

1 **Habituation underpins preference for mates with novel phenotypes in the guppy**

2 MJ Daniel^{1,*}, L Koffinas¹, and KA Hughes¹

3

4 **Affiliations**

5 ¹Department of Biological Science, Florida State University, Tallahassee, Florida, USA

6

7 ***Corresponding Author**

8 Mitchel J. Daniel

9 319 Stadium Drive, FL 32304

10 Florida State University

11 Tallahassee, FL, USA

12 Email: mjdaniel@fsu.edu

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Populations harbor enormous genetic diversity in ecologically important traits. Understanding
26 the processes that maintain this variation is a long-standing challenge in evolutionary biology.
27 Recent evidence indicates that a mating preference for novel sexual signals can be a powerful
28 force maintaining genetic diversity. However, the proximate underpinnings of this preference,
29 and its generality, remain unclear. Here, we test the hypothesis that preference for novel sexual
30 signals is underpinned by habituation, a nearly ubiquitous form of learning whereby individuals
31 become less responsive to repetitive stimuli. We use the Trinidadian guppy (*Poecilia reticulata*),
32 in which male colour patterns are diverse yet heritable. We show that repeated exposure to males
33 with a given colour pattern reduces female interest in males with that pattern, and that interest
34 recovers following brief isolation. These results fulfil two core criteria of habituation:
35 responsiveness decline, and spontaneous recovery. To distinguish habituation from sensory
36 adaptation and fatigue, we also demonstrate stimulus specificity and dishabituation. These results
37 provide the first evidence that habituation causes preference for novel sexual signals, addressing
38 the mechanistic underpinnings of this mating preference. Given the pervasiveness of habituation
39 among taxa and sensory contexts, our findings suggest that preference for novelty may play an
40 underappreciated role in mate choice and the maintenance of genetic variation.

41

42 **Keywords:** Habituation, Sexual selection, Mate choice, Sensory bias, Genetic diversity,
43 Frequency dependence

44

45

46

47 **Introduction**

48 To understand the processes that maintain genetic diversity is a central goal in evolutionary
49 biology [1,2]. Populations of organisms are often observed to have higher levels of genetic
50 variation than can be explained by standard population genetic models that incorporate
51 directional selection, mutation, and genetic drift [3,4]. Negative frequency-dependent selection,
52 in which the fitness of a genotype is greater when that genotype is rare, provides one possible
53 explanation for this diversity because it can maintain high levels of variation without genetic
54 load [5,6]. One ecological process capable of generating negative frequency-dependent selection
55 is a rare male mating advantage, wherein males with rare phenotypes garner higher mating
56 success. A recent field experiment confirmed that male guppies (*Poecilia reticulata*) with rare
57 sexual signal variants had greater mating success than common variants, and implicated a female
58 mating preference for suitors with novel phenotypes as the cause [7]. Intriguingly, a mating
59 preference for novel sexual signals has been reported for several taxa, including three species of
60 poeciliid fishes [8-10], fruit flies [11], and humans [12]. However, the proximate mechanism(s)
61 responsible for preference for novel phenotypes remain elusive, as do its evolutionary origins.
62 Addressing these gaps is important for predicting the generality of this preference, and for better
63 understanding its consequences for sexual selection and the maintenance of genetic diversity.

64

65 Here, we investigate a potential mechanism underlying preference for novel phenotypes during
66 mate choice. We test the hypothesis that this preference is underpinned by habituation to familiar
67 sexual signals. Habituation is formally defined as the process whereby repeated exposure to a
68 given stimulus (e.g., a sexual signal) causes a decline in the responsiveness of an individual (e.g.,
69 mating interest) to that stimulus, beyond the effects of sensory adaptation or fatigue [13,14].

70 Importantly, habituation involves a degree of stimulus specificity, meaning that the decline in
71 responsiveness does not extend to other stimuli of the same sensory modality [14]. It is this
72 stimulus specificity that could generate a preference for mates with novel phenotypes: if the
73 decline in responsiveness is specific to the phenotype variants that an individual repeatedly
74 encounters, then interest in unfamiliar or rare variants should not decline to the same extent,
75 resulting in preference for novel phenotypes.

76

77 Indeed, there is some evidence that animals habituate to components of sexual signals. For
78 example, in grackles, males that had their repertoires artificially enhanced to have multiple
79 syllables were preferred to control males that repeated a single syllable [15]. This may be
80 because females habituated to repeated songs. Similarly, zebra finches habituate to same-song
81 notes but responsiveness is restored with transitions to different notes [16]. These examples
82 suggest that habituation may lead animals to favour more complex or variable signals [17].
83 However, we are not aware of any studies investigating whether habituation generates a
84 preference for novel phenotypes. This distinction is important because it is preference for novel
85 phenotypes that can result in negative frequency-dependent selection on sexual signals, thereby
86 maintaining genetic variation within populations.

87

88 Intriguingly, habituation is considered the simplest form of learning, and is believed to be
89 ubiquitous among animals [13,14]. Furthermore, evidence of habituation has been found for a
90 wide range of ecologically relevant behaviours [14,18], including anti-predator responses (e.g.
91 [19,20]), foraging behaviours (e.g. [21]), and exploration (e.g. [22]). Given its pervasiveness, it
92 seems likely that habituation is a general process that shapes responses to sexual signals.

93 Determining whether habituation underpins preference for mates with novel phenotypes could
94 therefore provide insight into the potential generality and evolutionary origins of preference for
95 novel phenotypes.

96

97 We used the Trinidadian guppy to ask whether habituation can generate preference for males
98 with novel colour patterns. The guppy is an excellent study system because it has well-
99 characterized reproductive behaviours, and because the role of preference for novel phenotypes
100 in generating a rare male mating advantage has been extensively documented in this species. The
101 colour patterns of adult male guppies are diverse yet heritable, providing one of the most extreme
102 examples of morphological polymorphism known [23,24]. Females exhibit robust preferences
103 for males with colour patterns that are unfamiliar (i.e. dissimilar to those they have previously
104 seen) [8,25-27], and also prefer males with rare colour patterns over those with common patterns
105 [28,29]. Furthermore, a field experiment has demonstrated a mating advantage for males with
106 rare colour patterns in natural guppy populations [7]. Lastly, past studies on habituation to sexual
107 signals have focused exclusively on the auditory system [15,16]; the guppy provides an excellent
108 opportunity to provide the first test, to our knowledge, of habituation to visual patterns.

109

110 To determine whether preference for novel colour patterns is underpinned by habituation, we
111 exposed female guppies to a series of stimulus males, and then assayed their mating interest in
112 males with colour patterns that were either very similar to, or very different from, the stimulus
113 males. These data allowed us to test criteria that are widely used to demonstrate habituation
114 [13,14].

115

116 **Methods**

117 *Overview*

118 We tested four key characteristics of short-term habituation. The first of these criteria is
119 responsiveness decline: repeated exposure to males with a given colour pattern should reduce a
120 female's mating interest in males with that colour pattern. Second, we tested for spontaneous
121 recovery: following responsiveness decline, temporarily withholding the stimulus should cause
122 the response to recover. Third, responsiveness to the habituated stimulus should recover
123 following exposure to a novel stimulus, a phenomenon called dishabituation. The fourth
124 characteristic is that the responsiveness decline should involve a degree of stimulus specificity.
125 Importantly, the latter two criteria – dishabituation and stimulus specificity – are unique to
126 habituation learning, and are therefore commonly used to distinguish between habituation and
127 alternative explanations such as other forms of learning, sensory adaptation, and fatigue [13,14].
128 Fatigue occurs when a stimulus energetically taxes an organism's sensory and/or behavioural
129 systems, reducing its responsiveness to future stimuli. Because fatigue is not limited to the
130 systems that process and respond to a single type of stimulus, stimulus specificity is not
131 observed. Additionally, fatigue is not reversed by the presentation of a novel stimulus, meaning
132 that dishabituation does not occur. Sensory adaptation refers to an organism's sensory
133 peripheries becoming less sensitive as a result of extended stimulus exposure, causing perception
134 of the stimulus to fade over time. One example of this is “nose blindness”, in which an organism
135 becomes unable to detect a repeatedly encountered scent. This differs from habituation, in which
136 the decline in responsiveness is caused by an attentional shift away from the repetitive stimulus,
137 due to changes in the central nervous system. The higher order level of processing involved in
138 habituation means that habituation (but not sensory adaptation) is characterized by dishabituation

139 and stimulus specificity. We also asked whether guppies exhibit long-term habituation to male
140 colour patterns, in which extended exposure results in responsiveness decline that persists for
141 long time periods (e.g., hours or days) without spontaneous recovery. The protocols used to test
142 each of these criteria are detailed below.

143

144 *Study system and husbandry*

145 The guppy is a live-bearing species with a promiscuous mating system in which males are
146 persistent in their pursuit of females, and females are choosy [30]. The guppies in our experiment
147 were lab-reared descendants of the “Houde” tributary of the Paria river in Trinidad. At sexual
148 maturity, males develop complex colour patterns that are heritable and at least partially Y-linked,
149 yet also extremely polymorphic. Consequently, within natural populations a given male will
150 typically have a colour pattern similar to a few other males, but different from the rest [7,30]. We
151 used males derived from two Iso-Y lines, which differ from one another in the non-recombinant
152 region of the Y chromosome but otherwise share the same (non-inbred) genetic background
153 [27,31]. Consequently, patterns are similar among males from a given line, and differ
154 substantially between lines (Figure 1), allowing us to discretely categorize males as having
155 similar patterns (i.e. same Iso-Y line) or different patterns (i.e. different lines). The origin and
156 maintenance of these lines is described in Supplementary Methods.

157

158 Males and females were removed from their parents within 12 h after their birth, and placed in
159 rearing tanks. As they matured, we sorted these fish into single-sex tanks where they were held
160 until they were used in the experiment (at approx. 114 to 156 days old). Rearing and single-sex
161 tanks were visually isolated from adult males so that females were naïve to male colour patterns

162 at the start of the experiment. Additional information on fish rearing and husbandry is in
163 Supplementary Methods. All procedures involving live animals were reviewed and approved by
164 the FSU Animal Care and Use Committee (protocol #1740).

165

166 *Stimulus exposure*

167 We exposed virgin females to a series of stimulus males with similar colour patterns, and then
168 assayed female preference for males with colour patterns that were either familiar (i.e. similar to
169 those stimulus males) or unfamiliar (i.e. dissimilar to those stimulus males). Our experimental
170 design included treatments in which each female was exposed to either 3, 6, 9, 12, or 15 different
171 males with the same colour pattern. We designed a divided tank setup that allowed us to expose
172 females to males in a controlled manner, and with minimal stress to females. This divided tank
173 consisted of a female compartment on one side, separated from a male compartment on the other
174 side by three acrylic dividers. The outer two dividers were clear and watertight, preventing
175 olfactory communication and minimizing disturbance to the female caused by netting males into
176 and out of the male compartment. The middle divider was opaque blue and attached to a pulley
177 system that allowed us to raise and lower it. Prior to the experiment, we habituated males and
178 females to the movement of the opaque divider, eliminating behavioural stress responses elicited
179 by the divider's movement (Supplementary Methods). We excluded a small number of fish (7
180 females and 2 males) that exhibited these responses after 6 days of habituation to the divider.

181

182 During the experiment, we placed a single focal female in the female compartment and exposed
183 her to one stimulus male at a time by placing the male in the male compartment and slowly
184 raising the opaque divider. At the end of the exposure period, the opaque divider was lowered so

185 that the male could be replaced with another male from the same line with minimal disturbance
186 to the female. This process was repeated following the habituation paradigm outlined below.
187 Each exposure lasted 2 min, and the opaque divider was lowered for 1 min between exposures.
188 Traditionally, in habituation experiments, behavioural responses of the individual are measured
189 each time the stimulus is applied. However, female guppy mating interest can be most reliably
190 measured when fish are allowed to freely interact. Therefore, we tested female mating interest by
191 conducting mating trials subsequent to these exposure periods. Mating interest assays consisted
192 of allowing the female to freely interact with a single male while we scored their reproductive
193 behaviours. Because a female's experiences during a mating trial could bias her subsequent
194 mating interest, we tested each female only once, immediately after exposure (except where
195 otherwise indicated). A female was never exposed to the same male more than once throughout
196 exposure and testing. This decoupled habituation to colour patterns from familiarity with
197 individual males. Females were all virgins at the start of the experiment, in order to avoid
198 variation in mating history or exposure to males that could have affected mating interest. Further
199 information on procedures for stimulus exposures are in the Supplementary Methods. Prior to the
200 experiment, we screened males based on their mating effort (Supplementary Methods). We only
201 used males that exhibited relatively high levels of sexual behaviours, to ensure that the males in
202 our experiment actively solicited the attention of females.

203

204 *Criterion 1: Responsiveness decline*

205 The first criterion we tested is responsiveness decline: repeated exposure to males that all had
206 similar colour patterns should reduce a female's mating interest in males with that colour pattern.
207 To provide a baseline, we included a treatment in which females were naïve (i.e. had not been

208 exposed to any males prior to the mating interest assay). We compared the mating interest of
209 these naïve females against that of females exposed to either 3, 6, 9, 12, or 15 stimulus males that
210 had the same colour pattern as the male used to test female mating interest. We hereafter refer to
211 these responsiveness decline treatments as “naïve” “3”, “6”, “9”, “12”, and “15”. Females in
212 these and all other treatments experienced otherwise similar rearing and husbandry conditions. If
213 female exhibited responsiveness decline, we predicted that female mating interest should be
214 lower for females that were exposed to the 15 stimulus males than for naïve females. To
215 determine how many exposures were required to elicit responsiveness decline, we compared
216 naïve females against the treatments in which females were exposed to either 3, 6, 9, or 12
217 stimulus males before testing. Treatments used to test responsiveness decline and other criteria of
218 habituation are summarized in Figure 2. Predictions associated with each criterion are depicted in
219 Supplementary Figure S1.

220

221 *Criterion 2: Spontaneous recovery*

222 We tested for spontaneous recovery by testing whether withholding the stimulus caused the
223 response to recover. That is, females should show increased mating interest in males with the
224 familiar pattern if they are briefly isolated from males after exposure. For this treatment, after
225 presenting the female with 15 stimulus males (as above), we held them in isolation for 30 min
226 before testing their mating interest in a male with the same colour pattern as the stimulus males.
227 During the isolation period, females were left within the divided tank with the opaque barrier
228 lowered such that they were not exposed to any males. We predicted that the mating interest of
229 females that were isolated before testing should be higher than in the “15” treatment, in which
230 females were also exposed to 15 stimulus males but were tested immediately.

231

232 *Criterion 3: Dishabituation*

233 Responsiveness to the habituated stimulus should recover following exposure to a novel
234 stimulus, a phenomenon called dishabituation. That is, after exposure to a series of stimulus
235 males with similar patterns, exposure to a male with a novel colour pattern should renew interest
236 in males with the familiar pattern. For this treatment, after presenting the female with 15
237 stimulus males, we exposed her to a 16th male with a different colour pattern and then
238 immediately assayed her mating interest in a male with a colour pattern similar to the original
239 stimulus males. We predicted that female mating interest should be greater than for females in
240 the “15” treatment, who were not exposed to the novel colour pattern prior to testing.

241

242 *Criterion 4: Stimulus specificity*

243 The fourth characteristic of habituation is that the responsiveness decline should exhibit stimulus
244 specificity. This means that exposure to a series of stimulus males with similar colouration
245 should reduce interest in males with the same colour pattern more than it reduces interest in
246 males with a different colour patterns. We tested for stimulus specificity by exposing the female
247 to 15 stimulus males, and then testing her mating interest in males with a different colour pattern
248 than the stimulus males. We made two predictions. First, female mating interest in the stimulus
249 specificity treatment should be higher than for females in the “15” treatment, who were tested
250 with males that had the familiar colour pattern. Second, the mating interest of females in the
251 stimulus specificity treatment should be similar to that of naïve females. Importantly,
252 dishabituation and stimulus specificity distinguish habituation from sensory adaptation, fatigue,

253 or other forms of learning [14]. Therefore, results fulfilling all four of the criteria described thus
254 far are diagnostic of habituation.

255

256 *Criterion 5: Long-term responsiveness decline*

257 Habituation can operate over both short and long timescales [14,32], so we also asked whether
258 guppies exhibit long-term habituation. Long-term habituation can occur after many stimulus
259 exposures, resulting in responsiveness decline that persists over a long timescale—typically days
260 or weeks—without spontaneous recovery [13,14,32]. We tested two criteria that are indicative of
261 long-term habituation. First, we tested for long-term responsiveness decline. We did this by
262 exposing females to 15 similar stimulus males each day, for 4 consecutive days. Females were
263 then isolated from males for 24 h, and on the fifth day were tested with a male that had the same
264 colour pattern as the stimulus males. We predicted that if females in the long-term
265 responsiveness decline treatment did not exhibit spontaneous recovery, then their mating interest
266 would not be significantly different from that of the females in the “15” treatment who were
267 tested immediately.

268

269 *Criterion 6: Long-term stimulus specificity*

270 To determine whether any long-term responsiveness decline was attributable to habituation
271 (rather than sensory adaptation, fatigue, or other forms of learning), we included a long-term
272 stimulus specificity treatment. Females in this treatment were treated the same as in the long-
273 term responsiveness decline treatment, except that they were tested with a male that had a
274 different colour pattern from the stimulus males. We predicted that their mating interest would
275 be higher than that of females in the long-term responsiveness decline treatment.

276

277 Each of our 11 treatments (naïve, 3, 6, 9, 12, 15, spontaneous recovery, dishabituation, stimulus
278 specificity, long-term responsiveness decline, and long-term stimulus specificity) had a sample
279 size of $n = 20$ females (220 females tested in total). Male lines were used in a counterbalanced
280 manner; for each treatment, half of stimulus males were from Line 9, and the other half were
281 from Line 10.

282

283 *Behavioural trials*

284 To measure female mating interest, we placed the female and test male together in an
285 observation tank and allowed the fish to freely interact for 5 min. Using JWatcher, v 1.0 [33], we
286 recorded number of male courtship displays and the number of displays to which females
287 responded positively by orienting to the male, approaching him, and/or performing a “glide”
288 response [30] (see Supplementary Table 1 for ethogram). Within the timeframe of behavioural
289 trials, copulations were too sparse for statistical analyses. Positive responses are more common
290 and predict eventual mating success [30], making them an effective measure of female mating
291 interest. We analysed female mating interest in two ways. To control for variation in male
292 courtship effort, we measured female mating interest as the proportion of courtship displays to
293 which the female responded positively. We also analysed the number of positive responses
294 (without controlling for male courtship displays). While we report the results for the former
295 measure of female mating interest, using the latter metric gave similar results (see
296 Supplementary Results). To ensure consistency, all females were exposed to males by the same
297 person (MJD) and mating trials were all scored by the same person (LK). The experiment was

298 blind, as LK was not aware of the female's treatment at the time of observation. Additional
299 details on our behavioural observations are in Supplementary Methods.

300

301 *Statistical analyses*

302 All analyses were performed in R, v 3.5.1 [34]. We fit generalized linear mixed models, using
303 the package lme4, 1.1-18-1 [35], to female mating interest using a binomial distribution and
304 Laplace approximation for estimating the marginal likelihood. We included the argument
305 "weights", which is used with binomial data to account for between-sample variation in the
306 number of trials (in our case, variation in the number of male courtship displays per trial).
307 Treatment, the Iso-Y line of the test male, and their interaction were modelled as fixed effects.
308 Random effects included the time and day of testing. We used likelihood ratio tests to assess the
309 significance of fixed effects. The interaction between treatment and line was not significant (see
310 results), and was not included in the final model. The effect of treatment was significant (see
311 results); we therefore performed planned contrasts to test our *a priori* hypotheses about
312 differences between certain treatment levels. Because we found significant evidence of
313 responsiveness decline when comparing the 0 (naïve) and 15 treatments, we additionally
314 performed post-hoc tests comparing the 0 treatment with the 3, 6, 9, and 12 treatments to
315 determine how many exposures were required to elicit a significant effect on female mating
316 interest. We avoided inflation of type 1 error rate for this set of 4 post-hoc tests by applying the
317 Bonferroni-Holm correction for multiple comparisons [36].

318

319 We also asked whether there were differences in amounts of male courtship between lines and
320 treatments that could have confounded any effects of these factors on female mating interest. We

321 fit generalized linear mixed models to courtship count data, following the same procedures
322 above, but used the Poisson distribution. The interaction between treatment and line was not
323 significant (see results) and was therefore excluded from the final model.

324

325 **Results**

326 During the mating interest trials, males performed an average of 10.077 ± 0.223 courtships
327 displays (mean \pm SE). Females responded positively to an average of 26.9 ± 1.0 % of displays
328 (mean \pm SE). Number of male courtship displays was not significantly influenced by treatment
329 ($\chi^2_{10} = 7.498, P = 0.678$), line ($\beta = 0.008 \pm 0.042, \chi^2_{10} = 0.036, P = 0.849$), or their interaction
330 ($\chi^2_{10} = 13.291, P = 0.208$). Thus, any effects of treatment and/or line on female mating interest
331 cannot be attributed to differences in male courtship behaviour.

332

333 Female mating interest was significantly influenced by treatment ($\chi^2_{10} = 72.329, P < 0.001$) and
334 line ($\beta = 0.441 \pm 0.524, \chi^2_1 = 5.812, P = 0.016$), with females showing more interest in males
335 from line 9. All estimates and test statistics for this analysis are reported in Supplementary table
336 2. However, the interaction between treatment and line was not significant ($\chi^2_{10} = 12.562, P =$
337 0.249). We therefore found no evidence that habituation differed between lines.

338

339 As a test of responsiveness decline (criterion 1), we asked whether exposure to a series of males
340 with a given colour pattern reduced female interest in males with that same colour pattern,
341 relative to the mating interest of naïve females. Naïve females responded positively to male
342 courtship nearly twice as often as females exposed to 15 stimulus males (see Figure 3 for all
343 treatment comparisons on the untransformed scale; $\beta = -0.720 \pm 0.556, \chi^2_1 = 4.227, P < 0.001$).

344 Therefore, repeated exposure to several males with a particular colour pattern reduces females'
345 mating interest in males with that same pattern. Post-hoc comparisons revealed that the mating
346 interest of naïve females was not significantly different from that of females exposed to 3
347 stimulus males ($\beta = 0.568 \pm 0.553$, $\chi^2_1 = 1.306$, $P = 0.192$), but did differ significantly from that
348 of females exposed to 6, ($\beta = 0.697 \pm 0.556$, $\chi^2_1 = 3.721$, $P < 0.001$), 9 ($\beta = 0.719 \pm 0.555$, $\chi^2_1 =$
349 4.227 , $P < 0.001$), and 12 ($\beta = 0.757 \pm 0.559$, $\chi^2_1 = 4.814$, $P < 0.001$) stimulus males. This
350 indicates that exposure to 6 males, over a period of 12 minutes, was sufficient to reduce mating
351 interest for similar colour patterns.

352

353 To test for spontaneous recovery (criterion 2), we compared the mating interest of females in the
354 “15” treatment with that of females also exposed to 15 stimulus males, but that were isolated
355 from males for 30 min between exposure and testing. The mating interest of females that were
356 temporarily isolated was 43% higher than that of females that were tested immediately (Figure 3;
357 $\beta = 0.347 \pm 0.556$, $\chi^2_1 = 2.831$, $P = 0.005$). Therefore, isolation from males allows spontaneous
358 recovery of mating interest.

359

360 We tested dishabituation (criterion 3) by comparing mating interest of females in the “15”
361 treatment with females also exposed to 15 stimulus males, but that were additionally exposed to
362 a 16th male that had a colour pattern different from that of the stimulus and test males. The
363 mating interest of females shown the dissimilar male was 45% higher (Figure 3; $\beta = 0.349 \pm$
364 0.556 , $\chi^2_1 = -2.787$, $P = 0.005$). This indicates that exposure to a novel colour pattern results in
365 females dishabituating to the familiar colour pattern.

366

367 To test stimulus specificity (criterion 4), we compared the mating interest of females in the “15”
368 treatment with females also exposed to 15 stimulus males, but that were tested with a male that
369 had a different colour pattern than those males. Females tested with a male bearing a novel
370 colour pattern showed 50% more mating interest than those tested with males bearing a familiar
371 pattern (Figure 3; $\beta = 0.356 \pm 0.557$, $\chi^2_1 = -2.584$, $P = 0.010$). In addition, the mating interest of
372 females in the stimulus specificity treatment against naïve females. The mating interest of
373 females in the stimulus specificity treatment was not significantly different from that of naïve
374 females (Figure 3; $\beta = -0.352 \pm 0.212$, $\chi^2_1 = 1.659$, $P = 0.097$). Therefore, the decline in female
375 mating interest caused by exposure to males does not extend to males with novel colour patterns.

376

377 To assess long-term habituation, we first tested for long-term responsiveness decline that persists
378 without spontaneous recovery (criterion 5). As predicted, the mating interest of females exposed
379 to 15 stimulus males per day over 4 days, and then isolated for 24 h prior to testing, was not
380 greater than that of females exposed to 15 stimulus males and immediately tested ($\beta = -0.625 \pm$
381 0.565 , $\chi^2_1 = 1.951$, $P = 0.051$), and the trend was for females in the long-term responsiveness
382 decline treatment to show lower mating interest than females in the 15 treatment. Therefore, we
383 found no evidence of spontaneous recovery for females given extended exposure to stimulus
384 males, indicating long-term responsiveness decline. We next determined whether this was
385 attributable to habituation *per se* by testing for long-term stimulus specificity (criterion 6). As
386 predicted, females in the long-term stimulus specificity treatment (exposed to 15 stimulus males
387 per day over 4 days, and then tested with a male that had an unfamiliar colour pattern), showed
388 higher mating interest than females in the long-term responsiveness decline treatment ($\beta = 0.284$
389 ± 0.435 , $\chi^2_1 = 0.435$, $P < 0.001$). Because stimulus specificity cannot be explained by fatigue,

390 sensory adaptation, or other known forms of learning, our results demonstrate that repeated
391 exposure to male colour patterns over an extended period resulted in long-term habituation.

392

393 **Discussion**

394 Our results demonstrate that visual exposure to males affects the mating interest of female
395 guppies in a manner that fulfills the major criteria of habituation learning. First, exposure to
396 males with a given colour pattern reduced female mating interest in males with that pattern.
397 Second, female mating interest recovered when females were briefly isolated from males. These
398 results indicate responsiveness decline and spontaneous recovery, respectively. We also
399 demonstrated two characteristics that distinguish habituation from alternative explanations such
400 as sensory adaptation, fatigue, or other forms of learning. We observed stimulus specificity:
401 female mating interest in males with novel colour patterns was greater than interest in males with
402 familiar patterns. Furthermore, interest in males with the familiar colour pattern recovered when
403 females were shown a male with an unfamiliar colour pattern, demonstrating dishabituation.
404 Together, these results indicate that female guppies exhibit short-term habituation to the colour
405 patterns of males that they encounter. By reducing female mating interest in males with familiar
406 colour patterns, but not those with unfamiliar patterns, habituation produced a preference for
407 novel phenotypes. These results provide, to our knowledge, the first evidence that habituation
408 can lead to a preference for mates with novel sexual signals. Our findings provide new insight
409 into the proximate mechanisms underpinning this preference.

410

411 We were also able to show long-term habituation to male colour patterns. Female mating interest
412 did not spontaneously recover when we applied an extended exposure regime. Therefore,

413 sufficient exposure can cause an enduring reduction in mating interest in males with familiar
414 colour patterns. We demonstrated that this effect is the result of long-term habituation *per se* by
415 showing stimulus specificity: the long-term exposure resulted in females showing less mating
416 interest in males with familiar colour patterns than unfamiliar patterns. These results are
417 consistent with previous experiments in the guppy describing both short- (e.g. [27]) and long-
418 term (e.g. [7, 26]) preference for novel patterns.

419

420 That habituation underpins preference for novel colour patterns helps to explain some of the key
421 findings made in a previous study of this preference. We found a significant reduction in female
422 mating interest in males with the familiar colour pattern after exposure to 6 males, which
423 corresponds to a total of 12 minutes of exposure. Similarly, Gruber et al. [27] allowed females to
424 freely interact with several males and found that females shifted their preferences on a timescale
425 of minutes, preferring males with colour patterns different from that of their immediately
426 previous suitor. We suggest that this short-term change in preference can be explained by
427 repeated habituation and dishabituation. Exposure to a courting male likely reduced female
428 interest in males with similar colour patterns through habituation. When courted by a male with a
429 different colour pattern, female interest recovered—likely as a result of dishabituation—causing
430 females to discriminate against whichever males resembled their most recent suitor. However,
431 this dynamic may be transient: Gruber et al. [27] found that after 24 h of continuously interacting
432 with these males, females showed less mating interest overall and no longer discriminated
433 between different and same morphs. This result could be explained by an additional
434 characteristic of habituation called habituation of dishabituation [14]: upon repeated application
435 of a dishabituating stimulus (i.e. a novel colour pattern), the amount of dishabituation produced

436 decreases. The results of Graber et al. [27], when contextualized by the findings of the present
437 experiment, suggest that when individuals are allowed to freely interact in social groups,
438 habituation shapes patterns of mate choice in complex ways over multiple timescales.

439

440 Habituation has been observed at the behavioural, physiological, and neural levels, and involves
441 changes in neurons and synapses [13,14]. These changes are believed to result primarily from
442 transient epigenetic markings that reduce synaptic efficacy by lowering expression levels of key
443 receptor genes, and increasing the activation threshold of receptors by inducing conformational
444 changes [37]. The particulars of the processes involved are highly evolutionary conserved, but
445 vary depending on the timeframe of stimulation, type of sensory pathway, and the hierarchical
446 level of signal processing [38]. Nevertheless, given that habituation is among the simplest forms
447 of learning, investigation of the mechanisms of habituation to visual patterns is an exciting
448 avenue for future work to elucidate the molecular, genetic, and neural underpinnings of mate
449 choice plasticity.

450

451 It is likely that habituation plays a pervasive role in mate choice, given our results and the
452 observation that habituation is highly conserved across taxa and contexts [13,14] – including
453 responses to visual stimuli [39]. This raises the question of whether habituation causes
454 preference for novel phenotypes in taxa beyond the handful of species in which such preferences
455 have been documented. Published tests of negative frequency-dependent mate choice have thus
456 far been limited to a fairly small number of taxa, so preference for novel phenotypes may be an
457 underappreciated type of mate choice. Additionally, individuals in many species recognize and
458 discriminate against conspecifics that they have previously encountered as a means of avoiding

459 re-mating and/or inbreeding (e.g. [11,31,40]). Such preference for novel individuals represents a
460 preference for novelty in a broader sense, and might be underlain or reinforced by habituation to
461 the particular phenotypes of familiar individuals. Habituation to sexual signals need not always
462 produce a preference for novel phenotypes. In species in which females exhibit consistent
463 preferences for a given phenotype, habituation would be expected to diminish attraction to the
464 preferred phenotype. Preference for novelty should arise only if there are one or more alternative
465 phenotypes that are attractive enough that they become preferred because of the decline in
466 female interest in the originally preferred phenotype. Therefore, habituation is compatible with
467 consistent mating preferences. Indeed, we observed both habituation and an overall preference
468 for male line 9. The preference for male line 9 may be due to these males having more orange
469 colouration (figure 1; Supplementary Results), as females from our study population prefer
470 males with a large area of orange colouration [30,41]. Habituation is thus most likely to lead to
471 preference for novel phenotypes in species like the guppy in which there are multiple, attractive
472 male phenotypes. We suggest that future work investigate the generality of habituation as a
473 process shaping mate choice, and whether habituation causes widespread mating preferences for
474 novel phenotypes and/or individuals. This is an intriguing possibility because preference for
475 novel sexual signals can promote and maintain genetic variation within populations, potentially
476 helping to explain the paradoxically high levels of genetic diversity in ecologically-relevant
477 traits—including sexual signals—that are widely observed in nature [1,2,42].

478

479 The role of habituation in preference for novel colour patterns also provides insight into the
480 evolutionary origins of this mating preference. Several hypotheses have been proposed for why
481 preferring males with novel patterns might be adaptive. The preference could confer genetic

482 benefits by promoting inbreeding avoidance [8] and/or polyandry [26]. Additionally, preference
483 for novel phenotypes could evolve and be maintained (though only at intermediate frequencies)
484 through a Fisherian “sexy sons” process [43]. Our results raise an alternative explanation: the
485 sensory bias hypothesis, which posits that mating preferences can arise as a by-product of
486 sensory mechanisms favoured by selection in non-mating contexts [44]. Habituation is believed
487 to be widely favoured by selection because it causes organisms to filter out the repetitive sensory
488 “noise” of their environment and instead focus on processing and responding to novel stimuli,
489 which tend to be most biologically relevant [13,14]. Preference for novel colour patterns might
490 have arisen as a pleiotropic consequence of selection favouring habituation to visual stimuli in
491 non-mating contexts. Sensory bias of a different kind has already been found in the guppy:
492 female mating preference for males with large orange spots has been linked to foraging
493 preference for orange food items [45]. However, the potential role of sensory bias in explaining
494 preference for novelty (and thus, frequency-dependent mating preferences) has not, to our
495 knowledge, been previously explored in any taxa.

496

497 Habituation to male sexual signals may also provide an explanation for the evolution of multi-
498 component signals. As females become less responsive to common sexual signal(s), males with
499 novel components in their signal should be released from habituation. This may help to explain
500 the complexity of sexual signals found in many species [46], and in guppy colour patterns in
501 particular.

502

503 In summary, we have demonstrated that female guppies habituate to male sexual signals, and that
504 this process results in preference for unfamiliar phenotypes during mate choice. By identifying a

505 psychological process underpinning preference for unfamiliar phenotypes, our results provide
506 insight into the mechanism and evolutionary origins of this ecologically important type of mate
507 choice. Given that habituation is pervasive among animal sensory systems, these findings
508 suggest that preference for novel sexual signals may be common, and plays an underappreciated
509 role in the maintenance of genetic diversity.

510

511 **Data accessibility**

512 All data have been deposited in the Dryad repository at <http://datadryad.org/review?doi=doi:10.5061/dryad.fp030jg>

514

515 **Acknowledgements**

516 We thank K. Dixon, E. Lange, F. H. Rodd, Katie McGhee, and two anonymous reviewers for
517 their helpful comments on this manuscript. We are grateful to J. Valvo and many undergraduate
518 assistants for their assistance rearing fish. This work was supported by funding from the National
519 Science Foundation of the United States to K. A. H. (IOS-1354775 and DEB-1740466), and
520 from Florida State University to M. J. D.

521

522

523

524

525

526

527

528 **References**

529 1. Lewontin, R. C. (1974). *The genetic basis of evolutionary change* (Vol. 560). New York,
530 NY: Columbia University Press.

531 2. Mitchell-Olds, T., Willis, J. H., & Goldstein, D. B. (2007). Which evolutionary processes
532 influence natural genetic variation for phenotypic traits? *Nature Reviews Genetics*, 8(11),
533 845-856.

534 3. Bürger, R., & Lande, R. (1994). On the distribution of the mean and variance of a
535 quantitative trait under mutation-selection-drift balance. *Genetics*, 138(3), 901-912.

536 4. Turelli, M., & Barton, N. H. (2004). Polygenic variation maintained by balancing
537 selection: pleiotropy, sex-dependent allelic effects and G× E
538 interactions. *Genetics*, 166(2), 1053-1079.

539 5. Tobari, Y. N., & Kojima, K. I. (1967). Selective modes associated with inversion
540 karyotypes in *Drosophila ananassae*. I. Frequency-dependent selection. *Genetics*, 57(1),
541 179-188.

542 6. O'Donald, P., & Majerus, M. E. N. (1988). Frequency-dependent sexual selection. *Phil.*
543 *Trans. R. Soc. Lond. B*, 319(1196), 571-586.

544 7. Hughes, K. A., Houde, A. E., Price, A. C., & Rodd, F. H. (2013). Mating advantage for
545 rare males in wild guppy populations. *Nature*, 503(7474), 108-110.

546 8. Hughes, K. A., Du, L., Rodd, F. H., & Reznick, D. N. (1999). Familiarity leads to female
547 mate preference for novel males in the guppy, *Poecilia reticulata*. *Animal*
548 *behaviour*, 58(4), 907-916.

549 9. Lindholm, A. K., Brooks, R., & Breden, F. (2004). Extreme polymorphism in a Y-linked
550 sexually selected trait. *Heredity*, 92(3), 156-162.

551 10. Royle, N. J., Lindström, J., & Metcalfe, N. B. (2008). Context-dependent mate choice in
552 relation to social composition in green swordtails *Xiphophorus helleri*. *Behavioural*
553 *Ecology*, 19(5), 998-1005.

554 11. Tan, C. K., Løvlie, H., Greenway, E., Goodwin, S. F., Pizzari, T., & Wigby, S. (2013).
555 Sex-specific responses to sexual familiarity, and the role of olfaction in *Drosophila*. *Proc.*
556 *R. Soc. B*, 280(1771), 20131691.

557 12. Janif, Z. J., Brooks, R. C., & Dixson, B. J. (2014). Negative frequency-dependent
558 preferences and variation in male facial hair. *Biology letters*, 10(4), 20130958.

559 13. Groves, P. M., & Thompson, R. F. (1970). Habituation: a dual-process
560 theory. *Psychological review*, 77(5), 419-450.

561 14. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., ... &
562 McSweeney, F. K. (2009). Habituation revisited: an updated and revised description of
563 the behavioural characteristics of habituation. *Neurobiology of learning and*
564 *memory*, 92(2), 135-138.

565 15. Searcy, W. A. (1992). Song repertoire and mate choice in birds. *American*
566 *Zoologist*, 32(1), 71-80.

567 16. Dong, S., & Clayton, D. F. (2009). Habituation in songbirds. *Neurobiology of learning*
568 *and memory*, 92(2), 183-188.

569 17. Ryan, M. J., & Cummings, M. E. (2013). Perceptual biases and mate choice. *Annual*
570 *Review of Ecology, Evolution, and Systematics*, 44, 437-459.

571 18. Tighe, T. J., & Leaton, R. N. (Eds.). (2016). *Habituation: Perspectives from child*
572 *development, animal behaviour, and neurophysiology*. Hillsdale, NJ: Lawrence Erlbaum
573 Associates.

574 19. Hwang, J. S., Costello, J. H., & Strickler, J. R. (1994). Copepod grazing in turbulent
575 flow: elevated foraging behaviour and habituation of escape responses. *Journal of*
576 *Plankton Research*, 16(5), 421-431.

577 20. Vanesyan, A., Rodd, F. H., & Ryu, W. S. (2015). Tracking the startle response of guppies
578 *Poecilia reticulata* in three dimensions. *Journal of fish biology*, 87(4), 981-999.

579 21. Scheiner, R. (2004). Responsiveness to sucrose and habituation of the proboscis
580 extension response in honey bees. *Journal of Comparative Physiology A*, 190(9), 727-
581 733.

582 22. Martin, J. G., & Réale, D. (2008). Temperament, risk assessment and habituation to
583 novelty in eastern chipmunks, *Tamias striatus*. *Animal Behaviour*, 75(1), 309-318.

584 23. Brooks, R., & Endler, J. A. (2001) Direct and indirect sexual selection and quantitative
585 genetics of male traits in guppies (*Poecilia reticulata*). *Evolution* 55, 1002–1015.

586 24. Hughes, K. A., Rodd, F. H., & Reznick, D. N. (2005). Genetic and environmental effects
587 on secondary sex traits in guppies (*Poecilia reticulata*). *Journal of evolutionary*
588 *biology*, 18(1), 35-45.

589 25. Farr, J. A. (1977). Male rarity or novelty, female choice behaviour, and sexual selection
590 in the guppy, *Poecilia reticulata* Peters (Pisces: Poeciliidae). *Evolution*, 31(1), 162-168.

591 26. Eakley, A. L., & Houde, A. E. (2004). Possible role of female discrimination against
592 'redundant' males in the evolution of colour pattern polymorphism in guppies. *Biology*
593 *Letters*, 271(Suppl 5), S299-S301.

594 27. Gruber, R. E., Senagolage, M., Ross, E., Houde, A. E., & Hughes, K. A. (2015). Mate
595 preference for novel phenotypes: a fresh face matters. *Ethology*, 121(1), 17-25.

596 28. Zajitschek, S. R., & Brooks, R. C. (2008). Distinguishing the effects of familiarity,
597 relatedness, and colour pattern rarity on attractiveness and measuring their effects on
598 sexual selection in guppies (*Poecilia reticulata*). *The American Naturalist*, 172(6), 843-
599 854.

600 29. Hampton, K. J., Hughes, K. A., & Houde, A. E. (2009). The allure of the distinctive:
601 reduced sexual responsiveness of female guppies to 'redundant' male colour
602 patterns. *Ethology*, 115(5), 475-481.

603 30. Houde, A. (1997). *Sex, colour, and mate choice in guppies*. Princeton, NJ: Princeton
604 University Press.

605 31. Daniel, M. J., & Rodd, F. H. (2015). Female guppies can recognize kin but only avoid
606 incest when previously mated. *Behavioural Ecology*, 27(1), 55-61.

607 32. Staddon, J. E. R., & Higa, J. J. (1996). Multiple time scales in simple
608 habituation. *Psychological Review*, 103(4), 720-733.

609 33. Blumstein, D. T., & Daniel, J. C. (2007). *Quantifying behaviour the JWatcher way*.
610 Sunderland, MA: Sinauer Associates Incorporated.

611 34. R Core Team (2018). R: A language and environment for statistical computing. R
612 Foundation for Statistical Computing, Vienna, Austria.

613 35. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects
614 Models Using lme4. *Journal of Statistical Software*, 67(1), 1-48.

615 36. McLaughlin, M. J., and K. L. Sainani. 2014. Bonferroni, Holm, and Hochberg
616 corrections: Fun names, serious changes to P values. *American Academy of Physical
617 Medicine and Rehabilitation*. 6, 544-546.

618 37. Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural
619 organisms. *Journal of biosciences*, 34(4), 633-646.

620 38. Schmid, S., Wilson, D. A., & Rankin, C. H. (2015). Habituation mechanisms and their
621 importance for cognitive function. *Frontiers in integrative neuroscience*, 8, 97.

622 39. Dommett, E., Coizet, V., Blaha, C. D., Martindale, J., Lefebvre, V., Walton, N., ... &
623 Redgrave, P. (2005). How visual stimuli activate dopaminergic neurons at short
624 latency. *Science*, 307(5714), 1476-1479.

625 40. Tokarz, R. R. (1992). Male mating preference for unfamiliar females in the lizard, *Anolis*
626 *sagrei*. *Animal Behaviour*, 44(5), 843-849.

627 41. Long, K. D., & Houde, A. E. (1989). Orange spots as a visual cue for female mate choice
628 in the guppy (*Poecilia reticulata*). *Ethology*, 82(4), 316-324.

629 42. Radwan, J., Engqvist, L., & Reinhold, K. (2016). A paradox of genetic variance in
630 epigamic traits: beyond “good genes” view of sexual selection. *Evolutionary
631 biology*, 43(2), 267-275.

632 43. Kokko, H., Jennions, M. D., & Houde, A. (2007). Evolution of frequency-dependent
633 mate choice: keeping up with fashion trends. *Proceedings of the Royal Society of London
634 B: Biological Sciences*, 274(1615), 1317-1324.

635 44. Fuller, R. C., Houle, D., & Travis, J. (2005). Sensory bias as an explanation for the
636 evolution of mate preferences. *The American Naturalist*, 166(4), 437-446.

637 45. Rodd, F. H., Hughes, K. A., Grether, G. F., & Baril, C. T. (2002). A possible non-sexual
638 origin of mate preference: are male guppies mimicking fruit?. *Proceedings of the Royal
639 Society of London B: Biological Sciences*, 269(1490), 475-481.

640 46. Candolin, U. (2003). The use of multiple cues in mate choice. *Biological reviews*, 78(4),
641 575-595.
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

662 Figure 1. Examples of male colour patterns from the two Iso-Y lines (left: line 9; right: line 10)
663 used in the experiment. Males from the same Iso-Y line have patterns that are similar in terms of
664 the number, colour, position, and size of their colour spots, especially on the body. Colour
665 patterns vary substantially between lines.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684 Figure 2. Summary of our habituation paradigm. Treatments are listed on the left. The procedure
685 for exposing females to stimulus males is described in the centre (grey) panel. Listed on the right
686 is the novelty status of the colour pattern of the males used to assay female mating interest.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706 Figure 3. Mating interest of females from each treatment (n = 20 per treatment), on the
707 untransformed scale, measured as the proportion of male courtship displays to which the female
708 responded positively. The left, white colour frame indicates treatments used to test for
709 responsiveness decline, in which females were sequentially exposed to a number of similarly-
710 patterned males (either 0 (naïve), 3, 6, 9, 12, or 15) and then tested. The grey colour frame
711 indicates treatments compared against the 15 treatment to test for additional criteria of short-term
712 habituation: spontaneous recovery (SR), dishabituation (Dis), and stimulus specificity (SS). The
713 right, white colour frame indicates treatments compared against the 15 treatment to test for long-
714 term habituation: long-term responsiveness decline (LTRD), and long-term stimulus specificity
715 (LTSS). Error bars denote the mean \pm SE.