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Sela proved that every torsion-free one-ended hyperbolic group is co-Hopfian. We prove
that there exist torsion-free one-ended hyperbolic groups that are not commensurably
co-Hopfian. In particular, we show that the fundamental group of every simple surface

amalgam is not commensurably co-Hopfian.

1 Introduction

Hyperbolic groups, introduced by Gromov in his seminal essay [8], form a broad family
of finitely presented groups satisfying a coarse notion of negative curvature. The large-
scale geometry reflected in the definition has a variety of algebraic implications; for
example, hyperbolic groups satisfy the Tits alternative and each of Dehn’s decision
problems—the word, conjugacy, and isomorphism problems [6, 23]—is solvable. A
major development in the understanding of (torsion free) hyperbolic groups was the
body of work developed by Rips and Sela, each independently and in partnership. The
techniques they developed involved studying the action of hyperbolic groups on R-trees
and then developing a JSJ decomposition—a canonical splitting of a hyperbolic group
along two-ended subgroups.

A group is co-Hopfian if it is not isomorphic to any of its proper subgroups. Sela
[24], building on work of Rips—Sela [21], proved that a torsion-free hyperbolic group is

co-Hopfian if and only if it is freely indecomposable. Thus, by the “easy” direction of
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2 E. Stark and D. Woodhouse

Stallings’ Theorem [26], a torsion-free one-ended hyperbolic group is co-Hopfian. In his
thesis, Moioli [17,Theorem 1.0.8] generalized this statement to prove every one-ended
hyperbolic group is co-Hopfian. A group I' is commensurably co-Hopfian if no finite-
index subgroup of I' is isomorphic to an infinite-index subgroup of I'. As we explain
below, this variation of coHopficity has its own merits as, unlike the classical notion, it
is a commensurability invariant. Strebel [29] proved that the infinite-index subgroups
of a Poincaré duality group have strictly smaller cohomological dimension than the
group. Thus, Poincaré duality groups are commensurably co-Hopfian. In particular,
fundamental groups of closed hyperbolic manifolds are commensurably co-Hopfian.
Following the result of Sela, it was natural to ask if one ended hyperbolic groups are
commensurably co-Hopfian.

In this paper, we exhibit one-ended hyperbolic groups that are not commensu-
rably co-Hopfian, answering a question of Whyte on Bestvina's Problem list [2,(Whyte,
Q. 1.12)] and also asked by Kapovich [12,Section 5].

Theorem 1.1. There exist one-ended hyperbolic groups that are not commensurably

co-Hopfian.

Our proof of Theorem 1.1 is topological. A simple surface amalgam is the union
of a finite collection of at least three surfaces with negative Euler characteristic and
precisely one boundary component each and which have their boundary components
identified. These spaces have been studied in [7, 14, 27, 28]. Such spaces are one-ended
and Gromov hyperbolic. Hyperbolicity is an immediate consequence of the Bestvina-
Feighn combination theorem [1], since free groups are amalgamated along malnormal
subgroups. Moreover, by assigning each surface a suitable Reimannian metric, every
simple surface amalgam admits a metric with a CAT(-1) universal cover (see [4,Theorem
11.5.4] or Section 4 in [27]). We exhibit in Section 2 a simple surface amalgam X and two
finite covers X; — X and X, — X so that the space X, r;-injectively embeds in the space
X, and such that 7, (X;) embeds as an infinite-index subgroup of =, (X,). See Figure 1.
The construction given in Section 2 does not immediately extend to simple surface
amalgams in which the subsurfaces have different Euler characteristics. Nonetheless,

we prove the following in Section 3.

Theorem 1.2. The fundamental group of any simple surface amalgam is not commen-

surably co-Hopfian.

Bowditch [3] proved that if G is a one-ended hyperbolic group that is not

Fuchsian, then there is a canonical graph of groups decomposition of G, called the
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Non-Commensurably Co-Hopf Hyperbolic groups 3

Fig. 1. Two finite covers of a simple surface amalgam X. The space X; embeds as a retract of the
space Xy, such that 7 (X;) embeds as an infinite-index subgroup of 7; (X2). Thus, the group 71 (X)
contains a finite-index subgroup isomorphic to 7; (X;) and an infinite-index subgroup isomorphic
to w1 (X7).

JSJ decomposition of G, with edge groups that are two-ended and vertex groups of
three types: two-ended; maximally hanging Fuchsian; and quasi-convex rigid vertex
groups not of the first two types. For background and definition, see [9, 22, 25].
We conjecture that for a one-ended hyperbolic group the commensurably co-Hopfian
property is related to the existence of maximal hanging Fuchsian vertex groups in the

JSJ decomposition of the group over two-ended subgroups.

Conjecture 1.3. Let I' be a one-ended hyperbolic group that is not Fuchsian. If T’
is not commensurably co-Hopfian, then its JSJ decomposition contains a maximal
hanging Fuchsian vertex group. Moreover, if the JSJ decomposition of I" only contains
maximal hanging Fuchsian vertex groups and 2-ended vertex groups, then I' is not

commensurably co-Hopfian.

In this paper, the embeddings constructed are quasi-isometric embeddings and
are surely not representative. Indeed, highly distorted subgroups may be counterexam-
ples to Conjecture 1.3, so a quasi-convexity assumption may be required.

In Section 4, we present two examples of one-ended hyperbolic groups whose
JSJ decomposition contains both maximal hanging Fuchsian and rigid vertex groups
and so that one group is commensurably co-Hopfian and the other is not. We summarize

our examples and open problems in Section 1.1.
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4 E. Stark and D. Woodhouse
Quasi-isometrically co-Hopfian

The quasi-isometrically co-Hopfian condition is a related coarse notion for metric
spaces. A metric space X is quasi-isometrically co-Hopfian if every quasi-isometric
embedding of X into itself is a quasi-isometry. This property holds for certain coarse
PD(n) spaces [13][11,Section 3] and has been studied for certain Gromov hyperbolic
spaces [16] and non-uniform lattices in rank-one semisimple Lie groups [11]. The
infinite-index embeddings we give in Section 2 and Theorem 3.1 are retractions and
therefore are quasi-isometric embeddings that are not quasi-isometries. These are the
only known examples, as far as we know, of one-ended hyperbolic groups that are not

quasi-isometrically co-Hopfian.

Motivation of the terminology

Kapovich [12] uses the term weakly co-Hopfian instead of commensurably co-Hopfian.
We abandon this terminology, since the property is not weaker than the co-Hopfian
property: every one-ended hyperbolic group is co-Hopfian by the theorem of Sela, but
not every one-ended hyperbolic group is commensurably co-Hopfian as shown here.
However, in general, the commensurably co-Hopfian property defined in this paper
is not a stronger condition than the co-Hopfian property. For example, the integers Z
are commensurably co-Hopfian, but not co-Hopfian. The adjective commensurably is
justified by the fact that being commensurably co-Hopfian is an abstract commensu-
rability invariant, which follows from the lemma below. The co-Hopfian property, on
the other hand, is not an abstract commensurability invariant by work of Cornulier
[5,Appendix Al.

Lemma 1.4. If H < Gis afinite-index subgroup, then H is commensurably co-Hopfian

if and only if G is commensurably co-Hopfian.

Proof. If G is commensurably co-Hopfian, then H is commensurably co-Hopfian.
Indeed, otherwise, there exists a finite-index subgroup H' < H < G with an infinite-
index embedding ¢ : H — H < G, contradicting the commensurably co-Hopficity of G.
Conversely, suppose G is not commensurably co-Hopfian. Then, there exists a
finite-index subgroup G’ < G and an embedding ¢ : G — G so that ¢(G’) is an infinite-
index subgroup of G. The intersection ¢! (H) N H is a finite-index subgroup of H, since
the preimage ¢! (H) is a finite-index subgroup of G. Therefore, ¢ restricts to an infinite-

index embedding ¢~!(H) N H — H. Thus, H is not commensurably co-Hopfian. |
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Non-Commensurably Co-Hopf Hyperbolic groups 5

The following example, explained to the authors by Cornulier, shows that the

commensurably co-Hopfian property is not a quasi-isometry invariant.

Example 1.5. (Cornulier) Let I' be an arithmetic lattice in SLZ(QP) x SL, (Qq) for suitable
primes p, q. The group I acts geometrically on the product of the associated Bruhat-Tits
buildings: the product of two trees. Thus, the group I' is quasi-isometric to F, x F,, the
product of two free groups, which is not commensurably co-Hopfian.

The commensurable co-Hopficity of I' can be deduced from Margulis’ Super-
rigidity Theorem. Indeed, suppose I'" < TI' is a finite-index subgroup and ¢ : ' — T
is an infinite-index embedding. Then superrigidity (see [15,Prop. VIL.5.3, p225], or
alternatively [18,Appendix Cl), implies that ¢ extends to a continuous homomorphism
P . SLz(Qp) X SLz(Qq) — SLZ(Qp) X SLZ(Qq). It then follows from the representation
theory of p-adic Lie groups that & is an automorphism, contradicting the fact that ¢

embeds I’ as an infinite-index subgroup.
We also note that the following question of Bestvina remains open.

Question 1.6. Does there exist a one-ended hyperbolic group that contains isomorphic

finite-index subgroups of different index?

1.1 Summary

The table below summarizes the results in this paper and related open problems.

JSJ decomposition

JSJ decomposition

JSJ decomposition

G is one-ended

has only 2-ended has 2-ended, has only 2-ended and hyperbolic
G hyperbolic and maximal maximal hanging and rigid with trivial JSJ
hanging Fuchsian | Fuchsian, and rigid vertex groups decomposition
vertex groups vertex groups

Commensurably Open Example 4.4 Example 5.1 Poincaré

co-Hopfian problem duality groups
[29]
Not commensurably Section 2; Example 4.1 Open Open
co-Hopfian Theorem 3.1 problem problem

Section 2 demonstrates the main example of the paper, and Section 3 generalizes
the main example to prove that all simple surface amalgams have fundamental
groups that are not commensurably co-Hopfian. Section 4 gives examples of one-ended
hyperbolic groups with mixed JSJ decompositions such that some groups are commen-

surably co-Hopfian and others are not. Section 5 gives an example of commensurably
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6 E. Stark and D. Woodhouse

co-Hopfian one-ended hyperbolic groups that have non-trivial JSJ decomposition and

vertex groups that are only two-ended and rigid.

2 The Main Example

A simple surface amalgam X is the union of a finite set of surfaces X;,..., X, withk > 3
and x(%;) < 0 such that 9%; = S! and all boundary components are identified to a single
copy of the circle S! by a homeomorphism.

The following lemma determines the finite covers of a surface with boundary.

Lemma 2.1. [20,Lemma 3.2] Let X be an oriented surface with positive genus. Fix
a positive integer d. For each boundary component of X, pick a collection of degrees
summing to d. Then a d-sheeted covering ¥’ — X exists with the prescribed degree
coverings in the preimage of each boundary component of ¥ if and only if the total

number of boundary components of X’ has the same parity as dy ().

We will repeatedly use Lemma 2.1 to construct finite covers of a surface amal-
gam. Indeed, given a simple surface amalgam X constructed from surfaces X,..., X,
we can specify covers of each X; and then glue them together along boundary com-
ponents provided the covering degrees of identified boundary components over the

amalgamating curve in X match.

Proof. of Theorem 1.1 Let X be a simple surface amalgam with subsurfaces
¥,,X,, X3, where %; is a surface of genus one with a single boundary component.
Demonstrating that 7, (X) is not commensurably co-Hopfian follows from considering
Figure 1.

We first construct a degree-3 cover f; : X; — X. By Lemma 2.1, there exists
a degree-3 cover X; — ¥; so that X! has a single boundary component for i € {1,2,3}.
By an elementary Euler characteristic computation, the surface X} has genus two. The
boundary components of each X for i € {1,2,3} can be identified to each other by a
homeomorphism to construct a 3-sheeted cover f; : X; — X.

We now build a degree-4 cover f, : X, — X. By Lemma 2.1, there exists a
degree-2 cover X! — X; so that X! has two boundary components for i € {1,2,3}.
Again, by an elementary Euler characteristic computation, the surface Z has genus
one. By identifying a single boundary component from each X and attaching
copies of %; ¥y to the other boundary component of X we obtain the 4-sheeted

covering f, : X, — X.
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Non-Commensurably Co-Hopf Hyperbolic groups 7
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Fig. 2. The spaces X’ and X” finitely cover the space X, and the space X’ embeds 7 -injectively
in the space X”, such that 7;(X’) embeds as an infinite-index subgroup of 7;(X”). Thus, the
fundamental group of X is not commensurably co-Hopfian since it contains a finite-index
subgroup and an infinite-index subgroup isomorphic to 7 (X’).

There is a 7, -injective proper embedding ¢ : X; — X, as shown in Figure 1 that
yields an embedding of r, (X;) in 7, (X,) as an infinite-index subgroup. Therefore, 7; (X)

contains a finite-index subgroup that is isomorphic to an infinite-index subgroup. H

3 Simple Surface Amalgams Are Not Commensurably Co-Hopfian

Theorem 3.1. If G is the fundamental group of a simple surface amalgam, then G is

not commensurably co-Hopfian.

Proof. Let G be the fundamental group of a simple surface amalgam X with k
subsurfaces %,,...,X;. We construct a degree-2 cover X > X by an application of
Lemma 2.1. (This step allows us to resolve any parity issues in the future application
of Lemma 2.1.) Let X be the union of k surfaces %,,...,%;, where x(Z,) = 2x(Z,). Let
X = x(fi). The surface fi has two boundary components y; and y;, and X is obtained by
identifying the curves {y;|1 < i < k} to a single curve y and the curves {y/ |1 <i <k} to
a single curve y'.

As in Section 2, we will construct two finite covers X’ and X” of the space X
so that the space X’ embeds =, -injectively in the space X", such that 7;(X’) embeds as
an infinite-index subgroup of ; (X”). See Figure 2. This construction relies on the next

claim.
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8 E. Stark and D. Woodhouse

Claim 3.2. There exists a set of positive integers {D,d,d;|1 <1i < k} so that

(d+dpx + 2dix + dixn = Dy
(d + dz)j(\z + 2d25(\1 + dz?z = Dj(\z

Proof of Claim. Rewrite the i-th equation in the following form (with indices mod k):
2d;(X;—1 + X)) = D — d)X;.

Choose positive integers D and d such that D > d and (D—d) is divisible by 2lem({(|x;_; +

X;1) | 1 <i <k}. Then, we obtain positive integers

d. = (D_—d)yl > 1
o2 X)) =

Let D,d,d,,...,d; be positive integers satisfying the equations given by
Claim 3.2. There exists a degree-D cover X’ — X constructed as follows. Let X’ be
the union of k surfaces Zi,...,E,’c, so that X(Zlf) = DY; = 2Dy;, the surface 2{ has
two boundary components p; and p;, and X’ is obtained by identifying the curves
{0;11 <1 < k} to a single curve p and the curves {p;|1 < i < k} to a single curve p'. By
Lemma 2.1, there exists a degree-D covering map X — fi that restricts to a degree-D
cover on each of the boundary components p — y and p’ — y’. Thus, these maps glue
to yield a degree-D cover X' — X.

To build the space X”, fori € {1,...,k}, we will partition each surface 2; c X
into three subsurfaces, Elfl, 2152, 2153,
curves of X/, as follows. The construction is illustrated in Figure 2. In particular, the

and attach additional subsurfaces to the boundary

construction ensures that the space X’ embeds in X” n,-injectively, and =, (X’) embeds
as an infinite-index subgroup of m;(X"). Let X, be the subsurface of X} with Euler
characteristic (d + d;)x; and four boundary components, two of which are the curves
p; and p;; call the other boundary curves p;; and p;;. Let X}, be the subsurface with

Euler characteristic 2d;x;_; (subscript mod k) and four boundary components, two of
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Non-Commensurably Co-Hopf Hyperbolic groups 9

which are p;; and p;; call the other boundary curves p;, and p;,. Finally, let X, be

the subsurface with Euler characteristic d;x; and two boundary curves, p;; and pj,.
/

i3
and X/, sum to DY;. Fori € {1,..., k} attach k—2 surfaces

Claim 3.2 implies that we indeed have the decomposition =} = ¥/, U X, U X/;, since the

Euler characteristics of Elfl, Elfz,
{E]‘f |jefl,...,k},j#1,i— 1} with two boundary components and Euler characteristics
X(E}.) = d;X; to the curves {p;;, p; }. Similarly, attach k — 2 surfaces {E]/.l ljefl,... . k},j#
i,1 — 1} with two boundary components and Euler characteristics X(E}) = difj to the
pair of curves {p;y, pj,}.

We now prove there exists a degree-(d + 2 Z?zl d;) covering map X" — X. We

describe the cover on the branching curves of X”, and then we use Lemma 2.1 to show

k
i=1

together to form the curves p and p’ in X", respectively. Then, p and p’ cover the curves

the cover extends to all of X”. As above, suppose the curves {pi}i.;l and {p;}7_, are glued

y and y’ by degree d. For all i € {1,...,k}, the curves p;; and p;, cover the curve y by

degree d;, and the curves p;, and p;, cover the curve y’ by degree d;. By Lemma 2.1, there

’
i—1

cover X;; — X!. By Lemma 2.1, there are degree d; covers 2} — 2]’. and EJ/.i — E]’.. Since

exists a degree (d + d;) cover X}, — X, a degree 2d; cover X;, — X! ;, and a degree d;

these covering maps agree on their intersection, there exists a finite cover X” — X.

4 Examples With Mixed JSJ Decomposition

Example 4.1. (Not commensurably co-Hopfian.) We adapt the proof in Section 2
to exhibit a one-ended hyperbolic group G whose JSJ decomposition contains both
maximal hanging Fuchsian vertex groups and rigid vertex groups and so that G is not
commensurably co-Hopfian. An illustration of this example appears in Figure 3 and
Figure 4. Let X, be a simple surface amalgam with subsurfaces ¥, £,, X5, where %;
is a surface of genus one with a single boundary component. Let a; be an essential
simple closed curve on X; that is not homotopic to the boundary. There exists a
homeomorphism ¢;; : ¥; — %; so that ¢;;(q;) = q; for all i,j € {1,2,3}.

Let H be a torsion-free one-ended hyperbolic group that does not split over a
virtually cyclic subgroup, and let X;; be a finite cell complex with r; (X) = H. Suppose
there exists an infinite-order element h € H represented by a closed curve a;, on X so
that there exists a degree-2 cover X;; — Xy in which g, lifts to a single closed curve on
X}, (For a concrete example, let H = 7,(S) x (t) be the fundamental group of a closed
fibered hyperbolic 3-manifold with fiber a closed surface S, and let h = t.) For i €
{1,2,3}, let ¢; : Xy — Xy be a homeomorphism, and let ay; = ¢(ay). For i € {1,2,3}

let A; be an annulus. Glue one boundary component of A; to the curve g; and the other
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Fig. 3. A degree-3 cover of a surface X of genus one with one boundary component by a surface
of genus two and one boundary component. The red curve on ¥ has two pre-images that lie in
subsurfaces separated by the blue curve. The existence of such a cover is evident from the “fat-
graph” representation of the surfaces, drawn on the top row. The vertical homeomorphisms are

color preserving.

Fig. 4. The squares represent cell complexes Xz and 2-fold covers Xl’q of Xp. The spaces X’ and
X' are finite covers of the space X, and the space X’ embeds n;-injectively in X”, such that 7 X’
embeds as an infinite index subgroup of n;X”. Thus, the group m(X) contains a finite-index
subgroup isomorphic to 71 (X’) and an infinite-index subgroup isomorphic to 71 (X’).
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boundary component of the annulus to the curve a;; by homeomorphisms. Let X be the
resulting complex, and let G be the fundamental group of X. The JSJ decomposition of
G over 2-ended vertex groups contains three maximal hanging Fuchsian vertex groups,

7, (%;), and three rigid vertex groups, m; (Xg;).

Claim 4.2. The group G is not commensurably co-Hopfian.

Proof. We first construct a degree-3 cover X’ — X. As shown in Figure 3, fori € {1, 2, 3}
there exists a degree-3 cover ¥; — X; so that ¥; has one boundary component and
genus two and so that the preimage of the curve a; has two components a; and a,
where a; covers a; by degree one and a covers a; by degree two. Moreover, there exists
a closed curve y; (shown in blue in Figure 3) that separates X into two subsurfaces;
one subsurface has boundary y; and contains the curve a;., and the other subsurface
has two boundary components and contains the curve a}. Thus, as in Section 2, the
boundary components of X; can be glued together to form a degree three cover of the
simple surface amalgam X; — X,,. By assumption on the group H, the degree-3 cover of
the simple surface amalgam extends to a degree-3 cover of X obtained by taking copies
of X;; and copies of the degree-two cover X;; and attaching them along annuli to lifts of
the curves ay; on Xj. See Figure 4.

The degree-4 cover X” — X is constructed in analogy to the construction in
Section 2. The space X” contains the space X’ as a subspace that induces a =, -injective
embedding of the fundamental group as an infinite-index subgroup, and for i € {1, 2, 3}
to each of the curves y; C X’ defined in the paragraph above a copy of X; U Xp; is
glued along the boundary component of ;. As above, the space X” forms a degree-4
cover of X. Then X’ embeds n;-injectively in X” such that =, (X’) embeds as an infinite-
index subgroup of 7, (X"). So, the group G = m;(X) contains a finite-index subgroup
isomorphic to 7;(X’) and an infinite-index subgroup isomorphic to =, (X’). Thus, G is

not commensurably co-Hopfian. |

Examples 4.4 and 5.1 make use of the notion of an acylindrical submanifold.
Let M be a Riemannian manifold and N € M a locally convex submanifold. Let A
denote the annulus. The submanifold IV is said to be acylindrical if any n;-injective
map (4,9A) — (M, N) is relatively homotopic to a map (4,34) — (N, N). Equivalently,
the subgroup =; (V) < m; (M) is malnormal in the sense that =; (V) N 7; (V)9 = {1} for all
g € m; (M) — r;(N). In particular, if M is a closed hyperbolic manifold and NN is a simple

closed geodesic, then N is acylindrical in M.
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12 E. Stark and D. Woodhouse

We also require the following lemma; we include a proof as we are unaware of a

reference.

Lemma 4.3. Let ¥ and X’ be compact surfaces with boundary with negative Euler
characteristic. If f : (X,0%) — (¥/,0Y’) is a 7;-injective map, then f is homotopic to a

finite-degree covering map of ¥’.

Proof. It suffices to prove that f, : 7n;(¥) — 7;(X') embeds 7,(X) as a finite-index
subgroup of 7, (X’). Let DX and DX’ be the doubles of ¥ and X’ along their boundary
components. The spaces DX and DY’ are closed surfaces of genus greater than 1, and
the map f determines a 7;-injective map F : DX — DX'. This last fact follows since
¥ and X’ have negative Euler characteristic so the subgroups corresponding to the
boundary components give malnormal families. Thus, the lift f : £ — X’ sends each
boundary component to a unique boundary component. If T and T’ are the Bass—Serre
trees corresponding to the splittings of 7, (DX) and 7, (DX’) given by the doubling, then
it follows from the previous observation that the F,-equivariant map T — T’ induced
by the morphism between the graphs of groups is locally injective, and hence globally
injective. Thus, F, : n;(DX) — 7, (DY’) is injective.

The fundamental group of a closed surface DX can only embed in the funda-
mental group of a closed surface DX’ as a finite-index subgroup, so the map F is
homotopic to a finite-degree covering map F’, which induces that same map on the
fundamental groups. The preimage (F')~!(Z’) may not be ¥, but it will be a subspace
homeomorphic to ¥, so we can identify (F')~!(X’) with ¥/, to obtain a covering map
f 1 (2,9%) - (¥',0%) such that f, = f/, so f’ is homotopic to f. |

Example 4.4. (Commensurably co-Hopfian.) Let M be a closed hyperbolic 3-manifold,
and let y be an embedded locally geodesic closed curve in M. Let ¥ be a compact surface
with positive genus and boundary 39X homeomorphic to S!. Identify y with 9% via a
homeomorphism to obtain a quotient space X. The fundamental group G = 7;(X) is a
one-ended hyperbolic group given by the amalgamation of the 3-manifold group and the
free group m; (X) along the cyclic groups corresponding to y and d%. This amalgamated

free product corresponds to the canonical JSJ decomposition for 7 (X).

Proposition 4.5. The group G is commensurably co-Hopfian.

Proof. Let G < G be a finite-index subgroup and ¢ : G — G an injective

homomorphism. Without loss of generality, assume that G’ is a normal subgroup of G
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and let 7 : X’ — X denote the corresponding finite regular cover. Take the 7 -preimages
of M and X to decompose X’ as a collection of homeomorphic 3-manifolds Mjy,..., M},
and a collection of homeomorphic surfaces with boundary X7, ..., ¥, such that le - M
and 2]’. — X are regular covers.

We first argue that the homomorphism ¢ : ¢ — G is induced by a map
® : X' — X such that the restriction of ® to each 3-manifold M; is a covering
map ®; : M, — M. Let T denote the Bass-Serre tree of the JSJ splitting of G.
The subgroup ¢(G’) < G acts on T. Since the group m;(M;) does not split over a
virtually cyclic subgroup, the subgroup ¢ (7, (M;)) stabilizes a vertex in T. Thus, there
exists g; € G, such that (p(nl(le))gi < m;(M). As m; (M) is commensurably co-Hopfian,
@(my (M))¥i is a finite-index subgroup of 7, (M). By Mostow rigidity [19], the covering
space corresponding the subgroup ¢ (7, (M)))Y is isometric to M;, so the homomorphism
@9+ m (M) — m (M) is induced by a covering map ®; : M; — M. Since X and
X’ have contractible universal covers, there exists a continuous map ¥ : X' — X
such that ¥, = ¢. As ¢9 induces the same map on the fundamental group as &;
and the space X is a classifying space, we can homotope ¥ to a map & so that it
restricts to ®; on each le C X’ (see [10,Proposition 1B.9.]). Thus, the resulting map @ is
as specified.

Suppose towards a contradiction that ® : X’ — X is not homotopic to a covering
map. Let C; C ®~1(y) be the set of curves in the full preimage of the amalgamating
curve y C X that lie in the surface E]’.. After homotopy, we may assume that C;is a set
of disjoint curves and E)ZJ’. C Cj. Moreover, since the curves y ¢ M and dX C X are
acylindrical subspaces, applying a suitable homotopy removes parallel curves in the set
C;. Lemma 4.3 implies that if C;= BEJ/., then ® can be homotoped on E]/., relative to 821/., to
a covering map E]/. — . Since we assumed that ® is not homotopic to a covering map we
can say, without loss of generality, the set C; contains a curve that is not a component
in9%].

Letoy,...,0, denote the closures of the components of X; —C,. Each ¢; is mapped
by ® into either ¥ or M and we refer to the subsurfaces as either X-type or M-type,

accordingly. We verify the following claims:

Claim 4.6. If o; is X-type and o; No; # ¥, for j # i then o; is M-type.
|

Proof. Suppose not. Then we would have a 7, -injective map f : (o; U 0j,9(0; U 0j)) —

(¥,0%). By Lemma 4.3 the map f is homotopic to a covering map, which implies that the
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curves o, N o, would have to be homotopic to a boundary curve in o, U 05, contradicting

the fact that o; and o; are not annuli. u

Claim 4.7. If 0; has a boundary component in 9%, then o; is Z-type.

Proof. Suppose not. Then we have o; that intersects M]’ such that o; U M]’ maps ;-
injectively into M. But aiUIMJ/. has cohomological dimension 3 while on the other hand the
fundamental group will be infinite ended so it cannot induce a finite index embedding

into 7; M. By Strebel’s theorem [29], such a map cannot exist. |

Combining Claims 4.6 and 4.7 with the assumption that C| contains a curve not
in %] we can deduce that there exists at least some o; that is M-type. Moreover, for each
X-type o;, since ¢ induces a m;-injective map (o;, do;) — (X,9X). Lemma 4.3 implies we
can homotope, relative to its boundary curves, o; — X to a covering map.

Under the regular covering map = : X’ — X corresponding to the finite-index
subgroup G’ < G, each boundary component in 821/. covers 0% with degree d for some

d € N. Thus, the Euler characteristic satisfies
X(EJ’-) = d|32}| - x ().

The degrees of the covering maps from M; to M given by either 7 or ® must coin-
cide since they are determined by the ratio of the volumes. Similarly, if y’ is a curve in
p . . . , .
9%, then since y’ and y are geodesic curves in some M] and M, respectively, the degrees
of the covering map y’ — y given by = and ® must also coincide since it is given by the
ratios of their length. It follows that each component in 3% covers y with degree d.

Thus, we can deduce that

Ix (DI

Dlxpl= D Ixopl

o;isX-type

= > deg(®:do; > Y)x(D) > dIdT]] - [x ().
ojisX-type

(We let deg(® : do; — y) denote the sum of the degrees of the map restricted to
each component in do;.) The first inequality follows from discarding the M-type surfaces
o;, and the second inequality follows from only counting the degrees of the curves in
d%]. This contradicts the previous equality, and thus, ® is homotopic to a covering map.

Therefore, ¢(G’) is a finite-index subgroup of G.
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5 Commensurably Co-Hopfian Groups Without Hanging Fuchsian Subgroups in

Their JSJ Decomposition

In this section we provide an example of a one-ended hyperbolic group with non-trivial
JSJ decomposition and only rigid and two-ended vertex groups. The key point is that

we choose the rigid vertex groups to be commensurably co-Hopfian.

Example 5.1. Let M and N be closed hyperbolic 3-manifolds. For simplicity we will
assume that 7; (M) and 7, (V) are incommensurable. Let y € M and ¢ € N be simple
closed geodesics, and let A be an annulus. Let X be the space obtained from M WA UN

by gluing one boundary component of the annulus to y and the other to o.

Claim 5.2. G = n;X is commensurably co-Hopfian.

Proof. The proof follows a similar strategy to Claim 4.5. Let G < G be a finite-
index subgroup and ¢ : G — G is an injective homomorphism. Assuming G’ is a
normal subgroup, let X’ — X be the finite-sheeted, regular cover corresponding to G'.
Considering the ¢-preimages of M, N, and A, decompose X’ as a graph of spaces with
.,MmandN N LA

vertex spaces I\, u vyt v
As 7, (M) and 7, (IV) do not split over a virtually cyclic group, are commensurably

up’

and edge spaces A

epre 1B,
co-Hopfian, and are incommensurable with each other, there exists g;,h; € G such
that ¢(r; (Mui))gi is a finite-index subgroup of 7;(M) and (p(nl(NVi))hi is a finite-index
subgroup of 7;(N). By Mostow rigidity, there exist covering maps @, : M, — M
and ®, : N, — N that correspond to the embeddings ¢% : =;(M, ) — m;(M) and
gohi Dy (NVi) — 1 (V).

The spaces X’ and X have contractible universal covers, so there exists a
continuous map ® : X' — X such that ®, = ¢. After homotopy, ® restricts to @, on
M, and ¢, on N, . The map ¢ may be homotoped to a covering map since any annulus
mapping (4, d) to either (M, y) or (N, o) can be homotoped into y or o, since y and o are

acylindrical subspaces of M and N. Thus, ¢(G’) is a finite-index subgroup of G. |
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