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A method for calculating the activation energy for the shear viscosity of a liquid from simulations at a single
temperature is demonstrated. Importantly, the approach provides a route to the rigorous decomposition of
the activation energy into contributions due to different motions and interactions, e.g., kinetic, Coulombic,
and Lennard-Jones energies, that are otherwise not accessible. The method is illustrated by application to
the case of liquid water under ambient conditions. The shear viscosity activation energy and its components
are examined and compared to the analogous results for the timescales of diffusion and reorientation that
have been previously calculated, providing a test of the Stokes-Einstein relation for water.

I. INTRODUCTION

Water plays a fundamental role as a solvent in sys-
tems ranging from industrial catalysis to fuel cells to
the biological milieu.1–6 Its dynamical properties are
as important to processes in these environments as its
phase and solvation characteristics. In particular, the
timescales of water motions, e.g., diffusion, reorienta-
tion, and hydrogen-bond (H-bond) exchange, can influ-
ence or determine the rates of physical and chemical
transformations.7–9

Central among the dynamical properties of water are
the transport coefficients that link macroscopic charac-
teristics and molecular behavior. The shear viscosity, ηs,
is a key example, as its magnitude can even be exam-
ined visually in the flow of the liquid while it can also be
used to predict timescales for molecular motion such as
diffusion through the Stokes-Einstein relation,10 e.g.,

D =
kBT

Cπr ηs
. (1)

Here, D is the diffusion coefficient, kB Boltzmann’s con-
stant, T the temperature, r the hydrodynamic radius of
the diffusing particle, and C is a factor that is 4 or 6 for
slip or stick boundary conditions for diffusion, respec-
tively.

Beyond predicting the rate of translational motion for
a molecule in a liquid (D) from the viscosity, Eq. 1 also
provides a route to the temperature dependence. This is
typically measured by the activation energy,

Ea,D = −∂ lnD(T )

∂β
, (2)

where β = 1/kBT . By definition, Ea,D measures how D
changes with T , however, it has a further mechanistic in-
terpretation if one assumes that the temperature depen-
dence is due to an underlying barrier that must be sur-
mounted for diffusion to occur. Then, Ea,D is related to
the height of that energetic barrier or, equivalently,11,12
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the energy that the system must have for the diffusing
particle to pass over the barrier. The Stokes-Einstein re-
lation indicates that the activation energy for diffusion
is directly related to that for 1/ηs, the fluidity, with the
implication that they are both determined by the same
barrier at the molecular level.

In the case of water, both D and 1/ηs are well known
to exhibit significantly non-Arrhenius behavior,13–16 i.e.,
their activation energies are not constant and as the tem-
perature is reduced both quantities decrease more rapidly
in magnitude. This makes calculation of their activation
energies challenging. The standard approach is to calcu-
late, e.g., ηs, at multiple temperatures above and below
the one of interest, then Ea,1/ηs

is obtained from the neg-
ative of the slope of an Arrhenius plot of 1/ηs(T ) versus
β. The non-Arrhenius behavior of 1/ηs means that the
value of Ea,1/ηs

from such an analysis depends on the
temperatures used. Ideally the temperatures would be
as close as possible to the T of interest, however, resolv-
ing the changes in ηs over a narrow temperature range is
difficult for both experiments and simulations.

In this Paper, we present an approach for directly ob-
taining the activation energy of the shear viscosity from
simulations at a single temperature that extends previous
work on other dynamical timescales.17–21 The method
calculates the analytical derivative of 1/ηs with respect
to β in contrast to the numerical derivative approxima-
tion intrinsic to the Arrhenius analysis. Most impor-
tantly, it provides a way to decompose the activation
energy into the different contributions from components
of the system energy, effectively giving the amount of
each type of energy that is required to surmount the un-
derlying barrier for the process. We apply this method
to the shear viscosity of water and compare it to analo-
gous results for the diffusion coefficient19 and reorienta-
tion times.21 Such an analysis thus provides new insight
into the Stokes-Einstein relation and the mechanisms as-
sociated with both diffusion and viscosity.
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II. THEORY

The shear viscosity ηs can be calculated from the
Green-Kubo (GK) relation,

ηs =
V

kBT

∫ ∞

0

⟨Pαβ(0)Pαβ(t)⟩dt

≡ βV

∫ ∞

0

Cηs
(t)dt, (3)

where V is the simulation box volume and the angle
brackets indicate a thermal ensemble average. Here, the
repeated αβ subscript denotes an average of the five au-
tocorrelation functions constructed from the anisotropic
terms of the stress tensor: Pxy, Pyz, Pxz, (Pxx-Pyy)/2,
and (Pyy-Pzz)/2.

The expression for the viscosity given in Eq. 3 is a par-
ticular example of the GK relations that give a transport
coefficient σ in terms of the Fourier transform or integral
of a time correlation function (TCF) of the general form

σ(ω) =

∫ ∞

0

e−iωt ⟨Ȧ(0) Ḃ(t)⟩dt. (4)

Here, A and B are functions of the phase space variables
and the transport coefficient is, in general, a function
of the frequency ω of the applied field. The isothermal-
isobaric (NPT ) ensemble average can be expressed in
more detail as

⟨Ȧ(0) Ḃ(t)⟩ = 1

∆hF

∫
dp0

∫
dq0 e

−β[H(p0,q0)+PV (0)]

× Ȧ[p0,q0] Ḃ[p(t),q(t)], (5)

where H is the Hamiltonian, p and q the system mo-
menta and positions (p0 and q0 at t = 0), F the number
of degrees-of-freedom, h Planck’s constant, and ∆ the
isothermal-isobaric partition function. Then the only
temperature-dependent factors in σ(ω) are ∆ and the
Boltzmann factor. This gives the temperature derivative
as

∂⟨Ȧ(0) Ḃ(t)⟩
∂β

= −⟨[H(0) + PV (0)] Ȧ(0) Ḃ(t)⟩+ 1

∆

∂∆

∂β
.

(6)
The second term can be identified as the negative of the
average enthalpy, ⟨H⟩+ P ⟨V ⟩, so that

∂⟨Ȧ(0) Ḃ(t)⟩
∂β

= −⟨[δH(0) + PδV (0)] Ȧ(0) Ḃ(t)⟩, (7)

where δH(0) = H(0) − ⟨H⟩ is the fluctuation of the
energy at t = 0 from its average value and similarly
δV (0) = V (0) − ⟨V ⟩. This is a general expression for
any GK time correlation function at constant tempera-
ture and pressure.

Then the activation energy for the transport coefficient

can then be expressed as

Ea,σ = −∂ lnσ(ω)

∂β

=

∫∞
0

e−iωt ⟨[δH(0) + PδV (0)] Ȧ(0) Ḃ(t)⟩dt∫∞
0

e−iωt ⟨Ȧ(0) Ḃ(t)⟩dt
.(8)

Note that this gives the activation energy in terms of
TCFs that are evaluated at a single temperature. Fun-
damentally, this approach is statistical mechanical fluc-
tuation theory applied to dynamics. Applied to the case
of the inverse viscosity, 1/ηs, this gives

Ea,1/ηs
= kBT −

∫∞
0

⟨[δH(0) + PδV (0)]Pαβ(0)Pαβ(t)⟩dt∫∞
0

⟨Pαβ(0)Pαβ(t)⟩dt

= kBT +

∫∞
0

CH,ηs(t) dt∫∞
0

Cηs
(t) dt

, (9)

where the last equality, together with Eq. 3, defines the
weighted TCF CH,ηs(t). We choose to calculate the ac-
tivation energy for 1/ηs instead of ηs because Ea,1/ηs

is
positive.

For water under ambient conditions, the term involv-
ing the volume fluctuations, which gives the contribu-
tion to Ea,1/ηs

due to the activation volume of the vis-
cosity, is three or four orders-of-magnitude smaller than
that from the energy and can be neglected without loss
of accuracy. Thus, in the following we use CH,ηs(t) =
−⟨δH(0)Pαβ(0)Pαβ(t)⟩.

III. COMPUTATIONAL DETAILS

The activation energy for the shear viscosity of water
has been calculated according to Eq. 9. Twenty sepa-
rate 50 ns trajectories starting from different initial equi-
librium configurations were propagated in the isobaric-
isothermal (NPT ) ensemble. Each trajectory was used
to obtain 50,000 initial configurations and velocities for
subsequent NVE simulations, from which the shear corre-
lation function and its derivative were calculated. These
configurations sample the Gaussian distribution of en-
ergies and volumes, δH(0) and δV (0), explored by the
NPT trajectory and provide a total of 1,000,000 config-
urations representative of T = 298.15 K and P = 1 bar.

The MD simulations were performed using the
Large-Scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS).22,23 A bulk water system of 343
TIP4P/2005 water molecules was used due to the ability
of the TIP4P/2005 model to accurately describe the tem-
perature dependence of water transport properties.24 The
water molecules were kept rigid using the SHAKE algo-
rithm with a tolerance of 1.0×10−4 which was confirmed
to give good energy conservation.25 The TIP4P/2005
model is a four-site model that incorporates a fourth
charge off of the oxygen atom that improves the electro-
static treatment of water compared with other commonly
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used water models. Electrostatic interactions were calcu-
lated with the Particle Particle Particle Mesh (PPPM)
method,26–28 with an accuracy parameter of 1.0× 10−4.
The Lennard-Jones (LJ) interaction cutoff was 10.5 Å,
while the division between electrostatic calculations in
real and k-space was at 8.5 Å.

In the NPT trajectories a three-chain Nosé-Hoover
thermostat was employed with a 100 fs damping param-
eter and the barostat damping parameter was 1 ps. The
dynamics are evaluated from 1,000,000 separate 50 ps
NVE trajectories launched at 1 ps intervals throughout
the long trajectories. As shown below, these trajectories
need not be longer than ∼ 6 ps for the present purposes;
longer trajectories were used for a different analysis not
discussed here. A 1 fs timestep was used for all simu-
lations, and pressures were calculated every 10 fs from
the NVE trajectories. Simulations were divided into 5
blocks of 200,000 trajectories each for block averaging
to obtain 95% confidence intervals according to the Stu-
dent’s t-distribution,29 which are the errors reported on
the data.

An Arrhenius analysis was carried out by simulations
using the same method at 280 and 320 K. In these
cases, a single 50 ns NPT trajectory was used to gen-
erate 50,000 NV E trajectories of 50 ps each. We note
that this approach is more efficient for obtaining Ea,1/ηs

than the present method, but cannot provide the ener-
getic decomposition of the activation energy. This is in
contrast to previous work on diffusion and reorientation
dynamics,19–21 and reflects the challenges of converging
transport coefficients through Green-Kubo TCFs. More
recently developed non-equilibrium approaches for calcu-
lating the shear viscosity30,31 represent a more promising
path for efficient calculations of the activation energy if
the present method can be extended to them.

IV. RESULTS

A. Viscosity

We have calculated the shear viscosity using the sim-
ulations described in the previous section based on the
stress tensor time correlation function Cηs(t), Eq. 3. This
TCF is shown in Fig. 1 as a function of time. It displays
a sharp initial decay in less than 50 fs followed by several
oscillations with a period of 120 fs, which are damped
out in less than a picosecond. It then exhibits a longer
timescale decay with a time constant of 0.85 ps, which is
complete in less than 3 ps.

The shear viscosity is related to the integral of this
TCF, which is also plotted in Fig. 1. The integral reaches
a plateau after ∼ 4 ps that is maintained for the remain-
der of the 50 ps simulation time used in computing the
TCFs. The calculated numerical integral gives the shear
viscosity as 0.768±0.008 cP at 298.15 K from the integral
Eq. 3 with an upper time limit of 6 ps. There have been
several previous calculations of the shear viscosity of wa-
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FIG. 1: The stress tensor TCF, Cηs (t), (solid black line) is shown
along with its integral (solid red line) as a function of time. The
integral equals the shear viscosity, ηs, at long times (dashed red

line).

ter using a variety of force force fields.32–41 Several stud-
ies have considered the TIP4P/2005 model used here and
obtained values of ηs = 0.78,39 0.807,37 0.82,41 0.83,36
0.855,33 and 0.89 cP.42 The measured shear viscosity is
0.8903 cP.16 Our result is generally smaller than the val-
ues obtained in these previous simulations and measure-
ments. The key difference is that our result is obtained
for the NPT ensemble which gives an average density of
0.987 g/cm3 in our simulations, which, due to our choice
of long-range tail corrections, is lower than the densities
of 0.998-1.00 g/cm3 used in the other simulations.

B. Activation Energy

The activation energy of the inverse shear viscosity,
1/ηs, can be calculated as kBT plus the ratio of the inte-
grated time correlation function weighted by the energy
fluctuation, CH,ηs

(t), and the integral of the unweighted
TCF, Cηs

(t), Eq. 9. The weighted TCF CH,ηs
(t) is shown

in Fig. 2a. It exhibits a rise at times less than 0.5 ps
which is modulated by an oscillation of period ∼ 100 fs,
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FIG. 2: (a) Weighted shear viscosity TCF, CH,ηs (t), plotted
versus time (solid black line). The short-time behavior is shown

in the inset. (b) Ratio of the integrals of CH,ηs (t) and Cηs (t) as a
function of the upper integration limit time (solid black line).
This equals Ea,1/ηs − kBT at long times (dashed black line).

followed by a decay over a longer timescale of ∼ 1.8 ps.
The weighted-to-unweighted ratio of the integrated

TCFs in Eq. 9 is shown as a function of the time used
for the upper limit of integration in Fig. 2b. The ra-
tio reaches a stable plateau at longer times (t > 4 ps),
which gives the activation energy for 1/ηs within kBT .
The activation energy value is obtained from the ra-
tio at 6 ps, yielding Ea,1/ηs

= 3.94 kcal/mol + kBT =
4.53±0.45 kcal/mol. This is in excellent agreement with
an Arrhenius analysis based on calculation of ηs at 280
and 320 K, which gives EArr

a,1/ηs
= 4.53 kcal/mol. This ac-

cord indicates that the shear viscosity activation energy
is most efficiently obtained from an Arrhenius approach;
the advantage of the direct method presented here is the
mechanistic insight it provides, as discussed in the next
section.

We have obtained the experimental activation energy
by fitting the temperature-dependent experimental in-
verse viscosities, 1/ηs, given in Ref. 16 to a cubic func-
tion in β and using this functional form to evaluate the
activation energy at 298.15 K; the experimental 1/ηs

shows significant non-Arrhenius behavior over the tem-
perature range 273 – 373 K, requiring the higher order
fit. (An Arrhenius analysis still represents a good local
approximation, but this approach eliminates any depen-
dence on the choice of temperature range.) The result
of this analysis is an experimental activation energy of
Eexpt

a,1/ηs
= 4.03 kcal/mol, which is lower than the cal-

culated result. Other reports give Eexpt
a,1/ηs

= 4.02 and
4.05 kcal/mol.13–15

C. Energy Decomposition

Previous studies using this direct method of calculat-
ing activation energies of diffusion coefficient and reori-
entation times have shown that the Ea associated with
these dynamical processes can be decomposed into spe-
cific contributions from various components of the total
energy.19,21 We have applied the same approach to the
shear viscosity activation energy. The fluctuation in total
energy can be written as,

δH(0) = δKE(0) + δULJ(0) + δUCoul(0), (10)

where δKE(0), δULJ(0), and δUCoul(0) are the fluctua-
tions in the kinetic, Lennard-Jones (LJ), and Coulombic
energies, respectively. Within the fixed-charge, pairwise
TIP4P/2005 force field used in the present simulations,
this is an exact expression.

Then the total shear viscosity activation energy can be
decomposed as

Ea,1/ηs
= kBT + EKE

a,1/ηs
+ ELJ

a,1/ηs
+ ECoul

a,1/ηs
. (11)

Each of the terms on the right-hand-side of this equation
is a component of the activation energy associated with
the fluctuations of a particular component of the total
system energy, obtained by substituting Eq. 10 into Eq. 9
(with the volume fluctuations neglected). In the case of
the Lennard-Jones contribution, this gives

ELJ
a,1/ηs

= −
∫∞
0

⟨δULJ (0)Pαβ(0)Pαβ(t)⟩dt∫∞
0

⟨Pαβ(0)Pαβ(t)⟩dt
,

=

∫∞
0

CLJ,ηs
(t) dt∫∞

0
Cηs(t) dt

, (12)

where CLJ,ηs(t) = −⟨δULJ(0)Pαβ(0)Pαβ(t)⟩ is the con-
tribution to CH,ηs(t) from the Lennard-Jones interac-
tions. The components associated with the kinetic en-
ergy, EKE

a,1/ηs
, and Coulombic interactions, ECoul

a,1/ηs
, can

be calculated in an analogous way.
The kinetic, Lennard-Jones, and Coulombic energy

contributions to the activation energy are shown in Fig. 4
and given in Table I. The total activation energy is pro-
vided for comparison. In Fig. 4, the ratio for each acti-
vation energy component is shown as a function of the
upper integration limit. These ratios converge to con-
stant values in ∼ 4 ps and we use the value at 6 ps to
compute the activation energy contributions.
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FIG. 3: The stress tensor correlation function, βV CX,ηs (t),
weighted by the (a) Coulombic potential energy (blue), (b)

Lennard-Jones potential energy (violet), and (c) kinetic energy
(red). Insets show the short-time behavior.

These contributions to the shear viscosity activation
energy can be understood in the context of Tolman’s
interpretation of the activation energy.11,12 He showed
that the activation energy for a chemical reaction can
be understood as the average energy of reacting species,
⟨E⟩reacting minus the average energy of the reactants,
⟨E⟩, so that Ea = ⟨E⟩reacting − ⟨E⟩. In this context,
Ea measures the energy required to overcome the bar-
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FIG. 4: Contributions to the 1/ηs activation energy due to
Coulombic (blue) and Lennard-Jones (violet) interactions and

kinetic energy (red) compared to the total result (black). In each
case the integral of CX,ηs (t), X = KE, LJ , and Coul, divided by

the integral of Cηs (t) is shown as a function of the upper
integration limit (solid lines); dashed lines indicate the values at

6 ps.

rier to reaction and each contribution is then the amount
of required energy in a given motion (kinetic energy) or
interaction (potential energy). For the shear viscosity,
the nature of the barrier is not well defined as it is in the
case of a chemical reaction. That is, it is not clear how to
define a reaction coordinate that takes the system over
the barrier. However, several analyses support the no-
tion that for water it is closely related to the exchange of
H-bonds41,43 and the similarity of the activation energy
to that for diffusion (vide infra), reorientation,19,21 and
H-bond exchange itself44,45 supports this conclusion.

The activation energy decomposition shows that the
electrostatic interactions are the dominant contribution
to Ea,1/ηs

with a value, ECoul
a,1/ηs

= 3.80 kcal/mol, that
is nearly identical to the total result of 3.94 kcal/mol
for the TCF component. This is a result of a nearly
complete cancellation between the kinetic energy and
Lennard-Jones contributions. Namely, while the kinetic
energy component of the activation energy is positive,
EKE

a,1/ηs
= 0.97 kcal/mol, the Lennard-Jones term is neg-

ative, ELJ
a,1/ηs

= −0.83 kcal/mol. These results indicate
that 1/ηs decreases, i.e., the water shear viscosity is en-
hanced, by fluctuations that increase the Lennard-Jones
interaction energy in the system, while the reverse is true
for the electrostatic and kinetic energy. Or, equivalently,
the shear viscosity is decreased most by increases in the
Coulombic interaction energy.
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Act. Ener. 1/ηs DPBC τ2 ⟨τ2⟩
Etotal

a 4.5345 4.2679 4.2810 4.5811

ELJ
a -0.8325 -1.36320 -1.316 -1.547

ECoul
a 3.8025 4.43688 4.3813 4.9814

EKE
a 0.9735 1.1943 1.214 1.144

kBT 0.59 –

TABLE I: Total activation energy and the contributions due to
the kinetic energy (KE) and Lennard-Jones (LJ) and Coulombic

(Coul) interactions for the shear viscosity, 1/ηs, diffusion
coefficient from the periodic boundary conditions simulations,

DPBC , reorientation time, τ2, and integrated reorientation time,
⟨τ2⟩. Data for τ2 and ⟨τ2⟩ are taken from Ref. 21. All values are

in kcal/mol; subscripts indicate uncertainties in the trailing digits.

V. DISCUSSION

A. Comparison with the Molecular-level Timescales

We have previously shown how the activation ener-
gies of the diffusion coefficient, D, and reorientation
times can also be obtained from simulations at a single
temperature.19,21 Briefly, considering D as an example, it
is obtained from the mean-squared displacement, MSD,
as

D = lim
t→∞

⟨|r⃗(t)− r⃗(0)|2⟩
6t

= lim
t→∞

MSD(t)

6t
, (13)

where r⃗(t) is the position vector of the species of interest
(here the water center-of-mass) at time t and the average
is over all molecules. By taking the derivative of D with
respect to β in analogy to Eq. 6, one can show that19

Ea,D =
lim
t→∞

⟨[δH(0) + PδV (0)] |r⃗(t)− r⃗(0)|2⟩

lim
t→∞

⟨|r⃗(t)− r⃗(0)|2⟩

=
lim
t→∞

MSDH(t)

lim
t→∞

MSD(t)
. (14)

In practice we calculate the slope of both MSDH(t) and
MSD(t) at long times and take the ratio to obtain the ac-
tivation energy. Similar expressions have been obtained
for the OH reorientation times in water. Particularly we
have shown how the longest decay timescale, τ2, of the
reorientational TCF C2(t) = ⟨P2[e⃗OH(0) · e⃗OH(t)]⟩ and
the average reorientational time, ⟨τ2⟩ =

∫∞
0

C2(t)dt, can
be obtained by an analogous approach.

The results obtained for the diffusion coefficient and
reorientation time activation energies and their decom-
position into kinetic, Coulombic, and Lennard-Jones en-
ergy components are given in Table I. The reorientation
time data are taken from Ref. 21. The diffusion coef-
ficient values are calculated from the same trajectories
described in “Computational Methods” that were used to
evaluate ηs and its activation energy; the diffusion re-
sults are better determined, however, since each water
molecule contributes separately to the averaging. The

value of the diffusion coefficient is known to be sensitive
to the size of the periodic boundary condition simulation
box,46,47 as

D = DPBC +
2.837297 kBT

6πηsL
, (15)

where DPBC is the value calculated with a simula-
tion box of length L and D is the diffusion coefficient
in an infinite system. The present simulations give
D = 2.382 × 10−5 cm2/s after applying this correc-
tion. This is in good agreement with the accepted best
value from measurements of 2.229 × 10−5 cm2/s.15,48–52
Interestingly, within the Stokes-Einstein approximation
(see the Appendix) the correction for finite-size effects
in Eq. 15 yields the same activation energy for D and
DPBC , so no adjustment is required for Ea,D. If the
Stokes-Einstein relation is not assumed, Eq. 18 can be
used to obtain the “corrected" activation energy for D
and gives Ea,D = 4.40 ± 0.08 kcal/mol, which is only
0.13±0.08 kcal/mol larger than Ea,DPBC

, indicating that
these corrections are small.

B. Tests of the Stokes-Einstein Relation

We now use the comparison of the temperature depen-
dence of η and the diffusion coefficient to investigate the
validity of the Stokes-Einstein relation for water, Eq. 1.
Specifically, we consider three approaches that focus on
different predictions: 1) examining the ratio of Dηs/T as
a function of temperature, 2) comparing the activation
energy values for D and ηs, and 3) analyzing the contri-
butions to each activation energy due to the Coulombic,
Lennard-Jones, and kinetic energies.

1. Is Dηs/T Constant?

An approach that has been used extensively is to ex-
amine how the ratio Dηs/T varies with temperature or
density given that the Stokes-Einstein relation, Eq. 1,
predicts it is constant. From our calculations at different
temperatures, we find that Dηs/T is nearly identical at
280 and 298.15 K with values of 6.11 × 10−15 N/K and
6.14 × 10−15 N/K, respectively, but it is ∼ 15% lower,
5.22× 10−15 N/K, at 320 K.

In contrast, Krynicki et al. found a constant value
within experimental errors of Dηs/T = 6.9 ± 0.4 ×
10−15 N/K over a wide range of temperatures based
on their diffusion coefficient measurements and literature
viscosity data.15 Other work by Woolf14 and Wilbur et
al.53 found that for H2O and D2O, respectively, that the
ratio is effectively independent of density but decreases
weakly with temperature, particularly above ∼ 305 K.
These latter observations appear to be consistent with
the present results. Wilbur et al. analyzed their re-
sults in terms of the boundary conditions implicit in
the Stokes-Einstein equation, by calculating the factor
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of C = kBT/(πrDηs) in the denominator of Eq. 1 for
different temperatures. They found that C increased
from ∼ 4.9 at 298 K to more than 6 at high tempera-
tures, indicating that the boundary conditions for water
molecule diffusion become more “stick"-like as tempera-
ture increases.

2. Stokes-Einstein Activation Energy Predictions

The Stokes-Einstein relation also directly links the ac-
tivation energy for diffusion to that governing viscosity
or, more directly, the inverse shear viscosity, 1/ηs. Specif-
ically, Eq. 1 predicts a direct relationship between the two
as

Ea,D = Ea,1/ηs
+ kBT. (16)

Note that this can be obtained by setting the derivative
of Dηs/T with respect to β equal to zero and thus is
formally equivalent to the above analysis of that ratio.
However, Eq. 16 can be used to test the Stokes-Einstein
relation at a single temperature, which the Dηs/T ratio
cannot, and is therefore represents a clearer evaluation.

Examination of the activation energies in Table I shows
that the relation in Eq. 16 is not satisfied. From our
calculated Ea,D, we would predict from the Stokes-
Einstein relation that the 1/ηs activation energy is
3.675 ± 0.009 kcal/mol, which differs significantly from
our calculated Ea,1/ηs

= 4.53± 0.45 kcal/mol. This sug-
gests that for the TIP4P/2005 model, the temperature
dependence implicit in the Stokes-Einstein relation is not
quantitatively satisfied.

One approach to interpreting these apparent devia-
tions from Stokes-Einstein behavior is to assume that
Eq. 1 remains valid but that the hydrodynamic radius
r is temperature dependent (and C is not). Then, it is
straightforward to show that

∂ ln r

∂β
= Ea,D − Ea,1/ηs

− kBT. (17)

The data in Table I then gives ∂ ln r/∂β =
−0.86 kcal/mol at room temperature. Importantly, this
indicates that if the Stokes-Einstein equation is assumed
to hold, the hydrodynamic radius must increase with
temperature, i.e., ∂r/∂T > 0. For water, the effective
radius is related to the H-bonding structure and thus
this intepretation suggests that the changes in the water
H-bond network with temperature may influence the dif-
fusion activation energy in a way that is independent of
the viscosity.

An intriguing perspective is offered by the work of
Eyring and co-workers,54 who developed a theory of dif-
fusion as a rate process. This yields a Stokes-Einstein-
like relation in which the hydrodynamic radius, r, is re-
placed by a distance λ that measures the diplacement a
molecule undergoes between two equilibrium positions in
the liquid, i.e., it assumes D is determined by the same

H-bond exchanges as 1/ηs but their effect is weighted by
the distance moved as a result of each exchange. In the
case of water, we can envision this as the movement from
one solvation shell to the next via H-bond exchanges.
Within this interpretation, ∂λ/∂T > 0 indicates that the
distance between solvation shells increases with tempera-
ture, which is at least consistent with the known decreas-
ing density of water with temperature above 4◦C.55

3. Comparison of Activation Energy Components

A comparison of the decomposition of the D, τ2, ⟨τ2⟩,
and 1/ηs activation energies provides additional insight.
We first note that the activation energy components for
D and τ2 are identical (within errors), indicating that
they are both governed by the same H-bond exchange dy-
namics. We have previously identified the origin of differ-
ences in the activation energies for τ2 and the integrated
reorientation time ⟨τ2⟩ as the temperature dependence
of the amplitude of the H-bond exchange contribution to
reorientation.21 This leads to a larger activation energy
overall for ⟨τ2⟩ compared to for τ2 (or D) that comes
principally from a larger Coulombic contribution. Given
the similarity between the activation energies for diffu-
sion and reorientation we will focus on the comparisons
of the former with those for 1/ηs.

The results in Table I show clear qualitative similar-
ities for the activation energy components for diffusion
and viscosity. In particular, both Ea,D and Ea,1/ηs

are
dominated by the contribution from Coulombic interac-
tions, which is close to the total activation energy (or
Ea,1/ηs

− kBT in the case of viscosity). Further, the
Lennard-Jones component is negative in both cases and
nearly cancels the kinetic energy contribution (though
see below).

However, there are quantitative differences between
the activation energy components for D and those for
1/ηs. Before discussing these it is important to con-
sider the comparisons of the decompositions in greater
detail. There are two kBT terms that appear in the ac-
tivation energies. First, kBT adds to the TCF-derived
contribution to Ea,1/ηs

in Eq. 9 and, while the latter can
be decomposed, the former arises within the linear re-
sponse approximation. We note that it is independent of
the potential present and thus is most reasonably associ-
ated with the kinetic energy component. An additional
kBT must be added to Ea,1/ηs

to give Ea,D, Eq. 16,
according to the Stokes-Einstein relation. This arises
from a thermal average of the squared velocity56 and is
therefore also associated with the kinetic energy contri-
bution. Together these two terms yield the prediction
EKE

a,D = EKE
a,1/ηs

+ 2kBT .
With this in mind, we see that EKE

a,1/ηs
+ 2kBT =

2.15 kcal/mol, which is significantly larger than the cal-
culated Ea,D of 1.194 kcal/mol. Similarly, there are
significant differences for the Coulombic contribution,
which is smaller for Ea,1/ηs

than for Ea,D, and the
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Lennard-Jones component, which is larger for the vis-
cosity. Interestingly, however, the total potential en-
ergy contribution to the shear viscosity activation energy,
ECoul

a,1/ηs
+ELJ

a,1/ηs
= 2.97 kcal/mol, is the same as that for

diffusion, ECoul
a,D + ELJ

a,D = 3.073 kcal/mol.
The activation energy decompositions of Ea,1/ηs

thus
appear to not be in quantitative accord with those of
Ea,D via the Stokes-Einstein relation. The results sug-
gest a redistribution, in translating the viscosity to dif-
fusion, of the total potential energy contribution to the
activation energy between Lennard-Jones and Coulombic
interactions. Whether this is a breakdown of the Stokes-
Einstein relation at a more detailed level or an effect of
how H-bond exchanges are weighted in ηs versus D is
not clear. If the latter, one can resolve the disagreement
between the kinetic energy contributions to the activa-
tion energies by assuming, as was done above, that the
effective hydrodynamic radius r (or, alternatively, the
displacement distance, λ) is temperature dependent. If
the resulting ∂ ln r/∂β term is considered as part of the
EKE

a,1/ηs
it gives a predicted kinetic energy contribution to

Ea,D of 1.29 kcal/mol, in good agreement with the calcu-
lated EKE

a,D . Ultimately, these issues will be clarified by
a detailed analysis, currently underway in our lab, of the
fundamental process underlying both ηs and D: H-bond
exchange dynamics.

VI. CONCLUSIONS

A general fluctuation theory for dynamics approach
for evaluating the temperature dependence of transport
coefficients via Green-Kubo relations has been presented
and illustrated by application to the shear viscosity of
water. The result is a calculation of the shear viscosity
activation energy from simulations at a single tempera-
ture. The method is equivalent to taking the analytical
derivative of the viscosity with respect to temperature,
in contrast to the numerical derivative that is obtained
from the standard Arrhenius analysis approach. While
the shear viscosity is known experimentally to exhibit
significant non-Arrhenius behavior,16 we find that an Ar-
rhenius analysis is a good local approximation as it is in
excellent agreement with the present direct calculation
of the activation energy over a narrow 40 K temperature
range.

A principal advantage of the present approach is thus
that the activation energy can be decomposed into con-
tributions from different components of the total system
energy. The results show that Coulombic interactions
represent the largest contributor to the 1/ηs activation
energy. The Lennard-Jones term is negative, indicat-
ing that increasing this type of potential energy actu-
ally increases the shear viscosity, and effectively can-
cels the kinetic energy contribution. This behavior is
qualitatively the same as previously observed for the ac-
tivation energies associated with both diffusion19 and
reorientation.19,21

Three approaches to testing the Stokes-Einstein rela-
tion based on the temperature dependence of the diffu-
sion coefficient and the viscosity have been examined and
each reveals shortcomings. Namely, we find that the ac-
tivation energies of D and 1/ηs do not follow the Stokes-
Einstein prediction. This is also reflected, though per-
haps less clearly, in the change in the ratio Dηs/T with
temperature. Finally, the decomposition of the diffusion
and viscosity activation energies enabled by the fluctu-
ation theory for dynamics approach reveals qualitative
agreement in the relative Coulombic, Lennard-Jones, and
kinetic energy contributions. However, there are signif-
icant quantitative differences. One potential resolution
of this apparent breakdown is to consider the distance
moved as a result of the H-bond exchanges in water,
which relates the viscosity to the diffusion coefficient,54
to be temperature dependent. A detailed examination
of the activation energy associated with this elemental
molecular process, i.e., of the H-bond exchange rate con-
stant and its contributions is needed to investigate this
possibility.
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APPENDIX

Here we show that, within the Stokes-Einstein approxi-
mation, the activation energies are the same for the diffu-
sion coefficient in the infinite liquid, D, and in a periodic
boundary condition simulation, DPBC . The activation
energy for D is given from Eq. 15 by

Ea,D = − 1

D

∂D

∂β

= − 1

D

[
∂DPBC

∂β
+

∂

∂β

(
ξ

6πβηsL

)]
=

DPBC

D
Ea,DPBC

+
ξ

D 6πβηsL
[kBT + Ea,1/ηs

], (18)

where ξ = 2.837297 is a constant.47 Using Eq. 16 derived
from the Stokes-Einstein relation this gives

Ea,D

[
D − ξ

6πβηsL

]
= DPBC Ea,DPBC

. (19)
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However, the term in square brackets on the left-hand-
side is DPBC (see Eq. 15), giving Ea,D = Ea,DPBC

.
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