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ABSTRACT

We explore the possibilities enabled by the spatiotemporal modulation of graphene’s conductivity to realize magnetic-free
isolators at terahertz and infrared frequencies. To this purpose, graphene is loaded with periodically distributed gates that
are time-modulated. First, we investigate plasmonic isolators based on various mechanisms such as asymmetric bandgaps
and interband photonic transitions and we demonstrate isolation levels over 30 dB using realistic biasing schemes. To
lessen the dependence on high-quality graphene able to support surface plasmons with low damping, we then introduce a
hybrid photonic platform based on spatiotemporally modulated graphene coupled to high-Q modes propagating on
dielectric waveguides. We exploit transversal Fabry-Perot resonances appearing due to the finite-width of the waveguide
to significantly boost graphene/waveguide interactions and to achieve isolation levels over 50 dB in compact structures
modulated with low biasing voltages. The resulting platform is CMOS-compatible, exhibits an overall loss below 4 dB,
and is robust against graphene imperfections. We also put forward a theoretical framework based on coupled-mode theory
and on solving the eigenstates of the modulated structure that is in excellent agreement with full-wave numerical
simulations, sheds light in the underlying physics that govern the proposed isolators, and speeds-up their analysis and
design. We envision that the proposed technology will open new and efficient routes to realize integrated and silicon-
compatible isolators, with wide range of applications in communications and photonic networks.

Keywords: Nonreciprocity, graphene, plasmonics, photonics, isolators, waveguides, terahertz, infrared.

I. INTRODUCTION

Recent years have witnessed growing interest in breaking the reciprocity of electromagnetic devices without relying on
magneto-optic effects by imparting linear or angular momentum to the supported waves. This spatiotemporal modulation
scheme has proven itself useful to develop a wide variety of nonreciprocal devices [1], such as circulators [2-4], isolators
[5-10], filters [11,12], and antennas [13-15]. Unfortunately, as frequency increases, the challenges to implement this
technique in practice also increase due to the difficulty to modify the properties of materials operating in terahertz, infrared
and visible frequencies with enough speed [1, 16-18]. As a result, the quest for magnetic-free, integrated, and efficient
magnetless nonreciprocal devices in these frequency bands continues.

In this work, we explore the possibilities offered by graphene [19, 20] to realize plasmonic and photonic isolators at
terahertz and infrared frequencies by implementing spatio-temporal modulation approaches [21,22]. Graphene is very
well-suited for this task because (i) its conductivity can be modulated with very high speed [23]; (ii) it intrinsically supports
confined surface plasmons polaritons (SPPS) with many attractive features [19, 20, 24-26] and (iii) it is compatible with
CMOS technology. In the following, we investigate nonreciprocal plasmons supported by graphene by simultaneously
modulating its conductivity in space and time via time-varying gate voltages. This configuration imparts linear momentum
to the SPPs traveling along the structure, breaking time reversal symmetry and thus reciprocity [1]. Several mechanisms
are considered, including engineering asymmetric bandgaps and enforcing interband photonic transitions between
orthogonal modes. The main technological challenges in the practical realization of these devices include (i) the fabrication
of gating pads with an RC constant small enough to allow fast modulation of graphene’s conductivity; and (ii) availability
of high-quality graphene for overall low loss. Fortunately, the state of the art is advancing rapidly, with (i) sufficiently fast
modulations recently achieved (speeds greater than 30 GHz have already been experimentally reported [23]); and (ii) low-
loss SPPs has been observed in h-BN encapsulated graphene [27] with effective relaxation times greater than 0.5 ps.

To lessen even further the reliance on graphene’s quality, we propose an alternative technological platform that combines
the ultra-fast modulation speed enabled by graphene with high-quality factor photonic modes in dielectric waveguides,
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exploiting the most attractive features of each configuration. The resulting hybrid graphene-dielectric isolator is low-loss,
silicon compatible, robust against fabrication tolerances, and scalable in frequency [22]. In contrast with our recent work
that considered slabs with infinite width [22], here we take advantage of the transverse Fabry-Perot resonances that appear
by controlling the waveguide finite width to maximize the coupling between graphene and the photonic mode, which
permits us to significantly increase the achievable isolation, reduce the overall dimensions of the device, and simplify the
biasing scheme. Finally, we briefly describe a theoretical framework based on coupled-mode theory and on solving the
eigenstates of different structures to illustrate the physical mechanisms that govern spatiotemporally modulated graphene.
Full-wave numerical simulations from COMSOL Multiphysics are employed to validate our theory. We emphasize that
this platform outperforms other solutions available in the infrared and terahertz band to develop isolators [9, 28] and may
pave the way towards silicon-compatible fully-planar nonreciprocal plasmonic technology at terahertz and infrared
frequencies, with important applications in biosensing, imaging, and intra/inter-chip communications.

II. PLASMONIC ISOLATOR BASED ON ASSYMTRETRIC BANDGAPS

Let us consider the simplest structure one could envision to spatiotemporally modulate graphene’s conductivity: a single
sheet of this 2D material with various gating pads underneath, to which voltages oscillating in time with different phases
are applied, as shown in Fig. 1a. The carrier density ng in the graphene area above each gating electrode is approximately
given by [29]

Cox(Vi = Vpirac) = qens, (D

where V; is the voltage applied to the i electrode, V4. is the voltage at the Dirac point, —q, is the electron charge, and
Cox = &r&/h, where ¢, is the insulator relative permittivity and h is the distance between the gate and graphene. The
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Figure 1. Graphene plasmonic isolator based on asymmetric bandgap. (a) Schematic of a waveguide composed of spatiotemporally
modulated graphene. Graphene’s conductivity is controlled along the z-axis using gating pads (in yellow) that are time-modulated,
leading to an effective conductivity profile g.¢f(w, 2, t). (b) Resultant conductivity profile along the z-direction for three different
time instants: tg, t; = to + 1/(4fn), and t; = ty + 1/(2f,,), where f,;, is the modulation frequency. As a result, the conductivity
profile appears to travel in wave-like form toward +z, imparting linear momentum to the supported SPPs. (c) Real and imaginary
part of the wavenumber of the fundamental harmonic near the bandgap. (d) Transmission through the structure when excited from
left and right ports. (e) Contrast between the transmissions in both directions. (f) Full-wave simulation of the isolator’s response for
the frequency of maximum transmission contrast, marked by a green circle in panel (e). Graphene’s chemical potential is p, =
0.25 eV, relaxation time is T = 1 ps, M = 0.1, w,, = 27 X 80 GHz, f,,, = 4.73 X 10° (rad/m) and device length is 65 um.
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relationship between the carrier density and the chemical potential p, can be found in the literature [19]. For moderately
doped graphene (|u.| > kgT, with kg being the Boltzmann constant and T the temparature) and below the interband
transition threshold (hw < 2|u.|, with & being the reduced Planck’s constant), graphene conductivity follows a Drude
dispersion, which for convenience can be written as

US

o(@) = 1+ jwt )
where o, = q2u./(h?m)is the Drude weight, equal to the conductivity at DC (w =0), and 7 is graphene’s
phenomenological relaxation time. Within this model, which is typically valid at terahertz and far infrared frequencies,
changes in the chemical potential translate linearly into variations of gy, independently of frequency. This allows studying
the influence of time-varying biasing voltages on graphene conductivity without neglecting the intrinsic frequency
dispersion of graphene, given by the denominator of Eq. (2). With the modulation of Fig. la, graphene’s effective
conductivity looks like a wave travelling along the z-axis as

Oerr(z,t) = 0(w) - (1 + M cos[wpt — fpz]), 3)

where M is the modulation depth, w,, is the modulation frequency, and f3,,, = 2m/p is the modulation wavenumber with
p being the spatial period. Note that, because the voltage variation across adjacent pads is small, the assumption of
smoothness implicit above is valid at every time instant [30,31]. Fig. 1b shows the conductivity profile along the graphene
waveguide for different time instants, illustrating the wave-like nature that enables the exotic responses presented in the
following.

The structure considered in Fig. 1a allows to implement a plasmonic isolator if the modulation parameters are correctly
chosen. It is well known that a spatially periodic perturbation to a waveguide introduces bandgaps in which the propagation
constant acquires an imaginary part associated to reflection [22,32], which is the operation principle behind Bragg gratings
[22]. The proposed isolator works on a similar principle, but the time-varying behavior of the perturbation asymmetrically
flips the frequency-shifts of the bandgaps for left to right and right to left propagation. Without applying any modulation,
it is very well known that graphene supports transverse-magnetic (TM) SPPs. It is therefore expected that the device under
study will support TM SPPs with an infinite number of spatial and temporal harmonics, as the modulation makes the
structure periodic in both domains. The field of the guided modes above and below the graphene sheet may therefore be
expressed as

)
H}:p = Z Aie]wite_]kyl:)’e_}kziz‘

i=—o00
o “
H;lown — Z Biejmite_jky1x€+jk2iz,
[=—o0
where ky,; = &mk?; — kZ is the y-component of the wavenumber in the medium n with permittivity &,,,, for the i

harmonic, 4 and B are arbitrary amplitude constants, w; = w, + iw,,, the graphene sheet is located at y = 0, and the e/®*
time convention has been followed. The associated electric field is given by Maxwell’s equations. Enforcing continuity of
the tangential fields across the interfaces and using the boundary condition on graphene 7 X (ﬁl - ﬁz) = 0,57 (2, t)Et,
the general dispersion relation of the modulated structure for an arbitrary number of harmonics can be found [33]. For a
free-standing graphene sheet, it yields

M 1+jut 1

M
7 Lyt (Tw) + EZyi> Ai+ 7 ZyiraAina =0, (5)
L

where Z,,; = h. Eq. (5) can be solved for k,,; and thus k,; through a continuous fraction method or by truncation in
YET g y

matrix form and solving the determinant [33]. From this, the amplitude of the different harmonics can also be found as the

eigenfunctions of the corresponding eigenvalues [34].

Fig. lc studies the response of this type of isolator, illustrating how the bandgaps are split in frequency by w,,, for the two
propagation directions. There are thus excitation frequencies where the plasmons decay much faster in one direction due
to back-scattering, and arbitrarily high contrast between transmission for both excitation directions can be realized by
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making the structure as long as necessary —this also increases insertion loss in the ‘non-isolated’ direction, so a clear trade-
off exists between insertion loss and isolation. Panel (d) shows the transmission for a device length of 65 um, and panel
(e) shows the transmission contrast, or isolation. Importantly, different ports are isolated at different frequencies. Panel (f)
shows the z-component of the poynting vector, computed in COMSOL Multiphysics using harmonic balance simulations
for the operation point highlighted by the green circle in (e), confirming the predicted response. To analyze the structure
in COMSOL, coupling between adjacent harmonics is introduced through surface currents on graphene, with magnitudes
obtained by expanding the boundary condition for the currents J;(z,t) = g.rr(2,t)E(z,t) and identifying the terms

associated to each temporal harmonic e/®it.

This magnet-free graphene isolator can be integrated in arbitrarily small sizes (limited, of course, by spatial dispersion and
fabrication processes). In addition, the operation frequency can be easily reconfigured through the same biasing network
used to impart the spatiotemporal modulation, since all that is required is to change the ‘static’ component of the
modulation voltages V; to change the value of g. The modulation period can also be changed easily if the discretization
of the gates is fine enough, further increasing the flexibility of this platform. The downside of this type of isolator is its
reliance of high-quality graphene, narrow bandwidth, and the relatively high modulation frequency required [21].

III.  PLASMONIC ISOLATOR BASED ON INTERBAND TRANSITIONS

Here we explore a different approach to realize plasmonic isolation over graphene plasmonic waveguides, with important
advantages over the previously presented device based on asymmetric bandgaps, at the cost of increased complexity.
Graphene’s modulation will now be used to couple otherwise orthogonal modes in a multimode structure, so that in the
isolated direction all power is converted to a different mode at a different frequency, which can then be filtered or scattered
[1, 5, 9]. In the connected direction, phase matching does not hold and thus no conversion occurs. The main advantages
are smaller values of 3,,,, the ability to engineer a desired bandwidth, and potentially smaller insertion loss.

The structure under consideration is depicted in Fig. 2a and consists of a parallel plate graphene waveguide where one of
the graphene layers can be biased independently. This type of structure could also be used to implement the isolator of the
previous section, as the concept of asymmetric bandgaps is completely general. Note that for the present isolator only one
of the sheets should be modulated, as the modulation profile must be asymmetric in the transverse plane in order to couple
orthogonal modes [1,5]. The operation of the present isolator is illustrated in Fig. 2b. We refer to this type of mode
conversion as an ‘interband photonic transition’ in analogy with electron transitions between bands in semiconductors [1].
Importantly, full power exchange between modes propagating in the same direction occurs periodically, with a period
equal to the so-called coherence length, L. = 7/2|k|, where k is the coupling coefficient that describes how strongly the
fields of even and odd overlap.

A convenient approach to study this problems is based on the coupled mode formalism [31,35]. This framework is
inherently approximate but provides accurate results for most practical scenarios as well as deep physical insight. Coupled
mode theory (CMT) describes the space or time evolution of overlapping modes in coupled resonators or waveguides, and
it has been extensively used to model couples, filters, and more recently nonreciprocal acoustic and electromagnetic
devices based on spatiotemporal modulation [1,5,36]. For two waves with amplitudes a; and a, traveling along the z-
direction with propagation constants k,; and k,,, weakly coupled by a perturbation in z with period p = 2 /f,,, their
coupled mode equations in space may be written as

da, .

— = —jk, a, + Kypa,e/0kz,

ddZ JKz104 1242 (6)
a, )

— == —jk,,a, + K, a8k

dz JKz2A2 2141

where Ak, = k,,(wo £ wp) — kz1(wo) — By If the modes do not interact, x;; = 0 (with i # j), then the decoupled
equations simply describe the amplitude variation given by the propagation constants k ;. For coupled modes, the coupling
coefficients k;; determine the rate with which the modes exchange power and, if power is to be conserved, k1, = k31 =k
[35]. This operation is typically mediated by a z-periodic perturbation to the permittivity, so that the total permittivity
becomes € = €(x,y) + de(x,y,z,t). Because the perturbation de(x,y,z,t) is periodic in space and time, it can be
expanded as a Fourier series
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Figure 2. Graphene plasmonic isolator based on interband transitions. (a) Schematic of a graphene parallel-plate waveguide. The
conductivity of the top layer is controlled along the z-axis using gating pads (in yellow) that are time-modulated. (b) Dispersion
diagram. When the linear momentum provided by the spatiotemporal modulation (black arrow) fulfills that w,, = w, — w; and
Bm = k, — kq, perfect phase matching occurs and then total power conversion occurs between the orthogonal modes. This happens
only in one direction. (c) Electric field (z-component) at the three frequencies involved in the device for both excitation directions
at frequency 10THz. Other parameters are a modulation depth M = 0.1 and d = 1um. (d) Maximum realizable isolation and (e)
associated insertion loss, computed using coupled mode theory, for different operation frequencies and distance between graphene
sheets, for a chemical potential y, = 0.5 eV and T = 0.5 ps.

88 = z Sn(x' y)e_jn(kmz—wmt)' (7)

n+0

where n = 0 is not included because of the definition of € above. The coupling coefficient between two modes with field
profiles E;(x,y) and E,(x,y) due to the n*" Fourier component of the perturbation is then defined as [32, 35]

jw - - 8
o = =22 [[ enedBa e B )y, ®

where E; must be normalized to a power flow of 1 Watt/m? along 2, i.e., [[ E; x Hi dxdy = 2 (W /m?). Note that, in the
simple scenario where de(x,y,z,t) = de(x,y) cos(w;,t — Bmz), there is only one term in the Fourier expansion, & =
Se(x,y), resulting in one coupling coefficient Kg) = Kéll) = k. If k can be computed, any non-reciprocal electromagnetic
device based on linear or angular momentum bias can be designed and analyzed [1]. The platform explored here relies on
modulating graphene’s conductivity, not a permittivity. However, an equivalent way to describe a graphene sheet with

conductivity g, is by considering it as an ultra-thin slab with thicknes t, < 4 and permittivity &, [37]
Eg =€ —j—. ©)
The equivalent permittivity of a graphene sheet under the modulation of Eq. (30) can thus be expressed as

~'O_g M_'m_m M j(Bmz—wm 10
g4(2,0) ~_]a)_tg(1 +?e J(Bmz-w t)+?e+1(/? 7= t))’ (10)
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where the term associated to the free-space permittivity can be neglected as it is orders of magnitude smaller than j :Tg.
g
Comparing with Eq. (7), we find

e, = 1% (11)
- 2 wty

The coupling integral in Eq. (8) could now be solved using this permittivity and the corresponding fields inside and outside

the equivalent graphene slab. However, rather than working with graphene’s equivalent permittivity, it would far more

convenient to use its conductivity, as this is usually a better way to solve graphene electromagnetic problems, both

analytically and numerically. Integrating over the waveguide cross-section in the t; — 0 limit, we can write

I - 12
L 12

where E i(t) is the electric field tangential to graphene. Note that, since graphene lies in the x-z plane, the integral along the
X axis is only non-zero at graphene’s position, and the double integral has become a single integral along y, for the fields
tangential to graphene. If we further assume a y-invariant graphene sheet, it simplifies to

M oo 13
Ko1 = §UgE1( )Ez(t) : (1)

Compared to Eq. (8), the fields E; must be replaced by their tangential components Ei(t), because an infinitesimally thin
conductive sheet cannot support currents along the perpendicular axis. Indeed, if the electromagnetic problem were instead
solved within the equivalent thin-slab formalism, computing the fields “inside” graphene, one would find (for both TE and
TM waves) strictly zero polarization current along the normal, and a non-zero uniform current in the tangential directions,
providing fully consistent results. Therefore, the coupling coefficient between any two modes interacting with graphene is
simply the dot product of the tangential electric fields on graphene, weighted by the perturbation to the conductivity. If
several graphene sheets are present throughout the structure, interacting with the guided modes, all the contributions should
be added. This derivation also clearly illustrates why the modulation must be asymmetric in the transverse plane: if both
layers are identical and modulated in the same way, the even and odd symmetry of the modes would lead to the
contributions perfectly cancelling out.

The implications of Eq. (12) are general and far-reaching, as it allows analytical treatment of any nonreciprocal device
based on time-modulated graphene, including isolators, circulators, MTSs, or antennas, by simply solving the relevant
eigenmodes, an approachable task even for non-analytical, complicated structures, solvable in a matter of seconds by any
standard electromagnetic solver. In the case under study, the modes can fortunately be found analytically. They read [29,

38]:
Odd mode:
E,, = Ae7/*x3¥ E . = Bsin(k, x),  E,; = Celkx2¥, (14)
with
k. d Jkx2d k. d Jkx2d
A = Bsin (%) et 7, C= —Bsin( s )e+ 5 (15)
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Even mode:

E,; = Ae /kx3X E . = Bcos(ky,x), E,, = Celkx2¥, (16)
with
ko h\ | Jkx2d k. h\ L Jkgad
A=Bcos( le >e+ 5 , C=—Bcos( le )e+ 5 R (17)

with media 1,2,3 numbered according to their relative permittivities shown in Fig 2a. The rest of field components can be
retrieved through Maxwell’s equations. Note that E, is the only field component entering the computation of the coupling
coefficient in Eq. (2), as E), = 0 in both modes.

The amplitude evolution of the two modes through the waveguide can be computed using conventional CMT derivations
[35]
(wo)

A(2) = e[z g -jnks2 [cos(zs) +j AkS/Z sin(zs)],

(18)
Im[kéwoiwm)]zejAk/z C sin(zs).

s
Note that for these expressions to be valid, the amplitude constants for both modes must be chosen so that the total power

flow is equal to 1 Watt/m? along 2, i.e., [[ I:_")L- X I?I)i* dxdy = 2 W/m?, as stated earlier . Those amplitudes are then the ones
entering in Eq. (12).

A,(2) =e

Figure 2c-e shows the response of an isolator with interlayer distance of d=1 um designed to operate at 10 THz, with
graphene’s chemical potential . = 0.5 eV, modulation frequency f;, = 100 GHz, M = 0.1 and f3,,, = 6.61 - 10° rad/m.
Device length is equal to the coherence length for this specific modulation, L, = 58.4 um [21]. Up to 30 dB of isolation
is achieved in this scenario at the design frequency of 10 THz, as most energy is converted to the even mode at f, + f,,
when the device is excited from the right (see Fig. 2¢). Ideally, zero mode conversion would occur when exciting from the
left port, since even and odd modes are not phase matched then, but the modes’ finite linewidth leads to a small amount
of undesired coupling to f, — f;,, visible in the left side of Fig. 2c. Such mode conversion can be considered a form of
loss, as the converted power cannot reach the other port at the frequency and mode of interest. Like in the bandgap-based
plasmonic isolator, this simulation was performed in COMSOL Multiphysics by coupling full-wave models at different
frequency harmonics while taking into account the frequency-dispersive characteristics of graphene conductivity. Another
requirement for efficient mode conversion is that both modes should have similar decay rates [1,21], so there are optimal
combinations of substrates, interlayer spacing and chemical potential that also depend on frequency. Fortunately, the
theoretical framework developed here allows to quickly compute with excellent accuracy all relevant performance metrics,
enabling fast optimization of the numerous degrees of freedom in the structure. This is illustrated in Fig. 2d-e, which show
the maximum possible isolation and associated insertion loss versus graphene interlayer separation and design frequency,
for fixed values of . = 0.5 eV and ¢, = 1. Infinite isolation is possible in the limited part of the parameter space where
both modes have identical decay rates, whereas the dependence with insertion loss is more complicated but can be
efficiently optimized for any given specification. In this particular example, one could choose a design with lower insertion
loss (bottom left part of the colormaps) by sacrificing perfect isolation.

IV.  HYBRID GRAPHENE-DIELECTRIC ISOLATOR

Previous Sections explored the possibilities enabled by spatiotemporally modulated graphene to realize miniaturized,
reconfigurable nonreciprocal plasmonic devices at THz frequencies. This platform does not rely on magneto-optic effects
and it can thus be integrated with the myriad exciting graphene devices developed by the scientific community. Its major
downside is that it requires relatively high-quality graphene able to support plasmons with low damping rates. Low
damping is of course necessary for devices with low insertion loss, but there are also higher order effects exclusive the
spatiotemporally modulated structures. Nonreciprocity through spatiotemporally modulation, whether implemented at
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Figure 3. Photonic isolator based on spatiotemporally-modulated graphene coupled to a photonic waveguide. (a) Cross-section of a
dielectric waveguide of width /# and height h loaded by time-modulated graphene capacitors, left panel, which serves as a building
block for realistic hybrid silicon-graphene non-reciprocal devices. (b) x-component of the electric field excited in the photonic
waveguide considering that it has an infinite width (i.e., a slab), left panel, and finite width of W = 5um, right panel. Results are
computed using numerical simulations at 10 THz. (c) Electromagnetic response of the proposed isolator considering waveguide with
infinite (red line) and finite (blue) width. Left: phase constant, Re[k,], normalized by the free-space wavenumber, k. Central-left:
figure of merit, Re[k,]/Im[k,]. Central-right: coupling coefficient, k. Right: transmission through the structure when excited from
left (solid lines) and right (dashed lines) ports. Other parameters are h = 2.75 pm,pu. = 0.4 eV, Tt =1ps,e; = &3 = 4,64 =
9ande, = 12.

microwaves, THz, or optics, always relies on carefully engineering some sort of interaction between modes through the
modulation. The spatial part of the modulation is designed to phase-match the modes in order to maximize their interaction
for some range of frequencies. The temporal part of the modulation then up-shifts the system’s response for one
propagation direction, and down-shifts it for the opposite one. Ideally, this results in some frequencies seeing a large
contrast in the system’s response for opposite propagation directions, and devices like isolators can be made for those
frequencies. The behavior of such interactions versus frequency is therefore critical, and loss affects the frequency response
of any system. For instance, in the bandgap-based isolators of Section II, increasing graphene’s loss (by lowering the
phenomenological relaxation time ) would result not only in larger insertion loss but also in lower isolation, because the
transition from zero reflection outside the bandgap (smaller Im[k,(w)]) to high reflection inside the bandgap (larger
Im[k,(w)]) becomes smoother, and contrast for opposite directions decreases. As a general rule, devices based on modes
with lower Q factor (more loss and larger spectral linewidth) require larger modulation frequencies to achieve the same
asymmetry and isolation. Therefore, poor-quality graphene may require very high modulation speeds (large w,,),
increasing the cost and complexity of the biasing network. This may be especially challenging at increasingly high carrier
frequencies (far and mid infrared), since what matters is the ratio between modulation frequency and carrier frequency.
Such relation between loss and power exchange between modes is quite complex and appears in most devices based on
spatiotemporal modulation [1].

To lessen the reliance on high-purity graphene, we explore in this Section an alternative technological platform that
combines the fast modulation speed enabled by graphene with high quality-factor photonic modes in dielectric waveguides,
exploiting the most attractive features of each platform. The resulting hybrid graphene-dielectric photonic devices are
intrinsically silicon-compatible, more resilient to imperfections in graphene manufacturing processes, and can be scaled
from THz to telecom wavelengths. Importantly, these devices are well suited for integrated silicon photonic systems, since
they are just regular silicon waveguides to the outside world. This is possible because graphene is used only to engineer
the required nonreciprocal coupling between photonic states, having a small effect on their dispersion and field profile.
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Given the rapid growth of silicon photonics in recent years [39-44] as a promising solution to the interconnect bottlenecks
in electronics, the platform and devices proposed in the following could have far reaching technological implications.

Consider the structure of Fig. 3a, where a pair of closely spaced graphene sheets separated by an insulator with permittivity
&4 has been transferred on top of a dielectric slab waveguide with permittivity &, surrounded by media &; and &5. For
deeply subwavelength separation distance between the graphene sheets, the effective conductivity of the stack can be
approximated as [24]

Ostack = 01 T 03. (19)

Applying a modulation voltage between them, the conductivity of the stack can easily be controlled broadly. A similar
configuration, employing a single capacitor with a 65 nm Al,05 insulating layer has been used to experimentally realize
optical modulators with speeds as high as 30 GHz [23], limited mainly by suboptimal contact resistances. Speeds close to
100 GHz would be possible with state-of-the-art contacts, which would further boost the performance of the platform
proposed here [44, 45,46]. Nonetheless, the isolator proposed in the following will use a conservative 30 GHz modulation
frequency. In what follows, the stack will be modeled by its effective conductivity ;4.1 - This description is justified for
two reasons. First, the free-space wavelengths at the frequency ranges considered here, around 30 ym (10 THz), are much
larger than a ~50 nm stack, so the approximation of subwavelength dimensions where the conductivities are added is
reasonable [24,29]. Second, the actual value of ¢, has little effect on the overall electromagnetic response of the stack due
to the thinness of the insulator and the highly inductive conductivity of graphene, which is equivalent to a very large
negative real permittivity. For reference, a graphene monolayer with u. = 0.4 eV, modelled as an equivalent dielectric
slab of permittivity &, and thickness t, = 1 nm, has a permittivity &, = &, — jo/wty; = —1350¢, at 10 THz. It should
also be noted, however, that the insulator’s thickness and permittivity do play an important role in determining the
capacitance and carrier density induced on graphene for a given bias voltage, as given by Eq. (1).

If multiple of these capacitors are placed along the propagation direction z of a waveguide, as shown in Fig. 3a, one can
synthesize through well-known relations described in Section II the voltages required to yield a spatially and temporarily
varying conductivity profile of the form

Ocff (z,t) = O5tqck(1 + M - cos(wpt — B 2)), (20)

where g4 1S given in Eq. (19). Even though it essentially has the same form as Eq. (3), except for g4k, the underlying
modulation parameters like voltage or oxide capacitance will in general be different. Note that the required modulation
depth is smaller than in the experimentally-demonstrated modulators from [23], as those devices require large voltage
swings to switch critical coupling on and off, whereas the devices proposed here work even for small modulation depths.
However, larger modulation depths may still be useful to increase coupling strength and therefore achieve more compact
devices, although this requires larger bias voltages and may potentially introduce spurious couplings. It is worth
emphasizing again that imperfections in the modulation scheme or graphene are not expected to significantly affect device
performance, since information does not travel as currents in graphene but along the dielectric waveguide.

Let us consider an isolator based on asymmetric bandgaps like that discussed in Section II, but now using a hybrid
graphene-dielectric slab waveguide instead of a graphene-only, plasmonic one. We will examine two different
configurations: a dielectric slab that admits a fully analytical treatment [22], aiming to obtain valuable intuition on the
underlying physics; and a finite width waveguide that can be implemented in practice. The latter case is a challenging
problem from a modelling perspective, since simple closed-form expressions for the modal fields and dispersion relation
are not available even in the unmodulated case. Harmonic-balance full-wave simulations of the full isolator are not feasible
either, since several coupled harmonic modules must be solved simultaneously for a structure that is electrically very large.
The only feasible approach is based on CMT, whose accuracy was recently validated for the slab case [22]. To this end, it
is required to obtain (i) the dispersion of the hybrid TE/TM mode; and (ii) the normalized tangential electric fields on the
graphene stack, so that Eqs. (7) and (13) can be applied. Fortunately, this can be numerically computed in an
electromagnetic eigenmode solver for the transverse section of the waveguide, for instance in COMSOL Multiphysics.
Fig. 4 shows the electric field components for a finite waveguide with W = 5 um and otherwise identical parameters to
the isolator of Fig. 3, with and without the presence of the graphene stack. The first thing worth mentioning is that the
mode is predominantly TE for this geometry, as the transverse component of the electric field (E, ) is much stronger than
the longitudinal one (E,). The propagation constant, k,, is barely affected by the presence of graphene, but the field
distribution is noticeably altered in the vicinity of graphene due to transverse Fabry Perot plasmonic resonances. This is a
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Figure 4. Electric field components of fundamental hybrid TE/TM mode in a dielectric waveguide without (a) and with (b) a graphene

stack perturbing the mode, as shown in Figure 3. All panels are on the same color scale. Propagation constant k, is barely affected,
but fields are strongly concentrated on the graphene stack due to a Fabry Perot resonance. All parameters are as in Figure 3.

remarkable result, as the mode mainly propagates along the dielectric regions but there are strongly enhanced fields on
graphene that will ultimately allow for stronger coupling, as dictated by Eq. (13). This is demonstrated in Fig. 3c, which
shows the dispersion, coupling coefficient x, and isolation for the infinite and finite modulated waveguides. In the slab
scenario, the dependence of all parameters is monotonic because an infinite graphene stack cannot support Fabry Perot
resonances. As usual, the real part of k, is smaller in a finite waveguide than in the slab, because more energy travels in
the low-& material. More interesting is the behavior of the figure of merit, Re[k,]/Im[k,], and k. Due to the Fabry Perot
resonances of surface waves in the graphene stack, there are clear maxima and minima of k. The points of maximum x
correspond exactly to the points of minimum Re[k,]/Im[k,], which is expected given that fields are more strongly
concentrated in the graphene area (which is more lossy) when coupling between graphene and the dielectric mode is
maximum. This does not mean, however, that a finite-waveguide isolator will have larger insertion loss than predicted by
the slab model, even if Im[k,] is larger (in absolute or relative terms to Re[k,]). The reason is that larger k also implies a
shorter device for a given isolation, so the factor exp(—Im[k,] - L), which loosely approximates loss, may be smaller.
Alternatively, M may be reduced while maintaining a fixed k if one operates at a resonance. For instance, around 11 THz,
K is six times larger in the finite waveguide, which would roughly translate to requiring modulation depths M six times
smaller than anticipated by the slab calculations. This may be a very attractive approach since it would drastically decrease
the bias voltages. For the sake of comparison, Fig. 3¢ (righ panel) shows the bidirectional transmission of an isolator hosted
by this waveguide, with the same modulation depth M = 0.3 and device length L=1.5 um and compare it to the slab case.
Because k is much larger around 10 THz, transmission contrast and thus isolation is more than 20 dB larger, achieving
levels over 50 dB. Clearly, the device could be made shorter or M smaller to achieve an isolation comparable to the slab
waveguide.

V. CONCLUSION

In summary, we have exploited the spatiotemporal modulation of graphene’s conductivity to put forward a promising
platform to realize isolators at terahertz and infrared frequencies without reliance on magneto-optic effects in structures
fully compatible with integrated technology. First, we have focused on plasmonic isolators, based on various mechanisms
such as asymmetric bandgaps and interband transition, and we have developed theoretical frameworks to analyze and
efficiently design them. We have reported, and validated using full-wave numerical simulations, very promising
performance with isolation levels over 30 dB. The major challenge faced by this first approach is the need of high-quality
graphene able to support plasmons with low damping. To overcome this shortcoming, we have introduced a hybrid
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platform that combines high-Q modes on dielectric waveguides with spatiotemporally modulated graphene. In particular,
we have exploited for the very first time transversal Fabry-Perot resonance that appears due to the hybridization between
graphene and the finite-width waveguide to significantly increase the coupling between the modes, boosting the isolation
levels over 50 dB, reducing the overall length of the device, and reducing the voltages level required by the feeding
network. Such properties address important challenges of the state of the art in terms of CMOS-compatibility, integration,
miniaturization, losses, and performance. The versatility and far-reaching implications of the proposed approach should
be emphasized: it can in principle be employed to develop low-loss photonic circulators, Faraday rotators, nonreciprocal
leaky wave antennas, as well as to manipulate nonreciprocity at the micro/nano scale to realize advanced functionalities
such as nonreciprocal beam-steering and lensing. In addition, its performance at infrared frequencies makes this platform
a good candidate to engineer nonreciprocal emission and absorption in thermal management applications where efficiency
is critical, for instance by preventing an absorber from re-radiating energy in thermophotovoltaic cells.
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