

REVIEW PAPER

Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation

David G. Mendoza-Cózatl^{1,*,†,¹}, Arun Gokul^{2,†}, Mogamat F. Carelse², Timothy O. Jobe³, Terri A. Long⁴ and Marshall Keyster^{2,5,*}

- ¹ Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- ² Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
- ³ Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
- ⁴ Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
- ⁵ DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, 7530, South Africa
- [†]These authors contributed equally to this work.
- * Correspondence: mendozad@missouri.edu and mkeyster@uwc.ac.za

Received 1 February 2019; Editorial decision 7 June 2019; Accepted 8 June 2019

Editor: Stanislav Kopriva, University of Cologne, Germany

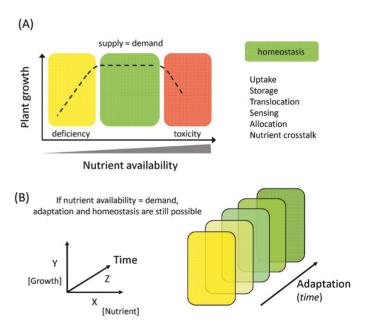
Abstract

Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and allocate resources accordingly. Iron–sulfur (Fe–S) clusters are at the center of photosynthesis, respiration, amino acid, and DNA metabolism. Fe–S clusters are extraordinary catalysts, but their main components (Fe²⁺ and S²⁻) are highly reactive and potentially toxic. To prevent toxicity, plants have evolved mechanisms to regulate the uptake, storage, and assimilation of Fe and S. Recent advances have been made in understanding the cellular economy of Fe and S metabolism individually, and growing evidence suggests that there is dynamic crosstalk between Fe and S networks. In this review, we summarize and discuss recent literature on Fe sensing, allocation, use efficiency, and, when pertinent, its relationship to S metabolism. Our future perspectives include a discussion about the open questions and challenges ahead and how the plant nutrition field can come together to approach these questions in a cohesive and more efficient way.

Keywords: Dynamic cell economy, iron sensing, iron use efficiency, nutrient crosstalk, sulfur homeostasis.

Introduction

Plants are among the select group of organisms capable of synthesizing all the molecules needed to complete their life cycle from raw chemical elements (e.g. $Fe^{2+/3+}$, Zn^{2+} , Mn^{2+} , and Cu^{1+}), inorganic compounds (e.g. CO_2 , NO_3^- , SO_4^{2-} , NH_4^+ , and PO_4^{3-}), water, and light. This includes the synthesis of $\geq 200~000$ metabolites (Dixon and Strack, 2003) such


as DNA/RNA precursors, amino acids, lipids, and sugars, in addition to proteins and other macromolecules. Considering that plants are sessile organisms and that they often encounter biotic and abiotic stresses such as fluctuating nutrient availability, drought, and pathogens, the ability of plants to thrive under dynamic environments is a biochemical feat. This

plasticity, however, comes with a hefty price tag. Nitrate assimilation, for instance, requires the equivalent of 12 molecules of ATP (~87.6 kcal mol⁻¹) to reduce a molecule of NO₃⁻ to NH₄⁺ and be incorporated into the amide nitrogen of glutamine (Bloom et al., 1992). Sulfate reduction, on the other hand, requires reducing power (8 e⁻) and twice as much energy as nitrate reduction to provide the sulfide (S²⁻) required for cysteine biosynthesis (Hell, 1997). Therefore, plants are under constant pressure to identify and allocate the right amount of resources for metabolic processes such as growth, development, and nutrient assimilation. At the same time, plants also need to determine when to delay or even stop growth and development when resources are scarce (i.e. nutrient limitation) or when resources need to be diverted to support other critical processes such as defense (Katsir et al., 2008; Yang et al., 2012). For decades, understanding the basis of this 'cell economy' has been a major driving force in plant biology and it is at the core of the systems biology field, where the goal is to understand organisms as a whole so we can predict their behavior. In addition, and considering the pressing issues of climate change and food security, this knowledge is essential to develop highyielding resilient crops capable of producing nutritious food with minimal input of pesticides and fertilizers (Khan et al., 2014; Acosta-Gamboa et al., 2017).

In terms of nutrient availability, and like any other economy, plants also experience abundances and shortages of nutrients, sometimes occurring in a single day or even within hours (i.e. light quality or changes in the rhizosphere composition). Thus, plants have evolved mechanisms to sense resource availability and regulate growth and development accordingly. Plants have also evolved mechanisms to store excess nutrients when possible and decrease their uptake when the storage capacity has been surpassed to prevent the accumulation of toxic levels of nutrients (for reviews, see Mendoza-Cózatl et al., 2011; Jeong et al., 2017). This is particularly important for reactive nutrients such as iron (Fe) and copper (Cu), which are needed in relatively low quantities (micromolar range) but can become toxic at relatively low concentrations (submillimolar range). In recent years, it has become clear that there is an active crosstalk between regulatory networks controlling the uptake and use of nutrients (Forieri et al., 2013; Zuchi et al., 2015; Hantzis et al., 2018). This crosstalk is expected as nutrients are incorporated into molecules of diverse composition, but the molecular and physiological mechanisms driving this crosstalk have only begun to be discovered. Also expected is the extraordinary complexity of nutrient crosstalk in multicellular organisms such as plants, where the crosstalk needs to transcend cellular, tissue, and organ barriers and yet be effective and fast enough to cope with environmental changes that may happen within seconds to minutes. In this review, we will summarize recent advances in the field of Fe homeostasis with emphasis on Fe deficiency responses and their interaction with S metabolism. Recent research demonstrates that the crosstalk between Fe and S is critical to survive during longer periods of low Fe availability (Hantzis et al., 2018). Because of the complexity of the topic, we will mainly focus on data from the reference plant Arabidopsis, but also include other species, particularly crops, when the data are available. We will also discuss current challenges in the Fe and S fields that prevent a seamless integration of data from different sources. Finally, our 'Conclusions and perspectives' section aims to begin a broader discussion that we hope will help pave the way for more cohesive research efforts and to speed up the pace and depth of research on one of the most fundamental fields in plant biology; nutrition.

Cell economy is dynamic

Homeostasis is a term that has been used for almost a century to describe the processes that systems use to maintain conditions necessary for survival (Cannon, 1932). Figure 1A shows the standard diagram used in textbooks to describe how homeostasis only occurs when certain conditions are met (Taiz and Zeiger, 2010); that is, optimal growth and development is only achieved when nutrients are available at certain concentrations (demand*supply; green zone). Below such levels (yellow zone), the demand for nutrients exceeds the supply and therefore organisms, in this example plants, experience a nutritional deficiency that ultimately limits their growth. Conversely, excess of any nutrient (supply>>demand), regardless of their micro- or macronutrient definition, is toxic to plants and negatively affects plant growth and development (red zone). What is usually less described, and often overlooked, is the fact that the green zone is far from being strictly 'stable'. Optimal growth is certainly achieved over the entire gradient

Fig. 1. Cellular homeostasis is based on supply and demand. (A) Nutrient availability is a major determinant for plant growth and development. Optimal growth depends on sufficient availability of nutrients, but, even within the optimal growth space (green), plants need to adapt their nutrient use efficiency and these adaptations may include allocating resources to maximize nutrient uptake (green–yellow border) or activate storage mechanisms to reduce uptake and prevent toxicity (green–red border). (B) Adaptation to environmental changes that include fluctuations in nutrient availability is time dependent (x-axis) and plants have evolved different levels of responses in an attempt to maintain or re-gain homeostasis. These may include immediate responses such as re-mobilization of transporters to the plasma membrane, transcriptional activation, nutrient sparing, and re-prioritization of nutrient use.

of the green zone, but the concentration of nutrients can vary greatly within this optimal zone. For instance, plants growing under nutritional conditions near the boundary of the deficiency zone must maximize their nutrient use efficiency to ensure optimal growth and have few opportunities for nutrient storage. On the opposite side of the green zone (right), plants growing under nutritional conditions near the boundary of the toxicity zone may be able to store nutrients for future needs without experiencing any visible toxicity. For Fe, these storage compartments are mainly the cell wall and the vacuole (Languar et al., 2005; Ivanov et al., 2014), but not the chloroplast (Reyt et al., 2015). S on the other hand, is primarily stored in the vacuole in the form of sulfate (Kataoka et al., 2004), but can also be stored as S-containing compounds, such as glutathione, sulfolipids, and glucosinolates (Bourgis et al., 1999; Rennenberg and Herschbach, 2014). Hence, the breadth of the green zone depends on the plant's ability to sense nutrient availability and adjust their metabolism accordingly. This adaptation may require adjustments in nutrient uptake, intracellular compartmentalization, changes in source-to-sink relationships, use of stored resources, prioritization of protein synthesis, and nutrient sparing/recycling to optimize nutrient use efficiency (Blaby-Haas and Merchant, 2017; Hantzis et al., 2018). Some of these processes can be activated within seconds/minutes (i.e. phosphorylation or ubiquitination), while others may require minutes to hours (i.e. changes in gene expression and protein translation) and even days (i.e cell and tissue re-programming and/or nutrient sparing). Consequently, plants may experience transitions between deficiency or toxicity zones due to changes in nutrient availability and growth requirements but, as long as the plant's responses are adequate and sufficient, plants may be able to return to their green zone (Fig. 1B). These adjustments may require time, but it is the basis of adaptation. They are dynamic and should be included in any experimental design and discussions related to plant nutrient homeostasis.

The role of iron-sulfur clusters in plant metabolism

At the core, literally, of mitochondrial respiration, photosynthesis, amino acid and purine metabolism, DNA repair, and sulfate and nitrate assimilation are a particular type of cofactors called iron-sulfur (Fe-S) clusters (reviewed by Balk and Pilon, 2011). These are rather simple chemical complexes that are thought to pre-date even life itself, occurring naturally in the early reducing Earth's atmosphere where oxygen levels were low. Due to their delocalized π -electrons, Fe–S clusters are extraordinary catalysts with redox potentials ranging between -600 mV and +400 mV. Therefore, it is not surprising that they were selected early in evolution as prime catalysts and are now essential for plant metabolism. The most common Fe-S clusters found in plants are the 2Fe-2S and 4Fe-4S ferredoxin type clusters, which are coordinated by four Cys residues; the 2Fe–2S Rieske-type clusters coordinated by two Cys and two His residues, and the recently described 2Fe-2S found in NEET proteins, which are coordinated by three Cys residues and one His residue (Nechushtai et al., 2012; Balk and Schaedler, 2014). Fe-S clusters are the major sink for Fe in plants, and proteins containing Fe-S clusters are present

in plastids, mitochondria, cytosol, and the nucleus (Balk and Pilon, 2011). Incidentally, Fe^{2+} and S^{2-} are among the most toxic nutrients/intermediates in plant metabolism; thus, plants need to tightly coordinate Fe uptake with S assimilation. In the following sections, we will briefly summarize our current understanding of Fe homeostasis and, when pertinent, its relationship to S metabolism.

Regulation of iron homeostasis

Fe in soils is often found as precipitates that are not readily available for plants. To solubilize Fe, plants have evolved different mechanisms to increase Fe availability. These include reducing Fe³⁺ complexes to Fe²⁺ for uptake (Strategy I) or releasing Fe-binding molecules to the rhizosphere, known as phytosiderophores (Strategy II), to facilitate the uptake of Fephytosiderophore complexes into the root system (for a review, see Hindt and Guerinot (2012). Dicotyledonous plants, such as Arabidopsis thaliana, rely on Strategy I to mine Fe from the soil, and the main components of this reduction-based system are: a plasma membrane H⁺-ATPase (AHA2), that acidifies the rhizosphere to increase Fe solubility, a FERRIC REDUCTASE OXIDASE2 (FRO2), which reduces Fe³⁺ complexes to Fe²⁺, and an IRON REGULATED TRANSPORTER1 (IRT1), which takes up Fe²⁺ from the rhizosphere into root cells (recently reviewed by Jeong et al., 2017; see Fig. 2). The expression and protein abundance of these three components, known as the Fe regulon, is controlled at both transcriptional and posttranscriptional levels depending on Fe availability (Mendoza-Cózatl et al., 2014; Wild et al., 2016; Dubeaux et al., 2018). In Arabidopsis, transcriptional activation of the Fe regulon during Fe deficiency depends on several transcription factors (TFs) including the FER-LIKE Fe-DEFICIENCY INDUCED TRANSCRIPTION FACTOR [FIT, basic helix-loop-helix bHLH029] and the redundant bHLH038/039 pair (Colangelo

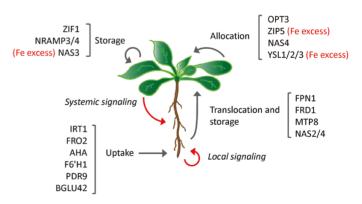


Fig. 2. Overview of Fe uptake and allocation in the reference plant Arabidopsis. Gray arrows represent the four major processes regulating Fe homeostasis in Arabidopsis including uptake, storage, release, solubilization (nicotianamine synthesis), translocation, and re-circulation of Fe through the phloem. Red arrows represent the two major points controlling Fe uptake, a local signaling that controls the localization and abundance of IRT1 at the plasma membrane in root epidermis cells and a systemic signal that controls the Fe uptake machinery at the transcriptional level. For simplicity, only the names of proteins and transporters are shown, and the transcriptional regulation of their corresponding genes is discussed in the text.

and Guerinot, 2004; Yuan et al., 2008). In addition to these bHLH TFs, other TFs such as MYB10 and MYB72 have also been identified as regulators of the Fe deficiency downstream of FIT. MYB10 and MYB72 are required to induce the expression of NICOTIANAMINE SYNTHASE 4 (NAS4), an enzyme that catalyzes the synthesis of nicotianamine (NA), which is an Fe-binding molecule that allows the mobilization of Fe within plant tissues. Failure to induce NAS4, as shown in the Arabidopsis mutant myb10myb72, affects plant survival under Fe-limiting conditions (Koen et al., 2013; Knuesting et al., 2015). More recently, MYB72 has also been shown to regulate the synthesis of an additional type of Fe-chelating molecules known as coumarins, more specifically scopoletin (Stringlis et al., 2018). Coumarins have antimicrobial properties, and the release of scopoletin into the rhizosphere helped in re-shaping the microbiome for the benefit of the plant. Interestingly, MYB72 was previously found to interact physically with SLIM1 (Van der Ent et al., 2008), one of the very few TFs known to regulate S assimilation, but how the interaction between MYB72 and SLIM1 impacts Fe and/or S homeostasis is currently not known.

An additional transcriptional network, known as the POPEYE (PYE) network, has also been identified and characterized in Arabidopsis (Long et al., 2010). PYE is also a bHLH protein and interacts with additional PYE-like proteins induced during Fe-limiting conditions including bHLH104, bHLH115, and ILR3 (bHLH105) (Long et al., 2010; Zhang et al., 2015). Furthermore, PYE-like proteins interact with BRUTUS (BTS), which is an Fe-binding E3 ligase found in Arabidopsis and rice that is also induced during Fe-limiting conditions (Kobayashi et al., 2013; Selote et al., 2015). In contrast to PYE-like proteins, however, BTS is a negative regulator of the Fe deficiency response and targets PYE-like proteins for degradation, thus dampening the original Fe deficiency response. The structure of BTS is fascinating. Besides being an E3 ligase, BTS also contains three hemerythrin (HHE) domains capable of binding Fe (Selote et al., 2015). It has been suggested that this domain is critical to sense when sufficient Fe levels have been restored after inducing the Fe uptake machinery (Rodríguez-Celma et al., 2019). Once activated, BTS targets positive regulators of the Fe deficiency response to prevent an Fe overload.

Fe acquisition in grasses (Strategy II) is fundamentally different from that in dicots in the sense that Fe complexes, instead of free Fe²⁺, are taken up from the rhizosphere. This chelating strategy requires the release of Fe-chelating molecules known as phytosiderophores. In rice and maize, the main phytosiderophore is 2-deoxy-mugineic acid (DMA), which is synthesized from NA and released from roots by Transporter Of Mugineic acid 1 (TOM1) (Nozove et al., 2011). Once Fe³⁺–DMA complexes are formed, transporters from the YELLOW STRIPE family (ZmYS1 in maize and OsYSL15 in rice) translocate the Fe-phytosiderophore complexes into root cells (Curie et al., 2001; Lee et al., 2009). Similar to Arabidopsis, many of these Fe uptake genes are induced during Fe deficiency and are also transcriptionally regulated by orthologs of the TFs previously discussed. For instance, the BTS ortholog in rice is called Hemerythrin motif-containing Really interesting new gene and Zinc-finger protein 1 (OsHRZ1) (Kobayashi et al., 2013). OsHRZ1 is thought to be a negative regulator of the Fe deficiency response by modulating the activity of OsIRO3 (the rice PYE ortholog), which in turn coordinates the expression of the bHLH TF gene OsIRO2 and the synthesis of NA. OsIRO2 is also a homolog of bHLH039 and regulates the biosynthesis of DMA and the expression of OsYSL15. In contrast to Arabidopsis, however, rice has two additional transcriptional regulators named Iron Deficiencyresponsive cis-acting Element binding Factors 1 and 2 (IDEF1 and IDEF2), which also control the expression of OsIRT1, OsIRO2, and YSL2, and the biosynthesis of phytosiderophores (Ogo et al., 2008; Kobayashi et al., 2009, 2014). Notably, DMA and NA share the same S-containing precursors, L-Met and S-adenosylmethionine (SAM), offering a first glimpse of how Fe and S metabolism may be connected. As we will discuss later, however, the crosstalk between Fe and S networks may have evolved in a species-specific manner based on the demand for both metabolites and the different environments where plants natively grow. For instance, dicots such as Arabidopsis rely solely on Strategy I for Fe uptake, while maize, a monocot plant, relies mostly on Strategy II (Curie et al., 2001; Vert et al., 2002; Nozoye et al., 2011). Rice, however, and despite being a monocot, seems to have functional components of both strategies and they are thought to be active depending on the growth conditions and Fe availability (i.e. anaerobic paddy soils or aerobic dry soils) (Ishimaru et al., 2006; Ricachenevsky and Sperotto, 2014). Such environmental plasticity suggests that the crosstalk between Fe and S networks may have evolved differently across species and therefore understanding the mechanistic basis of this Fe-S crosstalk may require studies in a species-, tissue-, and environmental-specific conditions.

From the root to the shoot

Once inside the root, Fe needs to be chelated by either organic acids or NA, and subsequently transported to organelles such as the mitochondria and plastids (for Fe–S cluster assembly), the vacuole (for storage), or the xylem parenchyma for subsequent root to shoot translocation (Fig. 2). In Arabidopsis, Fe is thought to be loaded into the xylem by FERROPORTIN 1 (FPN1), where it is once again chelated by either citrate or NA and moved to the aerial part of the plant through the transpiration stream (Morrissey et al., 2009). Allocation of Fe within the shoots is mediated by transporter proteins from different families including the OLIGOPEPTIDE TRANSPORTER 3 (OPT3), which loads Fe into companion cells for source to sink long-distance transport through the phloem (Mendoza-Cózatl et al., 2014; Zhai et al., 2014), and YELLOW STRIPE-LIKE transporters, particularly YSL2, which distributes Fe-NA complexes from the xylem into neighboring cells (DiDonato et al., 2004). In grasses such as rice, Fe allocation between tissues follows a similar path, with two major differences derived from the unique anatomy of grasses and the chelating strategy used to take up Fe³⁺-DMA from soils. First, while both DMA and NA can bind Fe, Fe³⁺-DMA in the cytosol of root cells is reduced by ascorbate to form Fe²⁺, which binds NA to form Fe²⁺–NA complexes that are then loaded into the xylem stream

(von Wiren et al., 1999; Weber et al., 2008). However, because Fe²⁺-NA complexes are more stable at the pH of the cytosol and the phloem sap (pH 7.2) and less stable at the acidic pH of the xylem sap or vacuolar lumen (pH 5.0), Fe in the xylem sap and vacuole is transferred to and chelated by citrate and DMA, while in the cytosol and phloem sap Fe is predominantly bound to NA and proteins (Mendoza-Cózatl et al., 2008; Ariga et al., 2014). The second major difference between monocots and dicots are the nodes, which is the place where most of the xylem to phloem transfer occurs for long-distance transport of Fe into sink tissues, including young leaves and grains. In rice, these processes are mediated by members of the YSL family such as OsYSL2, OsYSL15, OsYSL16, and OsYSL18 (Aoyama et al., 2009; Lee et al., 2009; Kakei et al., 2012).

While the transcriptional network regulating Fe uptake in roots has been reasonably well described, mostly from work on Arabidopsis seedlings, the transcriptional regulation of Fe deficiency in leaves remains largely unknown. Whole-genome transcriptome profiling of Arabidopsis leaves during Fe deficiency has shown that transporters such as OPT3, ZIF1, a vacuolar NA transporter (Haydon et al., 2012), and the NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 4 (NRAMP4), which releases Fe from the vacuole (Languar et al., 2005), are induced during Fe deficiency (Fig. 2; Schmidt and Buckhout, 2011; Khan et al., 2018). In contrast, the Zrtand Irt-like Protein 5 [ZIP5; which is also a phloem-localized Fe transporter (Mendoza lab, unpublished)] and YSL1/2/3 are repressed (Klatte et al., 2009), suggesting that limited mobilization of Fe may be a component of adaptation during Fe limitation. In addition, an RNA sequencing (RNA-seq) experiment in Arabidopsis leaves experiencing Fe deficiency for 3 d described a re-programming of plastid metabolism presumably to prevent oxidative stress from reactive molecules such as tetrapyrroles (Rodriguez-Celma et al., 2013). Interestingly, this single point transcriptome experiment also identified a discrete set of genes in leaves that are part of the Fe regulon in roots, including the TFs bHLH038, bHLH039, and bHLH100. Considering that these bHLHs have historically been associated with root-specific responses and that FIT, the master regulator of the Fe regulon, is also considered a root-specific TF, the up-regulation of bHLH038/039/100 in leaves suggests that there may be a leaf-specific Fe regulon. However, the leaf targets of these bHLHs as well as the mechanism regulating their expression in response to changes in Fe availability have yet to be identified.

Fe deficiency responses through time

As described in previous sections, adaptation requires time and, while several major players of the Fe deficiency response have been identified, a dynamic and integrative view of these responses, at the physiological and transcriptional level, is still lacking, particularly when it comes to: (i) leaf responses to Fe deficiency; (ii) the crosstalk between leaves and roots; and (iii) the crosstalk between nutrients such as Fe and S. Time-series experiments and co-expression analyses in Arabidopsis roots over 72 h of Fe deficiency led to the initial identification of BTS and, more recently, the identification of additional candidates that may be part of the gene regulatory network mediating Fe deficiency responses in roots (Koryachko et al., 2015). These types of time-dependent experiments have not been performed in leaves, but recent data from Fe limitation over a period of 7 d (sampling occurring every day), together with previous gene expression data, begin to offer a more complete picture of the different regulatory layers required to adapt and survive under Fe-limiting conditions (Hantzis et al., 2018; Fig. 3). For instance, the leaf ionome of plants transferred from medium containing 10 µM Fe to medium with 10 nM Fe remained virtually unchanged for 2 d, probably due to stored Fe in the cell wall and vacuoles, and only Fe and Mn levels were found to be significantly lower after that. Changes in photosynthetic activity were not detected either until the second day of Fe deficiency. Interestingly, the only mineral that was found to be accumulated at higher levels was S, which is consistent with previous observations showing that sulfate transporters are induced

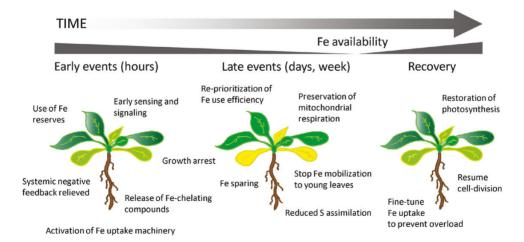


Fig. 3. Dynamic view of Fe deficiency responses in Arabidopsis. During Fe deficiency, Arabidopsis activates different mechanisms to restore Fe levels within the plant, and the magnitude of these responses depends on the severity and duration of the Fe deficiency. Early events include the re-localization of IRT1 to the plasma membrane followed by the release of Fe reserves from the cell wall and the vacuole. If needed, more dramatic events such as growth delay, Fe sparing, and re-prioritization of Fe use are set in motion. All these programmed events are critical for survival and eventual recovery if external Fe once again becomes available (Fe re-supply).

by Fe deficiency (Hantzis et al., 2018). In addition, younger leaves were the first ones to display chlorosis, which is consistent with transcriptional data showing that YSL1/2/3, which mediate the allocation of Fe to sink tissues, are repressed during Fe deficiency (Klatte et al., 2009). Changes after day 2 were somewhat unexpected, but give us some insight into the sophisticated mechanisms that plants have evolved to cope with changes in nutrient availability. As discussed before, the major sink for Fe are Fe-S clusters, and Fe²⁺ and S²⁻ are among the most toxic nutrients. In turn, two key enzymes in the S assimilation pathway, adenosine 5' phosphosulfate reductase (APR) and sulfite reductase (SiR), were strongly repressed (Hantzis et al., 2018). Notably, SiR is not typically induced by S deprivation, but it has been found consistently repressed during Fe limitation, suggesting that in the absence of Fe, plants actively prevent the accumulation of S²⁻ (Forieri et al., 2017; Hantzis et al., 2018). Additional chloroplast proteins mediating Fe-S cluster assembly, SUFA and SUFB, were also decreased. However, the down-regulation of Fe-S metabolism seemed to target chloroplasts specifically. In fact, 7 d after Fe deficiency, no significant changes in mitochondrial respiration were detected, suggesting that maintenance of mitochondrial function was prioritized over chloroplast function. Interestingly, this rather dramatic re-programming of photosynthetic tissues allowed plants to fully recover when Fe supply was restored after 7 d of deprivation.

Resilience during Fe limitation requires one more staggered event at the organ level: growth delay. As discussed previously, re-allocation of resources to support processes critical for survival is part of adaptation. Several hormones have been shown to play different roles during Fe limitation (reviewed by Hindt and Guerinot, 2012). However, the underlying molecular mechanisms mediating hormone signaling in response to Fe availability are just being uncovered. For instance, DELLA proteins, which are repressors of gibberellin (GA) signaling and partially control root growth, have been shown to accumulate in the root meristem during Fe deficiency, thus restricting root growth while allowing FIT to become active in epidermal cells within the root differentiation zone (Wild et al., 2016). A similar process in leaves has not been described, but an auxin-cytokinin circuit has been associated with delayed leaf growth due to resource re-allocation to promote stem growth during shade avoidance (Jaillais and Chory, 2010). While reduced root and shoot growth are hallmarks of Fe deficiency, there has to be a distinction between a programmed growth delay that conserves resources and activates uptake mechanisms that may eventually restore nutrient levels (transition between the yellow and green zone in Fig. 1B), and stunted growth due to nutritional deficiencies that cannot be overcome by any homeostatic mechanism (yellow zone; Fig. 1B). Altogether, the data suggest that Fe deficiency responses include a well-defined series of events (summarized in Fig. 3) where, upon sensing Fe limitation, Fe uptake is activated, the release of Fe reserves from the cell wall and vacuole is initiated, the mobilization of Fe to young tissues is paused, and growth is delayed. If these adjustments are insufficient to regain homeostasis, additional steps such as Fe sparing, cessation of sulfate reduction and Fe-S assembly in the chloroplast, and preservation of mitochondrial metabolism are set in motion. At the center of all these processes is Fe sensing, which is critical to fine-tune Fe uptake to prevent an Fe overload and to resume growth once Fe levels have been restored. Fe sensing, however, is perhaps one of the major open questions in the Fe field that certainly deserves immediate, careful, and systematic examination.

Fe sensing and the role of negative feedback loops

Supply and demand models have been successfully used to describe the behavior of metabolic pathways and cellular systems under different scenarios, and one of the major regulatory mechanisms that consistently emerge in these models is the need for negative feedback loops (Hofmeyr and Cornish-Bowden, 2000; Cornish-Bowden and Cardenas, 2001). These demand-driven feedback loops are very effective at fine-tuning biological processes to prevent unnecessary use of resources (i.e. ATP) but also to prevent the accumulation of potentially toxic levels of nutrients or metabolic intermediates (Creissen et al., 1999; Mendoza-Cózatl and Moreno-Sanchez, 2006). Assimilation of both Fe and S in plants is subject to strict negative feedback loops that prevent the accumulation of toxic levels of Fe or S intermediates such as S²⁻, and disruption of these regulatory loops often leads to aberrant accumulation of Fe or S intermediates with negative impact on plant growth and fitness (Creissen et al., 1999; Hofmeyr and Cornish-Bowden, 2000; Mendoza-Cózatl and Moreno-Sanchez, 2006; Wild et al., 2016; Khan et al., 2018).

More than 15 years ago it was first described that Fe homeostasis in plants had two components: a local sensing system in roots and a systemic shoot to root signaling system that allows leaves to communicate the Fe status of the whole plant to roots and regulate Fe uptake accordingly. The underlying mechanisms regulating the local and systemic regulation have recently been found to be fundamentally different. Local signaling relies on post-translational modifications, while the systemic signaling operates mostly at the transcriptional level. For instance, in roots, the large cytosolic histidine-rich loop in IRT1 is capable of sensing the amount of transition elements available for uptake, including Fe (Wild et al., 2016). Under Fe-sufficient or excess conditions, IRT1 recruits the machinery to trigger its monoubiquitination followed by its removal from the plasma membrane to be held in internal vesicles or to be degraded. Variants of IRT1, where the ubiquitinatable lysine residues (K159 and K174) were mutated to arginines, showed uncontrolled metal uptake leading to plant death (Barberon et al., 2011). Note that this autoregulation does not make IRT1 a transceptor. By definition, a transceptor is a transporter protein capable of moving a substrate across a membrane while independently transducing a signal leading to a defined transcriptional output [as shown for the nitrate transceptor NRT1.1 (Ho et al., 2009)]. Since no transcriptional output has been identified as a result of the metal binding to the His loop, describing IRT1 as a transceptor is, if anything, premature. This feedback-mediated autoregulation of IRT1 however, does represent a form of Fe sensing and it is certainly the first line of defense aimed at preventing an overload of Fe or other IRT1 substrates such as Mn, Zn, or the non-essential element Cd.

Systemic signaling, on the other hand, relies on a phloem mobile signal originated in leaves that leads to either the induction of the Fe regulon in roots or its repression. The chemical

nature of this mobile signal is under intense scrutiny and has not been unequivocally identified. However, results from the Arabidopsis mutant (opt3), in which shoot to root communication of the Fe status is impaired, suggests that (i) proper loading of Fe into the phloem is required to synthesize/stabilize the mobile signal and (ii) the signal is unlikely to be free Fe²⁺, as opt3 mutants overaccumulate large amounts of mobile Fe in roots but fail to repress the Fe regulon (Mendoza-Cózatl et al., 2014; Zhai et al., 2014). Moreover, these results confirm previous studies suggesting that leaves dictate the transcriptional behavior of the root system and that the loss of the shoot to root feedback signaling has the capacity to surpass the local autoregulation of IRT1, leading to an overaccumulation of Fe, Zn, and Mn in roots and leaves.

Small peptides have been shown to play important roles in root to shoot and shoot to root communication, and to regulate processes such as nitrogen signaling and nodulation (Imaizumi-Anraku et al., 2010; de Bang et al., 2017). A small family of peptides in Arabidopsis, but ubiquitous within plants, have recently been identified as components necessary to induce the root ferric-chelate reductase FRO2 (Grillet et al., 2018). These 50+ amino acid long peptides, generically called IRON MAN (IMA), are rapidly induced upon Fe deficiency in both leaves and roots, and are predicted to be phloem mobile. Furthermore, an Arabidopsis mutant lacking all eight members of the gene family (ima8x) was unable to induce the activity of FRO2 (Grillet et al., 2018). However, grafting experiments between ima8x scions and wild-type rootstocks displayed wild-type levels of FRO2 activity, suggesting that while IMA peptides are required for activation of FRO2, shoot to root transport of these peptides is not. Interestingly, these peptides are capable of binding Fe²⁺, Cu^{1+/2+}, Mn²⁺, and Zn²⁺, and, when saturated, they precipitate from the aqueous solution. These results led the authors to suggest that the instability of IMAs in the presence of transition elements may be part of a negative feedback system required to regulate Fe uptake (Grillet et al., 2018). This is certainly an exciting hypothesis worth pursuing, and future research will be needed to elucidate the precise mechanism by which IMAs help in regulating Fe homeostasis.

The role of leaves in Fe sensing and, more specifically, that of the leaf vasculature has also recently been explored in greater detail (Khan et al., 2018). Using dynamic imaging of phloem-specific Fe deficiency markers, it was determined that the leaf vasculature is among the first tissues within the plant that respond to Fe deficiency. The transcriptional activation of these phloem-specific markers occurred hours before the up-regulation of the Fe regulon in roots, which in turn suggests that leaves have their own Fe-sensing mechanism, independent of roots. The use of non-destructive dynamic imaging allows the tracking of transcriptional responses in real-time and over long periods of time, offering a very detailed view of the magnitude of these responses. Figure 4 shows a representative trace of the luciferase activity (reporter gene) driven by the OPT3 promoter when plants experience Fe limitation and Fe re-supply (from Khan et al., 2018). It is tempting to suggest that the oscillatory behavior of the reporter gene is the result of circadian regulation, which has been shown to control in part

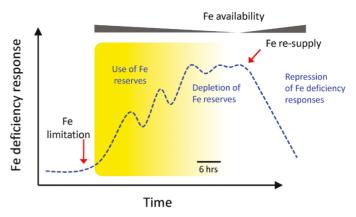


Fig. 4. Iron homeostasis is tightly regulated through negative feedback loops. The dotted line is a representation from experimental data describing the timing of Fe deficiency responses in Arabidopsis leaves. The original data were obtained by tracking the activity of the reporter gene luciferase driven by the Fe-responsive OPT3 promoter (from Khan et al., 2018). In the original experiment, plants were transferred from replete conditions to Fe deficiency conditions and then back to Fe-sufficient conditions at the indicated times (red arrows). The oscillatory behavior of the reporter gene during the initial phase of Fe deficiency is discussed in the text as a function of possible circadian regulation but also as the result of negative feedback loops.

the expression of Fe-regulated genes, including IRT1 (Hong et al., 2013). However, oscillation of OPT3 is evident during Fe-replete conditions, but the magnitude of the oscillations is negligible compared with the changes observed during Fe limitation. Moreover, the repression of the reporter gene when Fe supply was restored occurred in a relatively short period of time (i.e. <2 h) and lacked any sort of oscillatory behavior. Considering that transcriptional responses for Fe deficiency are under tight control by negative feedback loops, the oscillatory behavior of OPT3 during Fe limitation is more likely to be the result of Fe levels being transiently restored within the vasculature by the release of Fe reserves (e.g. cell wall and vacuoles) and the later activation of Fe uptake. Once Fe levels are restored, even if this is transient, the expression of *OPT3* is repressed until the levels of Fe become limiting again, leading to the up-regulation of OPT3. These high-resolution experiments offer another glimpse of the significant negative feedback regulation controlling Fe deficiency responses and the high sensitivity of the Fe sensing system in leaves.

Evidence for an additional negative feedback loop within the Fe homeostatic network came from the characterization of Arabidopsis mutants lacking the bHLH100/101 TFs (Sivitz et al., 2012). Transcriptional profiling of this mutant under Fe limitation showed that Fe deficiency-responsive genes such as BTS, OPT3, ORG1, bHLH039, ZIF1, and FRO3 were up-regulated to higher levels in leaves compared with wildtype plants. These results suggest that bHLH100/101 may be necessary to induce negative regulators of the Fe deficiency response in leaves. In this context, the role of BTS—a negative regulator of Fe deficiency responses—becomes relevant again. In the Arabidopsis double mutant bhlh100/101, BTS is active and even overexpressed during Fe deficiency conditions, so why are OPT3, ORG1, bHLH039 and others genes transcribed at higher levels compared with wild type under similar growth

conditions? The answer may come from a recent characterization of BTS-like proteins and an additional allele of BTS (*bts-3*) (Hindt *et al.*, 2017). *bts-3* overaccumulates Fe, and other transition elements, in roots, leaves, and seeds due to constitutive activation of the Fe regulon in roots, thus confirming the role of BTS as a negative regulator of the Fe deficiency response. However, the constitutive activation of the Fe regulon in *bts-3* under replete conditions is a minor fraction (a fifth) of the full wild-type response to Fe limitation and, more significantly, *bts-3* was unable to activate the Fe regulon further under Fe deprivation (Hindt *et al.*, 2017). These results suggest that there may be additional negative regulators, on top of the BTS network, regulating root and leaf responses when Fe becomes limiting.

Crosstalk between Fe and S homeostatic networks.

Crosstalk between nutrients is critical for optimal nutrient use efficiency and to prevent the accumulation of toxic intermediates. Over the last decade, there has been increasing evidence suggesting an active crosstalk between Fe and S networks in different plant species. These data include physiological and molecular evidence in dicots and monocots but, most strikingly, as we discussed previously, this Fe-S crosstalk seems to be species specific (Ciaffi et al., 2013; Paolacci et al., 2014; Zuchi et al., 2015; Forieri et al., 2017; Garnica et al., 2018). One example of crosstalk between Fe and S networks is the cessation of sulfite reduction under Fe limitation discussed previously (Hantzis et al., 2018; Fig. 3), but the opposite scenario has also been demonstrated. During S limitation, plants are unable to fully induce their Fe uptake machinery, which includes the Fe regulon in dicots but also the release of phytosiderophores in plants using Strategy II for Fe uptake such as barley, maize, and wheat (Zuchi et al., 2015; Garnica et al., 2018). These observations are further evidence that S and Fe networks are closely connected. While the underlying mechanisms of this crosstalk remain to be identified, transcriptome analyses of Arabidopsis plants experiencing S deficiency showed that the TF ZAT12 is highly induced in roots (Bielecka et al., 2014). ZAT12 has been implicated in several processes, mostly related to stress. Notably, ZAT12 was found to physically interact with FIT, and this interaction negatively affects the induction of the Fe regulon (Le et al., 2016). Certainly, crosstalk between S and Fe networks is likely to exist at additional levels, but the ZAT12-FIT interaction provides a solid clue to further explore how these signaling networks communicate with each other. The interplay between ILR3 and PYE may also play a role in this crosstalk. Glucosinolate (GL) synthesis requires S assimilation and appears to be partially regulated by ILR3, which is transcriptionally elevated in pye-1 mutants. Therefore, ILR3 and PYE may regulate opposing sides of the GL synthesis under Fe deficiency in order to conserve S for the synthesis of Fe-binding by NA or other processes (Samira et al., 2018). In addition, the previously discussed MYB72-SLIM1 physical interaction is another example of the crosstalk between Fe and S networks, but the consequences of this interaction are at the moment uncertain (Van der Ent et al., 2008). Interestingly, it was recently discovered that the crosstalk between Fe and S networks might be regulated by transcriptional networks independent of those controlling either S

assimilation or Fe uptake separately. This evidence was revealed by exploring long-term responses of Arabidopsis to single or combined nutrient deficiency regimes (Forieri et al., 2017). For instance, transcriptome analyses of Arabidopsis roots experiencing Fe limitation for 5 weeks showed a down-regulation of genes mediating S assimilation such as SULTR1;1, APR, and SiR (Forieri et al., 2017). The down-regulation of SiR is particularly interesting as this gene is not affected by S limitation and suggests that a network independent of the S limitation response can also regulate the expression of S assimilation genes during Fe deprivation. In tomato roots, however, repression of SULTR1 genes by Fe deficiency was not observed, suggesting that the regulation of the Fe-S crosstalk is different across species (Zuchi et al., 2015). Notably, the repression observed in Arabidopsis was eliminated when plants were subjected to dual Fe and S deficiencies. Similarly, during single S limitation conditions, the expression of key regulators of Fe uptake including FIT, bHLH039, and bHLH100 was dramatically reduced. Since Fe-S clusters are the major Fe sink in plants, and Fe-S clusters require equimolar concentrations of these two elements, a plausible explanation for these observations is that in the absence of S, plants reduce their Fe uptake capacity to prevent overaccumulation of Fe that cannot be effectively incorporated into Fe-S clusters. This cross-network repression, however, is eliminated when plants experience dual S and Fe deficiencies, suggesting the existence of a hierarchical regulation of Fe and S assimilation where the transcriptional regulation controlling the uptake of one element (e.g. Fe) can over-ride the crosstranscriptional regulation imposed by the absence of the other element (e.g. S; Fig. 5). It should be noted that because of the duration of the nutrient deprivation experiments (more than a week), the changes seen probably represent late stages of plant adaptation and that experiments done at early stages (hours, days) may reveal additional cues about the mechanistic basis of the Fe and S crosstalk network. In addition to time, tissue specificity should be considered in future experiments, particularly when exploring sensing mechanisms. For instance, while the FIT network controls Fe uptake at the root level, this network is downstream of the systemic signal derived from shoots (Mendoza-Cózatl et al., 2014; Zhai et al., 2014). As discussed previously, the transcriptional networks regulating Fe deficiency in leaves are just being uncovered, but short-term, time-series experiments in a tissue-specific manner and under single and dual nutrient deprivation conditions are likely to provide more insight into the mechanisms regulating Fe and S networks at the whole-plant level.

Crosstalk between Fe and S networks has also been explored in grasses, particularly in wheat, and additional levels of regulation between these networks have been uncovered (Ciaffi *et al.*, 2013; Zamboni *et al.*, 2017). Data collected over recent years suggest that a major determinant for these differences is the chelating strategy used by grasses for Fe uptake (Strategy II), which requires the synthesis of phytosiderophores derived from S-containing molecules such as L-Met and SAM (i.e. DMA; Fig. 5) (Mori and Nishizawa, 1987; Suzuki *et al.*, 2006). In turn, Fe deficiency in wheat under sufficient levels of S induced the expression of most of the genes of the S assimilatory pathway, suggesting that part of the Fe deficiency

Wheat (Strategy II) Arabidopsis (Strategy I) [roots only] [leaves (L) and roots (R)] SO₄²⁻out -Fe -S -Fe/-S -Fe -S -Fe/-S SULTR1;2 TdSultr1.1 TdSultr1.3 Gene expression key -Fe -S -Fe/-S **hHI H39** Induction SO₄²-in bHLH100 ■ □ ■ TdATPSul1 TdATPSul2 -Fe -S -Fe/-S No change FRO2 FRO2 APS $Td\Delta PR$ Repression SO₃² FRO2 TdSiR IRT1 S^2 -Rhizosphere TdOASTL1 OAS TdOASTL2 -Fe -S -Fe/-S Cys ⊢ ILR3 Glucosinolates — SAM ← Met → SAM → NA ·······

Fig. 5. Crosstalk between iron and sulfur metabolism has distinct signatures during single or dual nutritional deficiencies. The expression of sulfur assimilation and iron uptake genes was measured under single Fe or S deficiencies or combined Fe and S deficiencies (data from Ciaffi et al., 2013; Forieri et al., 2017). The color of the squares represents gene induction or repression compared with plants grown in replete media. The data for Arabidopsis (Strategy I) represents gene expression in roots only, while gene expression in wheat was available for leaves (L) and roots (R). Only the names of the enzymes where gene expression was measured is shown. Dotted lines represent reactions catalyzed by several enzymes. Abbreviations are as follow: SULTR1;2 or TdSultr1.1, sulfate transporters; TdATPSul1, ATP sulfurylase; TdAPR, adenosine 5'-phosphosulfate reductase; TdSiR, sulfite reductase; TdOASTL, O-acetylserine(thiol)lyase; SAT, serine acetyltransferase; FRO2, ferric chelate reductase; NA, nicotianamine; SAM, S-adenosylmethionine; DMA, 2'-deoxymugineic acid.

response in grasses includes the induction of S assimilation to increase the synthesis of phytosiderophores (Ciaffi et al., 2013; Zamboni et al., 2017). Similarly, during S deficiency, grasses often display Fe deficiency symptoms probably derived from their inability to synthesize the S-derived phytosiderophores necessary for Fe uptake (Mori and Nishizawa, 1987). Research in wheat, however, has also shown that the differences between Strategy I and Strategy II plants cannot fully explain the responses observed at the gene expression level and the activity of enzymes within the S assimilation pathways. For instance, the expression of two high-affinity sulfate transporter genes in wheat, TdSultr1.1 and TdSultr1.3, was found to be strikingly different during nutrient deprivation experiments. While the induction of TdSultr1.1 during S limitation was not affected by Fe availability, the expression of TdSultr1.3 was induced by both Fe and S limitation, but the highest expression was found during Fe deficiency at adequate levels of S supply (Fig. 5) (Ciaffi et al., 2013). These results suggest that Fe-S crosstalk in wheat includes additional levels of regulation (transcriptional and post-transcriptional) to fine-tune enzyme activities and the expression of gene isoforms.

Interestingly, separate experiments showed that when S is supplied in excess, wheat accumulates more Fe, and this behavior is also evident when plants experience Fe limitation (Celletti et al., 2016). These results are particularly exciting for wheat production as dual S and Fe scarcity is often found in fields and have a negative impact on yield (Hawkesford et al., 2014). Unfortunately, this increased Fe use efficiency in the presence of excess S was not observed in other grasses such as barley and maize. It was proposed that the rate of phytosiderophore release between species may explain these differences. In support of this hypothesis, the release of phytosiderophores in maize under Fe limitation is moderate compared with barley and wheat (Celletti et al., 2016).

One major theme of this review has been the role that time plays in adaptive responses of plants to changes in nutrient availability (Fig. 1). It is then important to emphasize that the transcriptional responses to Fe, S, or Fe/S deprivation responses, previously described for Arabidopsis (Forieri et al., 2017; Hantzis et al., 2018) and wheat (Ciaffi et al., 2013; Zamboni et al., 2017), represent long-term plant responses, as the deficiency experiments were conducted for >1 week. Transcriptional reprogramming however, happens in phases (Li et al., 2015), and may include rapid/transient changes within minutes/hours to maintain homeostasis. This reprogramming also includes long-term changes (i.e. days/weeks) where plants, based on their nutrient economy, have decided to maintain growth, delay growth, or even trigger an early senescence response (recently reviewed by Sade et al., 2018). In light of the possible transcriptional response scenarios, we should be cautious when jumping to major conclusions related to plant responses to nutrient deficiencies based on single experimental points and consider that plants adapt to changes in their environment and that these changes may be species-, time-, tissue-, and even organelle-specific responses.

Beyond plants—what have we learned about Fe sensing from other systems?

Fe-S clusters are essential components of Fe-sensing mechanisms in organisms ranging from yeast to humans. In the yeast Saccharomyces cerevisiae, Fe deficiency responses are regulated by the TFs Aft1 and Aft2 (Rutherford et al., 2001, 2003). Under Fe-sufficient conditions, an Fe-S complex, stabilized by glutaredoxins (GRX3/4) and glutathione, prevents Aft1/Aft2 from moving into the nucleus to activate the Fe uptake machinery. In the absence of Fe-S clusters (i.e. Fe deficiency), Aft1/Aft2 are mobilized to the nucleus where they activate Fe uptake (Pujol-Carrion et al., 2006; Kumánovics et al., 2008). Fe excess in S. cerevisiae is also sensed through Fe-S clusters; the bZIPTFYAP5 has two independent Fe-S cluster-binding sites. If these two sites are occupied, YAP5 activates genes mediating Fe detoxification, including the vacuolar Fe transporter CCC1 (Rietzschel et al., 2015). In mammals, the iron regulatory proteins (IRP1 and IRP2) regulate the stability of mRNAs responsible for iron uptake and homeostasis, and a 4Fe-4S cluster within IRP1 dictates whether it represses or activates Fe uptake (Haile et al., 1992; Walden et al., 2006).

Surprisingly, the role of Fe-S clusters in relation to Fe homeostasis in plants remains vague. Arabidopsis GRX17 is a nuclear-localized glutaredoxin able to bind Fe-S clusters in a similar way to the yeast GRX3/4; however, its function so far has been associated only with the redox signaling necessary for the maintenance of the shoot apical meristem but not in Fe homeostasis (Knuesting et al., 2015). Fe-S cluster assembly in the mitochondria and their translocation to the cytosol are additional processes required for proper Fe sensing in yeast. The mitochondrial ATP-binding cassette Atm1 of S. cerevisiae mediates the transfer of Fe-S clusters, or intermediates, from the mitochondrial matrix to the cytosol for proper assembly of cytosolic Fe-S proteins (Kispal et al., 1997). Since Fe-S clusters in the cytosol are necessary for Fe sensing (Outten, 2017), yeast mutants lacking Atm1 overaccumulate Fe due to the constitutive activation of the Fe uptake machinery. The paralog of Atm1 in Arabidopsis is ATM3, and atm3 mutants display significant chlorosis and reduced rosette size. While the transcriptional status of the Fe regulon in atm3 has not been explored in detail, IRT1 protein levels were only slightly elevated in atm3 under Fe-sufficient conditions (Bernard et al., 2009). Based on the presence of several overlapping mechanisms regulating the Fe uptake in Arabidopsis (discussed in previous sections), it would be interesting to explore whether these mild Fe deficiency responses in atm3 are the result of the significant negative feedback loops that have evolved to prevent an overaccumulation of Fe. Such conservative regulation of Fe homoeostasis would prevent Fe uptake even under Fe-limiting conditions if Fe cannot be properly incorporated into Fe–S clusters, thus preventing cell damage by generation of reactive oxygen species (ROS). Another example of an Fe–S protein that deserves further examination is the Arabidopsis NEET protein (Nechushtai *et al.*, 2012). At–NEET is a 2Fe–2S protein that regulates several plant processes including senescence and ROS metabolism. Interestingly, plants in which NEET expression was decreased by RNAi technology were more sensitive to Fe deficiency and more tolerant to Fe excess (Nechushtai *et al.*, 2012); however, the molecular mechanisms behind these phenotypes remain to be discovered.

Communication between mitochondria and the nucleus, known as mitochondrial retrograde signaling, is another mechanism widely studied in yeast that has recently gained attention in plants and has been proposed to play a role in Fe and S homeostasis (Liu and Butow, 2006; Vigani and Briat, 2015; Vigani et al., 2018). Retrograde signaling is important to adjust metabolism when the function of the mitochondria is impaired either by mutations in respiratory complexes or by nutritional deficiencies. For instance, Arabidopsis mutants with defects in the mitochondrial Complex I show a constitutive activation of genes that regulate Fe uptake and distribution (e.g. OPT3, FRO3, BTS, and PYE) (Vigani and Briat, 2015). However, understanding the molecular basis of retrograde signaling in plants is significantly more complex than in yeast, and remains largely obscure. This is due to the additional levels of regulation present in plants (shoot to root communication) plus the presence of plastids, which are also proposed to have a retrograde signaling. One example of this higher complexity is citrate, which is accumulated at higher levels during Fe or S deficiency and has been proposed as a signaling molecule involved in retrograde signaling (Vigani and Briat, 2015; Vigani et al., 2018). In fact, addition of external citrate to Arabidopsis plants results in the induction of FER1, which is also induced during Fe excess (Finkemeier et al., 2013). So how can a putative signal of Fe and S deficiency also induce genes that are typically induced during Fe excess? One plausible explanation is that in plants, citrate plays a key role in Fe translocation by keeping Fe soluble in the xylem. External citrate may help to solubilize additional Fe attached to the cell wall, causing the induction of FER1. Moreover, aconitase, which is the enzyme that catalyzes the isomerization of citrate into isocitrate in the Krebs cycle, requires an Fe-S cluster as a cofactor. Thus, in the absence of Fe/S availability, some accumulation of citrate may be expected. Finally, in tomato, the accumulation of citrate during Fe and S deficiency happens exclusively in roots, not in shoots (Vigani et al., 2018), and, as we have described throughout this review, shoot signaling plays a major role in dictating the transcriptional responses of roots during Fe deficiency. More work is certainly needed to clarify the mechanisms of retrograde signaling in plants, but a meta-analysis of different transcriptome data from Arabidopsis mutants with diverse mitochondrial dysfunction phenotypes concluded that oxidative stress was probably responsible for the transcriptional reprogramming observed across mutants (Schwarzländer et al., 2012). Therefore, ROS signaling may also be a major player driving the retrograde signaling in plants during Fe, S, or Fe/S deficiency.

Conclusions and perspectives

So, where exactly in the plant is Fe sensed? In several places. How exactly is Fe sensed? In many ways, and most of them are still unclear. However, the progress made in recent years has been outstanding. Novel players have been discovered, old players seem to have additional roles, and new candidate genes hold great potential to move the field forward, so the future certainly looks promising. The recently described role of leaves in Fe sensing is a renewed opportunity to tackle Fe homeostasis from a systems-level perspective and will probably provide a more integrated view of whole-plant responses to changes in Fe availability. Equally exciting is the crosstalk between Fe and S, which remains a fairly open field that is ready to be fully explored. Technologies such as TRAP-seq, DAP-seq, ATAC-seq, proximity labeling, and LAESI-MS (Castro-Guerrero et al., 2016; Kim et al., 2016; Bartlett et al., 2017; Etalo et al., 2018; Sijacic et al., 2018) allow us to track the behavior of genomes, genes, metabolites, and proteins through time at cell-specific resolution. These techniques in combination with bioinformatic tools such as machine learning for the identification of gene and protein regulatory networks will be instrumental to better understand the molecular basis behind the crosstalk between nutrient networks.

Moving forward

A major issue found during the preparation of this review was the enormous difficulty in integrating data sets from different publications. All of them were certainly conducted properly, with well-described conditions and proper controls, but, unless the data came from the same lab, we found that plants were grown in substantially different conditions. For instance, 'replete' Fe conditions ranged from 10 μM to 50 μM (Ivanov et al., 2014; Hindt et al., 2017; Hantzis et al., 2018; Khan et al., 2018), which in turn may impact Fe reserves and the timing/ magnitude of Fe deficiency responses. The addition of sucrose to the growth medium was another major variable found across the literature. Understandably, the use of sucrose results in healthier plants for downstream experiments but it will also increase their resilience to stress. Moreover, sucrose will switch the metabolism of plants from autotrophic to mixotrophic and, lastly, a '2-week'-old plant would be in a completely different developmental stage when grown with sucrose compared with plants grown without sucrose as an additional carbon source. These issues are not exclusive to the plant field. The yeast field experienced a similar situation when the regulatory mechanisms controlling glycolysis were being resolved. However, as a good example of what a truly collaborative effort means, different parties came together to agree on what was later described as the standardized conditions for systems biology (van Eunen et al., 2010). We, the authors, look forward to beginning similar discussions within the plant field through local seminars, and domestic and international meetings to eventually agree, as a community, on the standardized conditions for plant systems biology studies. Without a doubt, this effort will help to advance the pace and depth of research, not only in the Fe and S fields, but all across the field of plant nutrition.

Acknowledgements

The basis for many of the arguments presented in this review were the result of engaging discussions during the 2018 Sulfur meeting in Conegliano, Italy. Research in the DMC laboratory is supported by the US National Science Foundation (IOS-1734145 and MCB-1818312). AG and MFC are recipients of graduate scholarships from the National Research Foundation of South Africa (NRF). Research in the MK laboratory is supported by the NRF (grant numbers: 116346 and 109083). Research in the TAL laboratory is supported by the US National Science Foundation (INSPIRE-1247427 and BBSCR/NSF-1517058). Collaborative research between the DMC and MK groups is funded by a DST-NRF Centre of Excellence in Food Security award (Project ID 170202).

References

Acosta-Gamboa LM, Liu S, Langley E, Campbell Z, Castro-Guerrero N, Mendoza-Cozatl D, Lorence A. 2017. Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. Functional Plant Biology 44, 94-106.

Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK. 2009. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology 70, 681–692.

Ariga T, Hazama K, Yanagisawa S, Yoneyama T. 2014. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Science and Plant Nutrition 60, 460-469.

Balk J, Pilon M. 2011. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science 16, 218-226.

Balk J, Schaedler TA. 2014. Iron cofactor assembly in plants. Annual Review of Plant Biology 65, 125-153.

Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Friml J, Vert G. 2011. Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences, USA 108, E450-E458.

Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR, Gallavotti A, Ecker JR. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols 12, 1659-1672.

Bernard DG, Cheng Y, Zhao Y, Balk J. 2009. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiology 151, 590-602.

Bielecka M, Watanabe M, Morcuende R, Scheible WR, Hawkesford MJ, Hesse H, Hoefgen R. 2014. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. Frontiers in Plant Science 5, 805.

Blaby-Haas CE, Merchant SS. 2017. Regulating cellular trace metal economy in algae. Current Opinion in Plant Biology 39, 88-96.

Bloom AJ, Sukrapanna SS, Warner RL. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology 99, 1294-1301.

Bourgis F, Roje S, Nuccio ML, et al. 1999. S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. The Plant Cell 11, 1485-1498.

Cannon WB. 1932. The wisdom of the body. New York: W.W. Norton & Co.

Castro-Guerrero NA, Cui Y, Mendoza-Cozatl DG. 2016. Purification of translating ribosomes and associated mRNAs from soybean (Glycine max). Current Protocols in Plant Biology 1, 185-196.

Celletti S, Paolacci AR, Mimmo T, Pii Y, Cesco S, Ciaffi M, Astolfi S. 2016. The effect of excess sulfate supply on iron accumulation in three graminaceous plants at the early vegetative phase. Environmental and Experimental Botany 128, 31–38.

Ciaffi M, Paolacci AR, Celletti S, Catarcione G, Kopriva S, Astolfi S. 2013. Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings. Journal of Experimental Botany 64, 1663-1675.

Colangelo EP, Guerinot ML. 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell **16**, 3400–3412.

Cornish-Bowden A, Cárdenas ML. 2001. Information transfer in metabolic pathways. Effects of irreversible steps in computer models. European Journal of Biochemistry **268**, 6616–6624.

Creissen G, Firmin J, Fryer M, et al. 1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell **11**, 1277–1292.

Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. 2001. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature **409**, 346–349.

de Bang TC, Lay KS, Scheible WR, Takahashi H. 2017. Small peptide signaling pathways modulating macronutrient utilization in plants. Current Opinion in Plant Biology **39**, 31–39.

DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL. 2004. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant Journal **39**, 403–414.

Dixon RA, Strack D. 2003. Phytochemistry meets genome analysis, and beyond. Phytochemistry **62**, 815–816.

Dubeaux G, Neveu J, Zelazny E, Vert G. 2018. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Molecular Cell **69**, 953–964.e5.

Etalo DW, Díez-Simón C, de Vos RCH, Hall RD. 2018. Laser ablation electrospray ionization-mass spectrometry imaging (LAESI-MS) for spatially resolved plant metabolomics. Methods in Molecular Biology **1778**, 253–267.

Finkemeier I, König AC, Heard W, Nunes-Nesi A, Pham PA, Leister D, Fernie AR, Sweetlove LJ. 2013. Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves. Plant Physiology **162**, 239–253.

Forieri I, Sticht C, Reichelt M, Gretz N, Hawkesford MJ, Malagoli M, Wirtz M, Hell R. 2017. System analysis of metabolism and the transcriptome in *Arabidopsis thaliana* roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. Plant, Cell & Environment 40, 95–107.

Forieri I, Wirtz M, Hell R. 2013. Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Frontiers in Plant Science **4**, 357.

Garnica M, Bacaicoa E, Mora V, San Francisco S, Baigorri R, Zamarreño AM, Garcia-Mina JM. 2018. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC Plant Biology 18, 105.

Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. 2018. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants **4**, 953–963.

Haile DJ, Rouault TA, Tang CK, Chin J, Harford JB, Klausner RD. 1992. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proceedings of the National Academy of Sciences, USA 89, 7536.

Hantzis LJ, Kroh GE, Jahn CE, Cantrell M, Peers G, Pilon M, Ravet K. 2018. A program for iron economy during deficiency targets specific Fe proteins. Plant Physiology **176**, 596–610.

Hawkesford MJ, Kopriva S, De Kok LJ. 2014. Nutrient use efficiency in plants: concepts and approaches. Cham: Springer.

Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. 2012. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. The Plant Cell **24**, 724–737.

Hell R. 1997. Molecular physiology of plant sulfur metabolism. Planta **202**, 138–148

Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML. 2017. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in *Arabidopsis thaliana*. Metallomics **9**, 876–890.

Hindt MN, Guerinot ML. 2012. Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta **1823**, 1521–1530.

Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138, 1184–1194.

Hofmeyr JS, Cornish-Bowden A. 2000. Regulating the cellular economy of supply and demand. FEBS Letters **476**, 47–51.

Hong S, Kim SA, Guerinot ML, McClung CR. 2013. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiology 161, 893–903.

Imaizumi-Anraku H, Hayashi M, Nakagawa T, Umehara Y, Kouchi H, Hakoyama T, Suganuma N, Kawaguchi M. 2010. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant & Cell Physiology **51**, 1381–1397.

Ishimaru Y, Suzuki M, Tsukamoto T, et al. 2006. Rice plants take up iron as an Fe³⁺–phytosiderophore and as Fe²⁺. The Plant Journal **45**, 335–346.

Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P. 2014. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. The Plant Cell 26, 1294–1307.

Jaillais Y, Chory J. 2010. Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology **17**, 642–645.

Jeong J, Merkovich A, Clyne M, Connolly EL. 2017. Directing iron transport in dicots: regulation of iron acquisition and translocation. Current Opinion in Plant Biology **39**, 106–113.

Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. 2012. OsYSL16 plays a role in the allocation of iron. Plant Molecular Biology **79**, 583–594.

Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H. 2004. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. The Plant Cell 16, 2693–2704.

Katsir L, Chung HS, Koo AJ, Howe GA. 2008. Jasmonate signaling: a conserved mechanism of hormone sensing. Current Opinion in Plant Biology **11**, 428–435.

Khan MA, Castro-Guerrero NA, McInturf SA, et al. 2018. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant, Cell & Environment **41**, 2263–2276.

Khan MA, Castro-Guerrero N, Mendoza-Cozati DG. 2014. Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements. Frontiers in Plant Science **5**, 51.

Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. 2016. An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell **27**, 1188–1196.

Kispal G, Csere P, Guiard B, Lill R. 1997. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Letters **418**, 346–350.

Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. 2009. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiology **150**, 257–271.

Knuesting J, Riondet C, Maria C, et al. 2015. Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α , contribute to maintenance of the shoot apical meristem under long-day photoperiod. Plant Physiology **167**, 1643–1658.

Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK. 2009. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. The Plant Journal 60, 948–961.

Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. 2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications **4**, 2792.

Kobayashi T, Nakanishi Itai R, Nishizawa NK. 2014. Iron deficiency responses in rice roots. Rice **7**, 27.

Koen E, Besson-Bard A, Duc C, Astier J, Gravot A, Richaud P, Lamotte O, Boucherez J, Gaymard F, Wendehenne D. 2013. *Arabidopsis thaliana* nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Science 209, 1–11.

Koryachko A, Matthiadis A, Muhammad D, Foret J, Brady SM, Ducoste JJ, Tuck J, Long TA, Williams C. 2015. Clustering and differential alignment algorithm: identification of early stage regulators in the *Arabidopsis thaliana* iron deficiency response. PLoS One 10, e0136591.

- Kumánovics A, Chen OS, Li L, et al. 2008. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. Journal of Biological Chemistry 283, 10276-10286.
- Languar V, Lelièvre F, Bolte S, et al. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal 24, 4041-4051.
- Le CT, Brumbarova T, Ivanov R, Stoof C, Weber E, Mohrbacher J, Fink-Straube C, Bauer P. 2016. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) linking iron deficiency and oxidative stress responses. Plant Physiology 170, 540-557.
- Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. 2009. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology **150**, 786–800.
- Li Y, Varala K, Coruzzi GM. 2015. From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks. Trends in Genetics 31, 509-515.
- Liu Z. Butow RA. 2006. Mitochondrial retrograde signaling. Annual Review of Genetics 40, 159-185.
- Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. 2010. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. The Plant Cell 22, 2219-2236.
- Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder Jl. 2008. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. The Plant Journal 54, 249-259.
- Mendoza-Cózati DG. Jobe TO. Hauser F. Schroeder JI. 2011. Longdistance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology 14, 554-562.
- Mendoza-Cózatl DG, Moreno-Sánchez R. 2006. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. Journal of Theoretical Biology 238, 919-936.
- Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, et al. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Molecular Plant 7, 1455-1469.
- Mori S, Nishizawa N. 1987. Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant and Cell Physiology 28,
- Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell 21, 3326-3338.
- Nechushtai R, Conlan AR, Harir Y, et al. 2012. Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism. The Plant Cell 24, 2139-2154.
- Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry 286, 5446-5454.
- Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK. 2008. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. Journal of Biological Chemistry 283, 13407–13417.
- Outten CE. 2017. Checks and balances for the iron bank. Journal of Biological Chemistry 292, 15990-15991.
- Paolacci AR, Celletti S, Catarcione G, Hawkesford MJ, Astolfi S, Ciaffi M. 2014. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. Journal of Integrative Plant Biology 56, 88-100.
- Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA. 2006. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. Journal of Cell Science 119, 4554-4564.

- Rennenberg H, Herschbach C. 2014. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. Journal of Experimental Botany 65, 5711-5724.
- Reyt G, Boudouf S, Boucherez J, Gaymard F, Briat JF. 2015. Ironand ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture. Molecular Plant 8, 439-453.
- Ricachenevsky FK, Sperotto RA. 2014. There and back again, or always there? The evolution of rice combined strategy for Fe uptake. Frontiers in Plant Science 5, 189.
- Rietzschel N. Pierik AJ. Bill E. Lill R. Mühlenhoff U. 2015. The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe-2S] clusters. Molecular and Cellular Biology 35, 370-378
- Rodríguez-Celma J, Chou H, Kobayashi T, Long TA, Balk J. 2019. Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants. Frontiers in Plant Science 10, 98.
- Rodríguez-Celma J. Pan IC. Li W. Lan P. Buckhout TJ. Schmidt W. 2013. The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers in Plant Science 4, 276.
- Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. 2001. A second iron-regulatory system in yeast independent of Aft1p. Proceedings of the National Academy of Sciences, USA 98, 14322.
- Rutherford JC. Jaron S. Winge DR. 2003. Aft1p and Aft2p mediate ironresponsive gene expression in yeast through related promoter elements. Journal of Biological Chemistry 278, 27636-27643.
- Sade N, Del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E. 2018. Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany 69, 845-853.
- Samira R, Li B, Kliebenstein D, Li C, Davis E, Gillikin JW, Long TA. 2018. The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Molecular Biology 97, 297-309.
- Schmidt W. Buckhout TJ. 2011. A hitchhiker's guide to the Arabidopsis ferrome. Plant Physiology and Biochemistry 49, 462-470.
- Schwarzländer M, König AC, Sweetlove LJ, Finkemeier I. 2012. The impact of impaired mitochondrial function on retrograde signalling: a metaanalysis of transcriptomic responses. Journal of Experimental Botany 63, 1735-1750.
- Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. 2015. Ironbinding E3 ligase mediates iron response in plants by targeting basic helixloop-helix transcription factors. Plant Physiology 167, 273-286.
- Sijacic P, Bajic M, McKinney EC, Meagher RB, Deal RB. 2018. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks. The Plant Journal 94, 215-231.
- Sivitz AB. Hermand V. Curie C. Vert G. 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS One 7, e44843.
- Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker P, Feussner I, Pieterse CMJ. 2018. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences, USA 115, E5213-E5222.
- Suzuki M, Takahashi M, Tsukamoto T, et al. 2006. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. The Plant Journal 48, 85–97.
- Taiz L, Zeiger E. 2010. Plant physiology. Sunderland, MA: Sinauer Associates.
- Van der Ent S, Verhagen BW, Van Doorn R, et al. 2008. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology 146, 1293-1304.
- van Eunen K, Bouwman J, Daran-Lapujade P, et al. 2010. Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS Journal 277, 749-760.
- Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14, 1223-1233.
- Vigani G, Briat JF. 2015. Impairment of respiratory chain under nutrient deficiency in plants: does it play a role in the regulation of iron and sulfur responsive genes? Frontiers in Plant Science 6, 1185.

Vigani G, Pii Y, Celletti S, Maver M, Mimmo T, Cesco S, Astolfi S. 2018. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? Plant Physiology and Biochemistry 126, 86–96.

von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC. 1999. Nicotianamine chelates both Felll and Fell. Implications for metal transport in plants. Plant Physiology 119, 1107–1114.

Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K. 2006. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science **314**, 1903.

Weber G, von Wiren N, Hayen H. 2008. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals **21**, 503–513.

Wild M, Davière JM, Regnault T, Sakvarelidze-Achard L, Carrera E, Lopez Diaz I, Cayrel A, Dubeaux G, Vert G, Achard P. 2016. Tissue-specific regulation of gibberellin signaling fine-tunes arabidopsis iron-deficiency responses. Developmental Cell 37, 190–200.

Yang DL, Yao J, Mei CS, et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling

cascade. Proceedings of the National Academy of Sciences, USA 109, F1192-F1200.

Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ. 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research 18, 385–397.

Zamboni A, Celletti S, Zenoni S, Astolfi S, Varanini Z. 2017. Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environmental and Experimental Botany **143**, 172–184.

Zhai Z, Gayomba SR, Jung HI, et al. 2014. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell **26**, 2249–2264.

Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB. 2015. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. The Plant Cell 27, 787–805.

Zuchi S, Watanabe M, Hubberten HM, et al. 2015. The interplay between sulfur and iron nutrition in tomato. Plant Physiology **169**, 2624–2639.