y1, y2) defined in (7.17), adding and subtracting ρZ(s, y1)(η+c Z)(s, y2),
we write

Z̃(s, y1, y2) =
(
(η+c − ρ)Z

)
(s, y1)

(
η+c Z

)
(s, y2) +

(
ρZ

)
(s, y1)

(
(η+c − ρ)Z

)
(s, y2).

Use (7.4) in reverse: η+c Z = ε− 1
2∇Z + ρZ + ε

1
2BεZ , we further obtain

Z̃(s, y1, y2) =
(
ε−

1
2∇Z

)
(s, y1)

(
η+c Z

)
(s, y2) + ρZ(s, y1)

(
ε−

1
2∇Z

)
(s, y2)

+
√

εBε(s, x1, y2)Z(s, y1)Z(s, y2).

Inserting this into (7.29), followed by summation by parts:
∑

y1:y1+1<y2

f (y1)∇g(y1) = −
∑

y1:y1+1<y2

∇ f (y1 − 1)g(y1) + f (y2 − 2)g(y2 − 1),

∑

y2:y1+1<y2

f (y2)∇g(y2) = −
∑

y2:y1+1<y2

∇ f (y2 − 1)g(y2)− f (y1 + 1)g(y1 + 2),

we then arrive at the desired result:

E
[
Z̃(t + s, x1, x2)

∣∣F (s)
] =

(
(7.28a) + (7.28b)-type + (7.28c)-type

)
+ (7.28c)-type.


�
Given Lemma 7.5, we now incorporate the estimates on Vε from Sect. 6 to obtain

bounds on the conditional expectations.

Lemma 7.7. Given T < ∞, there exists u = u(T ) < ∞ such that, for all s, t ∈
[0, ε−2T ] ∩ Z and x1, x2 ∈ �(t),

1{|x1−x2|>1}E
[∣∣∣E

(
Z∇(t + s, x1, x2)

∣∣F (s)
)
Z∇(s, x1, x2)

∣∣∣
]
≤ C(T )

ε− 1
2√

t + 1
euε(|x1|+|x2|);

E

[∣∣
∣E
(
Z̃(t + s, x1, x2)|F (s)

)
Z̃(s, x1, x2)

∣∣
∣
]
≤ C(T )

ε− 1
2√

t + 1
euε(|x1|+|x2|).

Proof. First, the moment bound (5.20) from Proposition 5.4 gives that E[Z(s, y)4] ≤
C(T )euε|y|, for some fixed u = u(T ) ∈ (0,∞). This together with the Cauchy–Schwarz
inequality gives

E
[|Z(s, x1)Z(s, x2)Z(s, y1)Z(s, y2)|

] ≤ C(T )euε(|x1|+|x2|+|y1|+|y2|). (7.30)

To alleviate notation, in the following we often write Vε((y1, y2), (x1, x2); t) = Vε.
Multiply both sides of (7.26)–(7.27) by Z∇(s, x1, x2). Incorporating both the cases
x1 + 1 < x2 and x2 + 1 < x2, we write
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∣∣∣E
[
Z∇(t + s, x1, x2)

∣∣F (s)
]
Z∇(s, x1, x2)

∣∣∣1{|x1−x2|>1}

≤ C(T )
∑

y1<y2∈�(s)

ε−
1
2
(|∇x1Vε| + |∇x2Vε|

)
Z(s, y1)Z(s, y2)

∣∣Z∇(s, x1, x2)
∣∣

≤ C(T )
∑

y1<y2∈�(s)

ε−
1
2
(|∇x1Vε| + |∇x2Vε|

)
Z(s, y1)Z(s, y2)Z(s, x1)Z(s, x2),

where, in the last inequality, we used (7.5) to write |Z∇(s, x1, x2)| ≤ CZ(s, x1)Z(s, x2).
Take expectation on both sides using (7.30). For f : (y1 < . . . < yn) ∈ �(s)n �→
f (�y) ∈ R, set

[ f ]u :=
∑

y1<...<yn

| f (y1, . . . , yn)|eu(|y1|+...+|yn |).

We then obtain

E

[∣∣∣E
(
Z∇(t + s, x1, x2)

∣∣F (s)
)
Z∇(s, x1, x2)

∣∣∣
]
1{|x1−x2|>1}

≤ euε(|x1|+|x2|)C(T )ε−
1
2
([∇x1Vε]uε + [∇x2Vε]uε

)
. (7.31)

Note that [∇x1Vε]uε, [∇x2Vε]uε are only sums over y1 < y2 ∈ �(s) and are thus still
functions of x1, x2.

A similar procedure starting with (7.28) gives

E

[∣∣∣E
(
Z̃(t + s, x1, x2)

∣∣F (s)
)
Z̃(s, x1, x2)

∣∣∣
]

≤ euε(|x1|+|x2|)C(T )
(
ε−

1
2
([∇x1Vε]uε + [∇x2Vε]uε

)
+ ε

1
2 [Vε] +

∑

|i |,| j |≤3
[Vε,i, j ]uε

)
,

(7.32)

where Vε,i, j (y) := Vε((y + i, y + j), (x1, x2); t).
With t ≤ ε−2T , we set α := 3u

√
T so that α√

t+1+C(α)
= αε√

T+ε2+C(α)ε
> 2uε, for all

ε > 0 small enough. For such an exponent α, we indeed have
∑

y∈�(s)

e
− α|x−y|√

t+1+C(α) euε|y| ≤ eu|x |
∑

y∈�(s)

e
− α|x−y|√

t+1+C(α) euε|x−y|

≤ eu|x |
∑

y∈�(s)

e
− α|x−y|

2(
√
t+1+C(α)) ≤ C(α)euε|x |(t + 1)

1
2 , (7.33)

for all ε > 0 small enough. Now, apply the estimates on |Vε| and |∇Vε| from Proposi-
tion 6.1 with this exponent α. We get

[∇xiVε]uε, [∇yiVε]uε ≤ C(α, T )

(t + 1)1/2
euε(|x1|+|x2|),

[Vε]uε ≤ C(α, T )euε(|x1|+|x2|), [Vε,i, j ]uε ≤ C(α, T, i, j)

(t + 1)1/2
euε(|x1|+|x2|).

Here, upon taking [ · ]uε, the sums over y1 and over y2 of Vε((y1, y2), (x1, x2), t) each

produces a factor of (t + 1)
1
2 , as seen from in (7.33). Insert these bounds into (7.31)–

(7.32). With ε
− 1
2√

t+1
+ ε

1
2 + 1√

t+1
≤ C(T )ε

− 1
2√

t+1
, and with α = α(u, T ), we conclude the

desired result. 
�
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Recall the definitions of BX∇ and BXZ̃
from (7.22)–(7.23). We are now ready to

derive the relevant bounds on these quantities.

Corollary 7.8. Fix T < ∞, let t ∈ Z ∩ [0, ε−2T ] and x�
1 = x�

2 ∈ Z. We have

BX∇ (t, x�
1, x

�
2), BXZ̃

(t, x�
1, x

�
2) ≤ C(T ) ε

1
2 euε(|x�

1 |+|x�
2 |).

Proof. This follows by inserting the bounds from Lemma 7.7 into (7.24)–(7.25):

BX∇ (t, x�
1, x

�
2) ≤ ε4

(
2

∑

s1<s2<t

+
∑

s1=s2<t

)
C(T )

ε− 1
2√

s2 − s1 + 1
euε(|x1|+|x2|)

≤ C(T )ε
1
2 euε(|x�

1 |+|x�
2 |),

BXZ̃
(t, x�

1, x
�
2) ≤ ε4

(
2

∑

s1<s2<t

+
∑

s1=s2<t

)
C(T )

ε− 1
2√

s2 − s1 + 1
euε(|x1|+|x2|)

≤ C(T )ε
1
2 euε(|x�

1 |+|x�
2 |).

Note that, with |xi−x�
i | ≤ 1, we replaced xi with x�

i at the cost of increasing the constant
C(T ) by factors of euε ≤ C(T ) (with u = u(T )). 
�

We are now ready to prove Proposition 5.6.

Proof of Proposition 5.6. Fix T < ∞, t ∈ [0, ε−2T ] ∩ Z, and x� ∈ Z, and write
x�(s) := x� − μεs + �μεs�. Given the decomposition in Corollary 7.4, it suffices to
prove that

∥∥
∥ε2

t∑

s=0
A(s, x�(s))

∥∥
∥
2
≤ ε

1
4C(T )eCε|x�|, (7.34)

for A(s, x) = ε
1
2Xbdd(t, x), X∇(t, x), and XZ̃ (t, x), and for all ε > 0 small enough.

Recall from (7.3) thatXbdd(t, x) denotes a generic linear combination of Z(t, x1)Z(t,
x2), with random but uniformly exponentially decay coefficients Gε(t, x1, x2; x). Con-
sequently,

∥
∥∥ε2

t∑

s=0
ε

1
2Xbdd(s, x�(s))

∥
∥∥
2

≤ ε
1
2

(
ε2

t∑

s=0

∑

x1,x2∈�(s)

e−
1
C (|x1−x�(s)|+|x2−x�(s)|)‖Z(s, x1)Z(s, x2)‖2

)
.

Given this, togetherwith |x�(s)−x�| ≤ 1, the statement (7.34) for A(s, x) = ε
1
2Xbdd(t, x)

readily follows from the moment bound (5.20) in Proposition 5.4.
Next, recall that X∇(t, x) and XZ̃ (t, x) denote generic linear combinations of Z∇(t,

x1, x2) andXZ̃ (t, x1, x2) with some deterministic coefficients (7.7) that decay exponen-
tially off x . This gives

∥∥∥ε2
t∑

s=0
X∇(s, x�(s))

∥∥∥
2
≤

∑

x�
1<x�

2∈Z
1{|x�

1−x�
2 |>1}e−

1
C (|x�

1(s)−x�(s)|+|x�
2(s)−x�(s)|)BX∇ (t, x�

1, x
�
2)

1/2,
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∥
∥
∥ε2

t∑

s=0
XZ̃ (s, x�(s))

∥
∥
∥
2
≤

∑

x�
1<x�

2∈Z
e−

1
C (|x�

1(s)−x�(s)|+|x�
2(s)−x�(s)|)BXZ̃

(t, x�
1, x

�
2)

1/2,

where x�
i (s) := x�

i − μεs + �μεs�. Given this, the statement (7.34) for A(s, x) =
X∇(t, x), and XZ̃ (t, x), readily follows from the bounds in Corollary 7.8. 
�
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Appendix A. Quadratic variation in ASEP

In this appendix we expand upon the brief discussion from Sects. 1.3 and 1.4 and explain
how our Markov duality method can be applied to ASEP, which is a simpler limit of the
stochastic 6V model. We will not carry out the necessary analysis, but rather just point
to the main steps.

Recall that ASEP is an interacting particle system on Z, where particles inhabit sites
index byZ and jump left and right according to continuous-time exponential clocks with
rates � > 0 and r > 0 subject to exclusion (jumps to occupied sites are suppressed).
We will assume that � + r = 1 and set τ := r/�. The ASEP height function NASEP(t, x)
has 1/0 slopes entering occupied/vacant sites as depicted in Fig. 6. For ASEP with near-
stationary initial data of density ρ = 1

2 we define a variant
16 of the Hopf–Cole transform

of NASEP(t, x) by

ZASEP(t, x) := τ NASEP(t,x)− 1
2 x et (1−2

√
�r), t ∈ [0,∞), x ∈ Z.

This solves the following microscopic SHE:

dZASEP(t, x) =
√

�r�ZASEP(t, x)dt + dM(t, x), (A.1)

where � f (x) := f (x + 1) + f (x − 1)− 2 f (x) denotes the discrete Laplacian, and, for
each x ∈ Z, the process M(t, x), t ∈ R+, is a martingale.

Under weak asymmetry scaling, i.e., τ = τε := e−
√

ε and (t, x) �→ (ε−2t, ε−1x), an
informal scaling argument applied to (A.1) indicates that the equation should converge
to the continuum SHE. Key to establishing this convergence is the identification of the
limiting quadratic variation of M(t, x). Under weak asymmetry scaling, the optional
quadratic variation of M(t, x) reads

d〈M(t, x), M(t, x ′)〉 = ε1{x=x ′}
(( 1

4 + ε
1
2Bε(t, x)

)
Z2
ASEP(t, x) + F̃ε(t, x)

)
dt, (A.2)

16 This follows immediately from (1.29) by a simple tilting and centering.
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where, following notations in Sect. 7, Bε(t, x) is a generic, uniformly bounded process,
and

F̃ε(t, x) := ε−
1
2∇ZASEP(t, x)ε

− 1
2∇ZASEP(t, x − 1). (A.3)

Referring to the r.h.s. of (A.2), we see that ε
1
2Bε(t, x) is indeed negligible compared

to the constant 1
4 factor. Key to identifying the limiting behavior is to argue that F̃(t, x)

is also negligible. With ∇ZASEP(t, x) = (e−
√

εη(t,x+1)−1)ZASEP(t, x), we indeed have
F̃ε(t, x) = Bε(t, x)Z2

ASEP(t, x), i.e., pointwise bounded up to a multiplicative factor of
Z2
ASEP(t, x). On the other hand, it is conceivable that this term F̃(t, x) does not tend to

zero pointwise, i.e., F̃(t, x) →P 0. The crux of the convergence result is to prove that
this term converges to zero after time-averaging:

E

[(
ε2

∫ ε−2T

0
F̃ε(t, x)dt

)2] −→ 0. (A.4)

This is first achieved in [BG97] by showing the decay as t becomes large of the condi-
tional expectation

E
[
F̃ε(t + s, x)

∣∣F (s)
]
,

where F denotes the canonical filtration of ASEP. Roughly speaking, the estimate
starts by using (A.1) to develop a sequence of inequality that bounds the conditional
expectation. ‘Closing’ the series of inequality relies crucially on an identity [BG97,
(A.6)] for the (semi)-discrete heat kernel. We do not know of a way to generalize this
approach from [BG97] to the stochastic 6V model setting.

Here we provide an alternative approach via duality. TheMarkov duality method also
begins with bounding conditional expectations. However, instead of trying to close a se-
quence of inequalities, thismethod provides direct access to the conditional expectations.
First, the expression F̃ε(t, x) is not convenient for our purpose. Use ∇ZASEP(t, x) =
(e−

√
ε(η+(t,x)− 1

2 ) − 1)ZASEP(t, x) where η+(t, x) := η(t, x + 1), and Taylor expand

∇ZASEP(t, x) = √
ε( 12 − η+(t, x))ZASEP + εBε(t, x)ZASEP(t, x), (A.5)

where Bε(t, x) stands for a generic uniformly bounded process as in Sect. 7. We can
then write F̃ε(t, x) = Fε(t, x) + ε1/2Bε(t, x)Z2

ASEP(t, x), where

Fε(t, x) = 1
2 Z∇(t, x, x − 1) + 1

2 Z∇(t, x − 1, x + 1) + Z̃(t, x − 1, x), (A.6)

where, following the notation in Sect. 7,

Z∇(t, x1, x2) := (ε−
1
2∇ZASEP(t, x1))ZASEP(t, x2),

Z̃(t, x1, t2) := (η+ZASEP)(t, x1)(η
+ZASEP)(t, x2)− 1

4 ZASEP(t, x1)ZASEP(t, x2).

To see (A.6), we use (A.5) just as in the proof of Lemma 7.3 (for the stochastic 6V
model):

F̃ε(t, x) =
(
( 12 − η+)ZASEP

)
(t, x)

(
( 12 − η+)ZASEP

)
(t, x − 1) + ε1/2Bε(t, x)Z

2
ASEP(t, x)

= 1
2

(
( 12 − η+)ZASEP

)
(t, x)ZASEP(t, x − 1)

+ 1
2

(
( 12 − η+)ZASEP

)
(t, x − 1)ZASEP(t, x)
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+ Z̃(t, x − 1, x) + ε1/2Bε(t, x)Z
2
ASEP(t, x)

= r.h.s of (A.6) + ε1/2Bε(t, x)Z
2
ASEP(t, x).

In the last step, we replace ZASEP(t, x) with ZASEP(t, x ± 1) costing error of order
ε1/2Bε(t, x)ZASEP(t, x).

As mentioned in Sect. 1.4, ASEP enjoys self-duality via the functions Q and Q̃
defined therein. Specifically, the k = 2 duality translates (after tilting and centering)
into the following statement, in which we used the notation

VASEP
(
(y1, y2), (x1, x2); t

) := e2t (1−2
√

�r)τ−
1
2 (x1+x2−y1−y2)PASEP

(
(y1, y2) → (x1, y2); t

)
.

Proposition A.1. For all x1 < x2 ∈ Z and t, s ∈ [0,∞), we have

E

[
ZASEP(t + s, x1)ZASEP(t + s, x2)

∣∣∣F (s)
]

=
∑

y1<y2∈Z
VASEP

(
(y1, y2), (x1, x2); t

)
ZASEP(s, y1)ZASEP(s, y2), (A.7)

E

[
(η+ZASEP)(t + s, x1)(η

+ZASEP)(t + s, x2)
∣∣∣F (s)

]

=
∑

y1<y2∈Z
VASEP

(
(y1, y2), (x1, x2); t

)(
η+ZASEP

)
(s, x1)

(
η+ZASEP

)
(s, x2). (A.8)

Proposition A.1 provides the necessary ingredients for expressing conditional ex-
pectations for the relevant quantities. Specifically, with Z̃(t, x − 1, x) being an linear
combination the two observables in (A.7) and in (A.8) at (x1, x2) = (x − 1, x) we have

E

[
Z̃(t + s, x − 1, x)

∣∣∣F (s)
]
=

∑

y1<y2∈Z
VASEP

(
(y1, y2), (x − 1, x); t)Z̃(t, y1, y2).

(A.9)

Likewise, Z∇(t, x, x − 1) is the difference of ZASEP(t, x + 1)ZASEP(t, x − 1) and
ZASEP(t, x)ZASEP(t, x−1). Taking the difference of (A.7) for (x1, x2) = (x +1, x−1)
and for (x, x − 1) gives

E

[
Z∇(t + s, x, x − 1)

∣∣∣F (s)
]

=
∑

y1<y2∈Z
ε−

1
2∇x1VASEP

(
(y1, y2), (x1, x2); t

)∣∣
(x1,x2)=(x,x−1)ZASEP(s, y1)ZASEP(s, y2),

where ∇x1 denotes the discrete (forward) gradient acting on the variable x1. Similarly,

E

[
Z∇(t + s, x − 1, x + 1)

∣∣
∣F (s)

]

=
∑

y1<y2∈Z
ε−

1
2∇x1VASEP

(
(y1, y2), (x1, x2); t

)∣∣
(x1,x2)=(x−1,x+1)ZASEP(s, y1)ZASEP(s, y2).

From the perspective of duality, roughly speaking, themechanism of decay in t →∞
arises from the discrete gradient ∇x1 . The semigroup VASEP behaves similar to (two
copies of) the heat kernel, so that

∑
y1<y2 VASEP

(
(y1, y2), (x1, x2); t

) = O(1), and each

gradient of VASEP effectively produces a factor of t−1/2 for large t . Under the scaling
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ε−2 of time, namely t−1/2 ≈ ε1, we expect to trade in ε−1/2∇ for ε−1/2ε1 = ε1/2 → 0.
In other words, the key heuristic is that the l.h.s of (A.4) behaves as

E

[(
ε2

∫ ε−2T

0
F̃ε(t, x)dt

)2] ≈ ε4
∫ ε−2T

0

∫ ε−2T

0

ε−1/2√|t1 − t2| dt1dt2 ≈ ε
1
2 → 0.

(A.10)

Note that the identity (A.9) in its current form does not involve gradients ofVASEP. This
identity can, however, be rewritten via Taylor expansion and summation by parts in a
form that exposes the decay in t →∞.We do not perform this procedure here, and direct
the readers toLemma7.5,where the exact sameprocedure in carried out for the stochastic
6Vmodel. Specifically, the identity (7.28) therein holds with (VASEP, ZASEP,Z) in place
of (Vε, Z , �(s)), and with s, t ∈ [0,∞) instead of Z≥0.

Given the preceding discussion, the task for bounding conditional expectations boils
down to estimating the semigroup VASEP and its gradients. Thanks to Bethe ansatz,
VASEP permits an explicit, analyzable formula in terms double contour integrals. Under
weak asymmetry scaling, we write VASEP = Vε,ASEP and the formula reads

Vε,ASEP
(
(y1, y2), (x1, x2); t

) :=
∮

Cr

∮

Cr

(
zx1−y1
1 zx2−y2

2 − FASEP
ε (z1, z2)z

x2−y1
1 zx1−y2

2

)

2∏

i=1

etE
ASEP
ε (zi )dzi
2π izi

,

where Cr is a counter-clockwise oriented, circular contour centered at origin, with a large
enough radius r so as to include all poles of the integrand, and

FASEP
ε (z1, z2) := 1 + z1z2 − (e− 1

2
√

ε + e
1
2
√

ε)z2

1 + z1z2 − (e− 1
2
√

ε + e
1
2
√

ε)z1
, EASEP

ε (z) := √
�r
(
z + z−1 − 2

)
.

This contour integral formula is amenable to steepest decent analysis. Careful analysis
jointly in (x1, x2, y1, y2, t) should produce the relevant estimates on Vε,ASEP and its
gradient (the result and proof should be analogous to Proposition 6.1). We do not pursue
this analysis here.
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