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Recent advances in the calculation and interpretation of the activation energy for a dynamical process are
described. Specifically, new approaches that apply the fluctuation theory of statistical mechanics to dynamics
enable the direct determination of the activation energy for an arbitrary dynamical timescale from simulations
at a single temperature. This opens up significant new possibilities for understanding activated processes in
cases where a traditional Arrhenius analysis is not possible. The methods also enable a rigorous decomposition
of the activation energy into contributions associated with the different interactions and motions present in
the system. These components can be understood in the context of Tolman’s interpretation of the activation
energy. Specifically, they provide insight into how energy can be most effectively deposited to accelerate
the dynamics of interest, promising important new mechanistic information for a broad range of chemical
processes. The general approach can be extended beyond activation energies to the examination of non-
Arrhenius behavior as well as the changes in dynamical timescales with respect to other thermodynamic
variables such as pressure.

I. INTRODUCTION

The activation energy for a thermal reaction rate con-
stant, k(T ), defined as

Ea = −∂ ln k(T )

∂β
, (1)

where β = 1/kBT , is one of the most fundamental char-
acteristics of the underlying chemical process. It is most
often interpreted in relation to the Arrhenius expression
for the rate constant,1–4

k(T ) = Ae−Ea/kBT , (2)

where A is the Arrhenius prefactor, or frequency factor,
that is assumed to be temperature independent. This em-
pirical relationship between the rate constant and tem-
perature gives rise to the standard approach for deter-
mining the activation energy: one constructs an Arrhe-
nius plot of ln k(T ) versus 1/T and the slope is then
−Ea/kB . The resulting Ea is frequently related to the
barrier for the reaction, which can be valuable for gaining
insight into the reaction mechanism.

There are important limitations to obtaining the acti-
vation energy by an Arrhenius analysis. The requirement
that k be measured or calculated over a range of temper-
atures cannot be met in some cases. For example, near a
phase transition an increase or decrease in temperature
can lead to a change in k that is due to the phase change
rather than the barrier in the state of interest. Proteins
and other biomolecules that undergo folding/unfolding
transitions represent a special case of this problem in
which only a limited temperature range is available for
an Arrhenius analysis. This constraint competes with the
requirement that the temperature range must also be suf-
ficiently broad that changes in k are large enough to be
resolved by the experimental or simulation approach.
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Activation energies are relevant for many timescales
other than chemical reaction rate constants and the con-
flicts inherent in choosing an appropriate temperature
range can be particularly prominent in such cases. Diffu-
sion coefficients, reorientation times, viscosity, and di-
electric relaxation times are only a few examples of
timescales that can be described by an Arrhenius equa-
tion analogous to Eq. 2. Because the underlying pro-
cesses do not involve changes in chemical bonding, they
typically have smaller activation energies and thus de-
pend more weakly on temperature. Moreover, the in-
terpretation of the activation energy is more challenging
in such cases, for which a clear reaction coordinate and
barrier are not readily identifiable.

In this Article, we discuss recently developed ap-
proaches for avoiding an Arrhenius analysis by direct
calculation of the activation energy from simulations at
a single temperature. In general terms, these methods
focus on calculation of the analytical derivative of an
arbitrary dynamical timescale with respect to temper-
ature, in contrast to the numerical derivative obtained
in an Arrhenius analysis. Conceptually, the approach is
essentially the fluctuation theory of statistical mechanics
applied to dynamics. As such, it permits not only comp-
tutational advantages, but new physical insight that is
otherwise inaccessible.

Nearly a century ago, Tolman developed, based on a
statistical mechanical analysis, an alternative interpre-
tation of the activation energy as the difference in the
average energy of reacting molecules minus the average
energy of reactant molecules,5

Ea = ⟨E⟩reacting − ⟨E⟩r, (3)

This idea was further developed by Truhlar6 in terms of
the reactive cross sections of gas phase collision theory
which improved upon an approximation in Tolman’s ap-
proach. Note that the focus of Tolman’s interpretation is
on the energy the reacting species must have to overcome
the barrier rather than the height of the barrier that must
be overcome. This is a different perspective than is often
used in thinking about activation energies and it opens up
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new possibilities for physical insight.7–9 In particular, it
indicates that the activation energy can be decomposed
into contributions due to the system interactions (vide
infra). A given component is then the average energy of
the reacting species, relative to that of the reactants, as-
sociated with the specific interaction. The contribution
to the activation energy is then the measure of how effec-
tive additional energy in this interaction is for speeding
up the dynamics of interest.

The remainder of this Article is organized as follows.
We first introduce the Tolman interpretation of activa-
tion energy and the fluctuation theory for dynamics ap-
proach using simple derivations; the implications for ob-
taining new mechanistic insight using this method are
discussed. Several examples of applications of this fluctu-
ation theory are presented to illustrate the generality and
flexibility of the method. Prospects for moving beyond
the calculation of activation energies is then examined
in terms of both non-Arrhenius behavior and derivatives
of dynamical timescales with respect to other thermody-
namic variables. We conclude with a brief summary and
some remarks about future directions.

II. ACTIVATION ENERGIES

A. Interpretation

The Tolman interpretation of the activation energy,
discussed above and expressed in Eq. 3, is most easily
summarized by considering the thermal reaction rate con-
stant written in terms of the cumulative reaction proba-
bility, N(E); see, e.g., Ref. 7. In brief, quantum mechan-
ically N(E) is the sum over all state-to-state reaction
probabilities at a fixed total energy,10

N(E) =
∑
nr,np

Pnr,np(E), (4)

where nr and np represent the full set of reactant and
product quantum numbers. The classical N(E) can be
analogously defined. The reaction rate constant is given
by

k(T ) =
1

2πℏQr(T )

∫ ∞

0

N(E) e−βE dE, (5)

where Qr(T ) is the reactant partition function. Then it
is straightforward to see that the activation energy is

Ea =

∫∞
0

N(E)E e−βE dE∫∞
0

N(E) e−βE dE
+

1

Qr

∂Qr

∂β
. (6)

The second term can easily be identified as the negative
of the average reactant energy, −⟨E⟩r. If we recognize

Preacting(E) =
N(E) e−βE∫∞

0
N(E) e−βE dE

, (7)

as the normalized distribution for the probability of re-
acting with a total energy E, then we can see that the
first term in Eq. 6 is the average energy of species that
react:

⟨E⟩reacting =

∫ ∞

0

E Preacting(E) dE, (8)

such that the activation energy is given by Eq. 3, as orig-
inally obtained by Tolman.5

It is useful to compare this to the activation energy one
obtains from transition state theory11,12 (TST) in which
the rate constant is approximated as

kTST (T ) =
kBT

h

Q‡

Qr
e−βE‡

, (9)

where Q‡ and E‡ are the transition state internal par-
tition function and electronic energy, respectively. The
activation energy is then given as

ETST
a = E‡ + ⟨E⟩int,‡ + kBT − ⟨E⟩r, (10)

where ⟨E⟩int,‡ = −∂ lnQ‡/∂β is the average internal (ro-
tational and vibrational) energy of the transition state
structure or “activated complex." Comparing this result
with Eq. 3 indicates that within TST the average energy
of reacting species is ⟨E⟩TST

reacting = E‡ + ⟨E⟩int,‡ + kBT .
That is, ⟨E⟩TST

reacting is the electronic barrier height plus
the average thermal internal energy of the transition state
and kBT associated with kinetic energy along the reac-
tion coordinate.

If we note that the exact rate constant can be written
as

k(T ) = κ(T ) kTST (T ), (11)

where κ(T ) is the transmission coefficient, then it is
straightforward to see that

Ea = ETST
a + Ea,κ. (12)

Here, Ea,κ = −∂ lnκ/∂β is the contribution to the ac-
tivation energy from the temperature dependence of the
transmission coefficient. Since κ(T ) corrects all sins of
the TST approximation, it can include, for example,
contributions from both transition state recrossing and
quantum mechanical tunneling. Moreover, it is impor-
tant to note that, like kTST , κ(T ) depends on the choice
of the transition state dividing surface that separates the
reactants and products. This is evident from Eq. 11 be-
cause the exact (measurable) rate constant, k(T ), does
not depend on any definition of a transition state while
kTST (T ) naturally does. Consequently, both ETST

a and
Ea,κ are not obtainable from measurements because they
depend on the choice of the dividing surface separating
reactants and products, while Ea does not.

The above results lead to some of the commonly in-
voked intepretations of the activation energy that differ
from that of Tolman and must be applied with care. For
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example, the activation energy is often loosely considered
to represent the barrier height for the reaction. This is a
reasonable extension of Eq. 3 since the energy of reacting
species above that of reactants is related to the barrier
height that must be surmounted to react. However, this
equivalence should not be taken too literally; for exam-
ple, as we show below, the average energy of the reacting
species, ⟨E⟩reacting, and the reactants, ⟨E⟩r, can be de-
composed into various energy components and thus so
can the activation energy, in a way that does not make
sense for the barrier height. That is, the activation en-
ergy is a measure of the energy required to surmount the
barrier and not just the electronic (or even thermal) en-
ergy of the barrier.

B. Fluctuation Theory for Dynamics

1. Derivation

Fluctuation theory has been used to great effect in un-
derstanding equilibrium statistical thermodynamics,13–15
but only recently has it been shown that the same ideas
can be extended to understand chemical dynamics. A
prototypical example of fluctuation theory is the rela-
tion between the heat capacity and energy fluctuations.
Namely, the average energy of a system in the canonical
ensemble is given by

⟨E⟩ = −∂ lnQ(N,V, T )

∂β
, (13)

where Q is the partition function. Then, the heat capac-
ity, CV , is obtained by taking the temperature derivative
of ⟨E⟩ and can be shown to be related to the fluctuations
in the energy,13

CV =

(
∂⟨E⟩
∂T

)
N,V

=
1

kBT 2
[⟨E2⟩ − ⟨E⟩2] = ⟨δE2⟩

kBT
,

(14)
where δE = E − ⟨E⟩ is the fluctuation of the system
energy from its equilibrium average.

This framework for connecting thermodynamic prop-
erties, particularly those that are related to derivatives
of averages with respect to thermodynamic variables, can
be straightforwardly generalized to dynamical properties.
To see this, consider some property f(t) = f(p,q, t) that
depends on the system momenta (p) and coordinates (q).
Here, we assume a classical system, though a quantum
mechanical version of the following result is obtainable in
a completely analogous way. The average of the property
f in the canonical ensemble can then be written as

⟨f(t)⟩ = 1

QhF

∫ ∫
dp dq e−βH(p,q) f(p,q, t),

=
1

Q
Tr[e−βH f(t)], (15)

where F is the number of degrees-of-freedom, Q is the
canonical partition function, and the second equality de-

fines the trace, Tr, as an average over phase space. Then,
because only Q and the Boltzmann weight depend on
temperature (note the similarity to Eq. 5),

∂⟨f(t)⟩
∂β

= − 1

Q

∂Q

∂β
⟨f(t)⟩ − 1

Q
Tr[e−βH H(0) f(t)]

= − 1

Q
Tr[e−βH δH(0) f(t)]

= −⟨δH(0) f(t)⟩, (16)

where δH(0) = H(0) − ⟨H⟩. This result has a simple
physical interpretation as discussed in the following sec-
tion and illustrated in Fig. 1. We can also note that if
f(t) = δH(0) = δE(0) then this result is the same as
Eq. 14 for the heat capacity.

If f(t) is chosen to be a dynamical variable, the result-
ing derivative in Eq. 16 gives the temperature dependence
of the corresponding transport coefficient or dynamical
timescale. In one general case, f(t) can represent a time-
correlation function (TCF), C(t) = ⟨A(0)B(t)⟩, where A
and B are two functions of phase space coordinates. Typ-
ically, a dynamical constant of interest can be obtained
from the time decay or integral of the TCF; several ex-
amples are given below. The result in Eq. 16 gives the
temperature (or, equivalently, β) derivative of the entire
TCF as ∂C(t)

∂β = −⟨δH(0)A(0)B(t)⟩. In this regard, the
fluctuation theory applied to dynamics is quite powerful
as it provides more than just an activation energy for a
single timescale.

2. Mechanistic Insight

One of the advantages of this fluctuation theory ap-
proach is that it can provide physical insight that is not
readily available from other methods. For example, the
temperature (β) derivative of the average time-dependent
property in Eq. 16 involves fluctuations in the full, sys-
tem energy, δH(0). The interpretation of this, illustrated
in Fig. 1, is straightforward: the derivative is a measure
of how the dynamics characterized by ⟨f(t)⟩ are accel-
erated or retarded when there is more (δH > 0) or less
(δH < 0) energy available than average.

The total system energy can also be decomposed into
additive components in an almost endless number of ways
to provide mechanistic insight. That is, if H =

∑
α Hα,

then

∂⟨f(t)⟩
∂β

= −
∑
α

⟨δHα(0) f(t)⟩. (17)

Then each term has the interpretation of the contribution
of the Hα energy to the change in ⟨f(t)⟩ with β. Namely,
it is a measure of how the dynamics of ⟨f(t)⟩ are modified
when there is more (δHα > 0) or less (δHα < 0) of the Hα

energy component available relative its average value.16
In the simplest case, one can write the total Hamil-

tonian in many classical simulations as H = KE +
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FIG. 1: Schematic illustration of the fluctuation theory for dynamics. An MD simulation in the canonical ensemble
(left) exhibits a distribution of total energies with fluctuations, δH, about the average value (center). Higher
energies lead to faster dynamics, such as diffusion (right), while smaller energies lead so slower dynamics. The

change in the dynamical timescale, e.g., diffusion coefficient, with the energy is measured by the activation energy.

VLJ + VCoul + Vintra, where KE, VLJ , VCoul, and Vintra

are the kinetic energy and Lennard-Jones, Coulombic,
and intramolecular potential energy terms, respectively.
Then, for example, −⟨δVCoul(0) f(t)⟩ is the contribution
to the β derivative of ⟨f(t)⟩ that is associated with the
Coulombic interactions. If ⟨f(t)⟩ is related to a dynam-
ical timescale (e.g., rate constant, reorientation time),
this provides a way to determine the contributions of
the different energetic terms in the system to the acti-
vation energy associated with the timescale. In the con-
text of Tolman’s interpretation of the activation energy
given in Eq. 3, this means one can determine, for exam-
ple, Ea,Coul = ⟨E⟩reacting,Coul − ⟨E⟩r,Coul, which is the
average Coulombic energy of reacting molecules minus
the average Coulombic energy of reactant molecules. Be-
cause there are a multitude of ways to additively divide
the contributions to the total Hamiltonian, the mecha-
nistic information that can be obtained by this approach
is considerable.

3. Other Ensembles

Fluctuation theory can also be applied in ensembles be-
yond the canonical one. For example, the activation en-
ergy for a dynamical process occurring at constant pres-
sure, i.e., in the isothermal-isobaric or NPT ensemble,
can be obtained as well. In this case, the average of a
dynamical property, f , is given by

⟨f(t)⟩p =
1

∆
Tr[e−β(H+pV ) f(t)], (18)

where ∆(N, p, T ) is the isotherm-isobaric ensemble par-
tition function. Then, it is straightforward to show that

the derivative of the average f(t) at constant pressure is

∂⟨f(t)⟩p
∂β

= − 1

∆
Tr[e−β(H+pV ) (δH(0) + pδV (0)) f(t)],

= −⟨δH(0) f(t)⟩p − p⟨δV (0) f(t)⟩p. (19)

As will be shown below, the second term is related to the
activation volume for the process while the first term is
analogous to Eq. 16 but evaluated at constant pressure
instead of constant volume. The difference between the
constant volume and constant pressure activation energy
has not received a great deal of attention, but both have
been measured in some key cases, e.g., for the diffusion
coefficient of water.17–20

C. Examples

To illustrate the potential of this fluctuation theory
for dynamics and detail the implementation, we con-
sider some specific examples. In particular, we discuss
the theoretical framework for many different dynamical
timescales that are frequently of interest and present re-
sults for particular applications to three properties of one
system, liquid water.

We have implemented Eq. 16 in multiple ways, the key
feature of which is that the averages must be evaluated in
in an ensemble with constant T where fluctuations in the
system energy, δH, are present. In principle, this means
that a single MD simulation where the temperature is
maintained with a thermostat can be used to evaluate
activation energies. While this can be straightforwardly
implemented,21 it is approximate because the thermostat
affects the dynamics. In many cases, this approach can
be sufficient to determine a reasonable activation energy.
However, this issue can be avoided entirely by running a
thermostatted trajectory at a temperature T to generate
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initial conditions for subsequent short, constant energy,
NV E, trajectories from which the dynamics and activa-
tion energies are obtained. Each short trajectory has its
own fixed energy and hence fluctuation from the average
of all the trajectories, δH. This approach has no effect
from the thermostat (as long as it provides the correct
distribution of energies) and has the advantage that the
short trajectories are independent and can be run in an
embarrassingly parallel fashion. Except where otherwise
noted, the data presented here were obtained using this
approach.

1. Reaction Rate Constant

A common approach to calculating the rate con-
stant for a chemical reaction is through reactive flux
TCFs,22–24 such as

k(T ) = lim
t→long

⟨Fs(0)P(t)⟩. (20)

Here, Fs = δ[s(0)−s‡] vs(0) is the flux through the transi-
tion state dividing surface defined in terms of the reaction
coordinate s with velocity vs. The δ-function dictates
that trajectories start at time t = 0 at the transition
state defined by s = s‡ and P(t) is the characteristic
function that is equal to 1 for reactive trajectories, i.e.,
those that start as reactants in the past (−t) and end
as products in the future (t), and 0 for non-reactive tra-
jectories. For example, P(t) = Θ[s(t) − s‡], where Θ(x)
is the Heaviside step function, is a common choice for
evaluating the characteristic function. The exact classi-
cal rate constant is obtained when the trajectories are
propagated to a time t long enough that all transition
state recrossing has been completed.

The activation energy for the rate constant, Eq. 1, is
then obtained using Eq. 16 as

Ea =

lim
t→long

⟨δH(0)Fs(0)P(t)⟩

lim
t′→long

⟨Fs(0)P(t′)⟩
. (21)

Such a result was first shown by Dellago and Bolhuis,25
and has been implemented via transition path sampling
simulations in a several cases.26–31

Interestingly, if this result is compared with the Tol-
man expression for the activation energy, Eq. 3, while
noting that in this case of a chemical reaction δH =
H − ⟨E⟩r, it leads to the result

⟨E⟩reacting =

lim
t→long

⟨H(0)Fs(0)P(t)⟩

lim
t′→long

⟨Fs(0)P(t′)⟩
, (22)

for the average energy of the reacting species, which is
equivalent to Eq. 8.
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FIG. 2: Bottom: The TCFs MSD(t) (black line) and
MSDH(t) (red line) are plotted versus time for the
SPC/E water model at 298 K obtained from 2,500

NV E trajectories. Top: The ratio MSDH(t)/MSD(t)
(red line) is plotted as a function of time. A fit of this
ratio between t = 15− 20 ps to a constant value is also
shown (blue dashed line). Note: MSD(t) is in units of
Å2/ps, MSDH(t) in kcal/mol × Å2/ps. Reprinted from
Piskulich, Z. A., Mesele, O. O., and Thompson, W. H.

J. Chem. Phys., 2017, 147, 134103, with the
permission of AIP Publishing.

2. Diffusion Coefficient

The diffusion coefficient, D, is typically calculated
from the mean-squared displacement, MSD(t) = ⟨|r⃗(t)−
r⃗(0)|2⟩, which is a measure of the distance traveled by a
molecules in time t. Specifically, the diffusion coefficient
is obtained as

D(T ) = lim
t→∞

MSD(t)

6t
, (23)

for motion in three dimensions. Thus, in this case f(t) =
|r⃗(t)− r⃗(0)|2 and Eq. 16 leads to

Ea,D = −∂ lnD

∂β
=

lim
t→∞

⟨δH(0) |r⃗(t)− r⃗(0)|2⟩

lim
t→∞

⟨|r⃗(t)− r⃗(0)|2⟩

=
lim
t→∞

MSDH(t)

lim
t→∞

MSD(t)
, (24)

where MSDH(t), defined by the last equality, is the
mean-squared displacement weighted by the energy fluc-
tuations.

In practice, Eq. 24 is most accurately evaluated by sep-
arately fitting MSDH(t) and MSD(t) each to a line at
longer times and then taking the value of the ratio of the
slopes. In many cases, however, the activation energy



6

0 5 10 15 20
Time (ps)

-1

0

1

2

3

En
er

gy
 (k

ca
l/m

ol
)

FIG. 3: The contributions to the diffusion TCF
MSDH(t) shown in Fig. 2 associated with the kinetic

energy (red line), Lennard-Jones potential energy
(violet line), and Coulombic potential energy (blue line)
are plotted versus time along with the total (black line).

Reprinted from Piskulich, Z. A., Mesele, O. O., and
Thompson, W. H. J. Chem. Phys., 2017, 147, 134103,

with the permission of AIP Publishing.

can be obtained from the ratio of the correlation func-
tions directly at long times. This is illustrated in Fig.
2 where the mean-squared displacements (weighted and
unweighted) and their ratio are shown for the SPC/E
water model32 at 298.15 K. From the data presented in
Fig. 2, the activation energy for water diffusion is found
to be Ea,D = 3.48 ± 0.16 kcal/mol, in excellent agree-
ment with Ea,D = 3.49± 0.20 kcal/mol derived from an
Arrhenius analysis.

As mentioned in the above section the fluctuation the-
ory for dynamics offers new opportunities for insights
into the mechanisms of diffusion by allowing for a de-
composition of activation energies into various energetic
contributions. In Fig. 3 we present the decomposition
of the activation energy for the kinetic, Lennard-Jones,
and electrostatic energy components with values of 1.1,
-0.8, and 3.2 kcal/mol, respectively. This indicates that
electrostatic interactions are the dominant contribution
to the diffusion activation energy.

These results are indicative of the central role of
hydrogen-bond (H-bond) exchanges in water diffusion,
which are primarily governed by the electrostatic inter-
actions. In the context of the Tolman interpretation of
activation energies, this indicates that higher Coulombic
interaction energy accelerates water diffusion, presum-
ably by destabilizing the water H-bonds. In contrast,
increasing the Lennard-Jones energy leads to slower dif-
fusion; the reason for this is not yet completely clear,
but is perhaps due to “jamming" of the water motion
when the Lennard-Jones interactions are more repulsive.
Furthermore, keeping in mind the Tolman interpreta-
tion of activation energies, this indicates that the wa-

ter molecules with higher kinetic or electrostatic energies
will diffuse more quickly on average than those that have
larger Lennard-Jones energies.

3. Reorientational Timescales

Reorientational dynamics, as measured by infrared
pump-probe anisotropy and spin-echo NMR, are char-
acterized by the reorientation time correlation function,
C2(t) = ⟨P2[e⃗(0) · e⃗(t)]⟩. This TCF acts as a measure of
the change in the orientation of a particular molecular
axis, described by the unit vector e⃗, in time t. Here, P2

denotes the second Legendre polynomial which weights
the dynamics in accord with the IR spectroscopy and
NMR signals. In this case then, f(t) = P2[e⃗(0) · e⃗(t)] and
thus from Eq. 16 we find that,

∂C2(t)

∂β
= −C2,H(t) = −⟨δH(0)P2 [e⃗(t) · e⃗(0)]⟩ . (25)

For water reorientational dynamics we choose e⃗ to be
along each OH bond. The OH reorientation dynamics
exhibit three timescales: 1) an inertial one (≲25 fs) asso-
ciated with water reorienting before it feels any other in-
teractions, 2) a librational one (≲0.5 ps) associated with
water rotations within a particular H-bond, and 3) one
associated with H-bond exchange dynamics (∼3 ps). It
is the last of these which is accessible to IR pump-probe
anisotropy measurements.

These timescales can be extracted from the C2 corre-
lation function by fitting to a tri-exponential function,

C2(t) =
∑
α

Aαe
−t/τα =

∑
α

Aαe
−kαt, (26)

where α = inertial, librational, or 2 (associated with
H-bond rearrangements) and Aα represents the ampli-
tude (or importance) of the α reorientation timescale,
τα = 1/kα. The reorientational TCF, from simula-
tions using the TIP4P/2005 water model,33 are shown
in Fig. 4a along with the fit which yields τiner = 13 fs,
τlib = 0.455 ps, and τ2 = 3.2 ps. NMR spin-echo experi-
ments cannot access the individual timescales but instead
measure the average reorientation time,34

⟨τ2⟩ =
∫ ∞

0

C2(t)dt. (27)

For water, the integrated reorientation time is 2.2 ps for
the TIP4P/2005 water model. Figure 4b shows both
C2(t) and its time integral used to calculate this value.

The activation energies and temperature dependence
of the amplitudes can be obtained by fitting the deriva-
tive TCF, C2,H(t), to the derivative of Eq. 26,

∂C2(t)

∂β
=

∑
α

[
∂Aα

∂β
−Aα

∂kα
∂β

t

]
e−kαt. (28)

using the amplitudes and timescales obtained from fitting
C2(t) itself. Both the derivative TCF, C2,H(t), and its
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FIG. 4: OH reorientational correlation function, C2(t),
(black) is shown as a function of time along with a

triexponential fit (red), Eq. (26). a: C2(t) is shown on a
semi-log scale and the short-time decay is shown in the
inset. b: C2(t) is shown on a linear scale along with its

integral (blue, right axis) which equals the average
reorientational time, ⟨τ2⟩, at long times. Results are
from 50,000 NV E trajectories with the TIP4P/2005
water model at 298.15 K and 1 bar. Reprinted from

Piskulich, Z. A. and Thompson, W. H. J. Chem. Phys.,
2018, 149, 164504, with the permission of AIP

Publishing.

fit using this equation are shown in Fig. 5. From this,
the activation energy of each reorientation timescale is
calculated as,

Ea,τα = − 1

kα

∂kα
∂β

, (29)

Note that the activation energies for τiner and τlib are
merely effective ones that describe the temperature de-
pendence locally, as these timescales do not exhibit Ar-
rhenius behavior.

The activation energy corresponding to the average re-
orientation time, ⟨τ2⟩, accessed by NMR is given by

Ea,⟨τ2⟩ =
1

⟨τ2⟩

∫ ∞

0

∂C2(t)

∂β
. (30)

We have previously shown35 that there is a quantitative
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FIG. 5: The weighted reorientation correlation function
C2,H(t) (black) corresponding to Fig. 4 is shown along
with its contributions from the Lennard-Jones potential
energy (indigo), electrostatic potential energy (green),

and kinetic energy (red). Fits for each correlation
function are included as blue dashed lines. Reprinted
from Piskulich, Z. A. and Thompson, W. H. J. Chem.
Phys., 2018, 149, 164504, with the permission of AIP

Publishing.

and qualitative difference between the pump-prove acti-
vation energy, Ea,τ2 = 4.28±0.10 kcal/mol, and the NMR
activation energy, Ea,⟨τ2⟩ = 4.58 ± 0.11 kcal/mol. This
difference is associated with the change in the amplitude,
A2, which enters into the ⟨τ2⟩ activation energy.

As in the case of diffusion, the activation energies as-
sociated with OH reorientation in water can be decom-
posed into specific contributions from various compo-
nents of the total energy. An example is shown in Fig. 5,
where the weighted correlation functions for the kinetic,
Lennard-Jones, and electrostatic energies are presented,
corresponding to activation energy contributions of 1.14,
-1.31, and 4.38 kcal/mol, respectively. As with diffusion,
it is clear that the most important contribution to the ac-
tivation energy comes from Coulombic interactions. In-
deed, the results of this decomposition are in close accord
with those from diffusion, reflecting the fact that H-bond
exchanges are the key event in both the rotational and
translational dynamics of water.

4. Transport Coefficients

Many important physical quantities may be calculated
from the class of time correlation functions obtained as
Green-Kubo relations. In a general context, a particu-
lar frequency-dependent transport coefficient can be ex-
pressed as a Fourier transform of the appropriate TCF,36

σ(ω) =

∫ ∞

0

e−iωt ⟨Ȧ(0) Ḃ(t)⟩ dt. (31)
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Frequently, only the zero frequency (ω = 0) value is of in-
terest and then σ is simply the integral of the TCF. (Note
the similarity to the average reorientation time, Eq. 27.)
The generality of the fluctuation theory approach as ex-
pressed in Eq. 16 means that it can be straightforwardly
extended to transport coefficients. Specifically, one ob-
tains

Ea,σ(ω) = − 1

σ(ω)

∂σ(ω)

∂β

=

∫∞
0

e−iωt ⟨δH(0) Ȧ(0) Ḃ(t)⟩ dt∫∞
0

e−iωt ⟨Ȧ(0) Ḃ(t)⟩ dt
, (32)

for the frequency-dependent activation energy, which can
be evaluated from simulations at a single temperature.

This expression is sufficiently general that it can be
applied to properties including viscosity, conductivity,
dielectric relaxation, and even spectroscopy. Indeed,
Morita and co-workers have developed similar approaches
to calculating the dependence of different vibrational
spectra on temperature and other variables.37–40 In the
case of a number of the transport coefficients, e.g., vis-
cosity which is a focus on ongoing work in our group,
the key difference with the diffusion and reorientational
dynamics examples discussed above is that they involve
quantities that are global. That is, the quantities A and
B in the TCF depend on the full system configuration
and are not obtained individually for each molecule. This
means that the relevant TCF can require more averaging
to converge, though this is in no way prohibitive.

5. Quantum Dynamics

The fluctuation theory for dynamics approach de-
scribed above is completely general in that it can be
applied to not only classical but also quantum mechani-
cal, semiclassical, or mixed quantum-classical dynamics.
Here we briefly consider the application to quantum dy-
namics. Consider a general quantum mechanical time
correlation function,

C(t) = ⟨Â(0) B̂(t)⟩ = 1

Q
Tr[e−βĤ Â B̂(t)], (33)

where B̂(t) = eiĤt/ℏB̂e−iĤt/ℏ, Q is the quantum me-
chanical partition function, and Tr is a quantum me-
chanical trace. Then, just as in the classical case, it is
straightforward to show that the derivative with respect
to β is given by

∂C(t)

∂β
=

1

Q
Tr[e−βĤ δĤ Â B̂(t)], (34)

where δĤ = Ĥ − ⟨Ĥ⟩.
The thermal rate constant for a chemical reaction can

be considered as a special example using the results of
Miller, Schwartz, and Tromp.10 They derived several

equivalent forms for the formally exact quantum me-
chanical rate constant, including in terms of the flux-flux
TCF,

kQM (T ) =

∫ ∞

0

Cff (t) dt =

∫ ∞

0

⟨F̂s(0) F̂s(t)⟩ dt, (35)

where F̂s = i[Ĥ, θ(ŝ − s‡)]/ℏ is the symmetrized flux
operator at the transition state dividing surface located
at s‡. Then, using Eq. 34 the activation energy is given
by

Ea,QM =

∫∞
0

⟨δĤ(0) F̂s(0) F̂s(t)⟩ dt∫∞
0

⟨F̂s(0) F̂s(t)⟩ dt
. (36)

Note that Ea,QM can be evaluated from the calcula-
tion of kQM itself by one additional multiplication of the
Hamiltonian. We have demonstrated the implementation
(and accuracy) of this direct calculation of the activation
energy for the simple one-dimensional Eckart barrier.21
Similar activation energy expressions21 can be obtained
for each of the various TCFs that can be used to obtain
the rate constant.10

III. BEYOND ACTIVATION ENERGIES

A. Non-Arrhenius Behavior

Thus far our discussion has focused on the tempera-
ture dependence of different dynamical quantities in the
context of the activation energy. It is interesting to con-
sider the situation where the activation energy is not
sufficient to describe the the change in dynamics with
temperature, i.e., when it is itself temperature depen-
dent. Indeed, a number of dynamical processes display
strong non-Arrhenius behavior, e.g., dynamics governed
by low barriers in liquids or reaction rate constants that
have a significant contribution from quantum mechan-
ical tunneling. For example, liquid water displays sig-
nificantly non-Arrhenius behavior in both reorientation
dynamics41,42 and diffusion,19,20,43–46 from the deeply su-
percooled regime up to the boiling point.

The fluctuation theory for dynamics straightforwardly
addresses non-Arrhenius behavior because it determines
the analytical temperature derivatives completely locally
at a single temperature, e.g., at 298.15 K. In other words,
it does not depend on any numerical derivative approx-
imation such as that implicit in an Arrhenius analysis,
which can be sensitive to the choice of temperatures.
Moreover, the approach is not limited to the first deriva-
tive and higher derivatives can also be calculated. For
example, for reorientational dynamics it can be shown
that taking the derivative of Eq. 25 gives

∂2C2(t)

∂β2
= ⟨[δH(0)2 − ⟨δH2⟩]P2 [e⃗(t) · e⃗(0)]⟩ (37)

≡ C2,δH2(t),
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FIG. 6: The second-derivative reorientational TCF,
C2,δH2(t), is shown (red line) for SPC/E water at 298 K
from 30,000 NV E trajectories along with a fit based on
Eq. 26 (dashed blue line); C2(t) is shown for comparison

(black line).

which is the first measure of non-Arrhenius behavior.
This is analogous to an expression for the temperature
derivative of the activation energy developed by Truh-
lar and Kohen in the context of non-Arrhenius enzyme
kinetics.47

An example of this non-Arrhenius TCF is shown in
Fig. 6, where C2,δH2(t) is plotted as a function of time for
OH reorientation in water at 298 K. These results were
obtained using the same approach described in Ref. 48
with 30,000 short NV E trajectories. The expected be-
havior of C2,δH2(t) is obtained by taking the second
derivative with respect to β of the fitting function for
C2(t) itself, Eq. 26. This fit is also presented in Fig. 6
and provides an excellent representation of the calculated
TCF. The integral of C2,δH2(t) is directly related to the
non-Arrhenius behavior of the integrated reorientation
time, Eq. 27, namely ∂Ea,⟨τ2⟩/∂β. The SPC/E model
gives ∂Ea,⟨τ2⟩/∂β = 4.81 (kcal/mol)2 at room tempera-
ture, compared to 7.66 (kcal/mol)2 obtained by fitting
the measured ⟨τ2⟩ values of Ludwig et al.41 This is rea-
sonable agreement, but the difference is indicative of the
shortcomings of the SPC/E model in terms of describing
the water reorientational dynamics over a broader range
of temperatures.33

B. Activation Volumes

The fluctuation theory for dynamics can be extended
to derivatives with respect to other thermodynamic
variables.27,49 For example, in the iosthermal-isobaric en-
semble the average of the dynamical quantity f(t), given
in Eq. 18, can be differentiated with respect to pressure

to give

∂⟨f(t)⟩
∂p

= −β ⟨δV (0)f(t)⟩NpT (38)

where δV (0) = V (0) − ⟨V ⟩NpT . Such derivatives are re-
lated to the activation volume, which for a rate constant
k is given by

∆V ‡ = −RT
∂ ln k

∂p
. (39)

This measure of the pressure dependence of the rate con-
stant is important in many practical situations of high-
pressure chemistry but also interesting from a mecha-
nistic viewpoint.50,51 The typical interpretation of ∆V ‡

is as a measure of relative size of the transition state
and reactant structures. However, Ladanyi and Hynes
showed that this perspective is only complete in con-
densed phases if it includes the surrounding solvent
molecules and their arrangement (or packing) around the
transition state and reactants.52

The fluctuation theory for dynamics offers an improved
method for calculating activation volumes from MD sim-
ulations. The typical approach involves calculation of k
over a large pressure range (often spanning thousands of
bar) to resolve the comparatively modest differences with
pressure which are then used in an Arrhenius analysis to
calculate a single activation volume.51–54 This assumes
that ∆V ‡ is p-independent, which is not true in some
key cases, such as water diffusion. Alternatively, one can
use simulations to estimate the volumes directly,55 or cal-
culate k at many pressures and fit the global pressure
dependence which can then be used to determine ∆V ‡.

As an example of the fluctuation theory approach, con-
sider the pressure dependence of the diffusion coefficient.
From Eq. 38 it can be seen that the pressure derivative
of the mean-squared displacement can be written as

∆V ‡
D = −∂ lnD

∂p
=

lim
t→∞

⟨δV (0) |r⃗(t)− r⃗(0)|2⟩

lim
t→∞

⟨|r⃗(t)− r⃗(0)|2⟩

=
lim
t→∞

MSDV (t)

lim
t→∞

MSD(t)
, (40)

where MSDV (t) ≡ ⟨δV (0) |r⃗(t) − r⃗(0)|2⟩NpT in analogy
to MSDH(t) obtained in deriving the activation energy.
Indeed, this result is reminiscent of Eq. 24 and the inter-
pretation is analogous. Namely, the activation volume
is a measure of how the diffusion speeds up (or slows
down) when the system volume is larger (∆V > 0) or
smaller (∆V < 0) than its average value at the pressure
of interest.

The diffusion coefficient of water is a key example of a
property that does not exhibit an Arrhenius-like pressure
dependence. As the pressure is increased, it is observed
that D first increases (∆V ‡

D < 0) and then decreases
(∆V ‡

D > 0).17–20 The former behavior is attributed to
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FIG. 7: The ratio MSDV (t)/MSD(t), which at long
times is equal to the diffusion activation volume, ∆V ‡

D,
for 100 bar and T = 283 (black), 383 (red), and 473 K

(blue) for TIP4P/2005 water from 5,000 NV E
trajectories. Dashed lines of the same color indicate the
derived ∆V ‡

D from fitting to t ≥ 15 ps. Reprinted from
Piskulich, Z. A., Mesele, O. O., and Thompson, W. H.

J. Chem. Phys., 2018, 148, 134105, with the
permission of AIP Publishing.

disruption of the H-bonding network, while the latter is
ascribed to significant distortion of the network at higher
pressures such that the transition state for H-bond ex-
change requires a larger volume. For a fixed pressure, the
activation volume increases with temperature, which is il-
lustrated in Fig. 7, where the ratio MSDV (t)/MSD(t)

and the corresponding ∆V ‡
D values are plotted versus

time at 100 bar for three temperatures. The activation
volumes obtained are within ∼ 25% of the values ob-
tained experimentally by Krynicki et al.19

IV. SUMMARY

Approaches for direct calculation of the activation en-
ergy for nearly any dynamical timescale of a chemical sys-
tem from simulations at a single temperature have been
presented. These methods directly calculate the analyt-
ical derivative with respect to temperature, in contrast
to the standard Arrhenius analysis which determines the
derivative numerically. They are fundamentally an appli-
cation of fluctuation theory in statistical mechanics ap-
plied to dynamical properties.

The fluctuation theory approach enables new mecha-
nistic insight. The activation energy can be rigorously
decomposed into contributions associated with different
terms in the Hamiltonian, i.e., interactions present in the
system. These are readily understood in the context of
Tolman’s interpretation of the activation energy as the
difference between the average energy of reacting species

relative to the average energy of the reactants.5 Then
each contribution is the average energy of a particular
interaction (or kinetic energy) for the reacting species
relative to that of the reactants. In other words, we can
obtain the measure of how effective it is, in terms of ac-
celerating the dynamics of interest, to deposit energy into
specific interactions and motions of the molecular system.

The method is not limited to activation energies. Non-
Arrhenius behavior can be probed by calculation of
higher derivatives of a timescale with respect to temper-
ature. Moreover, the change in dynamics with respect to
nearly any thermodynamic variable can be determined
by carrying out simulations in the appropriate ensemble.

A number of advantages associated with this approach
have yet to be fully explored. A key example is that
it permits access to activation energies even for systems
that are at the point of a thermally-induced transforma-
tion, because simulations at only one temperature are
required. Thus, an activation energy can be calculated
for a liquid close to its boiling point or a protein near
its melting temperature; for these systems an Arrhenius
analysis is challenging because an increase in tempera-
ture generates a phase or structural change. In addition,
we have only shown here some of the simplest possible
decompositions of the activation energy into broad cate-
gories of interactions and the kinetic energy. Significantly
more detailed mechanistic insight is available by consid-
ering the contributions to the energy of particular atomic
or molecular interactions and motions.
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