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Abstract—Consider a data publishing setting for a dataset com-
posed by both private and non-private features. The publisher
uses an empirical distribution, estimated from n i.i.d. samples, to
design a privacy mechanism which is applied to new fresh sam-
ples afterward. In this paper, we study the discrepancy between
the privacy-utility guarantees for the empirical distribution, used
to design the privacy mechanism, and those for the true distri-
bution, experienced by the privacy mechanism in practice. We
first show that, for any privacy mechanism, these discrepancies
vanish at speed O(1/

√
n) with high probability. These bounds

follow from our main technical results regarding the Lipschitz
continuity of the considered information leakage measures. Then
we prove that the optimal privacy mechanisms for the empirical
distribution approach the corresponding mechanisms for the true
distribution as the sample size n increases, thereby establishing
the statistical consistency of the optimal privacy mechanisms.
Finally, we introduce and study uniform privacy mechanisms
which, by construction, provide privacy to all the distributions
within a neighborhood of the estimated distribution and, thereby,
guarantee privacy for the true distribution with high probability.

Index Terms—Robustness, information leakage measures,
privacy-utility trade-off, large deviations.

I. INTRODUCTION

PUBLISHING of individual-level data is increasingly per-
vasive [2]–[4]. In many settings, directly disclosing un-

modified data may lead to a privacy risk through unwanted
inferences, particularly if the data contains (or is correlated
with) private information. For example, suppose that a hospital
wishes to share patient-level data to further advance research
on a certain disease. As shown by Sweeney [5], simply
removing private features from the dataset (e.g., name) does
not necessarily guarantee privacy as these features usually
correlate with the remaining features in the dataset (e.g., ZIP
code and gender). This modern data publishing issue, also
present in politics [6], business [7], and welfare [8] to name
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a few, requires data disclosure methodologies with provable
privacy guarantees, whilst still enabling a desired level of
utility to be derived from the disclosed data.

A common approach to ensure privacy consists of perturb-
ing the data using a privacy mechanism: a (possibly) random-
ized mapping designed to control private information leakage,
the nature of which depends on how privacy is quantified.
Different notions of privacy leakage have been proposed to
capture the ability of different adversaries to learn (estimate)
private information, e.g., Shannon’s mutual information [9],
[10], k-anonymity [11], differential privacy [12], maximal
leakage [13], total variation [14], among others. In addition,
privacy mechanisms should also guarantee the statistical utility
of the disclosed data, usually quantified by some measure of
similarity between the original and the perturbed data, e.g.,
distortion [15], f -divergence [16], minimum mean-squared
error [17]. In general, privacy and utility objectives compete
with each other, making the design of privacy mechanisms a
non-trivial task. When data privacy and statistical utility are
measured using information-theoretic quantities (e.g., mutual
information), most methods for the analysis and design of
privacy mechanisms rely on the implicit assumption that the
data distribution is, for the most part, known [10], [14], [18]–
[25]. In practice, the designer has access only to a sample
from the true distribution.

In this work we consider the following setup. We assume
that data has both private and non-private features and, based
on a sample of such pairs, the designer creates a randomized
mapping called a privacy mechanism. As new samples arrive,
the designed mechanism is applied to the non-private features
in order to produce a sanitized version of them which is
later disclosed. In this context, we assume that the adversary
(data analyst) knows the true distribution of the data, the
privacy mechanism being used, and the disclosed data set.
The adversary’s objective is then to illegitimately infer the
private features associated to the disclosed data. We illustrate
this procedure in Figure 1. Observe that this adversary is the
strongest in terms of statistical knowledge and hence serves
as a worst case benchmark. Apart from its statistical knowl-
edge, we assume that the adversary has no side information
regarding the disclosed data.

Since privacy mechanisms are designed using a sample,
their privacy-utility guarantees might not generalize to the
true distribution, thereby creating a privacy threat as the de
facto guarantees might be considerably different from those
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in the design phase. In this work, we study the effect of the
discrepancy between the empirical and true distributions on
the analysis and design of privacy mechanisms.

First, we consider the setting where the privacy mechanism
is designed using an estimate of the data distribution to
evaluate the privacy-utility guarantees. We derive bounds for
the discrepancy between the privacy-utility guarantees for
the empirical distribution (type) and the true (unknown) data
distribution. In this context, these bounds can be used to asses
the de facto guarantees of privacy mechanisms when deployed
in practice.

Next, we investigate the statistical consistency of the op-
timal privacy mechanisms1. More specifically, assume that
the privacy mechanism designer constructs an optimal privacy
mechanism for the empirical distribution. As the number of
samples increases, the optimal privacy mechanism designed
for the empirical distribution naturally changes. We show that
if such a sequence of privacy mechanisms converges, its limit
is an optimal privacy mechanism for the true data distribution.

Finally, we introduce the notion of uniform privacy mech-
anism. When privacy is a priority, the privacy mechanism
designer may be required to guarantee a specific level of
privacy for the true distribution despite having access only
to an estimate of it. Motivated by this setting, we consider
privacy mechanisms that, by design, assure privacy for every
distribution within a specific neighborhood of the empirical
distribution. In this case, large deviations results imply that
privacy is guaranteed for the true distribution with a certain
probability (depending on the neighborhood). Since privacy
is guaranteed uniformly on a neighborhood of the empirical
distribution, we name these privacy mechanisms as uniform
privacy mechanisms.

The paper is organized as follows. In the remainder of
this section we present our main contributions, review related
work, and introduce notation used in this paper. In Section II
we review preliminaries, including information leakage mea-
sures and large deviations results, and recall the framework of
privacy-utility trade-offs. Our main results for the discrepancy
of privacy-utility guarantees, convergence properties, and uni-
form privacy mechanisms are presented in Sections III, IV,
and V, respectively. Finally, we illustrate some of the results
derived in this paper through two numerical experiments in
Section VI and provide concluding remarks in Section VII.

A. Contributions

In Section III, we provide probabilistic upper bounds for the
difference between the privacy-utility guarantees for the empir-
ical and the true distributions under five different information
metrics: probability of correctly guessing, f -information with
f locally Lipschitz, Arimoto’s mutual information (α-leakage)
of order α > 1, Sibson’s mutual information of order α > 1,
and maximal α-leakage of order α > 1. These bounds,
which scale as O(1/

√
n) with n being the sample size, hold

uniformly across all privacy mechanisms and, hence, can be

1Loosely speaking, a privacy mechanism is said to be optimal if it delivers
the best possible utility constrained to a prescribed amount of privacy leakage.
Precise definitions are given in Section II-C.

used even for privacy mechanisms that do not have explicit
descriptions, e.g., the privacy mechanisms implemented using
neural networks in [26]. Explicit constants depending on the
information metrics under consideration are provided. The
proofs of these bounds rely on known large deviations results
[27] and Lipschitz continuity properties of information leakage
measures established in this paper. These continuity properties
can be combined with results for other estimation frameworks
different from the large deviations one, e.g., the `1-minimax
setting in [28] and references therein. In those cases, the
role of the empirical estimator is naturally replaced by other
estimators, e.g., the add-constant estimator in [28].

We study the convergence properties of optimal privacy
mechanisms in Section IV. Specifically, we consider the case
when a privacy mechanism designer constructs a sequence op-
timal privacy mechanisms for a sequence of joint distributions
converging to the true distribution. In this context, we show
that while the sequence of optimal privacy mechanisms do not
necessarily form a Cauchy sequence, the distance between the
privacy mechanisms in the sequence and the set of optimal
privacy mechanisms with respect to the true distribution does
go to zero. This convergence is analyzed for information
measures which satisfy three technical conditions outlined in
Section IV. These conditions are satisfied by probability of
correctly guessing, f -information with f locally Lipschitz, and
Arimoto’s mutual information (α-leakage) of order α > 1.
As a by-product, we prove that, under these conditions, the
privacy-utility function as a function of the joint distribution
is continuous except possibly at the boundary of its domain.

In Section V, we introduce the notion of uniform privacy
mechanism and prove the existence of optimal uniform privacy
mechanisms, i.e., uniform privacy mechanisms that attain the
best utility in a max-min sense. Optimal uniform privacy
mechanisms are considerably harder to design than their non-
uniform counterparts as privacy has to be guaranteed for any
distribution within a neighborhood of the empirical distribu-
tion. Nonetheless, we show that they can be approximated by
certain mechanisms designed to deliver privacy only for the
empirical distribution. This approximation result circumvents
the highly non-trivial task of designing optimal uniform pri-
vacy mechanisms.

B. Related Work

Differential privacy is a popular measure of privacy which
aims at answering queries while simultaneously ensuring pri-
vacy of individual records in the database [12], [29]. It does not
take into account the distribution of the entire dataset which
results in its robustness with respect to the dataset distribution,
a property that is not satisfied a priori by information-theoretic
privacy mechanisms. In this work we analyze the degree of
robustness to variations of the dataset distribution of certain
information-theoretic measures of privacy.

The study of privacy from an information-theoretic point
of view heavily depends on the chosen information metric.
One commonly-used information leakage metric is Shannon’s
mutual information [30] and its generalizations [31]. In par-
ticular, both α-leakage and f -information — a special case of
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Fig. 1: Typical setting for the design and deployment of privacy mechanisms.

Csiszár’s f -divergence [32] — have been used to formulate
the privacy-utility trade-offs problem, see e.g., Liao et al. [33].
These generalizations seek to study privacy using information
metrics that have appeared in the information theory litera-
ture and carry some operational (statistical) meaning. There
are also information measures which have been introduced
specifically in the context of privacy and information leakage.
For example, Issa et al. [13], [34] introduced a metric called
maximal leakage to measure privacy leakage, later extended
by Liao et al. [35] in a tunable measure called α-leakage.
Duchi et al. [36] presented locally differential privacy. We
refer the reader to Wagner and Eckhoff [37] for a survey of
privacy metrics and remark that information metrics also shed
light on many secrecy problems, e.g., cryptosystems with short
keys [38], side-channel attack [39], and entropic security [40],
[41].

Many methods to design information-theoretic privacy
mechanisms (see Figure 1) have been proposed in the past,
see, e.g., [9], [10], [17], [18], [39], [42]. However, all these
works assume that the designer has full knowledge of the data
distribution. In practice, the designer may only have access to
n i.i.d. samples, creating a mismatch between the distribution
used to design the privacy mechanism and the true one. We
significantly generalize the work of Wang and Calmon [22],
which studies the robustness of privacy mechanisms when
privacy and utility are measured using χ2-information, to
encompass a wide range of information leakage measures. To
be more specific, we show that for every information leakage
measure considered (see Theorem 1), the discrepancy between
the privacy-utility guarantees for the empirical and true distri-
butions scales as O(1/

√
n). It is important to remark that, in

the context of the information bottleneck, Shamir et al. [43]
established similar upper bounds for mutual information that
scale as O(log(n)/

√
n). Hence, mutual information appears to

fall outside the scope of the techniques presented in this paper.
A related problem is that of estimating information-theoretic
measures from a limited number of samples, as studied by,
for example, Jiao et al. [44], Wu and Yang [45] and Issa et
al. [39] in the context of privacy. Our work differs from
those as we do not focus on the construction of estimators
suited for a specific information leakage measure, instead
we analyze the performance of the plug-in estimator under
different leakage measures. Given the ease of implementation
of this estimator, we believe our contributions might be of
interest to practitioner.

The fundamental trade-offs between privacy guarantees and
statistical utility in data disclosure have been studied in several
papers from an information-theoretic view. For example, Ya-
mamoto [15] developed the trade-off between rate, distortion,
and equivocation for a specific source coding model. Rebollo-
Monedero et al. [9], Calmon and Fawaz [18], and Sankar et
al. [10] characterized privacy-utility trade-offs using tools
from rate-distortion theory. Varodayan and Khisti [46] and
Tan et al. [47] considered the privacy-energy efficiency trade-
off in smart meter systems. Makhdoumi et al. [48] showed
the connection between the privacy funnel and the information
bottleneck proposed by Tishby et al. [49]. The privacy-utility
function, as presented in Section II-C, has been analyzed to
find the fundamental limits of privacy-utility trade-offs under
different metrics, see, e.g., Calmon et al. [50] and Asoodeh et
al. [20]. It has been shown that this function exhibits some
common properties across different metrics. For example, it
is continuous, concave, and strictly increasing with respect to
the privacy parameter, see also Wang and Calmon [22] and
Asoodeh et al. [17].

The study of robustness has appeared in many different
areas, such as optimization [51], statistics [52], artificial in-
telligence [53], and machine learning [54]. The notion of
robustness considered in this work is closely related to gen-
eralization in machine learning [55], which aim at analyzing
different performances of the learner’s output between training
and testing phases. More specifically, a learner may output a
classifier h which minimizes a given empirical risk over a
sample S = (z1, · · · , zm), namely,

LS(h) ,
1

m

m∑
i=1

`(h, zi), (1)

where ` is a given loss function. Nonetheless, in practice,
the same classifier h might exhibit a very different true risk,
defined as

L(h) , E [`(h, Z)] , (2)

where Z is a random variable distributed according to the
dataset distribution. The goal of generalization is to analyze
the difference between the empirical risk and the true risk
and derive bounds for this discrepancy. This problem has
been studied in computer science [56] and, recently, has
been analyzed using tools from information theory by Xu
and Raginsky [57] and Russo and Zou [58]. Since most
information-theoretic metrics do not seem to be expressible



IEEE TRANSACTIONS ON INFORMATION THEORY 4

in terms of a loss function as in (2), classical generalization
results cannot be directly applied for analyzing the robustness
of information-theoretic privacy mechanisms. Recently, the
robustness of privacy mechanisms has been investigated using
tools from information theory in the works of Wang and
Calmon [22] and Issa et al. [39]. It is important to mention
that some techniques developed for privacy preservation, such
as differential privacy, can be useful to analyze generalization
guarantees, as shown by Dwork et al. [59]–[61].

C. Notation

Given random variables U and U ′ supported over a finite
alphabet U and another random variable V supported over a
finite alphabet V , we let PU ′ · PV |U be the joint distribution
over U × V determined by

(PU ′ · PV |U )(u, v) = PU ′(u)PV |U (v|u). (3)

Observe that with this notation, PU · PV |U = PU,V . Given
another random variable Ṽ supported over a finite alphabet
Ṽ , we let PṼ |UPV |Ṽ be the transition probability matrix
determined by

(PṼ |UPV |Ṽ )(v|u) =
∑
ṽ∈Ṽ

PṼ |U (ṽ|u)PV |Ṽ (v|ṽ). (4)

We let S and X be two random variables with discrete
supports S and X , respectively. We let P denote the joint
distribution PS,X and P̂ be a generic estimate of P . The
empirical distribution obtained from n i.i.d. samples drawn
from P is denoted by P̂n. We let (Pn)∞n=1 be any sequence of
joint distributions converging to the joint distribution P . Any
generic distribution over S × X is denoted by Q. Also, any
sequence of distributions over S ×X is denoted by (Qn)∞n=1.

Let (A, dA) and (B, dB) be two metric spaces. We say that
f : A → B is Lipschitz over A′ ⊆ A if there exists L ≥ 0
such that, for all a1, a2 ∈ A′,

dB(f(a1), f(a2)) ≤ LdA(a1, a2). (5)

For convenience, we summarize some common notation in
Table I.

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we review preliminary material regarding
information leakage measures and large deviations bounds for
distribution estimation. In addition, we formally introduce the
problems addressed in this paper.

A. Information Leakage Measures

Here we review the definition and some basic properties of
information leakage measures which are commonly used in
the literature. An information leakage measure L(U → V )
quantifies how much information V leaks about U . Specif-
ically, U and V can represent raw and disclosed datasets,
respectively, and, in this case, L(U → V ) measures the utility
of the disclosed dataset. On the other hand, when U and V
represent private information and information available to an
adversary, then L(U → V ) quantifies the adversary’s ability

of inferring U from the observation of V . In the privacy
literature it is valuable to relate information leakage measures
with a specific loss/gain function (implicitly) adopted by an
adversary. In what follows, we review a range of information
leakage measures along with their operational meanings in
terms of loss/gain functions.

1) α-Leakage: In an effort to unify several information
leakage measures within a single framework, Liao et al. re-
cently introduced an information leakage measure called α-
leakage [35].

Definition 1 (Definition 4, [35]). Let U and V be two random
variables supported over finite sets U and V , respectively. For
α ∈ (1,∞), the α-leakage from U to V is defined as

Lα(U → V )

,
α

α− 1
log

max
Û :U→V→Û

E
[
Pr(Û = U |U, V )

α−1
α

]
max

Û :U |= Û
E
[
Pr(Û = U |U)

α−1
α

] .
(6)

The value of Lα(U → V ) is extended by continuity to α = 1
and α =∞.

In terms of the adversarial setting described at the beginning
of this section, α-leakage with α ∈ (1,∞] can be interpreted
as the multiplicative increase, upon observing V , of the ex-
pected gain of an adversary. In order to make this observation
precise, note that the expected value in the denominator of the
logarithmic term in (6) equals

E
[
Pr(Û = U |U)

α−1
α

]
=
∑
u∈U

PU (u)PÛ (u)
α−1
α . (7)

In particular, the RHS of (7) equals expected gain of PÛ
w.r.t. the gain function

gain(u, PÛ ) = PÛ (u)
α−1
α . (8)

Thus, the denominator of the logarithmic term in (6) is the
largest expected gain of an adversary with no additional in-
formation apart from the distribution of U . Also, the expected
value in the numerator of the logarithmic term in (6) equals

E
[
Pr(Û = U |U, V )

α−1
α

]
=
∑
u∈U

∑
v∈V

PU,V (u, v)PÛ |V (u|v)
α−1
α .

(9)

Thus, the numerator of the logarithmic term in (6) is the largest
expected gain of an adversary that has access to V and the joint
distribution of U and V . From these observations we conclude
that Lα(U → V ) measures the multiplicative increase of
the best expected gain upon observing V . In a similar way,
L1(U → V ) can be interpreted as additive increase, upon
observing V , of the expectation of the gain function

gain(u, PÛ ) = logPÛ (u). (10)

In addition to its operational definition, α-leakage can be
related to Arimoto’s mutual information [62], [63] whose
definition is provided below.
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Category Notation Meaning

Norms
‖a‖α α-norm with α ∈ [1,∞):

(∑
i|ai|

α
)1/α

‖a‖∞ ∞-norm: maxi|ai|

Joint Distributions

P True joint distribution: PS,X

P̂ Estimated distribution: P̂S,X

P̂n Empirical distribution obtained from n i.i.d. samples

(Pn)
∞
n=1 Any sequence of joint distributions converging to P

Q Any joint distribution over S × X
(Qn)

∞
n=1 Any sequence of joint distributions over S × X

Channels W Any privacy mechanism (channel) from X to Y

Sets

W Set of all privacy mechanisms

WN Set of all privacy mechanisms from X to {1 . . . , N}
P Set of all joint distributions over S × X
Q Any closed subset of P

TABLE I: List of notation used in this paper.

Definition 2. Let U and V be two random variables supported
over finite sets U and V , respectively. Their Arimoto’s mutual
information of order α ∈ (1,∞) is defined as

IAα (PU,V ) ,
α

α− 1
log

∑
v‖PU,V (·, v)‖α
‖PU (·)‖α

. (11)

Also, by continuous extension,

IA1 (PU,V ) , I(PU,V ), (12)

IA∞(PU,V ) , log

∑
v maxu PU,V (u, v)

maxu PU (u)
, (13)

where I(PU,V ) denotes Shannon’s mutual, i.e.,

I(PU,V ) ,
∑
u∈U

∑
v∈V

PU,V (u, v) log
PU,V (u, v)

PU (u)PV (v)
. (14)

In [35], Liao et al. proved that α-leakage is indeed equal
to Arimoto’s mutual information of order α.

Proposition 1 (Theorem 1, [35]). Let U and V be two random
variables supported over finite sets U and V , respectively. For
α ∈ [1,∞], α-leakage satisfies

Lα(U → V ) = IAα (PU,V ). (15)

The previous proposition shows that α-leakage recovers
Shannon’s mutual information in the extremal case α = 1. It is
important to point out that Shannon’s mutual information has
been extensively used in the context of privacy. Of particular
relevance for the present papers are the works of Rebollo-
Monedero et al. [9], Sankar et al. [10], Calmon and Fawaz
[18], Asoodeh et al. [20], and references therein. On the
other extreme, when α = ∞, α-leakage is closely related to
another information leakage measure: probability of correctly
guessing. This information leakage measure, whose definition
is recalled next, has been used recently in the context of

privacy-utility trade-offs by Asoodeh et al. [17] and in the
broader privacy literature by Smith [64], Braun et al. [65],
Barthe and Kopf [66], and references therein.

Definition 3. Let U and V be two random variables supported
over finite sets U and V , respectively. The probability of
correctly guessing U and the probability of correctly guessing
U given V are given by

Pc(U) , max
u∈U

PU (u), (16)

Pc(U |V ) ,
∑
v∈V

max
u∈U

PU,V (u, v). (17)

As its name suggests, Pc(U) is equal to the (largest) prob-
ability of correctly guessing U without any side information
but the distribution of U . Similarly, Pc(U |V ) is equal to the
(largest) probability of correctly guessing U given V and the
joint distribution PU,V . This interpretation can be made precise
using the adversarial setting and the gain function defined in
(8) with α =∞. Indeed, a simple manipulation shows that

Pc(U) = max
Û :U |= Û

E
(
1U=Û

)
, (18)

Pc(U |V ) = max
Û :U→V→Û

E
(
1U=Û

)
, (19)

which corresponds to the adversarial setting under the 0-1 loss.
Observe that under this loss, the optimal adversary strategy is
the same as the maximum a posteriori (MAP) decoder in the
communication literature. Finally, observe that

L∞(U → V ) = log
Pc(U |V )

Pc(U)
, (20)

evidencing the intrinsic relation between∞-leakage and prob-
ability of correctly guessing.

Remark 1. Despite the close relation between ∞-leakage
and probability of correctly guessing, we always treat them
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separately. On the one hand, probability of correctly guessing
is of interest in its own right. On the other hand, the results
for probability of correctly guessing are easier to derive than
their ∞-leakage counterparts. As a result, working explicitly
with probability of correctly guessing allows us to present the
key techniques used in this paper while keeping the technical
difficulties at a minimum.

In [34], [39], Issa et al. introduced the notion of maximal
leakage in order to quantify the adversary’s capability to infer
any (randomized) function of U from V . Motivated by this
notion, Liao et al. introduced maximal α-leakage, a tunable
information leakage measure that is equal to maximal leakage
when α =∞.

Definition 4 (Definition 5, [35]). Let U and V be two random
variables supported over finite sets U and V , respectively. For
α ∈ [1,∞], the maximal α-leakage from U to V is defined as

Lmax
α (U → V ) , sup

T :T→U→V
Lα(T → V ), (21)

where T represents any (randomized) function of U that takes
values on a finite but arbitrary alphabet.

Arimoto’s mutual information can be regarded as a gen-
eralization of Shannon’s mutual information, see, e.g., [31].
Another such generalization is Sibson’s mutual information
[67] which, as shown below, is also related to maximal α-
leakage.

Definition 5 (Definition 4, [31]). Let U and V be two random
variables supported over finite sets U and V , respectively. Their
Sibson’s mutual information of order α ∈ (1,∞) is defined as

ISα(PU,V ) ,
α

α− 1
log
∑
v∈V
‖PU (·)1/αPV |U (v|·)‖α. (22)

Also, IS1 (PU,V ) = I(PU,V ) and

IS∞(PU,V ) = log

(∑
v∈V

max
u∈U

PV |U (v|u)

)
. (23)

The following proposition shows that maximal α-leakage
is the Arimoto’s capacity under an input support constraint
which, in turn, is equal to Sibson’s capacity under the same
constraint.

Proposition 2 (Theorem 2, [35]). Let U and V be two random
variables supported over finite sets U and V , respectively. For
α ∈ (1,∞], maximal α-leakage satisfies

Lmax
α (U → V ) = sup

PŨ

IAα (PŨ · PV |U ) (24)

= sup
PŨ

ISα(PŨ · PV |U ), (25)

where the support of PŨ is a subset of the support of PU 2.
Also, Lmax

1 (U → V ) = I(PU,V ).

In particular, maximal α-leakage of order infinity (i.e.,
maximal leakage) is the Sibson’s mutual information of order
infinity.

2In [35, Theorem 2], P
Ũ

ranges over the distributions with the same support
as PU . However, their proof readily implies Proposition 2 as stated in this
work.

Proposition 3 (Corollary 1, [34]). Let U and V be two random
variables supported over finite sets U and V , respectively.
Then,

Lmax
∞ (U → V ) = IS∞(PU,V ). (26)

2) f -Information: We finish our review on information
leakage measures by recalling the definition and some basic
properties of f -information. This information leakage measure
is defined in terms of Csiszár’s f -divergence whose definition
is recalled next for the reader’s convenience.

Definition 6 (Definition 1.1, [32]). Let f : (0,∞) → R be
a convex function with f(1) = 0. Assume that Q1 and Q2

are two probability distributions over a finite set Z and that
Q1 � Q2. The f -divergence between Q1 and Q2 is given by

Df (Q1‖Q2) ,
∑
z∈Z

Q2(z)f

(
Q1(z)

Q2(z)

)
. (27)

Given a function f as in the previous definition, its corre-
sponding f -information is defined as follows.

Definition 7. Let f : (0,∞) → R be a convex function
with f(1) = 0. Furthermore, let U and V be two random
variables supported over finite sets U and V , respectively. Their
f -information is defined by

If (PU,V ) , Df (PU,V ‖PUPV )

=
∑
u∈U

∑
v∈V

PU (u)PV (v)f

(
PU,V (u, v)

PU (u)PV (v)

)
.

(28)

While an f -information may not have a straightforward
interpretation in operational terms for a specific function
f , many functions f do, e.g., mutual information and χ2-
information discussed below. Hence, a general treatment al-
lows us to simultaneously handle those f -information for
which there is a concrete operational meaning and those whose
operational interpretation is yet to be discovered. More recent
developments about the properties of f -divergence can be
found in Raginsky [68], Calmon et al. [69], and the references
therein.

In the context of privacy, χ2-information is a fine example
of an f -information with a tangible operational interpreta-
tion. Following the standard convention, the χ2-information
between two random variables U and V is defined as
χ2(PU,V ) , If (PU,V ) with f(t) = (t − 1)2. Relying on the
so-called principal inertia components (PICs) [70], Calmon et
al. [71] showed that if χ2(U ;V ) < ε for some 0 < ε < 1, then
the minimum mean-squared error (MMSE) of reconstructing
any zero-mean unit-variance function of U given V is lower
bounded by 1− ε, i.e., no function of U can be reconstructed
with small MMSE given an observation of V . Thus, χ2-
information measures an adversary’s ability to reconstruct
functions of U from V under an MMSE loss. Recently, χ2-
information has been used in the context of privacy-utility
trade-offs by Wang and Calmon in [22].

B. Large Deviations Bounds for Distribution Estimation

Now we review some preliminary results regarding the dis-
tance between the empirical and true distributions. Throughout
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this work, we measure the distance between two probability
distributions over Z , say Q1 and Q2, by their `1-distance
which is given by

‖Q1 −Q2‖1,
∑
z∈Z
|Q1(z)−Q2(z)|. (29)

A result by Weissman et al. [27, Theorem 2.1] establishes that,
for all ε > 0,

Pr
(
‖P̂n − P‖1≥ ε

)
≤ (2|Z|− 2) exp(−nφ(πP )ε2/4), (30)

where P is a probability distribution over the finite set Z ,
P̂n is the empirical distribution obtained from n i.i.d. samples
from P , πP , max

A⊆Z
min{P (A), 1− P (A)}, and

φ(p) ,

{
1

1−2p log 1−p
p p ∈ [0, 1/2),

2 p = 1/2.
(31)

Note that φ(p) ≥ 2 for all p ∈ [0, 1/2]. Hence,

Pr
(
‖P̂n − P‖1≥ ε

)
≤ exp(|Z|) exp(−nε2/2). (32)

By taking Z = S × X and ε =
√

2
n (|S|·|X |− log β),

inequality (32) implies that, with probability at least 1− β,

‖P̂n − P‖1≤
√

2

n
(|S|·|X |− log β). (33)

Even though in this paper we focus on large deviations
results, it is worth pointing out that the order O(

√
|S|·|X |/n)

is present in other fundamental settings, e.g., the minimax
expected loss framework in [28, Corollary 9].

C. Problem Setup

Suppose that S is a variable to be hidden (e.g., political
preference) and X is an observed variable (e.g., movie ratings)
that is correlated with S. In order to receive some utility (e.g.,
personalized recommendations), we would like to disclose
as much information about X without compromising S. An
approach with rigorous privacy guarantees is to release a
new random variable Y produced by applying a randomized
mapping to X , hence forming a Markov chain S → X → Y .
This mapping, called the privacy mechanism, is designed to
satisfy a specific privacy constraint.

In the sequel, we assume that S and X are discrete random
variables with support sets S and X , respectively. Let W be
the set of all privacy mechanisms which take X as input
and display a discrete random variable Y as output. More
specifically, let

W ,
⋃
N≥1

{
W ∈ [0, 1]|X |×N : ∀x ∈ X ,

N∑
y=1

W (x, y) = 1

}
.

(34)
Through this work, we denote the joint distribution of S and
X by P and the privacy mechanism producing Y from X
by W , i.e., W = PY |X . The privacy leakage and the utility
generated by a mapping W ∈ W for the true distribution P are
denoted by L(P,W ) and U(P,W ), respectively. Throughout
this paper, L and U are either probability of correctly guessing,

f -information with f locally Lipschitz, Arimoto’s mutual
information (α-leakage) of order α ∈ (1,∞], Sibson’s mutual
information of order α ∈ (1,∞], or maximal α-leakage of
order α ∈ (1,∞].

In this framework, a natural problem is to characterize the
fundamental trade-off between privacy and utility as captured
by the following definition. We denote by P the set of all
probability distributions over S × X .

Definition 8. For a given P ∈ P and ε ≥ inf
W∈W

L(P,W ), the
privacy-utility function is defined as

H(P ; ε) , sup
W∈D(P ;ε)

U(P,W ), (35)

where D(P ; ε) , {W ∈ W : L(P,W ) ≤ ε}. Furthermore,
the collection of all optimal privacy mechanisms for P at ε is
defined as

W∗(P ; ε) , {W ∈ W : L(P,W ) ≤ ε, U(P,W ) = H(P ; ε)}.
(36)

Observe that, by definition, D(P ; ε) is the set of all privacy
mechanisms providing an ε-privacy guarantee for P . Hence,
the privacy-utility function in Definition 8 quantifies the best
utility achieved by any privacy mechanism providing an ε-
privacy guarantee for P .

This specific type of privacy-utility trade-off (PUT), and
the optimal privacy mechanisms associated to it, has been
investigated for several measures of privacy and utility, see, for
example, [14], [17], [20], [22]. These investigations often rely
on the implicit assumption that the data distribution is, for the
most part, known. However, in practice, the data distribution
may only be accessed through a limited number of samples. In
this work, we revisit this assumption and study its implications
in the design and performance of privacy mechanisms. Next
we present the problems addressed and the main contributions
of this paper.

1) Discrepancy of Privacy-Utility Guarantees: In practice,
the designer may not have access to the true distribution P , but
only to samples drawn from this distribution. In this case, the
privacy-utility guarantees for a distribution estimated from the
samples, say P̂ , and the true distribution P might be different.
For any given privacy mechanism W , these discrepancies are
effectively quantified by

|L(P̂ ,W )− L(P,W )| and |U(P̂ ,W )− U(P,W )|. (39)

In Section III we provide probabilistic upper bounds for the
discrepancies in (39) when the estimated distribution P̂ is the
empirical distribution P̂n of n i.i.d. samples drawn from P .
These upper bounds depend on the sample size n, the alphabet
sizes |S| and |X |, and, in some cases, the probability of the
least likely symbol of the marginals of P̂n. Their derivations
rely on the large deviations results recalled in Section II-B
and continuity properties of information leakage measures
established in this work. We summarize these results in the
following meta theorem (see Theorem 1). For ease of notation,
we let

Lc(Q,W ) , Pc(S|Y ) and Uc(Q,W ) , Pc(X|Y ), (40)
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Theorem 1. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P . Then, with probability at least
1− β, for any W ∈ W , we have

|L(P̂n,W )− L(P,W )|≤
√

2

n
(|S|·|X |− log β) ·



1 when L = Lc,
Cf,mS when L = Lf with f locally Lipschitz,
2α
α−1 |S|1−1/α when L = LA

α with α ∈ (1,∞],
2α+1

(α−1)m1−1/α
S

when L = LS
α with α ∈ (1,∞),

2
mins

∑
x P̂n(s,x)

when L = LS
∞ or L = Lmax

∞ ,

4α|S|1−1/α

(α−1)mins
∑
x P̂n(s,x)

when L = Lmax
α with α ∈ (1,∞),

(37)

|U(P̂n,W )− U(P,W )|≤
√

2

n
(|S|·|X |− log β) ·



1 when U = Uc,
Cf,mX when U = Uf with f locally Lipschitz,
2α
α−1 |X |1−1/α when U = UA

α with α ∈ (1,∞],
1

(α−1)m1−1/α
X

when U = US
α with α ∈ (1,∞),

0 when U = US
∞ or U = Umax

α with α ∈ (1,∞],

(38)

where Cf,u = 2Kf,u−1 +(2u−1 +1)Lf,u−1 with Kg,u, Lg,u, mS and mX as defined in (46), (47), (61), and (62), respectively.

where S → X → Y is such that PS,X = Q and PY |X = W .
With this notation, we also let Lf (Q,W ) , If (PS,Y ),
LA
α (Q,W ) , IAα (PS,Y ), LS

α(Q,W ) , ISα (PS,Y ), and, by
abuse of notation, Lmax

α (Q,W ) , Lmax
α (S → Y ). The

analogues for utility are defined in a similar way.
We illustrate the discrepancies of privacy-utility guarantees

in (37) and (38) along with the corresponding upper bounds
through a synthetic and a real-world datasets in Section VI.

2) Convergence of Optimal Privacy Mechanisms: Assume
there is a sequence of joint distributions (Pn)∞n=1 converging
to the true distribution P . The results provided in Section III
establish that the privacy-utility guarantees for Pn converge to
those of P as n goes to infinity. Nonetheless, they cannot be
used to study the convergence properties of the optimal privacy
mechanisms of Pn as defined in (36). In Section IV we address
the convergence of optimal privacy mechanisms by further ex-
ploiting some of the Lipschitz continuity properties established
for the information leakage measures under consideration. To
be more specific, assume that the privacy mechanism designer
constructs an optimal privacy mechanism W ∗n for each Pn,
i.e., W ∗n ∈ W∗(Pn; ε). We establish the convergence of the
sequence of optimal privacy mechanisms (W ∗n)∞n=1 to the set
of optimal privacy mechanisms for P , i.e., W∗(P ; ε). Due to
technical considerations, this result covers only probability of
correctly guessing, f -information with f locally Lipschitz, and
Arimoto’s mutual information of order α with α ∈ (1,∞].

3) Uniform Privacy Mechanisms: In applications where
privacy is a priority, a specific privacy guarantee for the true
distribution P may be required, even though the designer has
only access to a distribution P̂ estimated from samples. We
propose the following procedure to overcome this difficulty:
(a) use large deviations results to find a probabilistic upper
bound, say r, for the distance between P̂ and P ; (b) design
privacy mechanisms that deliver the required privacy guarantee

for all distributions at distance less or equal than r from
P̂ . Based on this procedure, we introduce the definition of
uniform privacy mechanisms in Section V. We prove that
optimal uniform privacy mechanisms exist and while their
design might be challenging, they can be efficiently approx-
imated by optimal privacy mechanisms for P̂ as defined in
(36). We finish Section V establishing convergence properties
of optimal uniform privacy mechanisms similar to those in
Section IV.

III. DISCREPANCY OF PRIVACY-UTILITY GUARANTEES

We provide probabilistic upper bounds for the difference
between the privacy-utility guarantees of the empirical and
the true distributions. These upper bounds do not depend
on the specific privacy mechanism. In order to simplify the
exposition, we assume that privacy leakage and utility are
measured using the same information metric. Nonetheless,
the case when different information metrics are used can be
handled in a straightforward manner. In this section, we study
five different information metrics: probability of correctly
guessing, f -information with f locally Lipschitz, Arimoto’s
mutual information (α-leakage) of order α > 1, Sibson’s
mutual information of order α > 1, and maximal α-leakage
of order α > 1.

A. Probability of Correctly Guessing

The main result of this subsection relies on the following
lemma which establishes the Lipschitz continuity of the map-
pings Lc(·,W ) and Uc(·,W ). Recall that for Q ∈ P and
W ∈ W ,

Lc(Q,W ) , Pc(S|Y ) and Uc(Q,W ) , Pc(X|Y ), (41)

where S → X → Y is such that PS,X = Q and PY |X = W .
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Lemma 1. For any Q1, Q2 ∈ P and W ∈ W , we have

|Lc(Q1,W )− Lc(Q2,W )| ≤ ‖Q1 −Q2‖1, (42)
|Uc(Q1,W )− Uc(Q2,W )| ≤ ‖Q1 −Q2‖1. (43)

Proof. See Appendix A-A.

In particular, when Q1 = P̂ is an estimate of Q2 = P , the
previous lemma implies that any upper bound on ‖P̂ − P‖1
translates into an upper bound for difference of the corre-
sponding privacy-utility guarantees. The following theorem
specializes this observation to the empirical distribution by
means of the large deviations inequality in (33).

Theorem 2. Let P̂n be the empirical distribution obtained
from n i.i.d. samples drawn from P . Then, with probability at
least 1− β, for any W ∈ W , we have

|Lc(P̂n,W )− Lc(P,W )| ≤
√

2

n
(|S|·|X |− log β), (44)

|Uc(P̂n,W )− Uc(P,W )| ≤
√

2

n
(|S|·|X |− log β). (45)

In Section VI-B we illustrate the fitness of the bounds in
Theorem 2 when applied to ProPublica’s COMPAS dataset
[72].

Remark 2. Lemma 1 and Theorem 2 illustrate the general
technique we use to derive (probabilistic) upper bounds for
the difference between the privacy-utility guarantees of the
empirical and the true distributions. Specifically, we relate the
difference between the privacy-utility guarantees of two joint
distributions with their `1 distance, and then we use large
deviations results to provide upper bound for the `1 distance
between the empirical and the true distributions.

B. f -Information with f Locally Lipschitz

We start establishing the following notation. For a given
function g : [0,∞)→ R and u > 0, we let

Kg,u , sup{|g(t)|: t ∈ [0, u]}. (46)

The constant Kg,u is the so-called supremum norm of g on
[0, u]. In addition, if g is Liptschitz on [0, u], we let Lg,u be
its Lipschitz constant on [0, u], i.e.,

Lg,u , min{L ≥ 0 :|g(t1)− g(t2)|≤ L|t1 − t2|,
∀t1, t2 ∈ [0, u]}.

(47)

A function g : [0,∞) → R is called locally Lipschitz if g
is Lipschitz on [0, u] for every u > 0. Note that a locally
Lipschitz function is not necessarily Lipschitz on [0,∞). For
example, the function g(t) = t2 is locally Lipschitz with
Lg,u = 2u for all u > 0, but it is not Lipschitz on [0,∞). For
any two distributions Q1, Q2 ∈ P , we denote

mS , min

{∑
x∈X

Qi(s, x) : s ∈ S, i ∈ {1, 2}
}
, (48)

mX , min

{∑
s∈S

Qi(s, x) : x ∈ X , i ∈ {1, 2}
}
. (49)

Observe that mS (resp. mX ) equals the probability of the
least likely symbol among the marginal distributions over S
(resp. X ) of Q1 and Q2. In other words, if (Si, Xi) has joint
distribution Qi for each i ∈ {1, 2}, then

mS = min{PSi(s) : s ∈ S, i ∈ {1, 2}}, (50)
mX = min{PXi(x) : x ∈ X , i ∈ {1, 2}}. (51)

The following lemma serves as an analogue of Lemma 1
for an f -information with f locally Lipschitz. Recall that for
Q ∈ P and W ∈ W ,

Lf (Q,W ) , If (PS,Y ) and Uf (Q,W ) , If (PX,Y ),

where S → X → Y is such that PS,X = Q and PY |X = W .

Lemma 2. If f : [0,∞) → R is locally Lipschitz, then, for
any Q1, Q2 ∈ P and W ∈ W , we have

|Lf (Q1,W )− Lf (Q2,W )| ≤ Cf,mS‖Q1 −Q2‖1, (52)
|Uf (Q1,W )− Uf (Q2,W )| ≤ Cf,mX‖Q1 −Q2‖1, (53)

where, for u ∈ {mS ,mX},

Cf,u , 2Kf,u−1 + (2u−1 + 1)Lf,u−1 . (54)

Proof. See Appendix A-B.

Remark 3. Despite the similarity between Lemmas 1 and
2, the latter does not imply that the mapping Lf (·,W ) is
Lipschitz continuous. Indeed, the factor Cf,mS depends on
Q1 and Q2 through mS . Nonetheless, Lemma 2 does show
that the local Lipschitzianity of f is bequeathed to Lf (·,W ).
Specifically, for every δ > 0, the mapping Lf (·,W ) is
Lipschitz continuous over{

Q ∈ P : δ ≤ min
s∈S

∑
x∈X

Q(s, x)

}
, (55)

and its Lipschitz constant is less than or equal to Cf,δ . Indeed,
this assertion follows from the fact that u 7→ Cf,u is a non-
increasing function, as exhibited in Appendix A-C. Hence,
any lower bound for mS translates into an upper bound for
Cf,mS in (52). As shown below, the local Lipschitzianity of
Lf (·,W ) is enough to derive a bound similar to (44). A similar
discussion can be held for Uf (·,W ).

We illustrate the value of Cf,u, defined in Lemma 2, through
the following examples:

• Total variation distance. If f(t) = |t − 1|/2, then f
is a (globally) Lipschitz function with Lf,u = 1/2 and
Kf,u = max{1, u− 1}/2 for all u > 0. Consequently,

Cf,u = u−1 max{1 + 3u/2, 2− u/2}; (56)

• χ2-divergence. If f(t) = (t − 1)2, then f is a locally
Lipschitz function with Lf,u = 2 max{1, u − 1} and
Kf,u = max{1, (u− 1)2} for all u > 0. Consequently,

Cf,u = 2u−2 max{2u+ 2u2, 3− 3u}; (57)
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• Hellinger divergence. If fα(t) =
tα − 1

α− 1
with α > 1,

then fα is locally Lipschitz with Lfα,u =
αuα−1

α− 1
and

Kf,u = 1
α−1 max{1, uα−1} for all u > 0. Consequently,

Cf,u =
u−α

α− 1
max{2α+αu+2uα, (2α+2)+αu−2uα}.

Note, however, that mutual information cannot be handled by
Lemma 2 since the function f(t) = t log(t) is not locally
Lipschitz. In fact, mutual information seems to have a different
asymptotic behavior w.r.t. the sample size n when compared
to the theorems in this paper, cf. [43, Theorem 3].

Relying on Lemma 2 and the large deviations inequality in
(33), the following theorem provides a data dependent bound
for the discrepancy between the guarantees provided for the
empirical and the true distributions. For x ∈ R, we define
(x)+ , max{0, x}.
Theorem 3. Let P̂n be the empirical distribution obtained
from n i.i.d. samples drawn from P . If f : [0,∞) → R is
locally Lipschitz, then, with probability at least 1−β, for any
W ∈ W , we have

|Lf (P̂n,W )− Lf (P,W )| ≤ Cf,mS
√

2

n
(|S|·|X |− log β),

(58)

|Uf (P̂n,W )− Uf (P,W )| ≤ Cf,mX
√

2

n
(|S|·|X |− log β),

(59)

where, for u ∈ {mS ,mX},

Cf,u , 2Kf,u−1 + (2u−1 + 1)Lf,u−1 , (60)

mS ,

(
min

{∑
x∈X

P̂n(s, x) : s ∈ S
}

−
√

2

n
(|S|·|X |− log β)

)
+

, (61)

mX ,

(
min

{∑
s∈S

P̂n(s, x) : x ∈ X
}

−
√

2

n
(|S|·|X |− log β)

)
+

. (62)

Proof. See Appendix A-C.

Remark 4. Observe that up to an additive factor of
(2(|S|·|X |− log β)/n)1/2, which is negligible in the large n
regime, mS equals the probability of the least likely symbol
of the marginal distribution over S of P̂n. As a consequence,
the bound in (58) is data-dependent, while the bound in (44)
is data-independent. This discrepancy comes mainly from the
fact that Lc(·,W ) is Lipschitz continuous, as established in
Lemma 1, while Lf (·,W ) is locally Lipschitz in the sense of
Remark 3. A similar discussion holds for utility.

In most practical scenarios, the alphabet of X is signifi-
cantly larger than the alphabet of S, e.g., S might be political
preference while X is movie ratings, S might be private

household information while X is smart meter data, S might
be gender while X is a profile picture, etc. In particular, when
the sample size is limited, the bounds in Theorem 3 might
become ineffective due to the potentially small value of mX .
In order to alleviate this issue, we propose the following pre-
processing technique which combines the symbols of X with
less observations in the dataset.

Given γ ≥ 0 and a symbol x0 not belonging to X , we let
Πγ be the mapping with input alphabet X , output alphabet

Xγ , {x0} ∪
{
x ∈ X :

∑
s∈S

P̂ (s, x) ≥ γ
}
, (63)

and determined by

Πγ(x) =

{
x if

∑
s P̂ (s, x) ≥ γ,

x0 otherwise.
(64)

The proposed pre-processing technique consists in applying
this mapping to the samples {(si, xi)}ni=1 to obtain the mod-
ified samples {(si,Πγ(xi))}ni=1. Clearly, this pre-processing
technique improves the bounds in Theorem 3 by increasing
mX . However, this improvement might come at a price in
utility, as shown in the following proposition.

Proposition 4. Let γ ≥ 0 be given and let P̂n be the empirical
distribution of n samples {(si, xi)}ni=1. If P̂γ is the empirical
distribution of the modified samples {(si,Πγ(xi))}ni=1, then,
for any ε ∈ R such that W∗(P̂γ ; ε) 6= ∅,

Hf (P̂γ ; ε) ≤ Hf (P̂n; ε), (65)

where Hf denotes the privacy-utility function when both
privacy leakage and utility are measured using f -information.

Proof. See Appendix A-D.

The proof of Proposition 4 relies on the following lemma.

Lemma 3. Let γ ≥ 0 be given. If X → X0 → Y0 is a Markov
chain with X0 = Πγ(X), then, for every f -information,

If (PX,Y0) = If (PX0,Y0). (66)

Observe that Lemma 3 is an immediate consequence of
the data processing inequality (DPI) for f -information [73,
Remark 2.3] and the fact that X0 is a deterministic func-
tion of X . Indeed, if Π : X → X0 is any deterministic
function and X0 , Π(X), then any random variable Y0
satisfies X0 → X → Y0. In particular, the DPI implies that
If (PX,Y0) ≥ If (PX0,Y0). If, in addition, Y0 is a randomized
function of X0, i.e., X → X0 → Y0, then the DPI leads to
If (PX,Y0

) ≤ If (PX0,Y0
).

C. Arimoto’s Mutual Information, Sibson’s Mutual Informa-
tion, and Maximal α-Leakage

We now establish continuity properties of Arimoto’s mutual
information, Sibson’s mutual information, and maximal α-
leakage similar to those proved in Lemmas 1 and 2 for prob-
ability of correctly guessing and f -information, respectively.
Upon these properties, we state two theorems regarding the
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discrepancy of privacy-utility guarantees for the information
measures at hand.

Recall that for Q ∈ P and W ∈ W ,

LA
α (Q,W ) , IAα (PS,Y ) and UA

α (Q,W ) , IAα (PX,Y ) ,

where S → X → Y is such that PS,X = Q and PY |X = W .
The next lemma shows the Lipschitz continuity of LA

α (·,W )
and UA

α (·,W ).

Lemma 4. Let α ∈ (1,∞]. For any Q1, Q2 ∈ P and W ∈ W ,

|LA
α (Q1,W )− LA

α (Q2,W )| ≤ 2α

α− 1
|S|1−1/α‖Q1 −Q2‖1,

(67)

|UA
α (Q1,W )− UA

α (Q2,W )| ≤ 2α

α− 1
|X |1−1/α‖Q1 −Q2‖1.

(68)

Proof. See Appendix A-E.

Remark 5. Recall that probability of correctly guessing and
Arimoto’s mutual information of order ∞ are related through
the formula

IA∞(U ;V ) = log
Pc(U |V )

Pc(U)
. (69)

Observe that, despite this relation, the bound for probability
of correctly guessing in (42) and the corresponding bound for
Arimoto’s mutual information of order ∞ in (67) differ by a
factor of 2|S|. As shown in the proof of Lemma 4, the |S|
factor comes from the log in (69) via the minimum in the
following inequality∣∣∣log

a

b

∣∣∣ ≤ |a− b|
min{a, b} , a, b > 0. (70)

A similar argument explains the extra factor of 2|X | appearing
in (68) w.r.t. its counterpart in (43).

Now we consider Sibson’s mutual information. Recall that
for Q ∈ P and W ∈ W ,

LS
α(Q,W ) , ISα (PS,Y ) and US

α(Q,W ) , ISα (PX,Y ) ,

where S → X → Y is such that PS,X = Q and PY |X = W .
The following lemma establishes that the mappings LS

α(·,W )
and US

α(·,W ) have similar continuity properties to those of
Lf (·,W ) and Uf (·,W ) with f locally Lipschitz.

Lemma 5. For Q1, Q2 ∈ P , we define mS and mX as in (48)
and (49), respectively. If α ∈ (1,∞), then, for any W ∈ W ,

|LS
α(Q1,W )− LS

α(Q2,W )| ≤ 2α+ 1

α− 1

‖Q1 −Q2‖1
m

1−1/α
S

, (71)

|US
α(Q1,W )− US

α(Q2,W )| ≤ 1

α− 1

‖Q1 −Q2‖1
m

1−1/α
X

. (72)

If α =∞, then, for any W ∈ W ,

|LS
∞(Q1,W )− LS

∞(Q2,W )| ≤ 2‖Q1 −Q2‖1
mins

∑
xQ1(s, x)

, (73)

|US
∞(Q1,W )− US

∞(Q2,W )| = 0. (74)

Proof. See Appendix A-F.

Remark 6. A straightforward manipulation shows that

exp
(
IA∞(PU,V )

)
=
∑
v∈V

max
u∈U

PU (u)

maxu′ PU (u′)
PV |U (v|u), (75)

exp
(
IS∞(PU,V )

)
=
∑
v∈V

max
u∈U

PV |U (v|u). (76)

From (75) and (76), we observe that Sibson’s mutual informa-
tion of order infinity is independent of the input distribution
PU , while Arimoto’s mutual information of the same order
is not. By comparing (67) and (73), we also observe that
the privacy leakage bound for Sibson’s mutual information
of order infinity does depend on the probability of the least
likely symbol of the input3, while its Arimoto’s counterpart
does not. These seemingly contradicting facts have a rather
intuitive cause: it is hard to estimate PV |U (·|u) reliably if
PU (u) is small. Observe that while PV |U (v|u) appears in both
(75) and (76), the factor PU (u)/maxu′ PU (u′) in (75) makes
Arimoto’s mutual information of order infinity less dependent
on symbols u with small probabilities PU (u). The difficulty
in estimating Sibson’s mutual information in comparison to its
Arimoto counterpart is also natural from a privacy perspective.
As proved by Issa et al. in [34], Sibson’s mutual information
guarantees privacy for any (possibly randomized) function of
S, while Arimoto’s mutual information guarantees privacy
only for S itself.

We end up this section showing that maximal α-leakage
(α > 1) behaves in a similar way to Sibson’s mutual informa-
tion of order ∞. Recall the notation in Section I-C and that,
for Q ∈ P and W ∈ W ,

Lmax
α (Q,W ) , sup

PS̃

IAα
(
PS̃ · (PX|SW )

)
, (77)

Umax
α (Q,W ) , sup

P
X̃

IAα
(
PX̃ ·W

)
, (78)

where S → X → Y is such that PS,X = Q and PY |X = W .

Lemma 6. Let α ∈ (1,∞). For any Q1, Q2 ∈ P and W ∈ W ,

|Lmax
α (Q1,W )− Lmax

α (Q2,W )|

≤ 4α

α− 1

|S|1−1/α
mins

∑
xQ1(s, x)

‖Q1 −Q2‖1, (79)

|Umax
α (Q1,W )− Umax

α (Q2,W )|= 0. (80)

Proof. See Appendix A-G.

We summarize the probabilistic upper bounds derived in
this subsection in the following two theorems. They follow
immediately from Lemma 4, 5, 6 and the large deviations
inequality in (33).

3In recent work [39], Issa et al. established a bound similar to (81) which
also depends on the probability of the least likely symbol of the input. Thus,
this dependency seems unavoidable at the moment.
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Theorem 4. Let P̂n be the empirical distribution obtained
from n i.i.d. samples drawn from P . Then, with probability at
least 1− β, for any W ∈ W , we have

|L(P̂n,W )− L(P,W )|≤
√

2

n
(|S|·|X |− log β)

×
{

2α
α−1 |S|1−1/α when L = LA

α with α ∈ (1,∞],
2α+1

(α−1)m1−1/α
S

when L = LS
α with α ∈ (1,∞),

|U(P̂n,W )− U(P,W )|≤
√

2

n
(|S|·|X |− log β)

×
{

2α
α−1 |X |1−1/α when U = UA

α with α ∈ (1,∞],
1

(α−1)m1−1/α
X

when U = US
α with α ∈ (1,∞),

where mS and mX are defined in (61) and (62), respectively.

Theorem 5. Let P̂n be the empirical distribution obtained
from n i.i.d. samples drawn from P . Then, with probability at
least 1− β, for any W ∈ W , we have

|L(P̂n,W )− L(P,W )|≤
2
√

2
n (|S|·|X |− log β)

mins
∑
x P̂n(s, x)

×
{

1 when L = LS
∞ or L = Lmax

∞ ,
2α|S|1−1/α

α−1 when L = Lmax
α with α ∈ (1,∞),

(81)

and |U(P̂n,W )−U(P,W )|= 0 when U = US
∞ or U = Umax

α

with α ∈ (1,∞].

IV. CONVERGENCE OF OPTIMAL PRIVACY MECHANISMS

Now we study the consistency of the optimal privacy
mechanisms using, among other results, the (local) Lipschitz
continuity of the mappings L(·,W ) and U(·,W ) established
in the previous section.

Assume that the (privacy) mechanism designer is given an
ε ∈ R and a sequence of joint distributions (Pn)∞n=1 con-
verging to the true distribution P . Furthermore, the designer
constructs an optimal ε-private mechanism W ∗n for each Pn.
In this section, we analyze some convergence properties of the
sequence of optimal privacy mechanisms (W ∗n)∞n=1.

In the sequel, we assume that prior knowledge about the
true distribution P might be available. Accordingly, we let
Q ⊆ P be the set of all joint distributions compatible with
such prior knowledge. Note that when no prior knowledge is
available, we simply let Q = P . The main results of this
and the following section are established under the following
conditions.

There exist a closed set Q ⊆ P and N ∈ N such that
(C.1) Continuity. For every Q ∈ Q, the mappings L(Q, ·) and

U(Q, ·) are continuous over

WN ,W ∩ R|X |×N , (82)

where W , as defined in (34), denotes the set of all
privacy mechanisms. Furthermore, the mapping H(Q; ·)
is continuous over [εmin(Q),∞), where

εmin(Q) , inf {L(Q,W ) : W ∈ W} . (83)

(C.2) Lipschitz Continuity. There exist positive constants CL
and CU such that, for all Q1, Q2 ∈ Q and W ∈ WN ,

|L(Q1,W )− L(Q2,W )|≤ CL‖Q1 −Q2‖1, (84)

|U(Q1,W )− U(Q2,W )|≤ CU‖Q1 −Q2‖1. (85)

(C.3) Support. For each Q ∈ Q and ε ≥ εmin(Q), the
intersection W∗(Q; ε) ∩WN is not empty.

These three conditions might seem restrictive at a first
glance. Nonetheless, as shown in Section IV-A below, they are
satisfied by probability of correctly guessing, f -information
with f locally Lipschitz, and Arimoto’s mutual information
of order α with α ∈ (1,∞].

Note that condition (C.1) is a continuity requirement.
Specifically, it requires the privacy leakage and utility func-
tions to be continuous w.r.t. the privacy mechanism W . Also, it
requires the privacy-utility function to be continuous w.r.t. the
privacy parameter ε. Similarly, condition (C.2) requires the
privacy leakage and utility functions to be Lipschitz continu-
ous w.r.t. the joint distribution Q. Observe that the constants
CL and CU in (84) and (85), respectively, do not depend
on the joint distributions Q1 and Q2 neither on the privacy
mechanism W . Nonetheless, these constants may depend on
Q and N .

Remark 7. Observe that the set WN is in correspondence
with the set of all privacy mechanisms from X to {1, . . . , N}.
In particular, condition (C.3) requires that, for each Q ∈ Q
and ε ≥ εmin(Q), there exists an optimal ε-private mechanism
for Q supported over {1, . . . , N}. As a consequence,

H(Q; ε) = max
W∈DN (Q;ε)

U(Q,W ), (86)

where DN (Q; ε) , {W ∈ WN : L(Q,W ) ≤ ε}. Furthermore,
the intersection of WN and all optimal privacy mechanisms is
defined as

W∗N (P ; ε)

, {W ∈ WN : L(P,W ) ≤ ε, U(P,W ) = H(P ; ε)}.
(87)

By comparing (35) and (86), we can observe that condition
(C.3) allows us to replace the unbounded set W with the
compact space WN in the optimization defining the privacy-
utility function H. This technical difference is crucial in the
proofs of the subsequent results. In a similar spirit, observe
that condition (C.3) also implies that

εmin(Q) = min {L(Q,W ) : W ∈ WN} . (88)

A two-variable function might be continuous in each argu-
ment without being jointly continuous, see, e.g., [74, Ex. 4.7].
The following lemma is an immediate, yet important, con-
sequence of conditions (C.1–2), as it establishes the joint
continuity of the privacy leakage and utility functions.

Lemma 7. Assume that conditions (C.1–2) hold true for a
given closed set Q ⊆ P and a given N ∈ N. The functions
L(·, ·) and U(·, ·) are continuous over Q×WN .

Proof. See Appendix B-A.
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Building upon Lemma 7, we establish the following propo-
sition which plays a key role in the proofs of the main results
of this section.

Proposition 5. Assume that conditions (C.1–3) hold true for
a given closed set Q ⊆ P and a given N ∈ N. For any
given ε ∈ R, the mapping H(·; ε) is continuous over the set
{Q ∈ Q : εmin(Q) < ε}.
Proof. See Appendix B-B.

Remark 8. The mapping H(·; ε) might not be continuous over
{Q ∈ Q : εmin(Q) ≤ ε}. In order to prove this claim, consider
the following example.

Example 1. For each ζ ∈ [0, 1/2], let Qζ be the joint distribu-
tion of (S,Xζ) where S ∼ Ber(1/2) and PXζ |S = BSC(ζ). By
definition, Hc denotes the privacy-utility function when both
privacy leakage and utility are measured using probability of
correctly guessing. By Theorem 2 in [17], we have that, for
every ζ ∈ [0, 1/2),

εmin(Qζ) = 1/2 and Hc(Qζ ; 1/2) = 1/2. (89)

Since S and X1/2 are independent, we also have that

εmin(Q1/2) = 1/2 and Hc(Q1/2; 1/2) = 1. (90)

Therefore, we have that lim
ζ↑1/2

Hc(Qζ ; 1/2) 6= Hc(Q1/2; 1/2)

although lim
ζ↑1/2

Qζ = Q1/2.

Despite that H(·; ε) might be discontinuous at the boundary
{Q ∈ Q : εmin(Q) = ε}, as presented in Example 1, in some
situations such pathological behavior is not exhibited. In such
cases, the following corollary provides conditions for which
the pointwise convergence established in Proposition 5 up-
grades into uniform convergence. This technical result will be
useful in explaining the numerical experiments in Section VI.

Corollary 1. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. In addition,
assume that there exists ε0 ∈ R such that εmin(Q) = ε0 for
all Q ∈ Q. If Pn ∈ Q for each n ∈ N, limn Pn = P , and
limn H(Pn; ε0) = H(P ; ε0), then H(Pn; ·) converges uniformly
to H(P ; ·) over [ε0,∞), i.e.,

lim
n→∞

sup
ε∈[ε0,∞)

|H(Pn; ε)− H(P, ε)|= 0. (91)

Proof. See Appendix B-C.

The next theorem shows that if W ∗n is an optimal ε-
private mechanism for Pn and (Pn)∞n=1 converges to P ,
then the sequence of optimal ε-private mechanisms (W ∗n)∞n=1

converges to the set of optimal ε-private mechanisms for P .
For W ∈ WN and a subset W ′ ⊆ WN , the distance between
W and W ′ is defined as

dist(W,W ′) , inf{‖W −W ′‖1: W ′ ∈ W ′}, (92)

where ‖W −W ′‖1=
∑
x∈X

∑
y∈Y
|W (x, y)−W ′(x, y)|.

Theorem 6. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. Let ε ∈ R

be given. If Pn ∈ Q for each n ∈ N, limn Pn = P , and
εmin(P ) < ε, then, for any sequence (W ∗n)∞n=1 ⊂ WN such
that W ∗n ∈ W∗N (Pn; ε),

lim
n→∞

dist(W ∗n ,W∗N (P ; ε)) = 0. (93)

Furthermore, if Pn = P̂n is the empirical distribution obtained
from n i.i.d. samples drawn from P , then

Pr
(

lim
n→∞

dist(W ∗n ,W∗N (P ; ε)) = 0
)

= 1. (94)

Proof. See Appendix B-D.

Remark 9. Under the assumptions in Theorem 6, it may
be possible that W∗N (Pn; ε) is empty for some values of n.
Nonetheless, under the same assumptions, W∗N (Pn; ε) is non-
empty for n sufficiently large. This fact can be easily derived
from the continuity of the mapping εmin(·) which is the content
of Lemma 15 in Appendix B-D.

The following corollary follows directly from Theorem 6
and the compactness of W∗N (P ; ε) established in Lemma 16
in Appendix B-D. It shows that the limit of optimal ε-private
mechanisms is also an optimal ε-private mechanism.

Corollary 2. In addition to the assumptions in Theorem 6,
also assume that limnW

∗
n = W0 for some W0 ∈ WN . Then,

W0 ∈ W∗N (P ; ε).

It is important to note that Theorem 6 does not imply
that the sequence of optimal privacy mechanisms (W ∗n)∞n=1

converges to a privacy mechanism. Indeed, it has been noticed
in simulation that a small perturbation to the joint distribution
might lead to a big change to the optimal privacy mechanism
returned by some optimization algorithms. The following
theorem, whose proof relies on standard results from set-
valued analysis [75], shows that given a sequence (Pn)∞n=1

with limn Pn = P , it is possible to choose W ∗n ∈ W∗N (Pn; ε)
such that (W ∗n)∞n=1 is convergent. However, we prove this
property only for a residual set which, by definition, is a
countable intersection of dense open subsets of Q ⊂ R|S|×|X|.

Theorem 7. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. For any given
ε ∈ R and any δ > 0, there exists a residual set

Q′ ⊆ {Q ∈ Q : εmin(Q) + δ ≤ ε} (95)

which satisfies that:
For any joint distribution Q0 ∈ Q′, any sequence of joint
distributions (Qn)∞n=1 ⊂ {Q ∈ Q : εmin(Q) + δ ≤ ε}
with limnQn = Q0, and any optimal privacy mechanism
W ∗0 ∈ W∗N (Q0; ε), there exists a sequence of privacy
mechanisms (W ∗n)∞n=1 such that W ∗n ∈ W∗N (Qn; ε) for
each n ∈ N and limnW

∗
n = W ∗0 .

Proof. See Appendix B-E.

Remark 10. Baire’s theorem states that any residual subset of
a complete metric space is dense, see, e.g., [76, Thm. 5.6]. In
this sense, residual sets are considered to be big in topological
terms. However, residual sets might be negligible in measure
theoretic terms, see, e.g., [77, Exercise 5.3.31].
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A. Continuity and Compactness Conditions

In this section we show that probability of correctly guess-
ing, f -information with f locally Lipschitz, Arimoto’s mutual
information of order α with α ∈ (1,∞] satisfy conditions
(C.1–3).

1) Probability of Correctly Guessing: We choose Q = P
and Y = {1, . . . , N} with N ≥ |X |+1. Note that Q = P
corresponds to the case where no prior information about the
true distribution P is available. Recall that, by definition,

Lc(Q,W ) =
∑
y∈Y

max
s∈S

∑
x∈X

Q(s, x)W (x, y), (96)

Uc(Q,W ) =
∑
y∈Y

max
x∈X

∑
s∈S

Q(s, x)W (x, y). (97)

Since the maximum and the sum of continuous functions
are continuous functions as well, we have that, for every
Q ∈ P , the mappings Lc(Q, ·) and Uc(Q, ·) are continuous
over WN . In [17], Asoodeh et al. showed that Hc(Q; ·), the
privacy-utility function associated to Lc and Uc, is continuous
and piecewise linear over4 [εmin(Q),∞). Therefore condition
(C.1) is satisfied. Furthermore, Lemma 1 shows that, for any
Q1, Q2 ∈ P and W ∈ W ,

|Lc(Q1,W )− Lc(Q2,W )| ≤ ‖Q1 −Q2‖1, (98)
|Uc(Q1,W )− Uc(Q2,W )| ≤ ‖Q1 −Q2‖1, (99)

which implies that condition (C.2) is satisfied with CL = 1 and
CU = 1. It was established in [17] that, for every ε ≥ εmin(Q),
there is always an optimal ε-private mechanism using at most
|X |+1 symbols. As a consequence, condition (C.3) holds true
as N ≥ |X |+1 by assumption.

2) f -Information with f Locally Lipschitz: Assume that the
function f : [0,∞)→ R is locally Lipschitz and convex with
f(1) = 0. Given γ > 0, we choose N ≥ |X |+1 and

Q =

{
Q ∈ P : γ ≤ min

s∈S

∑
x∈X

Q(s, x), γ ≤ min
x∈X

∑
s∈S

Q(s, x)

}
.

(100)
In this case, the prior information about the true distribution
P = PS,X comes in the form of the assumption that the
probability mass functions of S and X are bounded away
from 0. Recall that, by definition,

Lf (Q,W ) =
∑
s∈S

∑
y∈Y

PS(s)PY (y)f

(
PS,Y (s, y)

PS(s)PY (y)

)
,

(101)

Uf (Q,W ) =
∑
x∈X

∑
y∈Y

PX(x)PY (y)f

(
PX,Y (x, y)

PX(x)PY (y)

)
,

(102)

where S → X → Y is such that PS,X = Q and PY |X = W .
Note that if Q ∈ Q, then, for all (s, x, y) ∈ S × X × Y ,

max

{
PS,Y (s, y)

PS(s)PY (y)
,
PX,Y (x, y)

PX(x)PY (y)

}
≤ γ−1. (103)

Upon this fact, it is straightforward to verify that the mappings
Lf (Q, ·) and Uf (Q, ·) are continuous overWN . In [78], Hsu et

4Indeed, in this setting εmin(Q) = maxs
∑
xQ(s, x).

al. established the continuity of Hf (Q; ·) over [0,∞). Hence,
condition (C.1) is satisfied. Recall the definitions of Kg,u and
Lg,u in (46) and (47), respectively. Lemma 2 shows that, for
any Q1, Q2 ∈ Q and W ∈ W ,

|Lf (Q1,W )− Lf (Q2,W )|
≤ (2Kf,γ−1 + (2γ−1 + 1)Lf,γ−1)‖Q1 −Q2‖1,

(104)

|Uf (Q1,W )− Uf (Q2,W )|
≤ (2Kf,γ−1 + (2γ−1 + 1)Lf,γ−1)‖Q1 −Q2‖1,

(105)

which implies that condition (C.2) is satisfied with

CL = CU = 2Kf,γ−1 + (2γ−1 + 1)Lf,γ−1 . (106)

For example, if f(x) = |x− 1|, then CL = CU ≤ 4γ−1 + 1;
and if f(x) = x2 − 1, then CL = CU ≤ 8γ−2. As with
probability of correctly guessing, there is always an optimal
ε-private mechanism using at most |X |+1 symbols [78]. From
this fact, condition (C.3) follows immediately.

3) Arimoto’s Mutual Information: Let α ∈ (1,∞]. We
choose N ≥ |X |+1 and Q = P , i.e., no prior information
is assumed. As with the previous information measures, the
continuity of the mappings LA

α (Q, ·) and UA
α (Q, ·) is evident.

We denote the privacy-utility function by HA
α when both

privacy leakage and utility are measured using Arimoto’s
mutual information of order α. Note that the graph of HA

α (Q; ·)
corresponds to the upper boundary of the set

A ,
{

(LA
α (Q,W ),UA

α (Q,W )) : W ∈ W
}
. (107)

More specifically, HA
α (Q; ε) = sup{u : (p, u) ∈ A, p ≤ ε}.

Consider the transformation which maps (p, u) to(∥∥∥∑
x∈X

Q(·, x)
∥∥∥
α
eαp/(α−1),

∥∥∥∑
s∈S

Q(s, ·)
∥∥∥
α
eαu/(α−1)

)
.

(108)
It is straightforward to verify that this transformation is one-
to-one, continuous, and monotone coordinatewise. Using this
transformation, it can be shown that (the upper boundary of)
A is homeomorphic to (the upper boundary of)

B , {(φ(Q,W ), ψ(Q,W )) : W ∈ W} , (109)

where

φ(Q,W ) ,
∑
y∈Y

∥∥∥∥∥∑
x∈X

Q(·, x)W (x, y)

∥∥∥∥∥
α

, (110)

ψ(Q,W ) ,
∑
y∈Y

∥∥∥∥∥∑
s∈S

Q(s, ·)W (·, y)

∥∥∥∥∥
α

. (111)

By the homogeneity of the α-norm, it can be verified that

φ(Q, [λ1W1, . . . , λKWK ] =
K∑
k=1

λkφ(Q,Wk), (112)

whenever K ∈ N, W1, . . . ,WK ∈ W , and λ1, . . . , λK ≥ 0
with

∑
k λk = 1. A similar equality holds for ψ. Therefore, B

is a convex set and, as a consequence, its upper boundary is
the graph of a continuous function. Since the upper boundaries
of A and B are homeomorphic, we conclude that the mapping
HA
α (Q; ·) is continuous. Therefore, condition (C.1) is satisfied.
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Also, Lemma 4 implies that condition (C.2) is satisfied with

CL =
2α

α− 1
|S|1−1/α and CU =

2α

α− 1
|X |1−1/α. Observe

that proving condition (C.3) with N ≥ |X |+1 is equivalent to
show that any point in the upper boundary of A can be written
as (LA

α (Q,W ),UA
α (Q,W )) for some W ∈ WN . Since A and

B are homeomorphic, the latter property can be established
from an analogous property for B which in turn follows from
a minor adaptation of the argument in [79].

Remark 11. Regarding condition (C.3), both [17] and [78]
build upon the convex analysis argument employed by Wit-
senhausen and Wyner in [79]. More specifically, they rely on
an extension of Carathéodory’s theorem, the so-called Fenchel-
Eggleston theorem [80], in order to find a bound for the size
of the output alphabet of an optimal privacy mechanism.

V. UNIFORM PRIVACY MECHANISMS

In this section we consider the scenario in which deliv-
ering privacy is the top priority for the privacy mechanism
designer. We introduce privacy mechanisms that, with a certain
probability, guarantee privacy for the true distribution despite
having access only to an estimate of it. These mechanisms are
constructed in the following conceptual way. Recall that large
deviations results show that, with a certain probability, the true
distribution is within some `1 ball of the empirical distribution.
Consequently, if a mechanism guarantees privacy uniformly
for every distribution within such an `1 ball, it necessarily
guarantees privacy for the true distribution with at least the
same probability. In this section, we prove that there is a well-
defined notion of optimality for uniform privacy mechanisms
and that these optimal mechanisms can be approximated by ap-
propriately chosen (non-uniform) optimal privacy mechanisms
as previously defined in (36).

In order to introduce uniform privacy mechanisms precisely,
recall that inequality (33) shows that, with probability at least
1− exp(|S|·|X |−nr2/2), the true distribution P is within the
`1 ball of radius r centered at the empirical distribution P̂n,

Qr(P̂n) , {Q ∈ Q : ‖Q− P̂n‖1≤ r}. (113)

Based on this observation, we consider uniform privacy mech-
anisms which guarantee privacy for every joint distribution
within Qr(P̂ ), where P̂ is any estimate of P . Despite the fact
that P ∈ Qr(P̂ ) with high probability, we do not know the
true value of P . For this reason, we define optimal uniform
privacy mechanisms as those that achieve the best worst-case
utility within Qr(P̂ ).

Definition 9. Let Q ⊂ P and N ∈ N. For P̂ ∈ Q, ε ≥ 0, and
r ≥ 0, we define the set of uniform privacy mechanisms for
Qr(P̂ ) at ε as

DQ,N (P̂ ; ε, r) ,
⋂

Q∈Qr(P̂ )

{W ∈ WN : L(Q,W ) ≤ ε} . (114)

Furthermore, we define the set of optimal uniform privacy
mechanisms for Qr(P̂ ) at ε as

W†Q,N (P̂ ; ε, r) , arg max
W∈DQ,N (P̂ ;ε,r)

Ur(P̂ ,W ), (115)

where Ur(P̂ ,W ) , min
Q∈Qr(P̂ )

U(Q,W ).

Recall that, as defined in Remark 7,

DN (Q; ε) = {W ∈ WN : L(Q,W ) ≤ ε} (116)

is the set of all privacy mechanisms in WN delivering an ε-
privacy guarantee for Q. Thus,

DQ,N (P̂ ; ε, r) =
⋂

Q∈Qr(P̂ )

DN (Q; ε) (117)

is the set of all privacy mechanisms in WN that deliver an ε-
privacy guarantee uniformly for all the distributions in Qr(P̂ ),
i.e., all the distributions at a distance less than or equal to
r from P̂ . For a given privacy mechanism W , Ur(P̂ ,W )
quantifies the least utility U(Q,W ) attained by W over all the
distributions in Qr(P̂ ). Thus, by definition, W†Q,N (P̂ ; ε, r) is
the set of all uniform privacy mechanisms for Qr(P̂ ) at ε with
the best worst-case utility.

The following lemma shows that Definition 9 is well-
defined under conditions (C.1–2). Specifically, it shows that
the infimum defining Ur(P̂ ,W ) and the supremum defining
W†Q,N (P̂ ; ε, r) are attainable.

Lemma 8. Assume that conditions (C.1–2) hold true for a
given closed set Q ⊆ P and a given N ∈ N. Then

(i) the infimum inf{U(Q,W ) : Q ∈ Qr(P̂ )} is attainable
for every W ∈ WN ;

(ii) the supremum sup{Ur(P̂ ,W ) : W ∈ DQ,N (P̂ ; ε, r)} is
attainable whenever DQ,N (P̂ ; ε, r) is not empty.

Proof. See Appendix C-A.

Observe that (ii) shows that optimal uniform privacy mech-
anisms do exists as long as DQ,N (P̂ ; ε, r) is not empty.
Nonetheless, their construction might be challenging as the
construction of optimal privacy mechanisms in the non-
uniform sense, as defined in (36), is already non-trivial in
most cases. The following theorem shows that optimal privacy
mechanism can be modified to deliver a uniform privacy
guarantee without incurring in a big cost in terms of utility.
Throughout this section, we consistently use W ∗ to denote
optimal privacy mechanisms, i.e., elements in W∗N as defined
in (87), and W † to denote their uniform counterparts as defined
in (115).

Theorem 8. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. If P ∈ Qr(P̂ )
and ε− CLr ≥ εmin(P̂ ), then

∅ 6= DN (P̂ ; ε− CLr) ⊆ DQ,N (P̂ ; ε, r). (118)

Furthermore, for every W ∗ ∈ W∗N (P̂ ; ε − CLr) and every
W † ∈ W†Q,N (P̂ ; ε, r),

U(P,W ∗)

≥ U(P,W †)−
(
H(P̂ ; ε+ CLr)− H(P̂ ; ε− CLr) + 2CUr

)
.

(119)

Proof. See Appendix C-B.
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Observe that (118) establishes that privacy mechanisms for
P̂ at ε − CLr are, in fact, uniform privacy mechanisms at
ε. In other words, (118) shows that by imposing a slightly
stronger privacy requirement for P̂ , we obtain uniform privacy
mechanisms for Qr(P̂ ). Furthermore, under condition (C.1),

lim
r↓0

(
H(P̂ ; ε+ CLr)− H(P̂ ; ε− CLr) + 2CUr

)
= 0. (120)

Therefore, (119) shows that, when r is small, any optimal
privacy mechanism for P̂ at ε−CLr performs almost as well
as any optimal uniform privacy mechanism for Qr(P̂ ) at ε. Of
course, all these conclusions hold as long as P ∈ Qr(P̂ ) but,
as pointed out before, this is the case (with high probability)
in the large sample size regime.

Remark 12. Note that if H(P̂ ; ·) is Lipschitz continuous with
Lipschitz constant L, then (119) becomes

U(P,W ∗) ≥ U(P,W †)− 2(CU + LCL)r. (121)

Observe that if H(P̂ ; ·) is a convex function differentiable at
ε0 , εmin(P̂ ), then L = H′(P̂ ; ε0). The value of H′(P̂ ; ε0)
is closely related with the notion of reverse strong data
processing inequality [19], see also [20].

Now we consider a specific example to illustrate the above
results.

Example 2. Recall that Hc is the privacy-utility function
associated to Lc and Uc as given in (41). For ease of notation,
we define

p#q ,

(
(1− p)(1− q) (1− p)q

pq p(1− q)

)
. (122)

Let Q = {p#q : p ∈ [1/2, 1], q ∈ [0, 1 − p]} and N ≥ 2.
This selection of Q captures the case where S ∼ Ber(p) with
p ∈ [1/2, 1] and PX|S = BSC(q) with q ∈ [0, 1 − p]. By
Theorem 2 in [17], for all Q = p#q ∈ Q,

Hc(Q; ε) = 1− 1− q
p− q (p+ q − 2pq) + ε

p+ q − 2pq

p− q , (123)

whenever ε ∈ [p, 1 − q]. In particular, Hc(Q; ·) is Lipschitz

continuous with Lipschitz constant
p+ q − 2pq

p− q . Recall that,

for probability of correctly guessing, CL = CU = 1 as
established in Section IV-A1. Hence, under the assumptions
of Theorem 8, (121) becomes

U(P,W ∗) ≥ U(P,W †)− 2p̂(1− q̂)
p̂− q̂ r, (124)

where W ∗ ∈ W∗N (P̂ ; ε − r) and W † ∈ W†Q,N (P̂ ; ε, r) with
P̂ , p̂#q̂ ∈ Q. Furthermore, by taking P̂ = P̂n and
r = (2(4 − log β)/n)1/2, inequality (33) implies that, with
probability at least 1− β,

U(P,W ∗) ≥ U(P,W †)− 2p̂(1− q̂)
p̂− q̂

√
2

n
(4− log β). (125)

We finish this section by studying some convergence prop-
erties of uniform privacy mechanism, similar to those studied
in Theorem 6. More specifically, the next theorem shows that
although a sequence (W †n)∞n=1 with W †n ∈ W†Q,N (Pn; ε, rn)

may not be convergent, the distance between each W †n and
W∗N (P ; ε) converges to zero as long as limn Pn = P and
limn rn = 0. Furthermore, it also shows that, under certain
conditions, this convergence can be guaranteed almost surely
for the empirical distribution estimator.

Theorem 9. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. Let ε ∈ R and
P ∈ Q be given. If Pn ∈ Q with ‖Pn − P‖1≤ rn for each
n ∈ N, limn rn = 0, and ε > εmin(P ), then, for any sequence
(W †n)∞n=1 ⊂ WN such that W †n ∈ W†Q,N (Pn; ε, rn) for all
n ≥ 1,

lim
n→∞

dist(W †n,W∗N (P ; ε)) = 0. (126)

Furthermore, if Pn = P̂n is the empirical estimator obtained
from n i.i.d. samples drawn from P and, for some p > 1,

rn ≥
√

2p log(n)
n for all n ≥ 1, then,

Pr
(

lim
n→∞

dist(W †n,W∗N (P ; ε)) = 0
)

= 1. (127)

Proof. See Appendix C-C.

The following corollary follows immediately from
Thereom 9 by taking P = Pn = P̂ .

Corollary 3. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. If P̂ ∈ Q and
ε > εmin(P̂ ), then

lim sup
r↓0

W†Q,N (P̂ ; ε, r) ⊆ W∗N (P̂ ; ε), (128)

where

lim sup
r↓0

W†Q,N (P̂ ; ε, r)

,

{
W ∈ WN : lim inf

r↓0
dist

(
W,W†Q,N (P̂ ; ε, r)

)
= 0

}
.

Theorem 8 shows that in terms of performance, optimal
privacy mechanisms approximate optimal uniform privacy
mechanisms in the small r regime. The previous corollary
shows that, in the same regime, optimal uniform privacy
mechanisms are geometrically close to the set of optimal
privacy mechanisms. These two results evidence an intrinsic
relation between optimal privacy mechanisms and their uni-
form counterparts.

VI. NUMERICAL EXPERIMENTS

We illustrate some of the results derived in the previous sec-
tions through two numerical experiments. The first experiment,
conducted on a synthetic dataset, illustrates the convergence
of the empirical privacy-utility function and optimal privacy
mechanisms to their corresponding limits as the sample size
increases. The second experiment, performed on a real-world
dataset, displays the discrepancy between the privacy-utility
guarantees during the design and testing of a privacy mecha-
nism.
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Fig. 2: Both privacy leakage and utility are measured using the f -information with f(t) = (t − 1)2. Top left: privacy-utility function
Hχ2(P ; ·) and empirical privacy-utility function Hχ2(P̂n; ·). Top right: corresponding optimal privacy mechanisms for ε = 0.05. Bottom:
largest (signed) difference between Hχ2(Pn; ·) and Hχ2(P ; ·).

A. Synthetic Dataset

Here we illustrate the convergence of the empirical privacy-
utility function and optimal privacy mechanisms as the sample
size increases. The joint distribution matrix P, determined by
Ps,x , P (s, x), is chosen to be

P =

(
0.42 0.18
0.16 0.24

)
, (129)

and both privacy leakage and utility are measured using χ2-
information, i.e., the f -information associated to the function
f(t) = (t−1)2. For any given value of n, we randomly select
n i.i.d. samples {(si, xi)}ni=1 drawn from the joint distribution
P and compute the empirical distribution P̂n.

In Figure 2 (top left), we depict the privacy-utility function
Hχ2(P ; ·) and the empirical privacy-utility function Hχ2(P̂n; ·)
for three different values of n. Note that the privacy-utility
function of the empirical distribution converges (pointwise)
to the corresponding function for the true distribution, i.e.,
for any given ε ≥ 0 we have that Hχ2(P̂n; ε) approaches
Hχ2(P ; ε) as n grows. This corroborates the conclusion of
Proposition 5 which establishes that, for any given ε ∈ R,
H(·; ε) is continuous over {Q ∈ Q : εmin(Q) < ε}. In
Figure 2 (top right), we depict the corresponding optimal
privacy mechanisms. In order to visualize a privacy mechanism
PY |X in the xy-plane, we let the x-axis and y-axis to be the
values of PY |X(0|0) and PY |X(1|1), respectively. Observe that
optimal privacy mechanisms are not unique. Hence, depending
on the algorithm used to obtain such mechanisms, a sequence

of empirical optimal privacy mechanisms may not converge to
a fixed mechanism. However, as observed from Figure 2 (top
right), the distance between any such sequence and the set
of optimal privacy mechanisms for the true distribution will
necessarily converge to zero which echoes Theorem 6.

Finally we scatter plot the largest (signed) gap, denoted
by ∆n, between Hχ2(Pn; ·) and Hχ2(P ; ·). In particular, the
absolute value of ∆n is equal to the uniform norm of the
function Hχ2(Pn; ·)− Hχ2(P ; ·), i.e.,

|∆n|= sup
ε∈[0,∞)

|Hχ2(Pn; ε)− Hχ2(P ; ε)|. (130)

We depict the value of ∆n in Figure 2 (bottom). As shown,
when the number of samples increases, |∆n| tends to de-
crease which illustrates the uniform convergence established
in Corollary 1. Due to the mismatch between the empirical
and true distributions, privacy and utility might be over or
under-estimated, leading to the variable sign of ∆n.

B. ProPublica’s COMPAS Recidivism Dataset

We now illustrate Theorems 2 and 4 in Section III through
ProPublica’s COMPAS dataset [72], which contains the crim-
inal history, jail and prison time, demographics and COMPAS
risk scores for defendants in Broward County from 2013 and
2014. We process the original dataset by dropping records
with missing information and quantizing some of the interest
variables. Our final dataset contains 5278 records. We choose
the private variable (S): Race ∈ {Caucasian, African-American};
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Fig. 3: Both privacy leakage and utility are measured using probability of correctly guessing. Left: discrepancy between utility guarantees for
the training and testing sets. Right: discrepancy between privacy guarantees for the training and testing sets. In both pictures the theoretical
upper bound in (136) is shown in red.

the useful variable (X): PriorCounts ∈ {0, 1 − 3, > 3} and
AgeCategory ∈ {< 25, 25− 45, > 45}. Hence, the size of
support sets are |S|= 2 and |X |= 9.

Given n ∈ N, we choose n records from the dataset as
our training set and another n different records as our testing
set. We use probability of correctly guessing to measure both
privacy and utility. We compute the empirical distribution
P̂n,train based on the training set and let Wn be the privacy
mechanism that solves the following optimization problem:

max
W∈WR

Uc(P̂n,train,W ) (131)

s.t. Lc(P̂n,train,W ) ≤ 0.65, (132)

where WR denotes the set of randomized response mecha-
nisms [16], [81], i.e., the set of all privacy mechanisms W
with output alphabet X such that, for some ρ ≥ 0,

W (i, j) =


eρ

eρ + |X |−1
if i = j,

1

eρ + |X |−1
if i 6= j.

(133)

Then, we let P̂n,test be the empirical distribution of the testing
set and compute the privacy-utility guarantees attained by
Wn for this distribution. Finally, we evaluate the discrepancy
between the privacy-utility guarantees provided for P̂n,train and
P̂n,test:

∆L,n , |Lc(P̂n,test,Wn)− Lc(P̂n,train,Wn)|, (134)

∆U,n , |Uc(P̂n,test,Wn)− Uc(P̂n,train,Wn)|. (135)

By the triangle inequality and Theorem 2, with probability at
least 1− β, these two discrepancies are upper bounded by

UpperBoundn , 2

√
2

n
(|S|·|X |− log β). (136)

Figure 3 depicts the discrepancies ∆L,n and ∆U,n, as functions
of n, along with the upper bound UpperBoundn for β = 10−1.
Observe that when number of samples increases, the discrep-
ancy between the privacy-utility guarantees tends to decrease.

To further illustrate our results, we perform a similar
experiment using Arimoto’s mutual information of order 2.

Specifically, we compute the privacy mechanism Wn by
solving the following optimization problem:

max
W∈WZ

UA2 (P̂n,train,W ) (137)

s.t. LA2 (P̂n,train,W ) ≤ 0.05, (138)

where WZ denotes the set of privacy mechanisms W with
output alphabet X such that, for some x̄ ∈ X and ζ ≥ 0,

W (i, j) =


1 if i = j = x̄,

1− ζ if i = j 6= x̄,

ζ if i 6= x̄, j = x̄.

(139)

In the binary case, WZ is nothing but the collection of Z-
channels. It has been proved [17] that these channels are
capable to achieve optimal privacy-utility trade-offs in some
cases. Let ∆L,n (resp. ∆U,n) be the discrepancy between the
privacy (resp. utility) guarantees for P̂n,train and P̂n,test. By
Theorem 4, with probability at least 1 − β, ∆L,n and ∆U,n

are upper bounded by

Privacy:UpperBoundn , 8

√
2

n
(|S|·|X |− log β) · |S|, (140)

Utility:UpperBoundn , 8

√
2

n
(|S|·|X |− log β) · |X |, (141)

respectively. Figure 4 depicts the discrepancies ∆L,n and
∆U,n, as functions of n, along with their corresponding upper
bounds for β = 10−1.

VII. CONCLUDING REMARKS

In this work, we analyzed the effect of a limited sample
size on the disclosure of data under privacy constraints. We
considered a setting where data is released upon observing
non-private features correlated with a set of private features.
We evaluated privacy and utility using one out of five of
the most commonly used information leakage and utility
measures in information-theoretic privacy: probability of cor-
rectly guessing, f -information, Arimoto’s mutual information,
Sibson’s mutual information, and maximal α-leakage.
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Fig. 4: Both privacy leakage and utility are measured using Arimoto’s mutual information of order 2. Left: discrepancy between utility
guarantees for the training and testing sets. Right: discrepancy between privacy guarantees for the training and testing sets. The theoretical
upper bounds, in (140) and (141) respectively, are shown in red.

The effect of a limited sample size was assessed via prob-
abilistic upper bounds for the difference between the privacy-
utility guarantees for the empirical and true distributions. An
important feature of these bounds is that they are completely
independent of the privacy mechanism at hand. On a technical
level, the proofs of these bounds depend on large deviations
results already available in the literature and continuity proper-
ties of information leakage measures established in this work.
Furthermore, we have established new continuity properties
of privacy-utility functions. Using these properties, we have
shown that the limit of a convergent sequence of optimal
privacy mechanisms is an optimal privacy mechanism itself.

In order to mitigate the effect of a limited sample size
on the privacy guarantees delivered to the true distribution,
we introduced the notion of uniform privacy mechanisms.
By definition, these mechanisms provide a specific privacy
guarantee for every distribution in a given subset of the
probability simplex. In particular, when this subset is a neigh-
borhood of the empirical distribution, large deviations results
imply that privacy is guaranteed for the true distribution with
high probability. While the construction of optimal uniform
privacy mechanisms might be challenging, we proved that
these mechanisms can be approximated in a natural way
by optimal privacy mechanisms in the non-uniform sense.
More specifically, we have proved that an optimal privacy
mechanism for the empirical distribution delivers a slightly
weaker privacy guarantee for a whole neighborhood of the
empirical distribution and performs almost as well as any opti-
mal uniform privacy mechanism. By establishing convergence
results regarding optimal uniform privacy mechanisms, we
have further exhibited the intrinsic relation between optimal
privacy mechanisms and their uniform counterparts.

While this work predominantly focused on large deviations
bounds, the continuity properties derived in this paper can be
applied together with contemporary results to derive similar
upper bounds in other estimation frameworks, e.g., `1 minimax
estimation.
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APPENDIX A
PROOFS FROM SECTION III

A. Lemma 1

Consider the following elementary lemma whose proof is
included for the sake of completeness.

Lemma 9. Let Q1, Q2 ∈ P and W ∈ W be given. For each
i ∈ {1, 2}, let Si → Xi → Yi be such that PSi,Xi = Qi and
PYi|Xi = W . Then,

‖PS1,Y1
− PS2,Y2

‖1≤ ‖Q1 −Q2‖1. (142)

Proof. By the definition of ‖·‖1, we have that

‖PS1,Y1
− PS2,Y2

‖1=
∑
s∈S

∑
y∈Y
|PS1,Y1

(s, y)− PS2,Y2
(s, y)|.

(143)
By assumption, PSi,Yi(s, y) =

∑
xQi(s, x)W (x, y) for each

i ∈ {1, 2}. Hence, by the triangle inequality,

‖PS1,Y1 − PS2,Y2‖1
≤
∑
y∈Y

∑
s∈S

∑
x∈X
|Q1(s, x)−Q2(s, x)|W (x, y) (144)

= ‖Q1 −Q2‖1, (145)

where we used that
∑
yW (x, y) = 1 for all x ∈ X .

The proof of Lemma 1 relies on the following elementary
observation: Let n ∈ N. If ai, bi ∈ R for all i = 1, . . . , n, then∣∣∣∣ max

i=1,...,n
ai − max

i=1,...,n
bi

∣∣∣∣ ≤ max
i=1,...,n

|ai − bi| (146)

≤
n∑
i=1

|ai − bi|. (147)
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Proof. For ease of notation, let

∆L , |Lc(Q1,W )− Lc(Q2,W )|. (148)

For each i ∈ {1, 2}, let Si → Xi → Yi be such
that PSi,Xi = Qi and PYi|Xi = W . With this notation,
Lc(Qi,W ) = Pc(Si|Yi) where

Pc(Si|Yi) =
∑
y∈Y

max
s∈S

PSi,Yi(s, y). (149)

By the triangle inequality, we have that

∆L ≤
∑
y∈Y

∣∣∣∣max
s∈S

PS1,Y1(s, y)−max
s∈S

PS2,Y2(s, y)

∣∣∣∣ . (150)

An immediate application of (147) leads to

∆L ≤
∑
y∈Y

∑
s∈S
|PS1,Y1

(s, y)− PS2,Y2
(s, y)| (151)

= ‖PS1,Y1
− PS2,Y2

‖1 (152)
≤ ‖Q1 −Q2‖1, (153)

where the last inequality follows from Lemma 9. Mutatis
mutandis, it can be shown that

|Uc(Q1,W )− Uc(Q2,W )| ≤ ‖Q1 −Q2‖1, (154)

as required.

B. Lemma 2

The proof of the following lemma is similar to the one of
Lemma 9. The details are left to the reader.

Lemma 10. Let Q1, Q2 ∈ P and W ∈ W be given. For each
i ∈ {1, 2}, let Si → Xi → Yi be such that PSi,Xi = Qi and
PYi|Xi = W . Then,

‖PY1
− PY2

‖1 ≤ max{‖PS1
− PS2

‖1, ‖PX1
− PX2

‖1}
≤ ‖Q1 −Q2‖1. (155)

Now we are in position to prove Lemma 2.

Proof. For ease of notation, let

∆L , |Lf (Q1,W )− Lf (Q2,W )|. (156)

For each i ∈ {1, 2}, let Si → Xi → Yi be such
that PSi,Xi = Qi and PYi|Xi = W . With this notation,
Lf (Qi,W ) = If (PSi,Yi). By the definition of f -information,
we have that

∆L =

∣∣∣∣∑
s∈S

∑
y∈Y

(
PS1(s)PY1(y)f

(
PS1,Y1(s, y)

PS1
(s)PY1

(y)

)
−PS2(s)PY2(y)f

(
PS2,Y2

(s, y)

PS2(s)PY2(y)

)) ∣∣∣∣.
(157)

An application of the triangle inequality leads to ∆L ≤ I+II,
where

I =
∑
s∈S

∑
y∈Y
|PS1

(s)PY1
(y)− PS2

(s)PY2
(y)|

×
∣∣∣∣f ( PS1,Y1

(s, y)

PS1(s)PY1(y)

)∣∣∣∣ , (158)

II =
∑
s∈S

∑
y∈Y

PS2
(s)PY2

(y)

×
∣∣∣∣f ( PS1,Y1(s, y)

PS1
(s)PY1

(y)

)
− f

(
PS2,Y2(s, y)

PS2
(s)PY2

(y)

)∣∣∣∣ . (159)

First we provide an upper bound for I. Recall the definition
of the supremum norm in (46). Observe that PSi,Yi(s, y) ≤
PYi(y) for all i ∈ {1, 2}, s ∈ S, and y ∈ Y . Hence, for all
s ∈ S and y ∈ Y ,

max

{
PS1,Y1(s, y)

PS1
(s)PY1

(y)
,
PS2,Y2(s, y)

PS2
(s)PY2

(y)

}
≤ max

{
1

PS1(s)
,

1

PS2(s)

}
≤ m−1S , (160)

and thus
∣∣∣∣f ( PS1,Y1

(s, y)

PS1
(s)PY1

(y)

)∣∣∣∣ ≤ Kf,m−1
S

, as |f(t)|≤ Kf,m−1
S

for all t ∈ [0,m−1S ]. As a consequence,

I ≤ Kf,m−1
S

∑
s∈S

∑
y∈Y
|PS1(s)PY1(y)− PS2(s)PY2(y)| (161)

≤ Kf,m−1
S

∑
s∈S

∑
y∈Y

[
PY1

(y)|PS1
(s)− PS2

(s)|

+ PS2
(s)|PY1

(y)− PY2
(y)|
]

(162)

= Kf,m−1
S

(‖PS1
− PS2

‖1+‖PY1
− PY2

‖1) . (163)

By Lemma 10, we conclude that

I ≤ 2Kf,m−1
S
‖Q1 −Q2‖1. (164)

Now we focus on II. Recall that f is locally Lipschitz by
assumption, and thus it is Lipschitz on [0,m−1S ]. As defined
in (47), let Lf,m−1

S
be the Lipschitz constant of f on the latter

interval. Hence, (160) implies that∣∣∣∣f ( PS1,Y1(s, y)

PS1
(s)PY1

(y)

)
− f

(
PS2,Y2(s, y)

PS2
(s)PY2

(y)

)∣∣∣∣
≤ Lf,m−1

S

∣∣∣∣ PS1,Y1
(s, y)

PS1(s)PY1(y)
− PS2,Y2

(s, y)

PS2(s)PY2(y)

∣∣∣∣ . (165)

As a result, we have that

II ≤ Lf,m−1
S

∑
s∈S

∑
y∈Y

1

PS1
(s)PY1

(y)

× |PS2(s)PY2(y)PS1,Y1(s, y)

− PS1(s)PY1(y)PS2,Y2(s, y)|.

(166)

By the triangle inequality, the numerator of the quotient in
(166) is upper bounded by

PS1,Y1
(s, y)|PS2

(s)PY2
(y)− PS1

(s)PY1
(y)|

+ PS1
(s)PY1

(y)|PS1,Y1
(s, y)− PS2,Y2

(s, y)|. (167)

In particular,

II ≤ Lf,m−1
S

∑
s∈S

∑
y∈Y

PS1,Y1
(s, y)

PS1
(s)PY1

(y)

× |PS2(s)PY2(y)− PS1(s)PY1(y)|
+ Lf,m−1

S

∑
s∈S

∑
y∈Y
|PS1,Y1(s, y)− PS2,Y2(s, y)|

≤ m−1S Lf,m−1
S

(
‖PY1

− PY2
‖1+‖PS1

− PS2
‖1
)

+ Lf,m−1
S
‖PS1,Y1 − PS2,Y2‖1,
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where the last inequality follows from (160) and the argument
used in (163). Hence, Lemma 9 and Lemma 10 imply that

II ≤
(
2m−1S + 1

)
Lf,m−1

S
‖Q1 −Q2‖1. (168)

Since ∆L ≤ I + II, we conclude that

∆L ≤
(

2Kf,m−1
S

+
(
2m−1S + 1

)
Lf,m−1

S

)
‖Q1 −Q2‖1.

(169)
Mutatis mutandis, it can be shown that

|Uf (Q1,W )− Uf (Q2,W )|
≤
(

2Kf,m−1
X

+
(
2m−1X + 1

)
Lf,m−1

X

)
‖Q1 −Q2‖1.

(170)

The proof is complete.

C. Theorem 3

Proof. By choosing Q1 = P̂n and Q2 = P in Lemma 2,

|Lf (P̂n,W )− Lf (P,W )| ≤ Cf,mS‖P̂n − P‖1, (171)

where

mS = min

{{∑
x∈X

P̂n(s, x) : s ∈ S
}

∪
{∑
x∈X

P (s, x) : s ∈ S
}}

. (172)

Observe that, for all s ∈ S,∑
x∈X

P (s, x) ≥
∑
x∈X

P̂n(s, x)−
∑
x∈X
|P̂n(s, x)− P (s, x)|

≥
∑
x∈X

P̂n(s, x)− ‖P̂n − P‖1. (173)

In particular, we have that

mS ≥
(

min

{∑
x∈X

P̂n(s, x) : s ∈ S
}
− ‖P̂n − P‖1

)
+

.

(174)
Inequality (33) shows that, with probability at least 1− β,

‖P̂n − P‖1≤
√

2

n
(|S|·|X |− log β), (175)

and, thus, mS ≥ mS whenever (175) holds true. Recall the
definitions of Kg,u and Lg,u in (46) and (47), respectively. It
is straightforward to verify that the mappings u 7→ Kf,u and
u 7→ Lf,u are non-decreasing. Since the mapping u 7→ u−1 is
non-increasing, we conclude that

u 7→ Cf,u = 2Kf,u−1 + (2u−1 + 1)Lf,u−1 (176)

is non-increasing. Therefore, under (175), we have

Cf,mS ≤ Cf,mS . (177)

Combining (171), (175) and (177), we have that, with proba-
bility at least 1− β,

|Lf (P̂n,W )− Lf (P,W )| ≤ Cf,mS
√

2

n
(|S|·|X |− log β).

(178)

Mutatis mutandis, it can be shown that

|Uf (P̂n,W )− Uf (P,W )| ≤ Cf,mX
√

2

n
(|S|·|X |− log β),

(179)

whenever (175) holds true.

D. Proposition 4

Proof. Assume that S̃, X̃ and X̃0 satisfy that PS̃,X̃ = P̂n

and X̃0 = Πγ(X̃). With this notation, it can be verified that
S̃ → X̃ → X̃0 and

PS̃,X̃0
= P̂nPX̃0|X̃ = P̂γ , (180)

where, by definition,(
P̂nPX̃0|X̃

)
(s, x0) =

∑
x∈X

P̂n(s, x)PX̃0|X̃(x0|x). (181)

By assumption, W∗(P̂γ ; ε) 6= ∅. Let W̃ ∈ W∗(P̂γ ; ε), i.e.,

Lf (P̂γ , W̃ ) ≤ ε and Uf (P̂γ , W̃ ) = Hf (P̂γ ; ε). (182)

Let Ỹ0 be such that S̃ → X̃ → X̃0 → Ỹ0 and PỸ0|X̃0
= W̃ .

Observe that PỸ0|X̃ = PX̃0|X̃W̃ . In particular,

PS̃,Ỹ0
= P̂nPỸ0|X̃ = P̂nPX̃0|X̃W̃ = P̂γW̃ , (183)

where the last equality follows from (180). Therefore,

Lf (P̂γ , W̃ ) = If (PS̃,Ỹ0
) = Lf (P̂n, PỸ0|X̃). (184)

Furthermore, Lemma 3 implies that

Uf (P̂γ , W̃ ) = If (PX̃0,Ỹ0
) = If (PX̃,Ỹ0

) = Uf (P̂n, PỸ0|X̃).
(185)

By (182), (184) and (185), we have

Lf (P̂n, PỸ0|X̃) ≤ ε and Uf (P̂n, PỸ0|X̃) = Hf (P̂γ ; ε).

Recall that, by definition, Hf (P̂n; ε) = supW Uf (P̂n,W )
where the supremum is taken over all W ∈ W such that
Lf (P̂n,W ) ≤ ε. Thus,

Hf (P̂n; ε) ≥ Uf (P̂n, PỸ0|X̃) = Hf (P̂γ ; ε), (186)

as we wanted to prove.

E. Lemma 4

Proof. For ease of notation, let

∆L , |LA
α (Q1,W )− LA

α (Q2,W )|. (187)

For each i ∈ {1, 2}, let Si → Xi → Yi be such that PSi,Xi =
Qi and PYi|Xi = W . With this notation,

∆L = |IAα (PS1,Y1
)− IAα (PS2,Y2

)| (188)

=
α

α− 1

∣∣∣∣∣log

∑
y‖PS1,Y1

(·, y)‖α∑
y‖PS2,Y2

(·, y)‖α
− log

‖PS1(·)‖α
‖PS2

(·)‖α

∣∣∣∣∣ ,
(189)
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where the second equality follows directly from the definition
of Arimoto’s mutual information. By the triangle inequality,

we obtain that
α− 1

α
∆L ≤ I + II where

I ,

∣∣∣∣∣log

∑
y‖PS1,Y1

(·, y)‖α∑
y‖PS2,Y2

(·, y)‖α

∣∣∣∣∣ , (190)

II ,

∣∣∣∣log
‖PS1

(·)‖α
‖PS2

(·)‖α

∣∣∣∣ . (191)

Notice that if a, b > 0, then
∣∣∣log

a

b

∣∣∣ ≤ |a− b|
min{a, b} . Hence,

I ≤

∣∣∣∑y‖PS1,Y1
(·, y)‖α−

∑
y‖PS2,Y2

(·, y)‖α
∣∣∣

min{∑y‖PS1,Y1
(·, y)‖α,

∑
y‖PS2,Y2

(·, y)‖α}
. (192)

Observe that, by the triangle inequality,∣∣∣∣∑
y∈Y
‖PS1,Y1

(·, y)‖α−
∑
y∈Y
‖PS2,Y2

(·, y)‖α
∣∣∣∣

≤
∑
y∈Y

∣∣∣‖PS1,Y1
(·, y)‖α−‖PS2,Y2

(·, y)‖α
∣∣∣. (193)

By Minkowski’s inequality, |‖a‖α−‖b‖α|≤ ‖a−b‖α for every
a, b ∈ Rn and α ≥ 1. Therefore,∣∣∣∣∑

y∈Y
‖PS1,Y1(·, y)‖α−

∑
y∈Y
‖PS2,Y2(·, y)‖α

∣∣∣∣ (194)

≤
∑
y∈Y
‖PS1,Y1

(·, y)− PS2,Y2
(·, y)‖α (195)

≤
∑
y∈Y
‖PS1,Y1

(·, y)− PS2,Y2
(·, y)‖1, (196)

= ‖PS1,Y1
− PS2,Y2

‖1, (197)

where the second inequality follows from the fact that ‖a‖α≤
‖a‖1 for all a ∈ Rn and α ≥ 1. By assumption, we have that
PY1|X1

= W = PY2|X2
. Hence, Lemma 9 implies that

‖PS1,Y1
− PS2,Y2

‖1≤ ‖Q1 −Q2‖1. (198)

This leads to∣∣∣∣∣∣
∑
y∈Y
‖PS1,Y1

(·, y)‖α−
∑
y∈Y
‖PS2,Y2

(·, y)‖α

∣∣∣∣∣∣ ≤ ‖Q1 −Q2‖1.

(199)

For i ∈ {1, 2}, Minkowski’s inequality implies that∑
y∈Y
‖PSi,Yi(·, y)‖α≥

∥∥∥∥∑
y∈Y

PSi,Yi(·, y)

∥∥∥∥
α

= ‖PSi(·)‖α.

(200)
The generalized mean inequality implies that

‖PSi(·)‖α≥ |S|1/α−1‖PSi(·)‖1= |S|1/α−1, (201)

as ‖PSi(·)‖1=
∑
s PSi(s) = 1. Hence,∑

y∈Y
‖PSi,Yi(·, y)‖α≥ |S|1/α−1. (202)

Therefore, by plugging (199) and (202) in (192),

I ≤ |S|1−1/α‖Q1 −Q2‖1. (203)

Similarly, we have that

II ≤ |‖PS2
(·)‖α−‖PS1

(·)‖α|
min{‖PS2

(·)‖α, ‖PS1
(·)‖α}

. (204)

As in (197) and (198),

|‖PS2
(·)‖α−‖PS1

(·)‖α|≤ ‖PS1
− PS2

‖1≤ ‖Q1 −Q2‖1.
(205)

As established in (202), for all i ∈ {1, 2},

‖PSi(·)‖α≥ |S|1/α−1. (206)

Thus, II ≤ |S|1−1/α‖Q1 − Q2‖1. Since
α− 1

α
∆L ≤ I + II,

we conclude that

|LA
α (Q1,W )− LA

α (Q2,W )|≤ 2α

α− 1
|S|1−1/α‖Q1 −Q2‖1.

(207)
Mutatis mutandis, one can obtain that

|UA
α (Q1,W )− UA

α (Q2,W )|≤ 2α

α− 1
|X |1−1/α‖Q1 −Q2‖1,

(208)
as required

F. Lemma 5

Consider the following lemma.

Lemma 11. If S1, S2 and X1, X2 are random variables
supported over S and X respectively, then,

‖PS1
·PX1|S1

−PS1
·PX2|S2

‖1≤ 2‖PS1,X1
−PS2,X2

‖1. (209)

Proof. For ease of notation, let

∆ , ‖PS1
· PX1|S1

− PS1
· PX2|S2

‖1. (210)

By the triangle inequality, we have that

∆ ≤‖PS1
· PX1|S1

− PS2
· PX2|S2

‖1
+ ‖PS2

· PX2|S2
− PS1

· PX2|S2
‖1.

(211)

By Lemma 10, and the fact that PSi · PXi|Si = PSi,Xi for
every i ∈ {1, 2},

∆ ≤ ‖PS1,X1 − PS2,X2‖1+‖PS1 − PS2‖1 (212)
≤ 2‖PS1,X1 − PS2,X2‖1, (213)

as required.

Now we are in position to prove Lemma 5.

Proof. For ease of notation, let

∆L , |LS
α(Q1,W )− LS

α(Q2,W )|. (214)

For each i ∈ {1, 2}, let Si → Xi → Yi be such that PSi,Xi =
Qi and PYi|Xi = W . Assume that α ∈ (1,∞). Then

∆L = |ISα(PS1,Y1
)− ISα(PS2,Y2

)| (215)

=
α

α− 1

∣∣∣∣∣log

∑
y‖PS1

(·)1/αPY1|S1
(y|·)‖α∑

y‖PS2
(·)1/αPY2|S2

(y|·)‖α

∣∣∣∣∣ , (216)
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where the second equality follows directly from the definition
of Sibson’s mutual information. Notice that if a, b > 0, then∣∣∣log

a

b

∣∣∣ ≤ |a− b|
min{a, b} . Hence,

∆L ≤
α

α− 1

|a− b|
min{a, b} , (217)

where

a ,
∑
y

‖PS1
(·)1/αPY1|S1

(y|·)‖α, (218)

b ,
∑
y

‖PS2
(·)1/αPY2|S2

(y|·)‖α. (219)

By Minkowski’s inequality, we have that∑
y∈Y
‖PSi(·)1/αPYi|Si(y|·)‖α≥ ‖PSi(·)1/α‖α= 1, (220)

where we used the fact that
∑
y PYi|Si(y|s) = 1 for every

s ∈ S and i ∈ {1, 2}. Hence, (217) becomes

∆L ≤
α

α− 1

∑
y∈Y

∣∣∣∣‖PS1(·)1/αPY1|S1
(y|·)‖α

− ‖PS2
(·)1/αPY2|S2

(y|·)‖α
∣∣∣∣

≤ α

α− 1

∑
y∈Y
‖PS1(·)1/αPY1|S1

(y|·)

− PS2
(·)1/αPY2|S2

(y|·)‖α,

where the last inequality follows from another application of
Minkowski’s inequality. Since ‖a‖α≤ ‖a‖1 for all a ∈ Rn
and α > 1, we obtain that

∆L ≤
α

α− 1

∑
y∈Y
‖PS1

(·)1/αPY1|S1
(y|·)

− PS2(·)1/αPY2|S2
(y|·)‖1.

Observe that, for each i ∈ {1, 2},

PSi(s)
1/αPYi|Si(y|s) =

∑
x∈X

PSi(s)
1/αPXi|Si(x|s)W (x, y).

Thus, a straightforward manipulation leads to

∆L ≤
α

α− 1

∑
y∈Y

∑
x∈X
‖PS1

(·)1/αPX1|S1
(x|·)

− PS2
(·)1/αPX2|S2

(x|·)‖1W (x, y)

=
α

α− 1

∑
x∈X
‖PS1

(·)1/αPX1|S1
(x|·)

− PS2
(·)1/αPX2|S2

(x|·)‖1. (221)

By adding and subtracting the term PS1(·)1/αPX2|S2
(x|·)

inside the norm in (221), Minkowski’s inequality implies that
α− 1

α
∆L ≤

∑
x

Ix +
∑

x
IIx where, for each x ∈ X ,

Ix , ‖PS1
(·)1/α(PX1|S1

(x|·)− PX2|S2
(x|·))‖1, (222)

IIx , ‖(PS1
(·)1/α − PS2

(·)1/α)PX2|S2
(x|·)‖1. (223)

Observe that, for each x ∈ X ,

Ix =
∑
s∈S

PS1
(s)1/α|PX1|S1

(x|s)− PX2|S2
(x|s)| (224)

=
∑
s∈S

PS1
(s)

PS1
(s)1−1/α

|PX1|S1
(x|s)− PX2|S2

(x|s)|. (225)

Since PS1(s) ≥ mS for all s ∈ S, we obtain that∑
x∈X

Ix ≤
∑
x∈X

∑
s∈S

PS1(s)|PX1|S1
(x|s)− PX2|S2

(x|s)|
m

1−1/α
S

(226)

=
‖PS1 · PX1|S1

− PS1
· PX2|S2

‖1
m

1−1/α
S

. (227)

Therefore, Lemma 11 leads to∑
x∈X

Ix ≤
2‖Q1 −Q2‖1
m

1−1/α
S

. (228)

By definition, IIx =
∑
s|PS1

(s)1/α − PS2
(s)1/α|PX2|S2

(x|s)
for every x ∈ X . Hence,∑

x∈X
IIx =

∑
s∈S
|PS1

(·)1/α − PS2
(·)1/α|. (229)

Since the function t 7→ t1/α is Lipschitz continuous on [mS , 1]

with Lipschitz constant (αm
1−1/α
S )−1,∑

x∈X
IIx ≤

‖PS1
− PS2

‖1
αm

1−1/α
S

≤ ‖Q1 −Q2‖1
αm

1−1/α
S

, (230)

where the last inequality follows from Lemma 10. By (228)
and (230), we conclude that

∆L ≤
2α+ 1

α− 1

‖Q1 −Q2‖1
m

1−1/α
S

. (231)

Mutatis mutandis, it can be shown that

|US
α(Q1,W )− US

α(Q2,W )|≤ 1

α− 1

‖Q1 −Q2‖1
m

1−1/α
X

. (232)

Recall that lim
α→∞

ISα(PX,Y ) = IS∞(PX,Y ) [31]. Therefore,
(74) follows after taking the limit α → ∞ in both sides of
(232). Using a similar argument as above, it can be shown that

∆L ≤
∑
s∈S

∑
x∈X
|PX1|S1

(x|s)− PX2|S2
(x|s)| (233)

≤
∑
s∈S

∑
x∈X

PS1(s)|PX1|S1
(x|s)− PX2|S2

(x|s)|
mins′ PS1

(s′)
(234)

=
‖PS1 · PX1|S1

− PS1 · PX2|S2|‖1
mins′ PS1

(s′)
. (235)

By applying Lemma 11 and noting that

min
s′∈S

PS1(s′) = min
s′∈S

∑
x∈X

Q1(s′, x), (236)

the result follows.
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G. Lemma 6

Proof. For ease of notation, let

∆L , |Lmax
α (Q1,W )− Lmax

α (Q2,W )|. (237)

For each i ∈ {1, 2}, let Si → Xi → Yi be such that PSi,Xi =
Qi and PYi|Xi = W . Observe that PYi|Si = PXi|SiW where,
by definition,(

PXi|SiW
)

(y|s) =
∑
x∈X

PXi|Si(x|s)W (x, y). (238)

In particular,

Lmax
α (Qi,W ) , sup

PS̃

IAα (PS̃ · PYi|Si) (239)

= sup
PS̃

IAα (PS̃ · PXi|SiW ). (240)

By the definition of LA
α (Q,W ), we have that

Lmax
α (Qi,W ) = sup

PS̃

LA
α (PS̃ · PXi|Si ,W ). (241)

It is easy to verify that if I is an arbitrary index set and
aι, bι ∈ R for all ι ∈ I, then∣∣∣∣sup

ι∈I
aι − sup

ι∈I
bι

∣∣∣∣ ≤ sup
ι∈I
|aι − bι|. (242)

Therefore, (241) implies that

∆L =

∣∣∣∣∣sup
PS̃

LA
α (PS̃ · PX1|S1

,W )− sup
PS̃

LA
α (PS̃ · PX2|S2

,W )

∣∣∣∣∣
≤ sup

PS̃

∣∣LA
α (PS̃ · PX1|S1

,W )− LA
α (PS̃ · PX2|S2

,W )
∣∣ .

By Lemma 4, we obtain that

∆L ≤
2α

α− 1
|S|1−1/αsup

PS̃

‖PS̃ ·PX1|S1
−PS̃ ·PX2|S2

‖1. (243)

A straightforward computation shows that, for any PS̃ ,

‖PS̃ · PX1|S1
− PS̃ · PX2|S2

‖1
=
∑
s∈S

PS̃(s)‖PX1|S1
(·|s)− PX2|S2

(·|s)‖1

≤
∑
s∈S
‖PX1|S1

(·|s)− PX2|S2
(·|s)‖1

≤ 1

mins′ PS1
(s′)

∑
s∈S

PS1
(s)‖PX1|S1

(·|s)− PX2|S2
(·|s)‖1

=
‖PS1 · PX1|S1

− PS1 · PX2|S2
‖1

mins′ PS1
(s′)

.

Therefore, Lemma 11 implies that

sup
PS̃

‖PS̃ · PX1|S1
− PS̃ · PX2|S2

‖1≤
2‖Q1 −Q2‖
mins′ PS1

(s′)
. (244)

By (243) and (244), we conclude that

∆L ≤
4α

α− 1

|S|1−1/α
mins′ PS1

(s′)
‖Q1 −Q2‖1. (245)

By noting that mins′ PS1
(s′) = mins′

∑
xQ1(s′, x), (79)

follows. Finally, note that Umax
α (Q,W ) only depends on W .

Therefore, Umax
α (Q1,W ) = Umax

α (Q2,W ) which trivially leads
to (80).

APPENDIX B
PROOFS FROM SECTION IV

A. Lemma 7

Lemma 7 is an immediate consequence of the following
standard result whose proof is included for the sake of
completeness.

Lemma 12. Let (A, dA) and (B, dB) be two metric spaces.
If f : A× B → R satisfies that

(i) |f(a1, b)− f(a2, b)|≤ dA(a1, a2) for all a1, a2 ∈ A and
b ∈ B;

(ii) f(a, ·) is continuous over B for all a ∈ A;
then f(·, ·) is continuous over A× B.

Proof. In order to prove the continuity of f(·, ·) over A×B,
we will show that for any sequence {(an, bn)}∞n=0 such that
limn(an, bn) = (a0, b0), it holds true that limn f(an, bn) =
f(a0, b0).

Let {(an, bn)}∞n=0 be such that limn(an, bn) = (a0, b0). By
the triangle inequality, for every n ∈ N,

|f(an, bn)− f(a0, b0)| (246)
≤ |f(an, bn)− f(a0, bn)|+|f(a0, bn)− f(a0, b0)| (247)
≤ dA(an, a0) + |f(a0, bn)− f(a0, b0)|, (248)

where the last inequality follows from assumption (i).
By assumption (ii), f(a0, ·) is continuous over B. Since
limn(an, bn) = (a0, b0) is equivalent to limn an = a0 and
limn bn = b0, we conclude that

lim
n→∞

|f(an, bn)− f(a0, b0)|= 0, (249)

as required.

B. Proposition 5

We start recalling an elementary fact about convergent
sequences in metric spaces, see, e.g., [82, Exercise 2.4.11].

Theorem 10. Let M be a metric space. A sequence
(an)∞n=1 ⊂ M converges to a ∈ M if and only if every
subsequence of (an)∞n=1 has a further subsequence which
converges to a.

We proceed with the proof of Proposition 5.

Proof. In order to prove the continuity of H(·; ε) over the set
{Q ∈ Q : εmin(Q) < ε}, we will show that for any sequence
(Qn)∞n=0 ⊂ {Q ∈ Q : εmin(Q) < ε} such that

lim
n→∞

‖Qn −Q0‖1= 0, (250)

it holds true that

lim
n→∞

H(Qn; ε) = H(Q0; ε). (251)

In order to prove (251), Theorem 10 implies that it is enough
to show that any subsequence (H(Qnk ; ε))∞k=1 has a further
subsequence converging to H(Q0; ε).

Let (nk)∞k=1 ⊂ N be given. By Remark 7, there exists
(W ∗nk)∞k=1 ⊂ WN such that, for each k ≥ 1, we have that
L(Qnk ,W

∗
nk

) ≤ ε and

H(Qnk ; ε) = U(Qnk ,W
∗
nk

). (252)
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Since the space WN is compact, there exists a further subse-
quence (nkj )

∞
j=1 such that

lim
j→∞

W ∗nkj = W0, (253)

for some W0 ∈ WN . Lemma 7 shows that U(·, ·) is continuous
over Q×WN . Then (250) and (253) imply that

U(Q0,W0) = lim
j→∞

U(Qnkj ,W
∗
nkj

) = lim
j→∞

H(Qnkj ; ε),

where the second equality follows from (252). A similar
reasoning shows that

L(Q0,W0) = lim
j→∞

L(Qnkj ,W
∗
nkj

) ≤ ε. (254)

Therefore, by the maximality of H(Q0; ε),

lim
j→∞

H(Qnkj ; ε) = U(Q0,W0) ≤ H(Q0; ε). (255)

Next, we show that limj H(Qnkj ; ε) ≥ H(Q0; ε). Recall
that, by assumption, εmin(Q0) < ε. Let δ > 0 be such that
εmin(Q0) ≤ ε− δ. By condition (C.3), there exists W ′0 ∈ WN

such that L(Q0,W
′
0) ≤ ε− δ and U(Q0,W

′
0) = H(Q0; ε− δ).

By the Lipschitz continuity given in condition (C.2) and (250),

lim
j→∞

L(Qnkj ,W
′
0) = L(Q0,W

′
0) ≤ ε− δ, (256)

lim
j→∞

U(Qnkj ,W
′
0) = U(Q0,W

′
0) = H(Q0; ε− δ). (257)

Hence, for j large enough we have that L(Qnkj ,W
′
0) ≤ ε and,

by the maximality of H(Qnkj ; ε),

lim
j→∞

H(Qnkj ; ε) ≥ lim
j→∞

U(Qnkj ,W
′
0)

= H(Q0; ε− δ), (258)

where the last equality follows from (257). Recall that, by
condition (C.1), the mapping H(Q0; ·) is continuous over
[εmin(Q0),∞). Hence, by taking limits in (258),

lim
j→∞

H(Qnkj ; ε) ≥ lim
δ↓0

H(Q0; ε− δ) = H(Q0; ε). (259)

By combining (255) and (259), we conclude that

lim
j→∞

H(Qnkj ; ε) = H(Q0; ε), (260)

as required.

C. Corollary 1

Before we prove Corollary 1, let us recall two standard
results from analysis on metric spaces, see, e.g., Chapter 0.1
in [83] and Lemma 14 in [84], respectively.

Lemma 13. Let a < b be given. For each n ∈ N, assume that
fn : [a, b]→ R is a non-decreasing function. If there exists a
continuous function f : [a, b]→ R such that, for all x ∈ [a, b],
fn(x)→ f(x) as n→∞, then fn converges uniformly to f .

Lemma 14. Let A and B be two metric spaces with B
compact. If f : A × B → R is continuous, then the function
g : A → R defined by g(a) , inf

b∈B
f(a, b) is also continuous.

Observe that the infimum in the previous lemma can be
replaced by a supremum. We proceed with the proof of
Corollary 1.

Proof. We first introduce

εmax(Q) , max{L(Q,W ) : W ∈ WN}. (261)

Note that, by the maximality of εmax(Q), for all ε ≥ εmax(Q),

H(Q; ε) = H(Q; εmax(Q)). (262)

By Lemma 7 the function L(·, ·) is continuous over Q×WN .
Since WN is compact, Lemma 14 implies that εmax(·) is
continuous over Q. By hypothesis limn Pn = P , thus
limn εmax(Pn) = εmax(P ) and, in particular, there exists
ε1 > ε0 such that εmax(Pn) ≤ ε1 for all n ∈ N. By (262), for
all ε ≥ ε1 and all n ∈ N,

H(Pn; ε) = H(Pn; εmax(Pn)) = H(Pn; ε1). (263)

Observe that an analogous equality holds for P . Hence, we
obtain that, for all n ∈ N,

sup
ε≥ε1
|H(Pn; ε)− H(P ; ε)|= |H(Pn; ε1)− H(Pn; ε1)|. (264)

As established by Proposition 5, the right hand side of (264)
vanishes as n goes to infinity. Hence, we conclude that
H(Pn; ·) converge uniformly to H(P ; ·) over [ε1,∞). Finally,
recall that the function H(Pn; ·) is non-decreasing over [ε0, ε1]
for each n ∈ N. Furthermore, by condition (C.1), the function
H(P ; ·) is continuous over [ε0, ε1]. Therefore, Proposition 5
and Lemma 13 imply that H(Pn; ·) converges uniformly to
H(P ; ·) over [ε0, ε1]. This shows that uniform convergence
holds over [ε0,∞).

D. Theorem 6

The following lemma follows directly from Lemma 14 by
noticing that L(·, ·) is continuous over Q ×WN and WN is
compact.

Lemma 15. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. Then εmin(·), as
given in (88), is continuous over Q.

We prove the following lemma which will be used in the
proof of Theorem 6.

Lemma 16. Assume that conditions (C.1) and (C.3) hold true
for a given closed set Q ⊆ P and a given N ∈ N. Then the
set W∗N (P ; ε), defined in (87), is compact.

Proof. Observe that

W∗N (P ; ε) ={W ∈ WN : L(P,W ) ≤ ε}
∩ {W ∈ WN : U(P,W ) = H(P ; ε)}. (265)

Recall that, by condition (C.1), the mappings L(P, ·) and
U(P, ·) are continuous. Since both sets in the RHS of (265)
are the preimage of a closed set under a continuous function,
they are closed. Therefore, W∗N (P ; ε) is closed as the finite
intersection of closed sets is closed. Finally, we conclude that
W∗N (P ; ε) is compact since it is a closed subset of the compact
set WN .

Observe that, by Lemma 15, limn εmin(Pn) = εmin(P )
whenever limn Pn = P . Hence, if εmin(P ) < ε, then
εmin(Pn) < ε for n large enough. Therefore, under the
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assumptions of Theorem 6, for n large enough we have that
the set W∗(Pn; ε) is non-empty and, by condition (C.3),
W∗N (Pn; ε) is non-empty as well. Now we are in position to
prove Theorem 6.

Proof. We assume, without loss of generality, thatW∗N (Pn; ε)
is non-empty for all n ∈ N. In order to reach contradiction,
assume that (93) does not hold true, i.e., there exists W ∗n ∈
W∗N (Pn; ε) such that

lim sup
n→∞

dist(Wn,W∗N (P ; ε)) > 0. (266)

Since WN and W∗N (P ; ε) are compact from Lemma 16,
a routine argument shows that there exist a subsequence
(W ∗nk)∞k=1 and W0 ∈ WN such that limkW

∗
nk

= W0 and
W0 6∈ W∗N (P ; ε). Lemma 7 shows that L(·, ·) is continuous
over Q×WN . Therefore, we have

L(P,W0) = lim
k→∞

L(Pnk ,W
∗
nk

) ≤ ε. (267)

Hence, by the maximality of the privacy-utility function,
U(P,W0) ≤ H(P ; ε). Using a similar argument, one can show
that

U(P,W0) = lim
k→∞

U(Pnk ,W
∗
nk

) = lim
k→∞

H(Pnk , ε) = H(P ; ε),

where the last equality follows from the fact that the mapping
H(·; ε) is continuous, as established in Proposition 5. Alto-
gether,

L(P,W0) ≤ ε and U(P,W0) = H(P ; ε). (268)

Therefore, W0 ∈ W∗N (P ; ε) which contradicts the fact that
W0 /∈ W∗N (P ; ε).

Furthermore, by the strong law of large numbers, (P̂n)∞n=1

converges almost surely to P as n goes to infinity. Therefore,
if Pn = P̂n, then

Pr
(

lim
n→∞

dist(W ∗n ,W∗N (P ; ε)) = 0
)

= 1, (269)

as claimed.

Note that in the previous proof we implicitly assume that,
for each n ∈ N, the (possibly random) privacy mechanism
W ∗n ∈ W∗N (P̂n; ε) is a random variable, i.e., a measurable
function. This is a minor subtlety given the rareness of non-
measurable sets (functions) [85].

E. Theorem 7

Before we prove Theorem 7, let us recall some definitions
and theorems from set-valued analysis [75].

Given two metric spaces A and B, a set-valued mapping
F from A to B, denoted by F : A  B, is a function from
A to the subsets of B. The domain of a set-valued mapping
F : A B is defined as

Dom(F ) , {a ∈ A : F (a) 6= ∅}. (270)

For r > 0, Ar(a) , {a′ ∈ A : dA(a, a′) < r} where dA
denotes the metric associated to A.

Definition 10 (Definition 1.4.1, [75]). A set-valued mapping
F : A  B is called upper semicontinuous at a ∈ Dom(F )

if and only if for every neighborhood N of F (a) there exists
r > 0 such that F (a′) ⊂ N for all a′ ∈ Ar(a). A set-valued
mapping is said to be upper semicontinuous if and only if it
is upper semicontinuous at every point of its domain.

Definition 11 (Definition 1.4.2, [75]). A set-valued mapping
F : A B is called lower semicontinuous at a ∈ Dom(F ) if
and only if for every b ∈ F (a) and every sequence (an)∞n=1 ⊂
Dom(F ) with limn an = a, there exists a sequence (bn)∞n=1

such that bn ∈ F (an) for each n ∈ N and limn bn = b. A
set-valued mapping is said to be lower semicontinuous if and
only if it is lower semicontinuous at every point of its domain.

By definition, a the set-valued mapping F : A  B is
continuous at a ∈ A if and only if it is both upper and lower
semicontinuous at a.

Theorem 11 (Theorem 1.4.13, [75]). Let F be a set-valued
map from a complete metric space A to a complete separable
metric space B. If F is upper semicontinuous, then it is
continuous on a residual set of A.

The proof of Theorem 7 relies on the following lemma.

Lemma 17. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. For any ε ∈ R,
the set-valued mappingW∗N (·; ε) is upper semicontinuous over
{Q ∈ Q : εmin(Q) < ε}.
Proof. For ease of notation, let F : Q  WN be the set-
valued mapping defined by F (Q) , W∗N (Q; ε). Observe that
Dom(F ) = {Q ∈ Q : εmin(Q) ≤ ε}. In order to reach
contradiction, assume that the set-valued mapping F is not
upper semicontinuous over {Q ∈ Q : εmin(Q) < ε}. In this
case, there exist a joint distribution Q ∈ Q with εmin(Q) < ε
and a neighborhood N of F (Q) such that for every r > 0
there exists Qr ∈ Qr(Q) with F (Qr) 6⊂ N . For each n ∈ N,
let W ∗n be such that W ∗n ∈ F (Q1/n)∩N c, where N c denotes
the complement of N w.r.t. WN . Since N c is closed and
WN is compact, we have that N c is also compact. Hence,
there exists a subsequence (W ∗nk)∞k=1 converging to some
W ∈ N c. Since F (Q) ⊂ N , we have that W 6∈ F (Q). Recall
that limkQ1/nk = Q by construction, and thus Corollary 2
implies that W ∈ W∗N (Q; ε). Since this contradicts the fact
that W 6∈ W∗N (Q; ε), we conclude that F is necessarily upper
semicontinuous over {Q ∈ Q : εmin(Q) < ε}.

Now we are in position to prove Theorem 7.

Proof. For ease of notation, let

Q(δ) , {Q ∈ Q : εmin(Q) + δ ≤ ε}. (271)

Observe that Q(δ) ⊂ {Q ∈ Q : εmin(Q) < ε}. Thus,
Lemma 17 implies that the mapping W∗N (·; ε) is upper semi-
continuous over Q(δ). Observe that both Q(δ) and WN are
compact metric spaces. Therefore, Theorem 11 establishes the
lower semicontinuity of the mapping W∗N (·; ε) on a residual
set of Q(δ). Theorem 7 follows immediately from this fact and
Definition 11.
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APPENDIX C
PROOFS FROM SECTION V

A. Lemma 8

Proof.
(i) Let W ∈ WN be fixed. By condition (C.2), the mapping

U(·,W ) is (Lipschitz) continuous over Qr(P̂ ). Since Qr(P̂ )
is compact, the mapping U(·,W ) attains its infimum over
Qr(P̂ ).

(ii) Assume that DQ,N (P̂ ; ε, r) is non-empty. By (i), we
have that

Ur(P̂ ,W ) = min
Q∈Qr(P̂ )

U(Q,W ) (272)

is well defined. As established in Lemma 7, the mapping
U(·, ·) is continuous over Q × WN and in particular over
Qr(P̂ ) × WN . Hence, Lemma 14 implies that Ur(P̂ , ·) is
continuous over WN .

Note that, by definition,

DQ,N (P̂ ; ε, r) =
⋂

Q∈Qr(P̂ )

DN (Q; ε), (273)

where DN (Q; ε) = {W ∈ WN : L(Q,W ) ≤ ε}. Condition
(C.1) implies that, for every Q ∈ Q, the mapping L(Q, ·) is
continuous overWN . Thus, we have that DN (Q; ε) is compact
asWN is compact. Since the arbitrary intersection of compact
sets is also compact, (273) readily shows that DQ,N (P̂ ; ε, r) is
compact. Therefore, the (continuous) mapping Ur(P̂ , ·) attains
its supremum over DQ,N (P̂ ; ε, r), as required.

B. Theorem 8

Consider the following lemma.

Lemma 18. Assume that conditions (C.1–3) hold true for a
given closed set Q ⊆ P and a given N ∈ N. Let ε ∈ R and
r ≥ 0 be given. If P ∈ Qr(P̂ ) and ε− CLr ≥ εmin(P̂ ), then

H(P ; ε) ≤ H(P̂ ; ε+ CLr) + CUr. (274)

Proof. We start proving that ε ≥ εmin(P ). Remark 7 implies
that there exists W ′ ∈ WN such that L(P̂ ,W ′) = εmin(P̂ ).
By the Lipschitz continuity given in condition (C.2), we have
that

L(P,W ′) ≤ L(P̂ ,W ′) + |L(P̂ ,W ′)− L(P,W ′)| (275)

≤ εmin(P̂ ) + CL‖P̂ − P‖1 (276)

≤ εmin(P̂ ) + CLr ≤ ε, (277)

where the last inequality follows from the assumption ε −
CLr ≥ εmin(P̂ ). By the minimality of εmin(P ), we conclude
that εmin(P ) ≤ ε. Then, Remark 7 implies that there exists
W ∈ WN such that L(P,W ) ≤ ε and

H(P ; ε) = U(P,W ). (278)

By the Lipschitz continuity given in condition (C.2), we have
that

|U(P̂ ,W )− U(P,W )|≤ CU‖P̂ − P‖1≤ CUr. (279)

In particular,

H(P ; ε) ≤ U(P̂ ,W ) + CUr. (280)

Similarly, since

|L(P̂ ,W )− L(P,W )|≤ CL‖P̂ − P‖1≤ CLr, (281)

we have L(P̂ ,W ) ≤ L(P,W ) + CLr ≤ ε+ CLr. Therefore,
from inequality (280) and the maximality of the privacy-utility
function, we conclude that

H(P ; ε) ≤ H(P̂ ; ε+ CLr) + CUr, (282)

as we wanted to prove.

Now we are in position to prove Theorem 8.

Proof. For any W ∈ DN (P̂ ; ε − CLr), we have L(P̂ ,W ) +
CLr ≤ ε. By the Lipschitz continuity given in condition (C.2),
for every Q ∈ Qr(P̂ ),

|L(P̂ ,W )− L(Q,W )|≤ CL‖P̂ −Q‖1≤ CLr. (283)

Hence, L(Q,W ) ≤ ε and W ∈ DN (Q; ε) for every Q ∈
Qr(P̂ ). By (117), it follows that W ∈ DQ,N (P̂ ; ε, r).

Let W ∗ ∈ W∗N (P̂ ; ε− CLr) and W † ∈ W†Q,N (P̂ ; ε, r). By
definition,

U(P̂ ,W ∗) = H(P̂ ; ε− CLr). (284)

By the Lipschitz continuity given in condition (C.2), we have
that

|U(P̂ ,W ∗)− U(P,W ∗)|≤ CU‖P̂ − P‖1≤ CUr. (285)

Combining (284) and (285) together, we have

U(P,W ∗) ≥ H(P̂ ; ε− CLr)− CUr. (286)

Since W † ∈ W†Q,N (P̂ ; ε, r) ⊂ DQ,N (P̂ ; ε, r) and P ∈
Qr(P̂ ), (117) implies that W † ∈ DN (P ; ε). Thus, by the
maximality of H(P ; ε), we have

U(P,W †) ≤ H(P ; ε). (287)

An immediate application of Lemma 18 shows that

U(P,W †) ≤ H(P ; ε) ≤ H(P̂ ; ε+ CLr) + CUr. (288)

Therefore, combining (286) and (288) together,

U(P,W ∗)− U(P,W †) (289)

≥ −
(
H(P̂ ; ε+ CLr)− H(P̂ ; ε− CLr) + 2CUr

)
, (290)

which implied the desired conclusion.

C. Theorem 9

Proof. Recall that, by Lemma 15, the mapping εmin(·) is con-
tinuous over Q. In particular, we have that limn εmin(Pn) =
εmin(P ) whenever limn Pn = P . Since εmin(P ) < ε,
limn Pn = P , and limn rn = 0, we have that εmin(Pn) +
CLrn < ε for n large enough. Therefore, for n large
enough, the first part of Theorem 8 establishes that the
set DQ,N (Pn; ε, rn) is non-empty. Furthermore, part (ii) of
Lemma 8 implies that W†Q,N (Pn; ε, rn) is non-empty as well.
Without loss of generality, we assume thatW†Q,N (Pn; ε, rn) 6=
∅ for all n ≥ 1.
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In order to reach contradiction, we assume that the con-
clusion does not hold true, i.e., that there exists a sequence
(W †n)∞n=1 such that W †n ∈ W†Q,N (Pn; ε, rn) for all n ≥ 1 and

lim sup
n→∞

dist(W †n,W∗N (P ; ε)) > 0. (291)

Since both WN and W∗N (P ; ε) are compact (Lemma 16),
there exists a subsequence of (W †n)∞n=1 converging to some
W0 ∈ WN with W0 6∈ W∗N (P ; ε). Without loss of generality,
we assume that limnW

†
n = W0. By the continuity of L(·, ·)

established in Lemma 7,

L(P,W0) = lim
n→∞

L(Pn,W
†
n) ≤ ε. (292)

The last inequality implies that W0 ∈ DN (P ; ε) and hence
U(P,W0) ≤ H(P ; ε). Assume that we have already proved
that U(P,W0) ≥ H(P ; ε). In particular, we would have that
U(P,W0) = H(P ; ε) and thus W0 ∈ W∗N (P ; ε). Since this
conclusion contradicts the fact that W0 6∈ W∗N (P ; ε), the result
would follow. Now we focus on proving that U(P,W0) ≥
H(P ; ε).

Since ε > εmin(P ) and limn rn = 0, we have that
ε − 2CLrn > εmin(P ) for n large enough. Without loss of
generality, we assume that ε − 2CLrn > εmin(P ) for all
n ≥ 1. For a given n ≥ 1, let W ∗0 ∈ WN be such that
L(P,W ∗0 ) ≤ ε − 2CLrn and U(P,W ∗0 ) = H(P ; ε − 2CLrn).
By condition (C.2), for any Q ∈ Qrn(Pn),

|L(P,W ∗0 )− L(Q,W ∗0 )|≤ CL‖P −Q‖1≤ 2CLrn, (293)

where the last inequality follows from the triangle inequality
and the fact that P,Q ∈ Qrn(Pn). Thus,

L(Q,W ∗0 ) ≤ L(P,W ∗0 ) + 2CLrn ≤ ε, (294)

for any Q ∈ Qrn(Pn). Hence, W ∗0 ∈ DQ,N (Pn; ε, rn) and,
by the definition of W†Q,N (Pn; ε, rn),

min
Q∈Qrn (Pn)

U(Q,W ∗0 ) ≤ min
Q∈Qrn (Pn)

U(Q,W †n) ≤ U(P,W †n).

(295)

As in (293), we have that

|U(P,W ∗0 )− U(Q,W ∗0 )|≤ 2CUrn. (296)

Therefore, for any Q ∈ Qrn(Pn),

U(Q,W ∗0 ) ≥ U(P,W ∗0 )− 2CUrn (297)
= H(P ; ε− 2CLrn)− 2CUrn. (298)

In particular, this implies that

min
Q∈Qrn (Pn)

U(Q,W ∗0 ) ≥ H(P ; ε− 2CLrn)− 2CUrn. (299)

Combining (295) and (299) together, we have

U(P,W †n) ≥ min
Q∈Qrn (Pn)

U(Q,W ∗0 ) (300)

≥ H(P ; ε− 2CLrn)− 2CUrn. (301)

Therefore, by the continuity of U(P, ·) and H(P ; ·) assumed
in condition (C.1),

U(P,W0) = lim
n→∞

U(P,W †n) (302)

≥ lim
n→∞

H(P ; ε− 2CLrn)− 2CUrn (303)

= H(P ; ε). (304)

This concludes the proof of the first part of the theorem.
Now we prove the second part of the theorem. Recall that in

this case, for all n ≥ 1, Pn = P̂n and rn ≥ (2p log(n)/n)1/2

for some p > 1. Thus,
∞∑
n=1

Pr(‖P̂n − P‖1≥ rn) (305)

≤
∞∑
n=1

Pr

(
‖P̂n − P‖1≥

√
2p log(n)

n

)
(306)

≤ exp(|S|·|X |)
∞∑
n=1

1

np
, (307)

where (307) follows directly from (32). Since p > 1 by
assumption, we have that

∑
n 1/np is finite. Thus, by a

routine application of the Borel-Cantelli Lemma, see, e.g., [86,
Sec. 2.18],

Pr
({
ω : ‖P̂n(ω)− P‖1< rn for all n ≥ N = N(ω)

})
= 1.

Observe that, by the last equality, the hypotheses of the first
part of this theorem are satisfied almost surely. A direct
application of the former part of this theorem leads to

Pr
(

lim
n→∞

dist(W †n,W∗N (P ; ε)) = 0
)

= 1, (308)

as we wanted to prove.
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