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Abstract

Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and 
light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and 
allocate resources accordingly. Iron–sulfur (Fe–S) clusters are at the center of photosynthesis, respiration, amino acid, 
and DNA metabolism. Fe–S clusters are extraordinary catalysts, but their main components (Fe2+ and S2−) are highly 
reactive and potentially toxic. To prevent toxicity, plants have evolved mechanisms to regulate the uptake, storage, 
and assimilation of Fe and S. Recent advances have been made in understanding the cellular economy of Fe and S 
metabolism individually, and growing evidence suggests that there is dynamic crosstalk between Fe and S networks. 
In this review, we summarize and discuss recent literature on Fe sensing, allocation, use efficiency, and, when per-
tinent, its relationship to S metabolism. Our future perspectives include a discussion about the open questions and 
challenges ahead and how the plant nutrition field can come together to approach these questions in a cohesive and 
more efficient way.

Keywords:   Dynamic cell economy, iron sensing, iron use efficiency, nutrient crosstalk, sulfur homeostasis.

Introduction

Plants are among the select group of organisms capable of 
synthesizing all the molecules needed to complete their life 
cycle from raw chemical elements (e.g. Fe2+/3+, Zn2+, Mn2+, 
and Cu1+), inorganic compounds (e.g. CO2, NO3

−, SO4
2−, 

NH4
+, and PO4

3−), water, and light. This includes the syn-
thesis of ≥200 000 metabolites (Dixon and Strack, 2003) such 

as DNA/RNA precursors, amino acids, lipids, and sugars, in 
addition to proteins and other macromolecules. Considering 
that plants are sessile organisms and that they often encounter 
biotic and abiotic stresses such as fluctuating nutrient avail-
ability, drought, and pathogens, the ability of plants to thrive 
under dynamic environments is a biochemical feat. This 
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plasticity, however, comes with a hefty price tag. Nitrate as-
similation, for instance, requires the equivalent of 12 molecules 
of ATP (~87.6 kcal mol–1) to reduce a molecule of NO3

− to 
NH4

+ and be incorporated into the amide nitrogen of glu-
tamine (Bloom et  al., 1992). Sulfate reduction, on the other 
hand, requires reducing power (8 e−) and twice as much energy 
as nitrate reduction to provide the sulfide (S2−) required for 
cysteine biosynthesis (Hell, 1997). Therefore, plants are under 
constant pressure to identify and allocate the right amount of 
resources for metabolic processes such as growth, development, 
and nutrient assimilation. At the same time, plants also need 
to determine when to delay or even stop growth and devel-
opment when resources are scarce (i.e. nutrient limitation) or 
when resources need to be diverted to support other critical 
processes such as defense (Katsir et al., 2008; Yang et al., 2012). 
For decades, understanding the basis of this ‘cell economy’ has 
been a major driving force in plant biology and it is at the 
core of the systems biology field, where the goal is to under-
stand organisms as a whole so we can predict their behavior. In 
addition, and considering the pressing issues of climate change 
and food security, this knowledge is essential to develop high-
yielding resilient crops capable of producing nutritious food 
with minimal input of pesticides and fertilizers (Khan et  al., 
2014; Acosta-Gamboa et al., 2017).

In terms of nutrient availability, and like any other economy, 
plants also experience abundances and shortages of nutrients, 
sometimes occurring in a single day or even within hours (i.e. 
light quality or changes in the rhizosphere composition). Thus, 
plants have evolved mechanisms to sense resource availability 
and regulate growth and development accordingly. Plants have 
also evolved mechanisms to store excess nutrients when pos-
sible and decrease their uptake when the storage capacity has 
been surpassed to prevent the accumulation of toxic levels of 
nutrients (for reviews, see Mendoza-Cózatl et al., 2011; Jeong 
et al., 2017). This is particularly important for reactive nutri-
ents such as iron (Fe) and copper (Cu), which are needed in 
relatively low quantities (micromolar range) but can become 
toxic at relatively low concentrations (submillimolar range). In 
recent years, it has become clear that there is an active cross-
talk between regulatory networks controlling the uptake and 
use of nutrients (Forieri et al., 2013; Zuchi et al., 2015; Hantzis 
et al., 2018). This crosstalk is expected as nutrients are incorp-
orated into molecules of diverse composition, but the mo-
lecular and physiological mechanisms driving this crosstalk 
have only begun to be discovered. Also expected is the extra-
ordinary complexity of nutrient crosstalk in multicellular or-
ganisms such as plants, where the crosstalk needs to transcend 
cellular, tissue, and organ barriers and yet be effective and fast 
enough to cope with environmental changes that may happen 
within seconds to minutes. In this review, we will summarize 
recent advances in the field of Fe homeostasis with emphasis 
on Fe deficiency responses and their interaction with S metab-
olism. Recent research demonstrates that the crosstalk between 
Fe and S is critical to survive during longer periods of low Fe 
availability (Hantzis et  al., 2018). Because of the complexity 
of the topic, we will mainly focus on data from the reference 
plant Arabidopsis, but also include other species, particularly 
crops, when the data are available. We will also discuss current 

challenges in the Fe and S fields that prevent a seamless inte-
gration of data from different sources. Finally, our ‘Conclusions 
and perspectives’ section aims to begin a broader discussion 
that we hope will help pave the way for more cohesive research 
efforts and to speed up the pace and depth of research on one 
of the most fundamental fields in plant biology: nutrition.

Cell economy is dynamic

Homeostasis is a term that has been used for almost a cen-
tury to describe the processes that systems use to maintain 
conditions necessary for survival (Cannon, 1932). Figure 1A 
shows the standard diagram used in textbooks to describe how 
homeostasis only occurs when certain conditions are met (Taiz 
and Zeiger, 2010); that is, optimal growth and development 
is only achieved when nutrients are available at certain con-
centrations (demand≈supply; green zone). Below such levels 
(yellow zone), the demand for nutrients exceeds the supply 
and therefore organisms, in this example plants, experience 
a nutritional deficiency that ultimately limits their growth. 
Conversely, excess of any nutrient (supply>>demand), re-
gardless of their micro- or macronutrient definition, is toxic 
to plants and negatively affects plant growth and development 
(red zone). What is usually less described, and often overlooked, 
is the fact that the green zone is far from being strictly ‘stable’. 
Optimal growth is certainly achieved over the entire gradient 

Fig. 1.  Cellular homeostasis is based on supply and demand. (A) Nutrient 
availability is a major determinant for plant growth and development. 
Optimal growth depends on sufficient availability of nutrients, but, even 
within the optimal growth space (green), plants need to adapt their nutrient 
use efficiency and these adaptations may include allocating resources 
to maximize nutrient uptake (green–yellow border) or activate storage 
mechanisms to reduce uptake and prevent toxicity (green–red border). (B) 
Adaptation to environmental changes that include fluctuations in nutrient 
availability is time dependent (x-axis) and plants have evolved different 
levels of responses in an attempt to maintain or re-gain homeostasis. 
These may include immediate responses such as re-mobilization of 
transporters to the plasma membrane, transcriptional activation, nutrient 
sparing, and re-prioritization of nutrient use.
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of the green zone, but the concentration of nutrients can vary 
greatly within this optimal zone. For instance, plants growing 
under nutritional conditions near the boundary of the defi-
ciency zone must maximize their nutrient use efficiency to 
ensure optimal growth and have few opportunities for nu-
trient storage. On the opposite side of the green zone (right), 
plants growing under nutritional conditions near the boundary 
of the toxicity zone may be able to store nutrients for future 
needs without experiencing any visible toxicity. For Fe, these 
storage compartments are mainly the cell wall and the vacuole 
(Lanquar et al., 2005; Ivanov et al., 2014), but not the chloro-
plast (Reyt et al., 2015). S on the other hand, is primarily stored 
in the vacuole in the form of sulfate (Kataoka et al., 2004), but 
can also be stored as S-containing compounds, such as gluta-
thione, sulfolipids, and glucosinolates (Bourgis et  al., 1999; 
Rennenberg and Herschbach, 2014). Hence, the breadth of 
the green zone depends on the plant’s ability to sense nutrient 
availability and adjust their metabolism accordingly. This adap-
tation may require adjustments in nutrient uptake, intracellular 
compartmentalization, changes in source-to-sink relationships, 
use of stored resources, prioritization of protein synthesis, and 
nutrient sparing/recycling to optimize nutrient use efficiency 
(Blaby-Haas and Merchant, 2017; Hantzis et al., 2018). Some 
of these processes can be activated within seconds/minutes (i.e. 
phosphorylation or ubiquitination), while others may require 
minutes to hours (i.e. changes in gene expression and protein 
translation) and even days (i.e cell and tissue re-programming 
and/or nutrient sparing). Consequently, plants may experience 
transitions between deficiency or toxicity zones due to changes 
in nutrient availability and growth requirements but, as long as 
the plant’s responses are adequate and sufficient, plants may be 
able to return to their green zone (Fig. 1B). These adjustments 
may require time, but it is the basis of adaptation. They are dy-
namic and should be included in any experimental design and 
discussions related to plant nutrient homeostasis.

The role of iron–sulfur clusters in plant metabolism

At the core, literally, of mitochondrial respiration, photosyn-
thesis, amino acid and purine metabolism, DNA repair, and 
sulfate and nitrate assimilation are a particular type of cofac-
tors called iron–sulfur (Fe–S) clusters (reviewed by Balk and 
Pilon, 2011). These are rather simple chemical complexes that 
are thought to pre-date even life itself, occurring naturally in 
the early reducing Earth’s atmosphere where oxygen levels 
were low. Due to their delocalized π-electrons, Fe–S clusters 
are extraordinary catalysts with redox potentials ranging be-
tween –600 mV and +400 mV. Therefore, it is not surprising 
that they were selected early in evolution as prime catalysts 
and are now essential for plant metabolism. The most common 
Fe–S clusters found in plants are the 2Fe–2S and 4Fe–4S 
ferredoxin type clusters, which are coordinated by four Cys 
residues; the 2Fe–2S Rieske-type clusters coordinated by two 
Cys and two His residues, and the recently described 2Fe–2S 
found in NEET proteins, which are coordinated by three Cys 
residues and one His residue (Nechushtai et  al., 2012; Balk 
and Schaedler, 2014). Fe–S clusters are the major sink for Fe 
in plants, and proteins containing Fe–S clusters are present 

in plastids, mitochondria, cytosol, and the nucleus (Balk and 
Pilon, 2011). Incidentally, Fe2+ and S2− are among the most 
toxic nutrients/intermediates in plant metabolism; thus, plants 
need to tightly coordinate Fe uptake with S assimilation. In 
the following sections, we will briefly summarize our current 
understanding of Fe homeostasis and, when pertinent, its rela-
tionship to S metabolism.

Regulation of iron homeostasis

Fe in soils is often found as precipitates that are not readily 
available for plants. To solubilize Fe, plants have evolved dif-
ferent mechanisms to increase Fe availability. These include 
reducing Fe3+ complexes to Fe2+ for uptake (Strategy I) or 
releasing Fe-binding molecules to the rhizosphere, known as 
phytosiderophores (Strategy II), to facilitate the uptake of Fe–
phytosiderophore complexes into the root system (for a review, 
see Hindt and Guerinot (2012). Dicotyledonous plants, such as 
Arabidopsis thaliana, rely on Strategy I to mine Fe from the soil, 
and the main components of this reduction-based system are: a 
plasma membrane H+-ATPase (AHA2), that acidifies the rhizo-
sphere to increase Fe solubility, a FERRIC REDUCTASE 
OXIDASE2 (FRO2), which reduces Fe3+ complexes to Fe2+, 
and an IRON REGULATED TRANSPORTER1 (IRT1), 
which takes up Fe2+ from the rhizosphere into root cells (re-
cently reviewed by Jeong et al., 2017; see Fig. 2). The expres-
sion and protein abundance of these three components, known 
as the Fe regulon, is controlled at both transcriptional and post-
transcriptional levels depending on Fe availability (Mendoza-
Cózatl et al., 2014; Wild et al., 2016; Dubeaux et al., 2018). In 
Arabidopsis, transcriptional activation of the Fe regulon during 
Fe deficiency depends on several transcription factors (TFs) 
including the FER-LIKE Fe-DEFICIENCY INDUCED 
TRANSCRIPTION FACTOR [FIT, basic helix–loop–helix 
bHLH029] and the redundant bHLH038/039 pair (Colangelo 

Fig. 2.  Overview of Fe uptake and allocation in the reference plant 
Arabidopsis. Gray arrows represent the four major processes regulating 
Fe homeostasis in Arabidopsis including uptake, storage, release, 
solubilization (nicotianamine synthesis), translocation, and re-circulation 
of Fe through the phloem. Red arrows represent the two major points 
controlling Fe uptake, a local signaling that controls the localization and 
abundance of IRT1 at the plasma membrane in root epidermis cells and a 
systemic signal that controls the Fe uptake machinery at the transcriptional 
level. For simplicity, only the names of proteins and transporters are 
shown, and the transcriptional regulation of their corresponding genes is 
discussed in the text.
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and Guerinot, 2004; Yuan et  al., 2008). In addition to these 
bHLH TFs, other TFs such as MYB10 and MYB72 have also 
been identified as regulators of the Fe deficiency downstream 
of FIT. MYB10 and MYB72 are required to induce the ex-
pression of NICOTIANAMINE SYNTHASE 4 (NAS4), an 
enzyme that catalyzes the synthesis of nicotianamine (NA), 
which is an Fe-binding molecule that allows the mobilization 
of Fe within plant tissues. Failure to induce NAS4, as shown 
in the Arabidopsis mutant myb10myb72, affects plant survival 
under Fe-limiting conditions (Koen et  al., 2013; Knuesting 
et al., 2015). More recently, MYB72 has also been shown to 
regulate the synthesis of an additional type of Fe-chelating 
molecules known as coumarins, more specifically scopoletin 
(Stringlis et al., 2018). Coumarins have antimicrobial proper-
ties, and the release of scopoletin into the rhizosphere helped 
in re-shaping the microbiome for the benefit of the plant. 
Interestingly, MYB72 was previously found to interact physic-
ally with SLIM1 (Van der Ent et al., 2008), one of the very few 
TFs known to regulate S assimilation, but how the interaction 
between MYB72 and SLIM1 impacts Fe and/or S homeostasis 
is currently not known.

An additional transcriptional network, known as the 
POPEYE (PYE) network, has also been identified and charac-
terized in Arabidopsis (Long et al., 2010). PYE is also a bHLH 
protein and interacts with additional PYE-like proteins in-
duced during Fe-limiting conditions including bHLH104, 
bHLH115, and ILR3 (bHLH105) (Long et  al., 2010; Zhang 
et  al., 2015). Furthermore, PYE-like proteins interact with 
BRUTUS (BTS), which is an Fe-binding E3 ligase found in 
Arabidopsis and rice that is also induced during Fe-limiting 
conditions (Kobayashi et al., 2013; Selote et al., 2015). In con-
trast to PYE-like proteins, however, BTS is a negative regulator 
of the Fe deficiency response and targets PYE-like proteins 
for degradation, thus dampening the original Fe deficiency re-
sponse. The structure of BTS is fascinating. Besides being an E3 
ligase, BTS also contains three hemerythrin (HHE) domains 
capable of binding Fe (Selote et al., 2015). It has been suggested 
that this domain is critical to sense when sufficient Fe levels 
have been restored after inducing the Fe uptake machinery 
(Rodríguez-Celma et al., 2019). Once activated, BTS targets 
positive regulators of the Fe deficiency response to prevent an 
Fe overload.

Fe acquisition in grasses (Strategy II) is fundamentally dif-
ferent from that in dicots in the sense that Fe complexes, in-
stead of free Fe2+, are taken up from the rhizosphere. This 
chelating strategy requires the release of Fe-chelating mol-
ecules known as phytosiderophores. In rice and maize, the 
main phytosiderophore is 2-deoxy-mugineic acid (DMA), 
which is synthesized from NA and released from roots by 
Transporter Of Mugineic acid 1 (TOM1) (Nozoye et al., 2011). 
Once Fe3+–DMA complexes are formed, transporters from the 
YELLOW STRIPE family (ZmYS1 in maize and OsYSL15 in 
rice) translocate the Fe–phytosiderophore complexes into root 
cells (Curie et al., 2001; Lee et al., 2009). Similar to Arabidopsis, 
many of these Fe uptake genes are induced during Fe defi-
ciency and are also transcriptionally regulated by orthologs of 
the TFs previously discussed. For instance, the BTS ortholog in 
rice is called Hemerythrin motif-containing Really interesting 

new gene and Zinc-finger protein 1 (OsHRZ1) (Kobayashi 
et  al., 2013). OsHRZ1 is thought to be a negative regulator 
of the Fe deficiency response by modulating the activity of 
OsIRO3 (the rice PYE ortholog), which in turn coordinates 
the expression of the bHLH TF gene OsIRO2 and the syn-
thesis of NA. OsIRO2 is also a homolog of bHLH039 and 
regulates the biosynthesis of DMA and the expression of 
OsYSL15. In contrast to Arabidopsis, however, rice has two 
additional transcriptional regulators named Iron Deficiency-
responsive cis-acting Element binding Factors 1 and 2 (IDEF1 
and IDEF2), which also control the expression of OsIRT1, 
OsIRO2, and YSL2, and the biosynthesis of phytosiderophores 
(Ogo et al., 2008; Kobayashi et al., 2009, 2014). Notably, DMA 
and NA share the same S-containing precursors, l-Met and 
S-adenosylmethionine (SAM), offering a first glimpse of how 
Fe and S metabolism may be connected. As we will discuss 
later, however, the crosstalk between Fe and S networks may 
have evolved in a species-specific manner based on the demand 
for both metabolites and the different environments where 
plants natively grow. For instance, dicots such as Arabidopsis 
rely solely on Strategy I for Fe uptake, while maize, a monocot 
plant, relies mostly on Strategy II (Curie et al., 2001; Vert et al., 
2002; Nozoye et al., 2011). Rice, however, and despite being 
a monocot, seems to have functional components of both 
strategies and they are thought to be active depending on the 
growth conditions and Fe availability (i.e. anaerobic paddy soils 
or aerobic dry soils) (Ishimaru et al., 2006; Ricachenevsky and 
Sperotto, 2014). Such environmental plasticity suggests that the 
crosstalk between Fe and S networks may have evolved differ-
ently across species and therefore understanding the mechan-
istic basis of this Fe–S crosstalk may require studies in a species-, 
tissue-, and environmental-specific conditions.

From the root to the shoot

Once inside the root, Fe needs to be chelated by either organic 
acids or NA, and subsequently transported to organelles such 
as the mitochondria and plastids (for Fe–S cluster assembly), 
the vacuole (for storage), or the xylem parenchyma for subse-
quent root to shoot translocation (Fig. 2). In Arabidopsis, Fe is 
thought to be loaded into the xylem by FERROPORTIN 1 
(FPN1), where it is once again chelated by either citrate or NA 
and moved to the aerial part of the plant through the transpir-
ation stream (Morrissey et al., 2009). Allocation of Fe within 
the shoots is mediated by transporter proteins from different 
families including the OLIGOPEPTIDE TRANSPORTER 
3 (OPT3), which loads Fe into companion cells for source to 
sink long-distance transport through the phloem (Mendoza-
Cózatl et al., 2014; Zhai et al., 2014), and YELLOW STRIPE-
LIKE transporters, particularly YSL2, which distributes Fe–NA 
complexes from the xylem into neighboring cells (DiDonato 
et al., 2004). In grasses such as rice, Fe allocation between tis-
sues follows a similar path, with two major differences derived 
from the unique anatomy of grasses and the chelating strategy 
used to take up Fe3+–DMA from soils. First, while both DMA 
and NA can bind Fe, Fe3+–DMA in the cytosol of root cells is 
reduced by ascorbate to form Fe2+, which binds NA to form 
Fe2+–NA complexes that are then loaded into the xylem stream 
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(von Wiren et al., 1999; Weber et al., 2008). However, because 
Fe2+–NA complexes are more stable at the pH of the cytosol 
and the phloem sap (pH 7.2) and less stable at the acidic pH of 
the xylem sap or vacuolar lumen (pH 5.0), Fe in the xylem sap 
and vacuole is transferred to and chelated by citrate and DMA, 
while in the cytosol and phloem sap Fe is predominantly 
bound to NA and proteins (Mendoza-Cózatl et al., 2008; Ariga 
et al., 2014). The second major difference between monocots 
and dicots are the nodes, which is the place where most of the 
xylem to phloem transfer occurs for long-distance transport of 
Fe into sink tissues, including young leaves and grains. In rice, 
these processes are mediated by members of the YSL family 
such as OsYSL2, OsYSL15, OsYSL16, and OsYSL18 (Aoyama 
et al., 2009; Lee et al., 2009; Kakei et al., 2012).

While the transcriptional network regulating Fe uptake in 
roots has been reasonably well described, mostly from work 
on Arabidopsis seedlings, the transcriptional regulation of Fe 
deficiency in leaves remains largely unknown. Whole-genome 
transcriptome profiling of Arabidopsis leaves during Fe defi-
ciency has shown that transporters such as OPT3, ZIF1, a vacu-
olar NA transporter (Haydon et al., 2012), and the NATURAL 
RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 
4 (NRAMP4), which releases Fe from the vacuole (Lanquar 
et al., 2005), are induced during Fe deficiency (Fig. 2; Schmidt 
and Buckhout, 2011; Khan et al., 2018). In contrast, the Zrt- 
and Irt-like Protein 5 [ZIP5; which is also a phloem-localized 
Fe transporter (Mendoza lab, unpublished)] and YSL1/2/3 are 
repressed (Klatte et al., 2009), suggesting that limited mobiliza-
tion of Fe may be a component of adaptation during Fe limita-
tion. In addition, an RNA sequencing (RNA-seq) experiment 
in Arabidopsis leaves experiencing Fe deficiency for 3 d de-
scribed a re-programming of plastid metabolism presumably 
to prevent oxidative stress from reactive molecules such as 
tetrapyrroles (Rodriguez-Celma et al., 2013). Interestingly, this 
single point transcriptome experiment also identified a dis-
crete set of genes in leaves that are part of the Fe regulon in 
roots, including the TFs bHLH038, bHLH039, and bHLH100. 

Considering that these bHLHs have historically been asso-
ciated with root-specific responses and that FIT, the master 
regulator of the Fe regulon, is also considered a root-specific 
TF, the up-regulation of bHLH038/039/100 in leaves suggests 
that there may be a leaf-specific Fe regulon. However, the leaf 
targets of these bHLHs as well as the mechanism regulating 
their expression in response to changes in Fe availability have 
yet to be identified.

Fe deficiency responses through time

As described in previous sections, adaptation requires time and, 
while several major players of the Fe deficiency response have 
been identified, a dynamic and integrative view of these responses, 
at the physiological and transcriptional level, is still lacking, par-
ticularly when it comes to: (i) leaf responses to Fe deficiency; (ii) 
the crosstalk between leaves and roots; and (iii) the crosstalk be-
tween nutrients such as Fe and S. Time-series experiments and 
co-expression analyses in Arabidopsis roots over 72 h of Fe defi-
ciency led to the initial identification of BTS and, more recently, 
the identification of additional candidates that may be part of 
the gene regulatory network mediating Fe deficiency responses 
in roots (Koryachko et al., 2015). These types of time-dependent 
experiments have not been performed in leaves, but recent data 
from Fe limitation over a period of 7 d (sampling occurring every 
day), together with previous gene expression data, begin to offer a 
more complete picture of the different regulatory layers required 
to adapt and survive under Fe-limiting conditions (Hantzis et al., 
2018; Fig. 3). For instance, the leaf ionome of plants transferred 
from medium containing 10 μM Fe to medium with 10 nM Fe 
remained virtually unchanged for 2 d, probably due to stored Fe 
in the cell wall and vacuoles, and only Fe and Mn levels were 
found to be significantly lower after that. Changes in photosyn-
thetic activity were not detected either until the second day of 
Fe deficiency. Interestingly, the only mineral that was found to be 
accumulated at higher levels was S, which is consistent with pre-
vious observations showing that sulfate transporters are induced 

Fig. 3.  Dynamic view of Fe deficiency responses in Arabidopsis. During Fe deficiency, Arabidopsis activates different mechanisms to restore Fe levels 
within the plant, and the magnitude of these responses depends on the severity and duration of the Fe deficiency. Early events include the re-localization 
of IRT1 to the plasma membrane followed by the release of Fe reserves from the cell wall and the vacuole. If needed, more dramatic events such as 
growth delay, Fe sparing, and re-prioritization of Fe use are set in motion. All these programmed events are critical for survival and eventual recovery if 
external Fe once again becomes available (Fe re-supply).
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by Fe deficiency (Hantzis et al., 2018). In addition, younger leaves 
were the first ones to display chlorosis, which is consistent with 
transcriptional data showing that YSL1/2/3, which mediate the 
allocation of Fe to sink tissues, are repressed during Fe deficiency 
(Klatte et al., 2009). Changes after day 2 were somewhat unex-
pected, but give us some insight into the sophisticated mechan-
isms that plants have evolved to cope with changes in nutrient 
availability. As discussed before, the major sink for Fe are Fe–S 
clusters, and Fe2+ and S2− are among the most toxic nutrients. In 
turn, two key enzymes in the S assimilation pathway, adenosine 5' 
phosphosulfate reductase (APR) and sulfite reductase (SiR), were 
strongly repressed (Hantzis et al., 2018). Notably, SiR is not typic-
ally induced by S deprivation, but it has been found consistently 
repressed during Fe limitation, suggesting that in the absence 
of Fe, plants actively prevent the accumulation of S2− (Forieri 
et al., 2017; Hantzis et al., 2018). Additional chloroplast proteins 
mediating Fe–S cluster assembly, SUFA and SUFB, were also 
decreased. However, the down-regulation of Fe–S metabolism 
seemed to target chloroplasts specifically. In fact, 7 d after Fe de-
ficiency, no significant changes in mitochondrial respiration were 
detected, suggesting that maintenance of mitochondrial function 
was prioritized over chloroplast function. Interestingly, this ra-
ther dramatic re-programming of photosynthetic tissues allowed 
plants to fully recover when Fe supply was restored after 7 d of 
deprivation.

Resilience during Fe limitation requires one more staggered 
event at the organ level: growth delay. As discussed previously, 
re-allocation of resources to support processes critical for sur-
vival is part of adaptation. Several hormones have been shown 
to play different roles during Fe limitation (reviewed by Hindt 
and Guerinot, 2012). However, the underlying molecular 
mechanisms mediating hormone signaling in response to Fe 
availability are just being uncovered. For instance, DELLA pro-
teins, which are repressors of gibberellin (GA) signaling and 
partially control root growth, have been shown to accumu-
late in the root meristem during Fe deficiency, thus restricting 
root growth while allowing FIT to become active in epidermal 
cells within the root differentiation zone (Wild et  al., 2016). 
A  similar process in leaves has not been described, but an 
auxin–cytokinin circuit has been associated with delayed leaf 
growth due to resource re-allocation to promote stem growth 
during shade avoidance (Jaillais and Chory, 2010). While re-
duced root and shoot growth are hallmarks of Fe deficiency, 
there has to be a distinction between a programmed growth 
delay that conserves resources and activates uptake mechanisms 
that may eventually restore nutrient levels (transition between 
the yellow and green zone in Fig. 1B), and stunted growth 
due to nutritional deficiencies that cannot be overcome by any 
homeostatic mechanism (yellow zone; Fig. 1B). Altogether, the 
data suggest that Fe deficiency responses include a well-defined 
series of events (summarized in Fig. 3) where, upon sensing Fe 
limitation, Fe uptake is activated, the release of Fe reserves from 
the cell wall and vacuole is initiated, the mobilization of Fe to 
young tissues is paused, and growth is delayed. If these adjust-
ments are insufficient to regain homeostasis, additional steps 
such as Fe sparing, cessation of sulfate reduction and Fe–S as-
sembly in the chloroplast, and preservation of mitochondrial 
metabolism are set in motion. At the center of all these pro-
cesses is Fe sensing, which is critical to fine-tune Fe uptake to 

prevent an Fe overload and to resume growth once Fe levels 
have been restored. Fe sensing, however, is perhaps one of the 
major open questions in the Fe field that certainly deserves 
immediate, careful, and systematic examination.

Fe sensing and the role of negative feedback loops

Supply and demand models have been successfully used to 
describe the behavior of metabolic pathways and cellular sys-
tems under different scenarios, and one of the major regula-
tory mechanisms that consistently emerge in these models is 
the need for negative feedback loops (Hofmeyr and Cornish-
Bowden, 2000; Cornish-Bowden and Cardenas, 2001). These 
demand-driven feedback loops are very effective at fine-tuning 
biological processes to prevent unnecessary use of resources 
(i.e. ATP) but also to prevent the accumulation of potentially 
toxic levels of nutrients or metabolic intermediates (Creissen 
et  al., 1999; Mendoza-Cózatl and Moreno-Sanchez, 2006). 
Assimilation of both Fe and S in plants is subject to strict nega-
tive feedback loops that prevent the accumulation of toxic 
levels of Fe or S intermediates such as S2−, and disruption of 
these regulatory loops often leads to aberrant accumulation of 
Fe or S intermediates with negative impact on plant growth 
and fitness (Creissen et  al., 1999; Hofmeyr and Cornish-
Bowden, 2000; Mendoza-Cózatl and Moreno-Sanchez, 2006; 
Wild et al., 2016; Khan et al., 2018).

More than 15 years ago it was first described that Fe homeo-
stasis in plants had two components: a local sensing system in 
roots and a systemic shoot to root signaling system that allows 
leaves to communicate the Fe status of the whole plant to roots 
and regulate Fe uptake accordingly. The underlying mechan-
isms regulating the local and systemic regulation have recently 
been found to be fundamentally different. Local signaling re-
lies on post-translational modifications, while the systemic 
signaling operates mostly at the transcriptional level. For in-
stance, in roots, the large cytosolic histidine-rich loop in IRT1 
is capable of sensing the amount of transition elements available 
for uptake, including Fe (Wild et al., 2016). Under Fe-sufficient 
or excess conditions, IRT1 recruits the machinery to trigger its 
monoubiquitination followed by its removal from the plasma 
membrane to be held in internal vesicles or to be degraded. 
Variants of IRT1, where the ubiquitinatable lysine residues 
(K159 and K174) were mutated to arginines, showed uncon-
trolled metal uptake leading to plant death (Barberon et  al., 
2011). Note that this autoregulation does not make IRT1 a 
transceptor. By definition, a transceptor is a transporter protein 
capable of moving a substrate across a membrane while inde-
pendently transducing a signal leading to a defined transcrip-
tional output [as shown for the nitrate transceptor NRT1.1 
(Ho et  al., 2009)]. Since no transcriptional output has been 
identified as a result of the metal binding to the His loop, 
describing IRT1 as a transceptor is, if anything, premature. This 
feedback-mediated autoregulation of IRT1 however, does rep-
resent a form of Fe sensing and it is certainly the first line of 
defense aimed at preventing an overload of Fe or other IRT1 
substrates such as Mn, Zn, or the non-essential element Cd.

Systemic signaling, on the other hand, relies on a phloem 
mobile signal originated in leaves that leads to either the induc-
tion of the Fe regulon in roots or its repression. The chemical 
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nature of this mobile signal is under intense scrutiny and has 
not been unequivocally identified. However, results from the 
Arabidopsis mutant (opt3), in which shoot to root communica-
tion of the Fe status is impaired, suggests that (i) proper loading 
of Fe into the phloem is required to synthesize/stabilize the 
mobile signal and (ii) the signal is unlikely to be free Fe2+, as 
opt3 mutants overaccumulate large amounts of mobile Fe in 
roots but fail to repress the Fe regulon (Mendoza-Cózatl et al., 
2014; Zhai et al., 2014). Moreover, these results confirm pre-
vious studies suggesting that leaves dictate the transcriptional 
behavior of the root system and that the loss of the shoot to 
root feedback signaling has the capacity to surpass the local 
autoregulation of IRT1, leading to an overaccumulation of Fe, 
Zn, and Mn in roots and leaves.

Small peptides have been shown to play important roles 
in root to shoot and shoot to root communication, and to 
regulate processes such as nitrogen signaling and nodulation 
(Imaizumi-Anraku et al., 2010; de Bang et al., 2017). A small 
family of peptides in Arabidopsis, but ubiquitous within plants, 
have recently been identified as components necessary to in-
duce the root ferric-chelate reductase FRO2 (Grillet et  al., 
2018). These 50+ amino acid long peptides, generically called 
IRON MAN (IMA), are rapidly induced upon Fe deficiency 
in both leaves and roots, and are predicted to be phloem mo-
bile. Furthermore, an Arabidopsis mutant lacking all eight 
members of the gene family (ima8x) was unable to induce the 
activity of FRO2 (Grillet et al., 2018). However, grafting ex-
periments between ima8x scions and wild-type rootstocks dis-
played wild-type levels of FRO2 activity, suggesting that while 
IMA peptides are required for activation of FRO2, shoot to 
root transport of these peptides is not. Interestingly, these pep-
tides are capable of binding Fe2+, Cu1+/2+, Mn2+, and Zn2+, 
and, when saturated, they precipitate from the aqueous solu-
tion. These results led the authors to suggest that the instability 
of IMAs in the presence of transition elements may be part 
of a negative feedback system required to regulate Fe uptake 
(Grillet et  al., 2018). This is certainly an exciting hypothesis 
worth pursuing, and future research will be needed to eluci-
date the precise mechanism by which IMAs help in regulating 
Fe homeostasis.

The role of leaves in Fe sensing and, more specifically, that 
of the leaf vasculature has also recently been explored in 
greater detail (Khan et al., 2018). Using dynamic imaging of 
phloem-specific Fe deficiency markers, it was determined that 
the leaf vasculature is among the first tissues within the plant 
that respond to Fe deficiency. The transcriptional activation 
of these phloem-specific markers occurred hours before the 
up-regulation of the Fe regulon in roots, which in turn sug-
gests that leaves have their own Fe-sensing mechanism, inde-
pendent of roots. The use of non-destructive dynamic imaging 
allows the tracking of transcriptional responses in real-time and 
over long periods of time, offering a very detailed view of the 
magnitude of these responses. Figure 4 shows a representative 
trace of the luciferase activity (reporter gene) driven by the 
OPT3 promoter when plants experience Fe limitation and Fe 
re-supply (from Khan et al., 2018). It is tempting to suggest that 
the oscillatory behavior of the reporter gene is the result of 
circadian regulation, which has been shown to control in part 

the expression of Fe-regulated genes, including IRT1 (Hong 
et al., 2013). However, oscillation of OPT3 is evident during 
Fe-replete conditions, but the magnitude of the oscillations 
is negligible compared with the changes observed during Fe 
limitation. Moreover, the repression of the reporter gene when 
Fe supply was restored occurred in a relatively short period 
of time (i.e. <2 h) and lacked any sort of oscillatory behavior. 
Considering that transcriptional responses for Fe deficiency 
are under tight control by negative feedback loops, the oscil-
latory behavior of OPT3 during Fe limitation is more likely 
to be the result of Fe levels being transiently restored within 
the vasculature by the release of Fe reserves (e.g. cell wall and 
vacuoles) and the later activation of Fe uptake. Once Fe levels 
are restored, even if this is transient, the expression of OPT3 is 
repressed until the levels of Fe become limiting again, leading 
to the up-regulation of OPT3. These high-resolution experi-
ments offer another glimpse of the significant negative feed-
back regulation controlling Fe deficiency responses and the 
high sensitivity of the Fe sensing system in leaves.

Evidence for an additional negative feedback loop within 
the Fe homeostatic network came from the characterization 
of Arabidopsis mutants lacking the bHLH100/101 TFs (Sivitz 
et al., 2012). Transcriptional profiling of this mutant under Fe 
limitation showed that Fe deficiency-responsive genes such 
as BTS, OPT3, ORG1, bHLH039, ZIF1, and FRO3 were 
up-regulated to higher levels in leaves compared with wild-
type plants. These results suggest that bHLH100/101 may be 
necessary to induce negative regulators of the Fe deficiency 
response in leaves. In this context, the role of BTS—a negative 
regulator of Fe deficiency responses—becomes relevant again. 
In the Arabidopsis double mutant bhlh100/101, BTS is active 
and even overexpressed during Fe deficiency conditions, so 
why are OPT3, ORG1, bHLH039 and others genes transcribed 
at higher levels compared with wild type under similar growth 

Fig. 4.  Iron homeostasis is tightly regulated through negative feedback 
loops. The dotted line is a representation from experimental data 
describing the timing of Fe deficiency responses in Arabidopsis leaves. The 
original data were obtained by tracking the activity of the reporter gene 
luciferase driven by the Fe-responsive OPT3 promoter (from Khan et al., 
2018). In the original experiment, plants were transferred from replete 
conditions to Fe deficiency conditions and then back to Fe-sufficient 
conditions at the indicated times (red arrows). The oscillatory behavior of 
the reporter gene during the initial phase of Fe deficiency is discussed in 
the text as a function of possible circadian regulation but also as the result 
of negative feedback loops.
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conditions? The answer may come from a recent characteriza-
tion of BTS-like proteins and an additional allele of BTS (bts-3) 
(Hindt et al., 2017). bts-3 overaccumulates Fe, and other tran-
sition elements, in roots, leaves, and seeds due to constitutive 
activation of the Fe regulon in roots, thus confirming the role 
of BTS as a negative regulator of the Fe deficiency response. 
However, the constitutive activation of the Fe regulon in bts-3 
under replete conditions is a minor fraction (a fifth) of the full 
wild-type response to Fe limitation and, more significantly, bts-3 
was unable to activate the Fe regulon further under Fe depriv-
ation (Hindt et al., 2017). These results suggest that there may 
be additional negative regulators, on top of the BTS network, 
regulating root and leaf responses when Fe becomes limiting.

Crosstalk between Fe and S homeostatic networks.

Crosstalk between nutrients is critical for optimal nutrient use 
efficiency and to prevent the accumulation of toxic intermedi-
ates. Over the last decade, there has been increasing evidence 
suggesting an active crosstalk between Fe and S networks in dif-
ferent plant species. These data include physiological and mo-
lecular evidence in dicots and monocots but, most strikingly, as 
we discussed previously, this Fe–S crosstalk seems to be species 
specific (Ciaffi et  al., 2013; Paolacci et  al., 2014; Zuchi et  al., 
2015; Forieri et al., 2017; Garnica et al., 2018). One example 
of crosstalk between Fe and S networks is the cessation of sul-
fite reduction under Fe limitation discussed previously (Hantzis 
et al., 2018; Fig. 3), but the opposite scenario has also been dem-
onstrated. During S limitation, plants are unable to fully induce 
their Fe uptake machinery, which includes the Fe regulon in 
dicots but also the release of phytosiderophores in plants using 
Strategy II for Fe uptake such as barley, maize, and wheat (Zuchi 
et al., 2015; Garnica et al., 2018). These observations are further 
evidence that S and Fe networks are closely connected. While 
the underlying mechanisms of this crosstalk remain to be iden-
tified, transcriptome analyses of Arabidopsis plants experien-
cing S deficiency showed that the TF ZAT12 is highly induced 
in roots (Bielecka et al., 2014). ZAT12 has been implicated in 
several processes, mostly related to stress. Notably, ZAT12 was 
found to physically interact with FIT, and this interaction nega-
tively affects the induction of the Fe regulon (Le et al., 2016). 
Certainly, crosstalk between S and Fe networks is likely to exist 
at additional levels, but the ZAT12–FIT interaction provides 
a solid clue to further explore how these signaling networks 
communicate with each other. The interplay between ILR3 
and PYE may also play a role in this crosstalk. Glucosinolate 
(GL) synthesis requires S assimilation and appears to be partially 
regulated by ILR3, which is transcriptionally elevated in pye-
1 mutants. Therefore, ILR3 and PYE may regulate opposing 
sides of the GL synthesis under Fe deficiency in order to con-
serve S for the synthesis of Fe-binding by NA or other pro-
cesses (Samira et al., 2018). In addition, the previously discussed 
MYB72–SLIM1 physical interaction is another example of the 
crosstalk between Fe and S networks, but the consequences of 
this interaction are at the moment uncertain (Van der Ent et al., 
2008). Interestingly, it was recently discovered that the cross-
talk between Fe and S networks might be regulated by tran-
scriptional networks independent of those controlling either S 

assimilation or Fe uptake separately. This evidence was revealed 
by exploring long-term responses of Arabidopsis to single or 
combined nutrient deficiency regimes (Forieri et al., 2017). For 
instance, transcriptome analyses of Arabidopsis roots experien-
cing Fe limitation for 5 weeks showed a down-regulation of 
genes mediating S assimilation such as SULTR1;1, APR, and 
SiR (Forieri et al., 2017). The down-regulation of SiR is par-
ticularly interesting as this gene is not affected by S limitation 
and suggests that a network independent of the S limitation 
response can also regulate the expression of S assimilation genes 
during Fe deprivation. In tomato roots, however, repression of 
SULTR1 genes by Fe deficiency was not observed, suggesting 
that the regulation of the Fe–S crosstalk is different across spe-
cies (Zuchi et  al., 2015). Notably, the repression observed in 
Arabidopsis was eliminated when plants were subjected to dual 
Fe and S deficiencies. Similarly, during single S limitation con-
ditions, the expression of key regulators of Fe uptake including 
FIT, bHLH039, and bHLH100 was dramatically reduced. Since 
Fe–S clusters are the major Fe sink in plants, and Fe–S clus-
ters require equimolar concentrations of these two elements, 
a plausible explanation for these observations is that in the ab-
sence of S, plants reduce their Fe uptake capacity to prevent 
overaccumulation of Fe that cannot be effectively incorporated 
into Fe–S clusters. This cross-network repression, however, is 
eliminated when plants experience dual S and Fe deficiencies, 
suggesting the existence of a hierarchical regulation of Fe and S 
assimilation where the transcriptional regulation controlling 
the uptake of one element (e.g. Fe) can over-ride the cross-
transcriptional regulation imposed by the absence of the other 
element (e.g. S; Fig. 5). It should be noted that because of the 
duration of the nutrient deprivation experiments (more than a 
week), the changes seen probably represent late stages of plant 
adaptation and that experiments done at early stages (hours, 
days) may reveal additional cues about the mechanistic basis 
of the Fe and S crosstalk network. In addition to time, tissue 
specificity should be considered in future experiments, particu-
larly when exploring sensing mechanisms. For instance, while 
the FIT network controls Fe uptake at the root level, this net-
work is downstream of the systemic signal derived from shoots 
(Mendoza-Cózatl et  al., 2014; Zhai et  al., 2014). As discussed 
previously, the transcriptional networks regulating Fe deficiency 
in leaves are just being uncovered, but short-term, time-series 
experiments in a tissue-specific manner and under single and 
dual nutrient deprivation conditions are likely to provide more 
insight into the mechanisms regulating Fe and S networks at the 
whole-plant level.

Crosstalk between Fe and S networks has also been ex-
plored in grasses, particularly in wheat, and additional levels 
of regulation between these networks have been uncovered 
(Ciaffi et al., 2013; Zamboni et al., 2017). Data collected over 
recent years suggest that a major determinant for these differ-
ences is the chelating strategy used by grasses for Fe uptake 
(Strategy II), which requires the synthesis of phytosiderophores 
derived from S-containing molecules such as l-Met and SAM 
(i.e. DMA; Fig. 5) (Mori and Nishizawa, 1987; Suzuki et  al., 
2006). In turn, Fe deficiency in wheat under sufficient levels 
of S induced the expression of most of the genes of the S as-
similatory pathway, suggesting that part of the Fe deficiency 
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response in grasses includes the induction of S assimilation to 
increase the synthesis of phytosiderophores (Ciaffi et al., 2013; 
Zamboni et  al., 2017). Similarly, during S deficiency, grasses 
often display Fe deficiency symptoms probably derived from 
their inability to synthesize the S-derived phytosiderophores 
necessary for Fe uptake (Mori and Nishizawa, 1987). Research 
in wheat, however, has also shown that the differences between 
Strategy I and Strategy II plants cannot fully explain the re-
sponses observed at the gene expression level and the activity 
of enzymes within the S assimilation pathways. For instance, 
the expression of two high-affinity sulfate transporter genes in 
wheat, TdSultr1.1 and TdSultr1.3, was found to be strikingly 
different during nutrient deprivation experiments. While the 
induction of TdSultr1.1 during S limitation was not affected 
by Fe availability, the expression of TdSultr1.3 was induced by 
both Fe and S limitation, but the highest expression was found 
during Fe deficiency at adequate levels of S supply (Fig. 5) 
(Ciaffi et al., 2013). These results suggest that Fe–S crosstalk in 
wheat includes additional levels of regulation (transcriptional 
and post-transcriptional) to fine-tune enzyme activities and 
the expression of gene isoforms.

Interestingly, separate experiments showed that when S is 
supplied in excess, wheat accumulates more Fe, and this behavior 

is also evident when plants experience Fe limitation (Celletti 
et  al., 2016). These results are particularly exciting for wheat 
production as dual S and Fe scarcity is often found in fields 
and have a negative impact on yield (Hawkesford et al., 2014). 
Unfortunately, this increased Fe use efficiency in the presence 
of excess S was not observed in other grasses such as barley and 
maize. It was proposed that the rate of phytosiderophore re-
lease between species may explain these differences. In support 
of this hypothesis, the release of phytosiderophores in maize 
under Fe limitation is moderate compared with barley and 
wheat (Celletti et al., 2016).

One major theme of this review has been the role that 
time plays in adaptive responses of plants to changes in nu-
trient availability (Fig. 1). It is then important to emphasize 
that the transcriptional responses to Fe, S, or Fe/S depriv-
ation responses, previously described for Arabidopsis (Forieri 
et al., 2017; Hantzis et al., 2018) and wheat (Ciaffi et al., 2013; 
Zamboni et  al., 2017), represent long-term plant responses, 
as the deficiency experiments were conducted for >1 week. 
Transcriptional reprogramming however, happens in phases (Li 
et al., 2015), and may include rapid/transient changes within 
minutes/hours to maintain homeostasis. This reprogramming 
also includes long-term changes (i.e. days/weeks) where plants, 

Fig. 5.  Crosstalk between iron and sulfur metabolism has distinct signatures during single or dual nutritional deficiencies. The expression of sulfur 
assimilation and iron uptake genes was measured under single Fe or S deficiencies or combined Fe and S deficiencies (data from Ciaffi et al., 2013; 
Forieri et al., 2017). The color of the squares represents gene induction or repression compared with plants grown in replete media. The data for 
Arabidopsis (Strategy I) represents gene expression in roots only, while gene expression in wheat was available for leaves (L) and roots (R). Only the 
names of the enzymes where gene expression was measured is shown. Dotted lines represent reactions catalyzed by several enzymes. Abbreviations 
are as follow: SULTR1;2 or TdSultr1.1, sulfate transporters; TdATPSul1, ATP sulfurylase; TdAPR, adenosine 5′-phosphosulfate reductase; TdSiR, 
sulfite reductase; TdOASTL, O-acetylserine(thiol)lyase; SAT, serine acetyltransferase; FRO2, ferric chelate reductase; NA, nicotianamine; SAM, 
S-adenosylmethionine; DMA, 2′-deoxymugineic acid.
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based on their nutrient economy, have decided to maintain 
growth, delay growth, or even trigger an early senescence re-
sponse (recently reviewed by Sade et al., 2018). In light of the 
possible transcriptional response scenarios, we should be cau-
tious when jumping to major conclusions related to plant re-
sponses to nutrient deficiencies based on single experimental 
points and consider that plants adapt to changes in their envir-
onment and that these changes may be species-, time-, tissue-, 
and even organelle-specific responses.

Beyond plants—what have we learned about Fe 
sensing from other systems?

Fe–S clusters are essential components of Fe-sensing mech-
anisms in organisms ranging from yeast to humans. In the 
yeast Saccharomyces cerevisiae, Fe deficiency responses are regu-
lated by the TFs Aft1 and Aft2 (Rutherford et al., 2001, 2003). 
Under Fe-sufficient conditions, an Fe–S complex, stabilized by 
glutaredoxins (GRX3/4) and glutathione, prevents Aft1/Aft2 
from moving into the nucleus to activate the Fe uptake ma-
chinery. In the absence of Fe–S clusters (i.e. Fe deficiency), 
Aft1/Aft2 are mobilized to the nucleus where they activate Fe 
uptake (Pujol-Carrion et al., 2006; Kumánovics et al., 2008). Fe 
excess in S. cerevisiae is also sensed through Fe–S clusters; the 
bZIP TF YAP5 has two independent Fe–S cluster-binding sites. 
If these two sites are occupied, YAP5 activates genes mediating 
Fe detoxification, including the vacuolar Fe transporter CCC1 
(Rietzschel et al., 2015). In mammals, the iron regulatory pro-
teins (IRP1 and IRP2) regulate the stability of mRNAs re-
sponsible for iron uptake and homeostasis, and a 4Fe–4S cluster 
within IRP1 dictates whether it represses or activates Fe up-
take (Haile et al., 1992; Walden et al., 2006).

Surprisingly, the role of Fe–S clusters in relation to Fe 
homeostasis in plants remains vague. Arabidopsis GRX17 is a 
nuclear-localized glutaredoxin able to bind Fe–S clusters in a 
similar way to the yeast GRX3/4; however, its function so far 
has been associated only with the redox signaling necessary 
for the maintenance of the shoot apical meristem but not in 
Fe homeostasis (Knuesting et al., 2015). Fe–S cluster assembly 
in the mitochondria and their translocation to the cytosol are 
additional processes required for proper Fe sensing in yeast. 
The mitochondrial ATP-binding cassette Atm1 of S. cerevisiae 
mediates the transfer of Fe–S clusters, or intermediates, from 
the mitochondrial matrix to the cytosol for proper assembly 
of cytosolic Fe–S proteins (Kispal et  al., 1997). Since Fe–S 
clusters in the cytosol are necessary for Fe sensing (Outten, 
2017), yeast mutants lacking Atm1 overaccumulate Fe due to 
the constitutive activation of the Fe uptake machinery. The 
paralog of Atm1 in Arabidopsis is ATM3, and atm3 mutants 
display significant chlorosis and reduced rosette size. While the 
transcriptional status of the Fe regulon in atm3 has not been 
explored in detail, IRT1 protein levels were only slightly ele-
vated in atm3 under Fe-sufficient conditions (Bernard et  al., 
2009). Based on the presence of several overlapping mech-
anisms regulating the Fe uptake in Arabidopsis (discussed in 
previous sections), it would be interesting to explore whether 
these mild Fe deficiency responses in atm3 are the result of 
the significant negative feedback loops that have evolved to 

prevent an overaccumulation of Fe. Such conservative regula-
tion of Fe homoeostasis would prevent Fe uptake even under 
Fe-limiting conditions if Fe cannot be properly incorporated 
into Fe–S clusters, thus preventing cell damage by generation 
of reactive oxygen species (ROS). Another example of an Fe–S 
protein that deserves further examination is the Arabidopsis 
NEET protein (Nechushtai et al., 2012). At-NEET is a 2Fe–2S 
protein that regulates several plant processes including sen-
escence and ROS metabolism. Interestingly, plants in which 
NEET expression was decreased by RNAi technology were 
more sensitive to Fe deficiency and more tolerant to Fe excess 
(Nechushtai et al., 2012); however, the molecular mechanisms 
behind these phenotypes remain to be discovered.

Communication between mitochondria and the nucleus, 
known as mitochondrial retrograde signaling, is another mech-
anism widely studied in yeast that has recently gained attention 
in plants and has been proposed to play a role in Fe and S homeo-
stasis (Liu and Butow, 2006; Vigani and Briat, 2015; Vigani et al., 
2018). Retrograde signaling is important to adjust metabolism 
when the function of the mitochondria is impaired either by 
mutations in respiratory complexes or by nutritional deficien-
cies. For instance, Arabidopsis mutants with defects in the mito-
chondrial Complex I show a constitutive activation of genes that 
regulate Fe uptake and distribution (e.g. OPT3, FRO3, BTS, 
and PYE) (Vigani and Briat, 2015). However, understanding the 
molecular basis of retrograde signaling in plants is significantly 
more complex than in yeast, and remains largely obscure. This is 
due to the additional levels of regulation present in plants (shoot 
to root communication) plus the presence of plastids, which are 
also proposed to have a retrograde signaling. One example of 
this higher complexity is citrate, which is accumulated at higher 
levels during Fe or S deficiency and has been proposed as a 
signaling molecule involved in retrograde signaling (Vigani and 
Briat, 2015; Vigani et al., 2018). In fact, addition of external citrate 
to Arabidopsis plants results in the induction of FER1, which is 
also induced during Fe excess (Finkemeier et al., 2013). So how 
can a putative signal of Fe and S deficiency also induce genes 
that are typically induced during Fe excess? One plausible ex-
planation is that in plants, citrate plays a key role in Fe transloca-
tion by keeping Fe soluble in the xylem. External citrate may 
help to solubilize additional Fe attached to the cell wall, causing 
the induction of FER1. Moreover, aconitase, which is the en-
zyme that catalyzes the isomerization of citrate into isocitrate 
in the Krebs cycle, requires an Fe–S cluster as a cofactor. Thus, 
in the absence of Fe/S availability, some accumulation of citrate 
may be expected. Finally, in tomato, the accumulation of citrate 
during Fe and S deficiency happens exclusively in roots, not in 
shoots (Vigani et al., 2018), and, as we have described throughout 
this review, shoot signaling plays a major role in dictating the 
transcriptional responses of roots during Fe deficiency. More 
work is certainly needed to clarify the mechanisms of retrograde 
signaling in plants, but a meta-analysis of different transcrip-
tome data from Arabidopsis mutants with diverse mitochon-
drial dysfunction phenotypes concluded that oxidative stress 
was probably responsible for the transcriptional reprogramming 
observed across mutants (Schwarzländer et al., 2012). Therefore, 
ROS signaling may also be a major player driving the retrograde 
signaling in plants during Fe, S, or Fe/S deficiency.
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Conclusions and perspectives

So, where exactly in the plant is Fe sensed? In several places. 
How exactly is Fe sensed? In many ways, and most of them 
are still unclear. However, the progress made in recent years 
has been outstanding. Novel players have been discovered, old 
players seem to have additional roles, and new candidate genes 
hold great potential to move the field forward, so the future 
certainly looks promising. The recently described role of leaves 
in Fe sensing is a renewed opportunity to tackle Fe homeostasis 
from a systems-level perspective and will probably provide a 
more integrated view of whole-plant responses to changes in 
Fe availability. Equally exciting is the crosstalk between Fe and 
S, which remains a fairly open field that is ready to be fully ex-
plored. Technologies such as TRAP-seq, DAP-seq, ATAC-seq, 
proximity labeling, and LAESI-MS (Castro-Guerrero et  al., 
2016; Kim et al., 2016; Bartlett et al., 2017; Etalo et al., 2018; 
Sijacic et al., 2018) allow us to track the behavior of genomes, 
genes, metabolites, and proteins through time at cell-specific 
resolution. These techniques in combination with bioinfor-
matic tools such as machine learning for the identification of 
gene and protein regulatory networks will be instrumental to 
better understand the molecular basis behind the crosstalk be-
tween nutrient networks.

Moving forward

A major issue found during the preparation of this review was 
the enormous difficulty in integrating data sets from different 
publications. All of them were certainly conducted properly, 
with well-described conditions and proper controls, but, un-
less the data came from the same lab, we found that plants 
were grown in substantially different conditions. For instance, 
‘replete’ Fe conditions ranged from 10 μM to 50 μM (Ivanov 
et al., 2014; Hindt et al., 2017; Hantzis et al., 2018; Khan et al., 
2018), which in turn may impact Fe reserves and the timing/
magnitude of Fe deficiency responses. The addition of su-
crose to the growth medium was another major variable found 
across the literature. Understandably, the use of sucrose results 
in healthier plants for downstream experiments but it will also 
increase their resilience to stress. Moreover, sucrose will switch 
the metabolism of plants from autotrophic to mixotrophic and, 
lastly, a ‘2-week’-old plant would be in a completely different 
developmental stage when grown with sucrose compared with 
plants grown without sucrose as an additional carbon source. 
These issues are not exclusive to the plant field. The yeast field 
experienced a similar situation when the regulatory mechan-
isms controlling glycolysis were being resolved. However, as a 
good example of what a truly collaborative effort means, dif-
ferent parties came together to agree on what was later de-
scribed as the standardized conditions for systems biology (van 
Eunen et al., 2010). We, the authors, look forward to beginning 
similar discussions within the plant field through local sem-
inars, and domestic and international meetings to eventually 
agree, as a community, on the standardized conditions for plant 
systems biology studies. Without a doubt, this effort will help to 
advance the pace and depth of research, not only in the Fe and 
S fields, but all across the field of plant nutrition.
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