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Abstract—Prior studies have shown that the retention time
of the non-volatile spin-transfer torque RAM (STT-RAM) can
be relaxed in order to reduce STT-RAM’s write energy and
latency. However, since different applications may require differ-
ent retention times, STT-RAM retention times must be critically
explored to satisfy various applications’ needs. This process can
be challenging due to exploration overhead, and exacerbated by
the fact that STT-RAM caches are emerging and are not readily
available for design time exploration. This paper explores using
known and easily obtainable statistics (e.g., SRAM statistics) to
predict the appropriate STT-RAM retention times, in order to
minimize exploration overhead. We propose an STT-RAM Cache
Retention Time (SCART) model, which utilizes machine learning
to enable design time or runtime prediction of right-provisioned
STT-RAM retention times for latency or energy optimization.
Experimental results show that, on average, SCART can reduce
the latency and energy by 20.34% and 29.12%, respectively,
compared to a homogeneous retention time while reducing the
exploration overheads by 52.58% compared to prior work.

Index Terms—Spin-Transfer Torque RAM (STT-RAM) cache,
configurable memory, low-power embedded systems, adaptable
hardware, retention time.

I. INTRODUCTION

Spin-transfer torque RAM (STT-RAM) has emerged as

a popular alternative to SRAM for implementing caches.

STT-RAMs offer several benefits, such as high density, low

leakage power, compatibility with CMOS, high endurance,

etc. However, STT-RAMs suffer from high write latency and

write energy, which may impede their widespread adoption

in state-of-the-art resource-constrained systems. A promising

optimization involves relaxing STT-RAM’s retention time—

the duration for which data is retained in the absence of

power—from the intrinsic duration, which could be up to 10

years [1]. Reducing the retention time offers much promise

for latency and energy improvements because the long write

latency and high write dynamic energy directly result from

the long retention times of a non-volatile STT-RAM [1].

Thus, prior works [2], [1], [3], [4] have studied the benefits

of reducing/relaxing the retention times, especially in caches

since cache data blocks are usually only needed in the cache

for short periods of time (typically less than 1 second).

Given a relaxed retention STT-RAM cache (hereafter re-

ferred to simply as STT-RAM cache), prior work has shown

that different applications may require different retention

times. An application’s retention time requirements are dic-

tated by its cache block lifetimes, i.e., how long the blocks

must remain in the cache. To yield maximal benefits from

STT-RAM caches, the retention time must be specialized

to the needs of the executing applications or application

domains. If the retention times are not specialized, they may

be over-provisioned, thus wasting energy/latency, or under-

provisioned, thus requiring additional schemes (e.g., the dy-

namic refresh scheme [3]) to maintain data integrity after the

retention time elapses. Both cases accrue overheads that may

substantially limit optimization potential [4, 2].

To enable right-provisioned retention times for STT-RAM

caches, the retention times must be critically explored for

different applications and metrics (e.g., energy, latency). An

exhaustive exploration of retention times is a challenging task,

given that a wide variety of applications, application character-

istics (e.g., read/write behaviors, cache block characteristics),

and objective functions (e.g., energy, latency, energy delay

product, user experience) must be considered. Furthermore, in

systems with adaptable retention times, such as the logically

adaptable retention STT-RAM (LARS) cache proposed in

[2], an exhaustive exploration can incur substantial runtime

overheads, including hardware, switching, time, and energy,

especially in complex systems.

In this paper, we propose an approach—STT-RAM Cache
Retention Time (SCART) Model—that utilizes machine learn-

ing to predict right-provisioned retention times for a variety

of systems, applications, and metrics. Since SRAM caches

are widely available and accessible to researchers and design-

ers, whereas STT-RAM caches are still nascent, we explore

using SRAM characteristics that can easily be obtained via

simulations as input labels to enable the prediction of right-

provisioned retention times for STT-RAM caches for target

applications or application domains. During runtime in a

system with multiple retention time units (e.g., [2]), based on

execution statistics from one cache unit (SRAM, in a hybrid

design [5] or STT-RAM), our approach can directly predict the

best unit on which to run the application, without the need for

overhead-prone design space exploration.

Our contributions are summarized as follows:

• We show, for the first time (to our knowledge), that right-

provisioned retention times for STT-RAM caches can be
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predicted using easily obtainable SRAM characteristics.

• We compare several machine learning classifiers, and

propose a machine learning-based model (SCART) that

enables fast runtime retention time prediction. SCART

can be implemented with low overhead for runtime

prediction in a system with multiple retention times or

in a hybrid system.

• Using extensive simulations with three benchmark suites

(SPEC CPU2006 [6], MiBench [7], and GAP [8]), to

represent different kinds of applications, we show that our

model reduces exploration time by 52.58%. Furthermore,

in a runtime implementation, our approach achieves av-

erage latency and energy savings of 20.34% and 29.12%,

respectively, compared to a homogeneous system.

II. RELATED WORK

The STT-RAM bit cell’s basic structure comprises of a

transistor and a magnetic tunnel junction (MTJ). STT-RAM’s

characteristics and operations of the STT-RAM have been

discussed in the prior work [9]. Smullen et al. [1] showed

that for implementation in caches, STT-RAM’s retention time

can be substantially reduced (e.g., by reducing the planar

area) in order to mitigate the attendant write latency and

energy overheads of non-volatile STT-RAMs. In this section,

we summarize a few related prior works that leverage reduced

retention STT-RAMs and briefly overview prior work on cross-

architectural prediction to motivate our work.

A. Multi-retention and Hybrid STT-RAM Caches

Sun et.al. [3] proposed to use a hybrid STT-RAM L2 cache

with multiple retention times in order to more closely match

the needs of executing applications. The authors used a coarse-

grained approach, featuring a long retention time for read-

intensive applications and a short retention time for write-

intensive applications. Cache blocks that needed to remain

in the cache beyond the retention time were refreshed via a

DRAM-style dynamic refresh scheme to maintain data correct-

ness. To reduce the overheads introduced by the need to refresh

cache blocks, Kuan et.al [2] further analyzed application cache

block characteristics and showed that the refresh overheads

could be mitigated by more closely matching the applica-

tions’ runtime execution requirements. The authors proposed

a logically adaptable retention STT-RAM (LARS) L1 cache

featuring multiple retention time units, and used a sampling-

based algorithm to dynamically determine applications’ right-

provisioned retention times.

Since STT-RAM is generally more prone to overheads when

running write-intensive applications, due to the high write la-

tency, hybrid (SRAM+STT-RAM) caches have been proposed.

To minimize overheads, the STT-RAM is used to run read-

intensive workloads and the SRAM is used for write-intensive

workloads. While multiple hybrid (SRAM+STT-RAM) caches

[5] have been proposed, they typically only feature a single

retention time. We anticipate that hybrid caches featuring

multiple retention times will be explored in the near future. In

all these systems, an important existing challenge, which our
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Fig. 1: High-level overview of predictive model

work addresses, is how to rapidly explore the right-provisioned

retention times with which to design the systems, or how to

rapidly select the best retention time during runtime, in order

to maximize the energy or latency benefits of reduced retention

STT-RAM caches.

B. Cross-Architectural Prediction

The work proposed herein is along the lines of prior work

where a known architecture is used to predict the behavior of

an unknown architecture. For instance, Ardalani et.al. [10] pre-

sented cross-architecture performance prediction using CPU

implementation to predict the performance of GPUs. Yang

et.al. [11] presented techniques for predicting the performance

of parallel applications using partial execution. Guo et.al. [12]

presented a model to provide inter-architecture performance

prediction for sparse matrix vector multiplication to help

researchers choose the appropriate GPU architecture for the

application. Similarly, Zheng et.al. [13] presented a phase level

cross-platform prediction for performance and power for CPU

architectures. These works are orthogonal to ours, but illustrate

the viability of the approach proposed herein.

III. STT-RAM CACHE RETENTION TIME PREDICTION

(SCART)

Unlike SRAM caches, where easily observable statistics

from performance counters (e.g., cache miss rates) can be

used to directly determine the best cache configurations, the

correlations between miss rates and retention times are not that

direct in STT-RAM caches. Therefore, in this work, we focus

on using machine learning to predict the best retention times

for STT-RAM L1 data cache energy and latency minimization

based on hardware performance statistics. We chose to focus

on the data cache since our experiments showed that the

instruction cache blocks exhibit low variability in the retention

time needs of the considered applications. A static retention

time of 10ms sufficed for the applications considered.

SCART incorporates a low-overhead machine learning clas-

sifier for design time or runtime fast and accurate prediction

of retention times. For a design time exploration scenario,

we assume that the target applications are first profiled on an

SRAM cache with any arbitrary configurations. These statistics

can be obtained via simulators (e.g., GEM5 [14]) or by

running the application on an actual computer. The execution

statistics are then provided as input labels to SCART, which

then outputs the best STT-RAM retention time for the target

applications and specified objective function. This scenario is



suitable for designing STT-RAM caches for an application-

specific processor or provisioning a processor with a range

of retention times in order to satisfy a variety of runtime

retention time requirements [3, 2]. For a runtime scenario, the

application can be run for a brief interval on one cache unit,

and SCART uses the execution statistics to directly predict the

best unit on which to run the rest of the application. SCART

will substantially reduce the runtime complexity and migration

costs for three system scenarios: 1) Multi-retention time cache

designs (similar to [2]) for which the best cache unit must

be determined during runtime; 2) hybrid caches to determine

which unit to execute the application on; and 3) a multi-core

system with a combination of SRAM and/or heterogeneous

retention time STT-RAM caches [15].

A. SCART Model Architecture

Figure 1 presents a high level overview of our machine

learning-based model. We model executing applications as

task graphs, wherein each task may have one or more im-

plementations, called task options (e.g., different algorithmic

implementations). These tasks are equivalent to application

phases in our work. The different tasks and task options may

have different execution characteristics, which also affect the

target objective functions (energy or latency). Furthermore,

each task may have different data configurations (e.g., data

size, bit-width, etc.) that may change based on the inputs.

The training data points are composed of execution statistics

obtained from hardware performance counters. To generate

the training data, we used GEM5 to gather the execution

statistics of the different phases of a random subset of SPEC

2006, MiBench, and GAP benchmarks. We observed that 1

million instructions was sufficient to obtain stable statistics

for predicting full phase behaviors. Thus, we used an interval

size of 1 million instructions. As such, our model can predict

retention times after executing an application or application

phase for only 1 million instructions.

Based on the SRAM characteristics of the training data,

we performed feature selection to determine the most rel-

evant features (i.e., hardware characteristics) for the STT-

RAM retention time. We explored 59 features1 based on

SRAM performance characteristics. These features can be

either directly obtained from hardware performance counters

or calculated from performance counter statistics. Some of the

most important features included L1 and L2 cache miss rates,

number of branches, cache read and write statistics while some

less important features included the DRAM read and write

bursts, number of integer and floating point instructions etc.

To enable extensive testing, our initial training label size

was 256 and the test label size was 64 (representing all the

application phases). Our training label also consisted of six

retention times: 10μs, 26.5μs, 50μs, 75μs, 100μs, and 1ms.

We empirically found that longer retention times were not

beneficial for any of the considered applications. Given the

1The data can be found at www.ece.arizona.edu/tosiron/downloads.php

selected features, we then fed the labels into a machine learn-

ing classifier (Section III-B) to develop SCART for predicting

the best retention time for a new application.

To prevent substantial energy or latency degradation in run-

time execution, the model also features a feedback mechanism

that monitors the statistics of the predicted retention time. If

the predicted retention time degrades the energy or latency

compared to the base, the configuration is reverted to the base.

To prevent data corruption resulting from the reduced retention

time, we incorporate a low-overhead monitor counter, similar

to prior work [2, 3], to keep track of each cache block’s

lifetime and invalidate the block (or write back to lower level

memory if dirty) before the retention time expires. The counter

can be implemented as an N -state finite state machine, which

begins at the initial state when a block is written into the

cache, counts up until the retention time is about to expire,

and raises a flag to evict the block or write back to a lower

memory level. We assumed N = 4 in our work, resulting in a

hardware overhead of only two bits per block.

B. Machine Learning Classifier Comparison and Selection

SCART features a machine learning classifier that comprises

of two stages: the training stage and the prediction stage.

In the training stage, the model learns the patterns in the

input data (benchmarks and execution characteristics) and

their correlations to the different retention time labels. In the

prediction stage, the model takes as input new benchmarks

and their characteristics, and outputs the predicted retention

time labels for the new benchmarks.

To select the best classifier, we considered several different

classifiers and evaluated their accuracy. The classifiers we

explored included: linear SVC, radial basis function SVC,
decision tree, random forest classifiers, decision trees-based
bagging, adaptive boosting, gradient adaptive boosting [16],
extra-tree classifiers based ensemble technique [17], and K-
nearest neighbor (KNN) classifiers [18]. For brevity, we

omit detailed descriptions of these classifiers, since they are

described in prior work.

Table I presents the different classifiers’ F-scores [19]. The

F-score is an evaluation metric that considers both precision

and recall, and is a measure of a classifier’s accuracy. The

classifiers with the highest F-score were KNN and extra trees.

However, we chose KNN classifier for use in our model due

to its simplicity and lower prediction time (which makes it

suitable for runtime predictions). Furthermore, KNN offers

other advantages, such as lack of generalization (resulting

in rapid training), and its non-parametric qualities. That is,

KNN does not make any assumptions on the underlying data

distribution. Thus, our model is amenable to applications

that may not obey the typical theoretical assumptions (e.g.,

Gaussian mixtures, linearly separable, etc.). In general, KNN

operates based on feature similarity; it determines how closely

out-of-sample features resemble a training set, and classifies a

given data point based on the similarity. Additional low level

details of the KNN classifier can be found in [18].



TABLE I: Classifier F-scores

Linear SVC Decision Tree Extra Trees Random Forest KNN RBF-SVC Bagging Adaboost Gradient Boost
F-score (0-1) 0.54713 0.70989 0.78098 0.73437 0.78203 0.66875 0.75625 0.67552 0.76692

C. KNN Classifier Tuning

We observed that predicting the best retention times for

latency vs. energy required different sets of features and KNN

classifier characteristics. This observation was due to the con-

flicting nature of latency and energy with respect to retention

time requirements. Thus, we tuned the KNN classifier and

number of features to enable high accuracy for predicting

retention times for latency or energy settings. Furthermore, to

ascertain the robustness of our model, we randomly shuffled

the data and performed five-fold cross-validation to ensure the

validity of the classifier for a wide variety of applications.

We empirically determined that the KNN classifier with

three nearest neighbors and uniform weights achieved the

highest F-score for latency and energy optimization. To se-

lect the appropriate features, we determined the features’

importance values (that is, the features’ impacts on prediction

accuracy) using the scikit-learn tools [20], ordered the features

in order of their importance, and eliminated the least important

features for both latency and energy.

Figure 2 illustrates our selection of the optimal number of

features for energy and latency. We compared the F-score and

prediction time while iteratively eliminating the least important

or redundant features in every run. The goal of iteratively

eliminating the least important features was to find the optimal

number of features that enabled the classifier to achieve the

highest F-score. That is, we selected the fewest number of

features, while eliminating features that did not change the

F-score, since fewer features also reduce the prediction time.

From Figure 2a, we observe that the highest F-score for

latency optimization was obtained using 9 to 15 features.

Thus, we used 9 features for latency in order to achieve

a fast prediction time. For energy, as depicted in Figure

2b, 10 features achieved the highest F-score. Therefore, for

both latency and energy, we eliminated the least important

features until 9 and 10 features, respectively, remained. We

also observed from our experiments that even though the

highest accuracy was approximately 75%, the false predictions

still resulted in near-optimal retention times. As a result,

SCART was able to achieve substantial latency and energy

savings despite the error rate (Section V-B).

IV. EXPERIMENTAL SETUP

We modified the GEM5 simulator [14] to model accurate

STT-RAM behavior for different retention times and to capture

the L1 and L2 cache statistics. We simulated single and quad-

core processors with configurations similar to the ARM Cortex

A-15 processor, with a 2GHz clock frequency. Each core

had private instruction and data STT-RAM L1 caches, and

a shared SRAM L2 cache (in the quad-core processor). Table

II depicts the cache parameters for both the SRAM and STT-

RAM caches.

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

5956535047444138353229262320171411 8 5 2

Pr
ed

ict
io

n 
tim

e 
in

 se
co

nd
s

F-
sc

or
e 

(0
-1

)

Number of features

F-score Prediction time

(a) Latency

0.00E+00
1.00E-06
2.00E-06
3.00E-06
4.00E-06
5.00E-06
6.00E-06
7.00E-06
8.00E-06
9.00E-06
1.00E-05

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

5956535047444138353229262320171411 8 5 2

Pr
ed

ict
io

n 
tim

e 
in

 se
co

nd
s

F-
sc

or
e 

(0
-1

)

Number of features

F-score Prediction time

(b) Energy

Fig. 2: Selection of optimal number of features for latency

and energy optimization. Tuning began with 59 features, and

features were iteratively removed to maximize F-score and

minimize prediction time.

To represent a variety of workloads, we used 34 benchmarks

in total (for both training and testing—see Section III-A); 22

from SPEC CPU2006 [6] (high performance benchmarks), 6

from MiBench [7] (embedded systems benchmarks) and 6

from GAP [8] (graph algorithms). We ran simulations for

a maximum of one billion instructions for all the bench-

marks, using the reference and large input sets for SPEC

and MiBench, respectively, and 2048 nodes for the GAP

benchmarks. We used Simpoint [21] to obtain the program

phases for all the benchmarks, with intervals of 1 million

instructions. We used execution statistics gathered after 1

million instructions for prediction.

For a thorough analysis, we initially considered nine re-

tention times: 10μs, 26.5μs, 50μs, 75μs, 100μs, 1ms, 10ms,

100ms, and 1s. However, we found that the best latency

or energy retention times for different applications were,

for the most part, in the range of 10μs to 1ms. Thus, we

eliminated 10ms to 1s from our modeling and analysis. To

model the different retention times, we used the MTJ modeling

technique proposed in [9] to compute the write pulse, write

current and MTJ resistance value RAP . We then applied the

values to NVSim [22] and integrated with statistics obtained

from GEM5 [14] to calculate the cache latency and energy.

To model the SRAM cache in the hybrid cache, we used

NVSim’s SRAM settings. Table II shows different latency and

energy specifications for SRAM and STT-RAM used in our



TABLE II: SRAM and STT-RAM cache parameters
L1 cache configuration 32KB, 64B line size, 4-way
L2 cache configuration 1MB SRAM, 64B line size, 16-way

Memory device SRAM STT-RAM
Retention times – 10μs 26.5μs 50μs 75μs 100μs 1ms

Hit latency 0.486ns 0.464ns 0.454ns 0.448ns 0.445ns 0.443ns 0.438ns
Write latency 0.350ns 0.601ns 0.769ns 0.894ns 0.981ns 1.045ns 1.647ns

Read energy (per access) 0.0076nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ
Write energy (per access) 0.0066nJ 0.026nJ 0.030nJ 0.033nJ 0.035nJ 0.036nJ 0.051nJ

Leakage power 34.265mW 4.659mW

experiments. For stringent comparison, we used a hit cycle of

1 for both SRAM and STT-RAM, unlike prior work that used

higher hit cycles for SRAM (e.g., [3]), thus resulting in lower

optimization compared to SRAMs. To implement the machine

learning algorithms, we used Python’s scikit learn (Sklearn)
library [20].

V. RESULTS

In this section, we first evaluate SCART in the context of a

single-core processor, in comparison to a base retention time

and exhaustive search. Thereafter, we evaluate SCART in the

context of a quad-core processor running multi-programmed

workloads, and finally compare SCART to prior work.

A. Comparison to the Base Retention Time

To evaluate SCART’s effectiveness, we compared the la-

tency and energy savings achieved by our model with a base

retention time. We selected the base retention time as 1ms

to be conservatively large enough to satisfy the cache block

lifetimes of the considered applications, in order to prevent the

need to refresh any blocks. Thus, the base configuration elim-

inates the additional overheads from refreshing data blocks

[3]. For each benchmark, we report the overall results as the

weighted combination of the phase results, as is the common

practice in phase-based optimization [21].

Figure 3 depicts the latency and energy improvements

achieved using SCART as compared to the base. On average

across all the benchmarks, SCART improved the latency

by 20.34%, with improvements of up to 35.19% for bfs
(breadth-first search algorithm). We observed different trends

for different benchmark suites. For instance, SCART achieved

substantial improvements over the base for the GAP bench-

marks, since the base retention time was over-provisioned for

the benchmarks. Most of the cache blocks needed to remain

in the cache for much less than 1ms. On the other hand,

SCART did not achieve substantial latency improvements for

some SPEC and MiBench benchmarks, such as patricia, for

which there was no improvement, and hmmer, for which

SCART reverted to the base retention time in order to prevent a

latency degradation. For patricia, the base 1ms retention time

was sufficient for its cache block lifetimes, while hmmer’s

cache blocks required more than 1ms retention time to prevent

premature eviction. A closer look at hmmer’s cache blocks

revealed that while several of the blocks required less than

1ms, there were also several blocks that required closer to

10ms to prevent premature expiry. However, using a 10ms

base retention time would have incurred overall overheads for

our mix of benchmarks.

Similar to latency, SCART improved the energy, compared

to the base, by an average of 29.12%, with savings of up

to 34.54% for libquantum. The energy trends varied for the

different benchmark suites, and we also observed that the

retention time that was best for energy was not necessarily best

for latency. For example, when SCART was set to optimize

for energy, there was a latency overhead of 15.45%; when it

was set to optimize for latency, there was an energy overhead

of 10.81%. For a few benchmarks (e.g., hmmer), however,

similar retention times sufficed for both latency and energy

optimization. In general, SCART was able to trade off the

non-optimized metric for the specified metric, as necessary.

B. Comparison to Exhaustive Search

To further evaluate SCART, we compared the results ob-

tained to exhaustive search of the retention time design space.

Note that while the retention time design space will typically

not be expansive (six options, in our case), the design time

overhead from exhaustive search comes into play when several

applications or application domains must be explored. Thus,

SCART must be able to rapidly determine retention times that

are close to the optimal.

Figure 4 depicts the comparison of the latency and energy

achieved by SCART and exhaustive search (i.e., optimal) to

the base. For brevity, we only show the geometric means

for each benchmark suite considered. As seen in the figure,

SCART’s results were very close to exhaustive search for

the different benchmark suites. For the GAP benchmarks,

using SPEC benchmarks as training data, SCART achieved

identical savings to exhaustive search for latency, and achieved

energy savings within 0.07% of the optimal. Similary, using

SPEC benchmarks as training data for the MiBench work-

loads, SCART achieved latency and energy savings that were

0.4% and 1.9%, respectively, less than exhaustive search. The

degradation with respect to exhaustive search resulted from

false prediction penalty of the labels. However, the penalty was

low, since SCART predicted retention times that were close

to the optimal, further illustrating SCART’s effectiveness.

To further evaluate SCART’s robustness, we also performed

experiments to predict the retention times for GAP and SPEC

benchmarks using training data from MiBench benchmarks

(MiBench → GAP). We indicate the summary of the results

for MiBench → GAP and MiBench → SPEC predictions in

Figure 4 with an asterix (*). SCART achieved similar results

to exhaustive search for MiBench → GAP predictions with

average latency and energy savings of 34.71% and 39.11%

over the base. However, while MiBench → SPEC yielded av-

erage latency and energy improvements of 10.3% and 20.71%,

respectively, these results were farther from the optimal by
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Fig. 5: SCART latency and energy savings in a multi-

programmed scenario

3.26% and 4.87%, respectively. We attribute this to the fact that

the SPEC benchmarks’ labels featured much higher variation

than MiBench. As a result, a MiBench → SPEC prediction

afforded less coverage in predicted characteristics than the

SPEC → MiBench prediction. Overall, these results further

illustrate SCART’s ability to effectively predict latency and

energy-saving retention times.

C. SCART Execution in a Multi-Programmed Scenario

To further evaluate our model, we tested SCART in a

multi-programmed execution scenario featuring a quad-core

processor with a shared 1MB L2 cache. The experiments

performed herein enable us to evaluate SCART’s scalability

in a more complex system, since resource sharing in the L2

cache can impact the L1 cache behavior of the applications

running on each core [23]. We assume that each core features

multiple retention time units as in [2], and SCART predicts

the best retention time unit for each application on each core.

For the multi-programmed workloads, we created twelve

workloads featuring a random combination of four bench-

marks per workload, wherein each core runs one benchmark.

The workloads used are shown in Table III. For the experi-

ments in this subsection, we used the SPEC benchmarks (66%

of the total benchmarks) as training data and MiBench and

GAP benchmarks (33%) as testing data.

Figure 5 summarizes the percentage latency and energy

optimizations achieved by SCART in the multi-programmed

scenario compared to a base retention time of 1ms. On average

across all the workloads, SCART achieved latency and energy

savings of 25.07% and 36.13%, respectively. As seen in Figure

5, the latency and energy savings were relatively consistent

across the different workloads, demonstrating SCART’s effec-

tiveness in various execution scenarios.

D. Comparison to Prior Work and Implementation Overhead

To further evaluate the effectiveness of our approach, we

compared the exploration time to prior work [2] that pro-

posed different retention time units within each STT-RAM

cache. We chose this prior work, called LARS, since it is

the most related to ours and determined the optimal latency

and energy configurations during runtime using exhaustive

sampling. However, unlike LARS, which had four retention

times, our implementation featured six retention times. In our

implementation, each benchmark was first run on the base

STT-RAM unit (1ms) for 1 million instructions, and the data

was then used by SCART to predict the best retention time unit

on which to run the rest of the application. Overall, SCART

achieved similar results to exhaustive search (Section V-B).

Given SCART’s similar performance to exhaustive search,

we also evaluated SCART’s benefit for reducing the explo-

ration/tuning time. In LARS, the applications were sampled

on each STT-RAM cache unit. Thus, LARS required six

migrations between cache units for each tuning decision, with

each migration taking 4608 cycles, which translates to 2.304μs

at a 2GHz frequency. In total, the migration overhead was

13.824μs. SCART, for most of the cases, required only one

migration if a different retention time than the base was deter-

mined to be the best. Therefore, SCART’s average overhead

(prediction + migration) was 6.554μs, reducing the exploration

overhead by 52.58% compared to LARS, while achieving

similar latency and energy savings. Furthermore, unlike LARS,

which runs the application on potentially sub-optimal retention

times before arriving at the best, SCART directly predicts the

best without exploring sub-optimal retention times.

We assume that SCART is implemented in software (e.g.,

in the operating system). As such, SCART does not incur any

hardware overhead other than the monitor counter described

in Section III-A. However, SCART incurs some memory

overhead. We used memory profiling to observe the memory

consumed by SCART, and found that SCART consumes 0.156

MB of memory during the training stage and 2.5 KB of

memory for the runtime prediction stage.



TABLE III: Multi-programmed workload distribution

# Workload1 Workload2 Workload3 Workload4 Workload5 Workload6 Workload7 Workload8 Workload9 Workload10 Workload11 Workload12
1 bc 20 dijkstra m djpeg cc 20 pr 20 gsm tc 20 m cjpeg patricia bfs sssp 20 lame
2 patricia sssp 20 lame gsm sssp 20 pr 20 bc 20 bfs 20 m cjpeg tc 20 m djpeg dijkstra
3 gsm sssp 20 tc 20 bc 20 pr 20 cc 20 patricia bfs 20 lame m cjpeg m djpeg dijkstra
4 sssp 20 gsm tc 20 dijkstra patricia pr 20 m cjpeg lame bc 20 cc 20 bfs 20 m cjpeg

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed an STT-RAM Cache Retention

Time (SCART) model that uses a KNN classifier to predict

the best retention time for an STT-RAM L1 cache. SCART

uses execution statistics obtained from hardware performance

counters. In a runtime single-core scenario, SCART predicted

retention times that achieved average latency and energy

savings of 20.34% and 29.12%, respectively, compared to a

base 1ms retention time. In a quad-core scenario with multi-

programmed workloads, SCART achieved average latency and

energy savings of 25.07% and 36.13%, respectively, compared

to a base 1ms retention time. Compared to prior work, SCART

reduced the exploration time by 52.58%, while achieving

similar latency and energy savings. Future work involves

exploring a hardware implementation of SCART, extending

SCART to predict other architecture parameters, and reducing

the number of required labels in order to reduce the memory

overhead, without sacrificing prediction accuracy.
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