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ABSTRACT  

We explore the possibilities enabled by the spatiotemporal modulation of graphene’s conductivity to realize magnetic-free 
isolators at terahertz and infrared frequencies. To this purpose, graphene is loaded with periodically distributed gates that 
are time-modulated. First, we investigate plasmonic isolators based on various mechanisms such as asymmetric bandgaps 
and interband photonic transitions and we demonstrate isolation levels over 30 dB using realistic biasing schemes. To 
lessen the dependence on high-quality graphene able to support surface plasmons with low damping, we then introduce a 
hybrid photonic platform based on spatiotemporally modulated graphene coupled to high-Q modes propagating on 
dielectric waveguides. We exploit transversal Fabry-Perot resonances appearing due to the finite-width of the waveguide 
to significantly boost graphene/waveguide interactions and to achieve isolation levels over 50 dB in compact structures 
modulated with low biasing voltages. The resulting platform is CMOS-compatible, exhibits an overall loss below 4 dB, 
and is robust against graphene imperfections. We also put forward a theoretical framework based on coupled-mode theory 
and on solving the eigenstates of the modulated structure that is in excellent agreement with full-wave numerical 
simulations, sheds light in the underlying physics that govern the proposed isolators, and speeds-up their analysis and 
design. We envision that the proposed technology will open new and efficient routes to realize integrated and silicon-
compatible isolators, with wide range of applications in communications and photonic networks. 
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I. INTRODUCTION  
Recent years have witnessed growing interest in breaking the reciprocity of electromagnetic devices without relying on 
magneto-optic effects by imparting linear or angular momentum to the supported waves. This spatiotemporal modulation 
scheme has proven itself useful to develop a wide variety of nonreciprocal devices [1], such as circulators [2-4], isolators 
[5-10], filters [11,12], and antennas [13-15]. Unfortunately, as frequency increases, the challenges to implement this 
technique in practice also increase due to the difficulty to modify the properties of materials operating in terahertz, infrared 
and visible frequencies with enough speed [1, 16-18]. As a result, the quest for magnetic-free, integrated, and efficient 
magnetless nonreciprocal devices in these frequency bands continues.  

In this work, we explore the possibilities offered by graphene [19, 20] to realize plasmonic and photonic isolators at 
terahertz and infrared frequencies by implementing spatio-temporal modulation approaches [21,22]. Graphene is very 
well-suited for this task because (i) its conductivity can be modulated with very high speed [23]; (ii) it intrinsically supports 
confined surface plasmons polaritons (SPPS) with many attractive features [19, 20, 24-26] and (iii) it is compatible with 
CMOS technology. In the following, we investigate nonreciprocal plasmons supported by graphene by simultaneously 
modulating its conductivity in space and time via time-varying gate voltages. This configuration imparts linear momentum 
to the SPPs traveling along the structure, breaking time reversal symmetry and thus reciprocity [1]. Several mechanisms 
are considered, including engineering asymmetric bandgaps and enforcing interband photonic transitions between 
orthogonal modes. The main technological challenges in the practical realization of these devices include (i) the fabrication 
of gating pads with an RC constant small enough to allow fast modulation of graphene’s conductivity; and (ii) availability 
of high-quality graphene for overall low loss. Fortunately, the state of the art is advancing rapidly, with (i) sufficiently fast 
modulations recently achieved (speeds greater than 30 GHz have already been experimentally reported [23]); and (ii) low-
loss SPPs has been observed in h-BN encapsulated graphene [27] with effective relaxation times greater than 0.5 ps.  

To lessen even further the reliance on graphene’s quality, we propose an alternative technological platform that combines 
the ultra-fast modulation speed enabled by graphene with high-quality factor photonic modes in dielectric waveguides, 
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exploiting the most attractive features of each configuration. The resulting hybrid graphene-dielectric isolator is low-loss, 
silicon compatible, robust against fabrication tolerances, and scalable in frequency [22]. In contrast with our recent work 
that considered slabs with infinite width [22], here we take advantage of the transverse Fabry-Perot resonances that appear 
by controlling the waveguide finite width to maximize the coupling between graphene and the photonic mode, which 
permits us to significantly increase the achievable isolation, reduce the overall dimensions of the device, and simplify the 
biasing scheme. Finally, we briefly describe a theoretical framework based on coupled-mode theory and on solving the 
eigenstates of different structures to illustrate the physical mechanisms that govern spatiotemporally modulated graphene. 
Full-wave numerical simulations from COMSOL Multiphysics are employed to validate our theory. We emphasize that 
this platform outperforms other solutions available in the infrared and terahertz band to develop isolators [9, 28] and may 
pave the way towards silicon-compatible fully-planar nonreciprocal plasmonic technology at terahertz and infrared 
frequencies, with important applications in biosensing, imaging, and intra/inter-chip communications. 

II. PLASMONIC ISOLATOR BASED ON ASSYMTRETRIC BANDGAPS 
Let us consider the simplest structure one could envision to spatiotemporally modulate graphene’s conductivity: a single 
sheet of this 2D material with various gating pads underneath, to which voltages oscillating in time with different phases 
are applied, as shown in Fig. 1a. The carrier density 𝑛𝑛𝑠𝑠 in the graphene area above each gating electrode is approximately 
given by [29]  

 
𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 𝑞𝑞𝑒𝑒𝑛𝑛𝑠𝑠, (1) 

where 𝑉𝑉𝑖𝑖 is the voltage applied to the ith electrode, 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the voltage at the Dirac point, −𝑞𝑞𝑒𝑒 is the electron charge, and 
𝐶𝐶𝑜𝑜𝑜𝑜 = 𝜀𝜀𝑟𝑟𝜀𝜀0/ℎ, where 𝜀𝜀𝑟𝑟 is the insulator relative permittivity and ℎ is the distance between the gate and graphene. The 

 
Figure 1. Graphene plasmonic isolator based on asymmetric bandgap. (a) Schematic of a waveguide composed of spatiotemporally 
modulated graphene. Graphene’s conductivity is controlled along the z-axis using gating pads (in yellow) that are time-modulated, 
leading to an effective conductivity profile 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔, 𝑧𝑧, 𝑡𝑡). (b) Resultant conductivity profile along the z-direction for three different 
time instants:  𝑡𝑡0, 𝑡𝑡1 = 𝑡𝑡0 + 1/(4𝑓𝑓𝑚𝑚), and 𝑡𝑡2 = 𝑡𝑡0 + 1/(2𝑓𝑓𝑚𝑚), where 𝑓𝑓𝑚𝑚 is the modulation frequency. As a result, the conductivity 
profile appears to travel in wave-like form toward +𝑧𝑧, imparting linear momentum to the supported SPPs. (c) Real and imaginary 
part of the wavenumber of the fundamental harmonic near the bandgap. (d) Transmission through the structure when excited from 
left and right ports. (e) Contrast between the transmissions in both directions. (f) Full-wave simulation of the isolator’s response for 
the frequency of maximum transmission contrast, marked by a green circle in panel (e). Graphene’s chemical potential is 𝜇𝜇𝑐𝑐 =
0.25 eV, relaxation time is 𝜏𝜏 = 1 ps, 𝑀𝑀 = 0.1, 𝜔𝜔𝑚𝑚 = 2𝜋𝜋 × 80 GHz, 𝛽𝛽𝑚𝑚 = 4.73 × 106 (rad/m) and device length is 65 𝜇𝜇𝜇𝜇. 
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relationship between the carrier density and the chemical potential 𝜇𝜇𝑐𝑐 can be found in the literature [19]. For moderately 
doped graphene (|𝜇𝜇𝑐𝑐| ≫ 𝑘𝑘𝐵𝐵𝑇𝑇, with 𝑘𝑘𝐵𝐵 being the Boltzmann constant and 𝑇𝑇 the temparature) and below the interband 
transition threshold (ℏ𝜔𝜔 < 2|𝜇𝜇𝑐𝑐|, with ℏ being the reduced Planck’s constant), graphene conductivity follows a Drude 
dispersion, which for convenience can be written as 

 
𝜎𝜎(𝜔𝜔) =

𝜎𝜎𝑠𝑠
1 + 𝑗𝑗𝑗𝑗𝑗𝑗

, (2) 

where 𝜎𝜎𝑠𝑠 = 𝑞𝑞𝑒𝑒2𝜇𝜇𝑐𝑐/(ℏ2𝜋𝜋) is the Drude weight, equal to the conductivity at DC (𝜔𝜔 = 0), and 𝜏𝜏 is graphene’s 
phenomenological relaxation time. Within this model, which is typically valid at terahertz and far infrared frequencies, 
changes in the chemical potential translate linearly into variations of 𝜎𝜎𝑠𝑠, independently of frequency. This allows studying 
the influence of time-varying biasing voltages on graphene conductivity without neglecting the intrinsic frequency 
dispersion of graphene, given by the denominator of Eq. (2). With the modulation of Fig. 1a, graphene’s effective 
conductivity looks like a wave travelling along the z-axis as 

 
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧, 𝑡𝑡) ≈ 𝜎𝜎(𝜔𝜔) ⋅ (1 +𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔𝑚𝑚𝑡𝑡 − 𝛽𝛽𝑚𝑚𝑧𝑧]), (3) 

where M is the modulation depth, 𝜔𝜔𝑚𝑚 is the modulation frequency, and 𝛽𝛽𝑚𝑚 = 2𝜋𝜋/𝑝𝑝 is the modulation wavenumber with 
𝑝𝑝 being the spatial period. Note that, because the voltage variation across adjacent pads is small, the assumption of 
smoothness implicit above is valid at every time instant [30,31]. Fig. 1b shows the conductivity profile along the graphene 
waveguide for different time instants, illustrating the wave-like nature that enables the exotic responses presented in the 
following.  

The structure considered in Fig. 1a allows to implement a plasmonic isolator if the modulation parameters are correctly 
chosen. It is well known that a spatially periodic perturbation to a waveguide introduces bandgaps in which the propagation 
constant acquires an imaginary part associated to reflection [22,32], which is the operation principle behind Bragg gratings 
[22]. The proposed isolator works on a similar principle, but the time-varying behavior of the perturbation asymmetrically 
flips the frequency-shifts of the bandgaps for left to right and right to left propagation. Without applying any modulation, 
it is very well known that graphene supports transverse-magnetic (TM) SPPs. It is therefore expected that the device under 
study will support TM SPPs with an infinite number of spatial and temporal harmonics, as the modulation makes the 
structure periodic in both domains. The field of the guided modes above and below the graphene sheet may therefore be 
expressed as 

 

𝐻𝐻𝑥𝑥
𝑢𝑢𝑢𝑢 = �   𝐴𝐴𝑖𝑖𝑒𝑒𝑗𝑗ω𝑖𝑖𝑡𝑡𝑒𝑒−𝑗𝑗𝑘𝑘𝑦𝑦1𝑦𝑦𝑒𝑒−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧

∞

𝑖𝑖=−∞

, 

𝐻𝐻𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �   𝐵𝐵𝑖𝑖𝑒𝑒𝑗𝑗ω𝑖𝑖𝑡𝑡𝑒𝑒−𝑗𝑗𝑘𝑘𝑦𝑦1𝑥𝑥𝑒𝑒+𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧
∞

𝑖𝑖=−∞

, 

(4) 

where 𝑘𝑘𝑦𝑦𝑦𝑦𝑦𝑦 = �𝜀𝜀𝑟𝑟𝑟𝑟𝑘𝑘0𝑖𝑖2 − 𝑘𝑘𝑧𝑧𝑧𝑧2  is the y-component of the wavenumber in the medium n with permittivity 𝜀𝜀𝑟𝑟𝑟𝑟, for the ith 
harmonic, A and B are arbitrary amplitude constants, 𝜔𝜔𝑖𝑖 = 𝜔𝜔0 + 𝑖𝑖𝜔𝜔𝑚𝑚, the graphene sheet is located at 𝑦𝑦 = 0, and the 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 
time convention has been followed. The associated electric field is given by Maxwell’s equations. Enforcing continuity of 
the tangential fields across the interfaces and using the boundary condition on graphene 𝑛𝑛� × �𝐻𝐻��⃗ 1 − 𝐻𝐻��⃗ 2� = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧, 𝑡𝑡)𝐸𝐸�⃗ 𝑡𝑡, 
the general dispersion relation of the modulated structure for an arbitrary number of harmonics can be found [33]. For a 
free-standing graphene sheet, it yields 

 
𝑀𝑀
4
𝑍𝑍𝑦𝑦𝑦𝑦−1𝐴𝐴𝑖𝑖−1 + �

1 + 𝑗𝑗𝜔𝜔𝑖𝑖𝜏𝜏
𝜎𝜎(𝜔𝜔𝑖𝑖)

+
1
2
𝑍𝑍𝑦𝑦𝑦𝑦� 𝐴𝐴𝑖𝑖 +

𝑀𝑀
4
𝑍𝑍𝑦𝑦𝑦𝑦+1𝐴𝐴𝑖𝑖+1 = 0, (5) 

where 𝑍𝑍𝑦𝑦𝑦𝑦 =
𝑘𝑘𝑦𝑦𝑦𝑦
𝜔𝜔𝑖𝑖𝜀𝜀0

. Eq.  (5) can be solved for 𝑘𝑘𝑦𝑦𝑦𝑦 and thus 𝑘𝑘𝑧𝑧𝑧𝑧 through a continuous fraction method or by truncation in 
matrix form and solving the determinant [33]. From this, the amplitude of the different harmonics can also be found as the 
eigenfunctions of the corresponding eigenvalues [34]. 

Fig. 1c studies the response of this type of isolator, illustrating how the bandgaps are split in frequency by 𝜔𝜔𝑚𝑚 for the two 
propagation directions. There are thus excitation frequencies where the plasmons decay much faster in one direction due 
to back-scattering, and arbitrarily high contrast between transmission for both excitation directions can be realized by 
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making the structure as long as necessary –this also increases insertion loss in the ‘non-isolated’ direction, so a clear trade-
off exists between insertion loss and isolation. Panel (d) shows the transmission for a device length of 65 𝜇𝜇𝜇𝜇, and panel 
(e) shows the transmission contrast, or isolation. Importantly, different ports are isolated at different frequencies. Panel (f) 
shows the z-component of the poynting vector, computed in COMSOL Multiphysics using harmonic balance simulations 
for the operation point highlighted by the green circle in (e), confirming the predicted response. To analyze the structure 
in COMSOL, coupling between adjacent harmonics is introduced through surface currents on graphene, with magnitudes 
obtained by expanding the boundary condition for the currents 𝐽𝐽𝑔𝑔(𝑧𝑧, 𝑡𝑡) = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧, 𝑡𝑡)𝐸𝐸(𝑧𝑧, 𝑡𝑡) and identifying the terms 
associated to each temporal harmonic 𝑒𝑒𝑗𝑗𝜔𝜔𝑖𝑖𝑡𝑡. 

This magnet-free graphene isolator can be integrated in arbitrarily small sizes (limited, of course, by spatial dispersion and 
fabrication processes). In addition, the operation frequency can be easily reconfigured through the same biasing network 
used to impart the spatiotemporal modulation, since all that is required is to change the ‘static’ component of the 
modulation voltages 𝑉𝑉𝑖𝑖 to change the value of 𝜎𝜎𝑠𝑠. The modulation period can also be changed easily if the discretization 
of the gates is fine enough, further increasing the flexibility of this platform. The downside of this type of isolator is its 
reliance of high-quality graphene, narrow bandwidth, and the relatively high modulation frequency required [21].  

III. PLASMONIC ISOLATOR BASED ON INTERBAND TRANSITIONS 
Here we explore a different approach to realize plasmonic isolation over graphene plasmonic waveguides, with important 
advantages over the previously presented device based on asymmetric bandgaps, at the cost of increased complexity. 
Graphene’s modulation will now be used to couple otherwise orthogonal modes in a multimode structure, so that in the 
isolated direction all power is converted to a different mode at a different frequency, which can then be filtered or scattered 
[1, 5, 9]. In the connected direction, phase matching does not hold and thus no conversion occurs. The main advantages 
are smaller values of 𝛽𝛽𝑚𝑚, the ability to engineer a desired bandwidth, and potentially smaller insertion loss. 
 
The structure under consideration is depicted in Fig. 2a and consists of a parallel plate graphene waveguide where one of 
the graphene layers can be biased independently. This type of structure could also be used to implement the isolator of the 
previous section, as the concept of asymmetric bandgaps is completely general. Note that for the present isolator only one 
of the sheets should be modulated, as the modulation profile must be asymmetric in the transverse plane in order to couple 
orthogonal modes [1,5]. The operation of the present isolator is illustrated in Fig. 2b. We refer to this type of mode 
conversion as an ‘interband photonic transition’ in analogy with electron transitions between bands in semiconductors [1]. 
Importantly, full power exchange between modes propagating in the same direction occurs periodically, with a period 
equal to the so-called coherence length, 𝐿𝐿𝑐𝑐 = 𝜋𝜋/2|𝜅𝜅|, where 𝜅𝜅 is the coupling coefficient that describes how strongly the 
fields of even and odd overlap.  
 
A convenient approach to study this problems is based on the coupled mode formalism [31,35]. This framework is 
inherently approximate but provides accurate results for most practical scenarios as well as deep physical insight. Coupled 
mode theory (CMT) describes the space or time evolution of overlapping modes in coupled resonators or waveguides, and 
it has been extensively used to model couples, filters, and more recently nonreciprocal acoustic and electromagnetic 
devices based on spatiotemporal modulation [1,5,36]. For two waves with amplitudes 𝑎𝑎1 and 𝑎𝑎2 traveling along the z-
direction with propagation constants 𝑘𝑘𝑧𝑧1 and 𝑘𝑘𝑧𝑧2, weakly coupled by a perturbation in z with period 𝑝𝑝 = 2𝜋𝜋/𝛽𝛽𝑚𝑚, their 
coupled mode equations in space may be written as  

 

𝑑𝑑𝑎𝑎1
𝑑𝑑𝑑𝑑

= −𝑗𝑗𝑘𝑘𝑧𝑧1𝑎𝑎1 + 𝜅𝜅12𝑎𝑎2𝑒𝑒𝑗𝑗Δ𝑘𝑘𝑧𝑧 , 
𝑑𝑑𝑎𝑎2
𝑑𝑑𝑑𝑑

= −𝑗𝑗𝑘𝑘𝑧𝑧2𝑎𝑎2 + 𝜅𝜅21𝑎𝑎1𝑒𝑒𝑗𝑗Δ𝑘𝑘𝑧𝑧 . 

(6) 

where Δ𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑧𝑧2(𝜔𝜔0 ± 𝜔𝜔𝑚𝑚) − 𝑘𝑘𝑧𝑧1(𝜔𝜔0) − 𝛽𝛽𝑚𝑚. If the modes do not interact, 𝜅𝜅𝑖𝑖𝑖𝑖 = 0 (with 𝑖𝑖 ≠ 𝑗𝑗), then the decoupled 
equations simply describe the amplitude variation given by the propagation constants 𝑘𝑘𝑧𝑧𝑧𝑧. For coupled modes, the coupling 
coefficients 𝜅𝜅𝑖𝑖𝑖𝑖 determine the rate with which the modes exchange power and, if power is to be conserved, 𝜅𝜅12 = 𝜅𝜅21∗ = 𝜅𝜅 
[35]. This operation is typically mediated by a z-periodic perturbation to the permittivity, so that the total permittivity 
becomes 𝜀𝜀 = 𝜀𝜀(𝑥𝑥, 𝑦𝑦) + 𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡). Because the perturbation 𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is periodic in space and time, it can be 
expanded as a Fourier series 

Proc. of SPIE Vol. 10982  109821I-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 

𝛿𝛿𝛿𝛿 =  �𝜀𝜀𝑛𝑛(𝑥𝑥, 𝑦𝑦)𝑒𝑒−𝑗𝑗𝑗𝑗(𝑘𝑘𝑚𝑚𝑧𝑧−𝜔𝜔𝑚𝑚𝑡𝑡)

𝑛𝑛≠0

, (7) 

where 𝑛𝑛 = 0 is not included because of the definition of 𝜀𝜀 above. The coupling coefficient between two modes with field 
profiles  𝐸𝐸�1(𝑥𝑥, 𝑦𝑦) and 𝐸𝐸�2(𝑥𝑥, 𝑦𝑦) due to the 𝑛𝑛𝑡𝑡ℎ Fourier component of the perturbation is then defined as [32, 35] 
 

  𝜅𝜅12
(𝑛𝑛) = −

𝑗𝑗𝑗𝑗
4
�𝜀𝜀𝑛𝑛(𝑥𝑥,𝑦𝑦)𝐸𝐸�1(𝑥𝑥, 𝑦𝑦)𝐸𝐸�2(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (8) 

 
where 𝐸𝐸�𝑖𝑖 must be normalized to a power flow of 1 Watt/𝑚𝑚2 along 𝑧̂𝑧, i.e., ∬𝐸𝐸�⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖∗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2 (𝑊𝑊/𝑚𝑚2). Note that, in the 
simple scenario where 𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦) cos(𝜔𝜔𝑚𝑚𝑡𝑡 − 𝛽𝛽𝑚𝑚𝑧𝑧), there is only one term in the Fourier expansion, 𝜀𝜀1 =
𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦), resulting in one coupling coefficient 𝜅𝜅12

(1) = 𝜅𝜅21
(1) = 𝜅𝜅. If 𝜅𝜅 can be computed, any non-reciprocal electromagnetic 

device based on linear or angular momentum bias can be designed and analyzed [1]. The platform explored here relies on 
modulating graphene’s conductivity, not a permittivity. However, an equivalent way to describe a graphene sheet with 
conductivity 𝜎𝜎𝑔𝑔 is by considering it as an ultra-thin slab with thicknes 𝑡𝑡𝑔𝑔 ≪ 𝜆𝜆 and permittivity 𝜀𝜀𝑔𝑔 [37] 

 
𝜀𝜀g = ε0 − 𝑗𝑗

σ𝑔𝑔
𝜔𝜔𝑡𝑡𝑔𝑔

. (9) 

The equivalent permittivity of a graphene sheet under the modulation of Eq. (30) can thus be expressed as 

 
𝜀𝜀𝑔𝑔(𝑧𝑧, 𝑡𝑡) ≈ −𝑗𝑗

𝜎𝜎𝑔𝑔
𝜔𝜔𝑡𝑡𝑔𝑔

�1 +
𝑀𝑀
2
𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚𝑧𝑧−𝜔𝜔𝑚𝑚𝑡𝑡) +

𝑀𝑀
2
𝑒𝑒+𝑗𝑗(𝛽𝛽𝑚𝑚𝑧𝑧−𝜔𝜔𝑚𝑚𝑡𝑡)�, (10) 

 
Figure 2. Graphene plasmonic isolator based on interband transitions. (a) Schematic of a graphene parallel-plate waveguide. The 
conductivity of the top layer is controlled along the z-axis using gating pads (in yellow) that are time-modulated. (b) Dispersion 
diagram. When the linear momentum provided by the spatiotemporal modulation (black arrow) fulfills that 𝜔𝜔𝑚𝑚 = 𝜔𝜔2 − 𝜔𝜔1 and 
𝛽𝛽𝑚𝑚 = 𝑘𝑘2 − 𝑘𝑘1, perfect phase matching occurs and then total power conversion occurs between the orthogonal modes. This happens 
only in one direction. (c) Electric field (z-component) at the three frequencies involved in the device for both excitation directions 
at frequency 10THz. Other parameters are a modulation depth M = 0.1 and 𝑑𝑑 = 1𝜇𝜇𝜇𝜇. (d) Maximum realizable isolation and (e) 
associated insertion loss, computed using coupled mode theory, for different operation frequencies and distance between graphene 
sheets, for a chemical potential 𝜇𝜇𝑐𝑐 = 0.5 eV and 𝜏𝜏 = 0.5 ps. 
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where the term associated to the free-space permittivity can be neglected as it is orders of magnitude smaller than 𝑗𝑗 σ𝑔𝑔
𝜔𝜔𝑡𝑡𝑔𝑔

. 

Comparing with Eq. (7), we find  

 
𝜀𝜀±1 =

𝑀𝑀
2
𝑗𝑗𝜎𝜎𝑔𝑔
𝜔𝜔𝑡𝑡𝑔𝑔

. (11) 

The coupling integral in Eq. (8) could now be solved using this permittivity and the corresponding fields inside and outside 
the equivalent graphene slab. However, rather than working with graphene’s equivalent permittivity, it would far more 
convenient to use its conductivity, as this is usually a better way to solve graphene electromagnetic problems, both 
analytically and numerically. Integrating over the waveguide cross-section in the 𝑡𝑡𝑔𝑔 → 0 limit, we can write 

 

𝜅𝜅21 =
𝑀𝑀
8
�𝜎𝜎𝑔𝑔𝐸𝐸�1

(𝑡𝑡)𝐸𝐸�2
(𝑡𝑡)∗𝑑𝑑𝑑𝑑, (12) 

where 𝐸𝐸�𝑖𝑖
(𝑡𝑡) is the electric field tangential to graphene. Note that, since graphene lies in the x-z plane, the integral along the 

x axis is only non-zero at graphene’s position, and the double integral has become a single integral along y, for the fields 
tangential to graphene. If we further assume a y-invariant graphene sheet, it simplifies to 

 

𝜅𝜅21 =
𝑀𝑀
8
𝜎𝜎𝑔𝑔𝐸𝐸�1

(𝑡𝑡)𝐸𝐸�2
(𝑡𝑡)∗. (13) 

Compared to Eq. (8), the fields 𝐸𝐸�𝑖𝑖  must be replaced by their tangential components 𝐸𝐸�𝑖𝑖
(𝑡𝑡), because an infinitesimally thin 

conductive sheet cannot support currents along the perpendicular axis. Indeed, if the electromagnetic problem were instead 
solved within the equivalent thin-slab formalism, computing the fields “inside” graphene, one would find (for both TE and 
TM waves) strictly zero polarization current along the normal, and a non-zero uniform current in the tangential directions, 
providing fully consistent results. Therefore, the coupling coefficient between any two modes interacting with graphene is 
simply the dot product of the tangential electric fields on graphene, weighted by the perturbation to the conductivity. If 
several graphene sheets are present throughout the structure, interacting with the guided modes, all the contributions should 
be added. This derivation also clearly illustrates why the modulation must be asymmetric in the transverse plane: if both 
layers are identical and modulated in the same way, the even and odd symmetry of the modes would lead to the 
contributions perfectly cancelling out. 
 
The implications of Eq. (12) are general and far-reaching, as it allows analytical treatment of any nonreciprocal device 
based on time-modulated graphene, including isolators, circulators, MTSs, or antennas, by simply solving the relevant 
eigenmodes, an approachable task even for non-analytical, complicated structures, solvable in a matter of seconds by any 
standard electromagnetic solver. In the case under study, the modes can fortunately be found analytically. They read [29, 
38]: 
 
Odd mode: 

 
𝐸𝐸𝑧𝑧2 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝑘𝑘𝑥𝑥3𝑥𝑥, 𝐸𝐸𝑧𝑧1 = 𝐵𝐵sin(𝑘𝑘𝑥𝑥1𝑥𝑥), 𝐸𝐸𝑧𝑧3 = 𝐶𝐶𝑒𝑒𝑗𝑗𝑘𝑘𝑥𝑥2𝑥𝑥, (14) 

with  

𝐴𝐴 = 𝐵𝐵sin �
𝑘𝑘𝑥𝑥1𝑑𝑑

2
� 𝑒𝑒+

𝑗𝑗𝑘𝑘𝑥𝑥2𝑑𝑑
2 ,   𝐶𝐶 = −𝐵𝐵sin �

𝑘𝑘𝑥𝑥1𝑑𝑑
2
� 𝑒𝑒+

𝑗𝑗𝑘𝑘𝑥𝑥2𝑑𝑑
2 . (15) 
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𝐸𝐸𝑧𝑧3 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝑘𝑘𝑥𝑥3𝑥𝑥,    𝐸𝐸𝑧𝑧1 = 𝐵𝐵cos(𝑘𝑘𝑥𝑥1𝑥𝑥),    𝐸𝐸𝑧𝑧2 = 𝐶𝐶𝑒𝑒𝑗𝑗𝑘𝑘𝑥𝑥2𝑥𝑥, (16) 

with 

𝐴𝐴 = 𝐵𝐵cos �
𝑘𝑘𝑥𝑥1ℎ

2
� 𝑒𝑒+

𝑗𝑗𝑘𝑘𝑥𝑥2𝑑𝑑
2 ,   𝐶𝐶 = −𝐵𝐵cos �

𝑘𝑘𝑥𝑥1ℎ
2
� 𝑒𝑒+

𝑗𝑗𝑘𝑘𝑥𝑥2𝑑𝑑
2 , (17) 

with media 1,2,3 numbered according to their relative permittivities shown in Fig 2a. The rest of field components can be 
retrieved through Maxwell’s equations. Note that 𝐸𝐸𝑧𝑧 is the only field component entering the computation of the coupling 
coefficient in Eq. (2), as 𝐸𝐸𝑦𝑦 = 0 in both modes.  

The amplitude evolution of the two modes through the waveguide can be computed using conventional CMT derivations 
[35] 

𝐴𝐴1(𝑧𝑧) = 𝑒𝑒Im�𝑘𝑘𝑧𝑧
(𝜔𝜔0)�𝑧𝑧𝑒𝑒−𝑗𝑗Δ𝑘𝑘/2 �cos(𝑧𝑧𝑧𝑧) + 𝑗𝑗

Δ𝑘𝑘/2
𝑠𝑠

sin(𝑧𝑧𝑧𝑧)�, 

𝐴𝐴2(𝑧𝑧) = 𝑒𝑒Im�𝑘𝑘𝑧𝑧
(𝜔𝜔0±𝜔𝜔𝑚𝑚)�𝑧𝑧𝑒𝑒𝑗𝑗Δ𝑘𝑘/2 𝐶𝐶 sin(𝑧𝑧𝑧𝑧)

𝑠𝑠
. 

(18) 

Note that for these expressions to be valid, the amplitude constants for both modes must be chosen so that the total power 
flow is equal to 1 Watt/𝑚𝑚2 along 𝑧̂𝑧, i.e., ∬𝐸𝐸�⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖∗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2  W/m2, as stated earlier . Those amplitudes are then the ones 
entering in Eq. (12). 

Figure 2c-e shows the response of an isolator with interlayer distance of d=1 μm designed to operate at 10 THz, with 
graphene’s chemical potential 𝜇𝜇𝑐𝑐 = 0.5 eV, modulation frequency 𝑓𝑓𝑚𝑚 = 100 GHz, 𝑀𝑀 = 0.1 and 𝛽𝛽𝑚𝑚 = 6.61 ⋅ 105 rad/m. 
Device length is equal to the coherence length for this specific modulation, 𝐿𝐿𝑐𝑐 = 58.4 𝜇𝜇𝜇𝜇 [21]. Up to 30 dB of isolation 
is achieved in this scenario at the design frequency of 10 THz, as most energy is converted to the even mode at 𝑓𝑓0 + 𝑓𝑓𝑚𝑚 
when the device is excited from the right (see Fig. 2c). Ideally, zero mode conversion would occur when exciting from the 
left port, since even and odd modes are not phase matched then, but the modes’ finite linewidth leads to a small amount 
of undesired coupling to 𝑓𝑓0 − 𝑓𝑓𝑚𝑚, visible in the left side of Fig. 2c. Such mode conversion can be considered a form of 
loss, as the converted power cannot reach the other port at the frequency and mode of interest. Like in the bandgap-based 
plasmonic isolator, this simulation was performed in COMSOL Multiphysics by coupling full-wave models at different 
frequency harmonics while taking into account the frequency-dispersive characteristics of graphene conductivity. Another 
requirement for efficient mode conversion is that both modes should have similar decay rates [1,21], so there are optimal 
combinations of substrates, interlayer spacing and chemical potential that also depend on frequency. Fortunately, the 
theoretical framework developed here allows to quickly compute with excellent accuracy all relevant performance metrics, 
enabling fast optimization of the numerous degrees of freedom in the structure. This is illustrated in Fig. 2d-e, which show 
the maximum possible isolation and associated insertion loss versus graphene interlayer separation and design frequency, 
for fixed values of 𝜇𝜇𝑐𝑐 = 0.5 eV and 𝜀𝜀𝑟𝑟 = 1. Infinite isolation is possible in the limited part of the parameter space where 
both modes have identical decay rates, whereas the dependence with insertion loss is more complicated but can be 
efficiently optimized for any given specification. In this particular example, one could choose a design with lower insertion 
loss (bottom left part of the colormaps) by sacrificing perfect isolation. 

IV. HYBRID GRAPHENE-DIELECTRIC ISOLATOR
Previous Sections explored the possibilities enabled by spatiotemporally modulated graphene to realize miniaturized, 
reconfigurable nonreciprocal plasmonic devices at THz frequencies. This platform does not rely on magneto-optic effects 
and it can thus be integrated with the myriad exciting graphene devices developed by the scientific community. Its major 
downside is that it requires relatively high-quality graphene able to support plasmons with low damping rates. Low 
damping is of course necessary for devices with low insertion loss, but there are also higher order effects exclusive the 
spatiotemporally modulated structures. Nonreciprocity through spatiotemporally modulation, whether implemented at 

E ven mode: 
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microwaves, THz, or optics, always relies on carefully engineering some sort of interaction between modes through the 
modulation. The spatial part of the modulation is designed to phase-match the modes in order to maximize their interaction 
for some range of frequencies. The temporal part of the modulation then up-shifts the system’s response for one 
propagation direction, and down-shifts it for the opposite one. Ideally, this results in some frequencies seeing a large 
contrast in the system’s response for opposite propagation directions, and devices like isolators can be made for those 
frequencies. The behavior of such interactions versus frequency is therefore critical, and loss affects the frequency response 
of any system. For instance, in the bandgap-based isolators of Section II, increasing graphene’s loss (by lowering the 
phenomenological relaxation time 𝜏𝜏) would result not only in larger insertion loss but also in lower isolation, because the 
transition from zero reflection outside the bandgap (smaller Im[𝑘𝑘𝑧𝑧(𝜔𝜔)]) to high reflection inside the bandgap (larger 
Im[𝑘𝑘𝑧𝑧(𝜔𝜔)]) becomes smoother, and contrast for opposite directions decreases. As a general rule, devices based on modes 
with lower Q factor (more loss and larger spectral linewidth) require larger modulation frequencies to achieve the same 
asymmetry and isolation. Therefore, poor-quality graphene may require very high modulation speeds (large 𝜔𝜔𝑚𝑚), 
increasing the cost and complexity of the biasing network. This may be especially challenging at increasingly high carrier 
frequencies (far and mid infrared), since what matters is the ratio between modulation frequency and carrier frequency. 
Such relation between loss and power exchange between modes is quite complex and appears in most devices based on 
spatiotemporal modulation [1].  

To lessen the reliance on high-purity graphene, we explore in this Section an alternative technological platform that 
combines the fast modulation speed enabled by graphene with high quality-factor photonic modes in dielectric waveguides, 
exploiting the most attractive features of each platform. The resulting hybrid graphene-dielectric photonic devices are 
intrinsically silicon-compatible, more resilient to imperfections in graphene manufacturing processes, and can be scaled 
from THz to telecom wavelengths. Importantly, these devices are well suited for integrated silicon photonic systems, since 
they are just regular silicon waveguides to the outside world. This is possible because graphene is used only to engineer 
the required nonreciprocal coupling between photonic states, having a small effect on their dispersion and field profile. 

 
Figure 3. Photonic isolator based on spatiotemporally-modulated graphene coupled to a photonic waveguide. (a) Cross-section of a 
dielectric waveguide of width W and height ℎ loaded by time-modulated graphene capacitors, left panel, which serves as a building 
block for realistic hybrid silicon-graphene non-reciprocal devices. (b) x-component of the electric field excited in the photonic 
waveguide considering that it has an infinite width (i.e., a slab), left panel, and finite width of  𝑊𝑊 = 5𝜇𝜇𝜇𝜇, right panel. Results are 
computed using numerical simulations at 10 THz. (c) Electromagnetic response of the proposed isolator considering waveguide with 
infinite (red line) and finite (blue) width. Left: phase constant, 𝑅𝑅𝑅𝑅[𝑘𝑘𝑧𝑧], normalized by the free-space wavenumber, 𝑘𝑘0. Central-left: 
figure of merit, 𝑅𝑅𝑅𝑅[𝑘𝑘𝑧𝑧]/𝐼𝐼𝐼𝐼[𝑘𝑘𝑧𝑧]. Central-right: coupling coefficient, 𝜅𝜅. Right: transmission through the structure when excited from 
left (solid lines) and right (dashed lines) ports. Other parameters are h = 2.75 μm, μc = 0.4 eV, τ = 1 ps, ε1 = ε3 = 4, ϵd =
9 and ε2 = 12. 
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Given the rapid growth of silicon photonics in recent years [39-44] as a promising solution to the interconnect bottlenecks 
in electronics, the platform and devices proposed in the following could have far reaching technological implications. 

Consider the structure of Fig. 3a, where a pair of closely spaced graphene sheets separated by an insulator with permittivity 
𝜀𝜀𝑑𝑑 has been transferred on top of a dielectric slab waveguide with permittivity 𝜀𝜀2 surrounded by media 𝜀𝜀1 and 𝜀𝜀3. For 
deeply subwavelength separation distance between the graphene sheets, the effective conductivity of the stack can be 
approximated as [24] 

 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝜎𝜎1 + 𝜎𝜎2. (19) 

Applying a modulation voltage between them, the conductivity of the stack can easily be controlled broadly. A similar 
configuration, employing a single capacitor with a 65 nm Al2O3 insulating layer has been used to experimentally realize 
optical modulators with speeds as high as 30 GHz [23], limited mainly by suboptimal contact resistances. Speeds close to 
100 GHz would be possible with state-of-the-art contacts, which would further boost the performance of the platform 
proposed here [44, 45,46]. Nonetheless, the isolator proposed in the following will use a conservative 30 GHz modulation 
frequency. In what follows, the stack will be modeled by its effective conductivity 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This description is justified for 
two reasons. First, the free-space wavelengths at the frequency ranges considered here, around 30 𝜇𝜇𝜇𝜇 (10 THz), are much 
larger than a ~50 nm stack, so the approximation of subwavelength dimensions where the conductivities are added is 
reasonable [24,29]. Second, the actual value of 𝜀𝜀𝑑𝑑 has little effect on the overall electromagnetic response of the stack due 
to the thinness of the insulator and the highly inductive conductivity of graphene, which is equivalent to a very large 
negative real permittivity. For reference, a graphene monolayer with 𝜇𝜇𝑐𝑐 = 0.4 eV, modelled as an equivalent dielectric 
slab of permittivity 𝜀𝜀𝑔𝑔 and thickness 𝑡𝑡𝑔𝑔 = 1 nm, has a permittivity 𝜀𝜀𝑔𝑔 = 𝜀𝜀0 − 𝑗𝑗𝑗𝑗/𝜔𝜔𝑡𝑡𝑔𝑔 = −1350𝜀𝜀0 at 10 THz. It should 
also be noted, however, that the insulator’s thickness and permittivity do play an important role in determining the 
capacitance and carrier density induced on graphene for a given bias voltage, as given by Eq. (1). 

If multiple of these capacitors are placed along the propagation direction z of a waveguide, as shown in Fig. 3a, one can 
synthesize through well-known relations described in Section II the voltages required to yield a spatially and temporarily 
varying conductivity profile of the form  

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧, 𝑡𝑡) = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 +𝑀𝑀 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑚𝑚𝑡𝑡 − 𝛽𝛽𝑚𝑚𝑧𝑧)), (20) 

where 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is given in Eq. (19). Even though it essentially has the same form as Eq. (3), except for 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the underlying 
modulation parameters like voltage or oxide capacitance will in general be different. Note that the required modulation 
depth is smaller than in the experimentally-demonstrated modulators from [23], as those devices require large voltage 
swings to switch critical coupling on and off, whereas the devices proposed here work even for small modulation depths. 
However, larger modulation depths may still be useful to increase coupling strength and therefore achieve more compact 
devices, although this requires larger bias voltages and may potentially introduce spurious couplings. It is worth 
emphasizing again that imperfections in the modulation scheme or graphene are not expected to significantly affect device 
performance, since information does not travel as currents in graphene but along the dielectric waveguide.  

Let us consider an isolator based on asymmetric bandgaps like that discussed in Section II, but now using a hybrid 
graphene-dielectric slab waveguide instead of a graphene-only, plasmonic one. We will examine two different 
configurations: a dielectric slab that admits a fully analytical treatment [22], aiming to obtain valuable intuition on the 
underlying physics; and a finite width waveguide that can be implemented in practice. The latter case is a challenging 
problem from a modelling perspective, since simple closed-form expressions for the modal fields and dispersion relation 
are not available even in the unmodulated case. Harmonic-balance full-wave simulations of the full isolator are not feasible 
either, since several coupled harmonic modules must be solved simultaneously for a structure that is electrically very large. 
The only feasible approach is based on CMT, whose accuracy was recently validated for the slab case [22]. To this end, it 
is required to obtain (i) the dispersion of the hybrid TE/TM mode; and (ii) the normalized tangential electric fields on the 
graphene stack, so that Eqs. (7) and (13) can be applied. Fortunately, this can be numerically computed in an 
electromagnetic eigenmode solver for the transverse section of the waveguide, for instance in COMSOL Multiphysics. 
Fig. 4 shows the electric field components for a finite waveguide with 𝑊𝑊 = 5 𝜇𝜇𝜇𝜇 and otherwise identical parameters to 
the isolator of Fig. 3, with and without the presence of the graphene stack. The first thing worth mentioning is that the 
mode is predominantly TE for this geometry, as the transverse component of the electric field (𝐸𝐸𝑦𝑦) is much stronger than 
the longitudinal one (𝐸𝐸𝑧𝑧). The propagation constant, 𝑘𝑘𝑧𝑧, is barely affected by the presence of graphene, but the field 
distribution is noticeably altered in the vicinity of graphene due to transverse Fabry Perot plasmonic resonances. This is a 
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remarkable result, as the mode mainly propagates along the dielectric regions but there are strongly enhanced fields on 
graphene that will ultimately allow for stronger coupling, as dictated by Eq. (13). This is demonstrated in Fig. 3c, which 
shows the dispersion, coupling coefficient 𝜅𝜅, and isolation for the infinite and finite modulated waveguides.  In the slab 
scenario, the dependence of all parameters is monotonic because an infinite graphene stack cannot support Fabry Perot 
resonances. As usual, the real part of 𝑘𝑘𝑧𝑧 is smaller in a finite waveguide than in the slab, because more energy travels in 
the low-𝜀𝜀 material. More interesting is the behavior of the figure of merit, Re[𝑘𝑘𝑧𝑧]/Im[𝑘𝑘𝑧𝑧], and 𝜅𝜅. Due to the Fabry Perot 
resonances of surface waves in the graphene stack, there are clear maxima and minima of 𝜅𝜅. The points of maximum 𝜅𝜅 
correspond exactly to the points of minimum Re[𝑘𝑘𝑧𝑧]/Im[𝑘𝑘𝑧𝑧], which is expected given that fields are more strongly 
concentrated in the graphene area (which is more lossy) when coupling between graphene and the dielectric mode is 
maximum. This does not mean, however, that a finite-waveguide isolator will have larger insertion loss than predicted by 
the slab model, even if Im[kz] is larger (in absolute or relative terms to Re[kz]). The reason is that larger 𝜅𝜅 also implies a 
shorter device for a given isolation, so the factor exp(−Im[𝑘𝑘𝑧𝑧] ⋅ 𝐿𝐿), which loosely approximates loss, may be smaller. 
Alternatively, M may be reduced while maintaining a fixed 𝜅𝜅 if one operates at a resonance. For instance, around 11 THz, 
𝜅𝜅 is six times larger in the finite waveguide, which would roughly translate to requiring modulation depths 𝑀𝑀 six times 
smaller than anticipated by the slab calculations. This may be a very attractive approach since it would drastically decrease 
the bias voltages. For the sake of comparison, Fig. 3c (righ panel) shows the bidirectional transmission of an isolator hosted 
by this waveguide, with the same modulation depth 𝑀𝑀 = 0.3 and device length L=1.5 𝜇𝜇𝜇𝜇 and compare it to the slab case. 
Because 𝜅𝜅 is much larger around 10 THz, transmission contrast and thus isolation is more than 20 dB larger, achieving 
levels over 50 dB. Clearly, the device could be made shorter or M smaller to achieve an isolation comparable to the slab 
waveguide.  

V.  CONCLUSION 
In summary, we have exploited the spatiotemporal modulation of graphene’s conductivity to put forward a promising 
platform to realize isolators at terahertz and infrared frequencies without reliance on magneto-optic effects in structures 
fully compatible with integrated technology. First, we have focused on plasmonic isolators, based on various mechanisms 
such as asymmetric bandgaps and interband transition, and we have developed theoretical frameworks to analyze and 
efficiently design them. We have reported, and validated using full-wave numerical simulations, very promising 
performance with isolation levels over 30 dB. The major challenge faced by this first approach is the need of high-quality 
graphene able to support plasmons with low damping. To overcome this shortcoming, we have introduced a hybrid 

 
Figure 4. Electric field components of fundamental hybrid TE/TM mode in a dielectric waveguide without (a) and with (b) a graphene 
stack perturbing the mode, as shown in Figure 3. All panels are on the same color scale. Propagation constant 𝑘𝑘𝑧𝑧 is barely affected, 
but fields are strongly concentrated on the graphene stack due to a Fabry Perot resonance. All parameters are as in Figure 3. 
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platform that combines high-Q modes on dielectric waveguides with spatiotemporally modulated graphene. In particular, 
we have exploited for the very first time transversal Fabry-Perot resonance that appears due to the hybridization between 
graphene and the finite-width waveguide to significantly increase the coupling between the modes, boosting the isolation 
levels over 50 dB, reducing the overall length of the device, and reducing the voltages level required by the feeding 
network. Such properties address important challenges of the state of the art in terms of CMOS-compatibility, integration, 
miniaturization, losses, and performance. The versatility and far-reaching implications of the proposed approach should 
be emphasized: it can in principle be employed to develop low-loss photonic circulators, Faraday rotators, nonreciprocal 
leaky wave antennas, as well as to manipulate nonreciprocity at the micro/nano scale to realize advanced functionalities 
such as nonreciprocal beam-steering and lensing. In addition, its performance at infrared frequencies makes this platform 
a good candidate to engineer nonreciprocal emission and absorption in thermal management applications where efficiency 
is critical, for instance by preventing an absorber from re-radiating energy in thermophotovoltaic cells. 
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