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Sela proved that every torsion-free one-ended hyperbolic group is co-Hopfian. We prove

that there exist torsion-free one-ended hyperbolic groups that are not commensurably

co-Hopfian. In particular, we show that the fundamental group of every simple surface

amalgam is not commensurably co-Hopfian.

1 Introduction

Hyperbolic groups, introduced by Gromov in his seminal essay [8], form a broad family

of finitely presented groups satisfying a coarse notion of negative curvature. The large-

scale geometry reflected in the definition has a variety of algebraic implications; for

example, hyperbolic groups satisfy the Tits alternative and each of Dehn’s decision

problems—the word, conjugacy, and isomorphism problems [6, 23]—is solvable. A

major development in the understanding of (torsion free) hyperbolic groups was the

body of work developed by Rips and Sela, each independently and in partnership. The

techniques they developed involved studying the action of hyperbolic groups on R-trees

and then developing a JSJ decomposition—a canonical splitting of a hyperbolic group

along two-ended subgroups.

A group is co-Hopfian if it is not isomorphic to any of its proper subgroups. Sela

[24], building on work of Rips–Sela [21], proved that a torsion-free hyperbolic group is

co-Hopfian if and only if it is freely indecomposable. Thus, by the “easy” direction of
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2 E. Stark and D. Woodhouse

Stallings’ Theorem [26], a torsion-free one-ended hyperbolic group is co-Hopfian. In his

thesis, Moioli [17,Theorem 1.0.8] generalized this statement to prove every one-ended

hyperbolic group is co-Hopfian. A group � is commensurably co-Hopfian if no finite-

index subgroup of � is isomorphic to an infinite-index subgroup of �. As we explain

below, this variation of coHopficity has its own merits as, unlike the classical notion, it

is a commensurability invariant. Strebel [29] proved that the infinite-index subgroups

of a Poincaré duality group have strictly smaller cohomological dimension than the

group. Thus, Poincaré duality groups are commensurably co-Hopfian. In particular,

fundamental groups of closed hyperbolic manifolds are commensurably co-Hopfian.

Following the result of Sela, it was natural to ask if one ended hyperbolic groups are

commensurably co-Hopfian.

In this paper, we exhibit one-ended hyperbolic groups that are not commensu-

rably co-Hopfian, answering a question of Whyte on Bestvina’s Problem list [2,(Whyte,

Q. 1.12)] and also asked by Kapovich [12,Section 5].

Theorem 1.1. There exist one-ended hyperbolic groups that are not commensurably

co-Hopfian.

Our proof of Theorem 1.1 is topological. A simple surface amalgam is the union

of a finite collection of at least three surfaces with negative Euler characteristic and

precisely one boundary component each and which have their boundary components

identified. These spaces have been studied in [7, 14, 27, 28]. Such spaces are one-ended

and Gromov hyperbolic. Hyperbolicity is an immediate consequence of the Bestvina–

Feighn combination theorem [1], since free groups are amalgamated along malnormal

subgroups. Moreover, by assigning each surface a suitable Reimannian metric, every

simple surface amalgam admits a metric with a CAT(-1) universal cover (see [4,Theorem

II.5.4] or Section 4 in [27]). We exhibit in Section 2 a simple surface amalgam X and two

finite covers X1 → X and X2 → X so that the space X1 π1-injectively embeds in the space

X2 and such that π1(X1) embeds as an infinite-index subgroup of π1(X2). See Figure 1.

The construction given in Section 2 does not immediately extend to simple surface

amalgams in which the subsurfaces have different Euler characteristics. Nonetheless,

we prove the following in Section 3.

Theorem 1.2. The fundamental group of any simple surface amalgam is not commen-

surably co-Hopfian.

Bowditch [3] proved that if G is a one-ended hyperbolic group that is not

Fuchsian, then there is a canonical graph of groups decomposition of G, called the
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Non-Commensurably Co-Hopf Hyperbolic groups 3

Fig. 1. Two finite covers of a simple surface amalgam X. The space X1 embeds as a retract of the

space X2, such that π1(X1) embeds as an infinite-index subgroup of π1(X2). Thus, the group π1(X)

contains a finite-index subgroup isomorphic to π1(X1) and an infinite-index subgroup isomorphic

to π1(X1).

JSJ decomposition of G, with edge groups that are two-ended and vertex groups of

three types: two-ended; maximally hanging Fuchsian; and quasi-convex rigid vertex

groups not of the first two types. For background and definition, see [9, 22, 25].

We conjecture that for a one-ended hyperbolic group the commensurably co-Hopfian

property is related to the existence of maximal hanging Fuchsian vertex groups in the

JSJ decomposition of the group over two-ended subgroups.

Conjecture 1.3. Let � be a one-ended hyperbolic group that is not Fuchsian. If �

is not commensurably co-Hopfian, then its JSJ decomposition contains a maximal

hanging Fuchsian vertex group. Moreover, if the JSJ decomposition of � only contains

maximal hanging Fuchsian vertex groups and 2-ended vertex groups, then � is not

commensurably co-Hopfian.

In this paper, the embeddings constructed are quasi-isometric embeddings and

are surely not representative. Indeed, highly distorted subgroups may be counterexam-

ples to Conjecture 1.3, so a quasi-convexity assumption may be required.

In Section 4, we present two examples of one-ended hyperbolic groups whose

JSJ decomposition contains both maximal hanging Fuchsian and rigid vertex groups

and so that one group is commensurably co-Hopfian and the other is not. We summarize

our examples and open problems in Section 1.1.
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4 E. Stark and D. Woodhouse

Quasi-isometrically co-Hopfian

The quasi-isometrically co-Hopfian condition is a related coarse notion for metric

spaces. A metric space X is quasi-isometrically co-Hopfian if every quasi-isometric

embedding of X into itself is a quasi-isometry. This property holds for certain coarse

PD(n) spaces [13][11,Section 3] and has been studied for certain Gromov hyperbolic

spaces [16] and non-uniform lattices in rank-one semisimple Lie groups [11]. The

infinite-index embeddings we give in Section 2 and Theorem 3.1 are retractions and

therefore are quasi-isometric embeddings that are not quasi-isometries. These are the

only known examples, as far as we know, of one-ended hyperbolic groups that are not

quasi-isometrically co-Hopfian.

Motivation of the terminology

Kapovich [12] uses the term weakly co-Hopfian instead of commensurably co-Hopfian.

We abandon this terminology, since the property is not weaker than the co-Hopfian

property: every one-ended hyperbolic group is co-Hopfian by the theorem of Sela, but

not every one-ended hyperbolic group is commensurably co-Hopfian as shown here.

However, in general, the commensurably co-Hopfian property defined in this paper

is not a stronger condition than the co-Hopfian property. For example, the integers Z

are commensurably co-Hopfian, but not co-Hopfian. The adjective commensurably is

justified by the fact that being commensurably co-Hopfian is an abstract commensu-

rability invariant, which follows from the lemma below. The co-Hopfian property, on

the other hand, is not an abstract commensurability invariant by work of Cornulier

[5,Appendix A].

Lemma 1.4. If H ≤ G is a finite-index subgroup, then H is commensurably co-Hopfian

if and only if G is commensurably co-Hopfian.

Proof. If G is commensurably co-Hopfian, then H is commensurably co-Hopfian.

Indeed, otherwise, there exists a finite-index subgroup H ′ ≤ H ≤ G with an infinite-

index embedding ϕ : H ′ → H ≤ G, contradicting the commensurably co-Hopficity of G.

Conversely, suppose G is not commensurably co-Hopfian. Then, there exists a

finite-index subgroup G′ ≤ G and an embedding ϕ : G′ → G so that ϕ(G′) is an infinite-

index subgroup of G. The intersection ϕ−1(H) ∩ H is a finite-index subgroup of H, since

the preimage ϕ−1(H) is a finite-index subgroup of G. Therefore, ϕ restricts to an infinite-

index embedding ϕ−1(H) ∩ H → H. Thus, H is not commensurably co-Hopfian. �
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Non-Commensurably Co-Hopf Hyperbolic groups 5

The following example, explained to the authors by Cornulier, shows that the

commensurably co-Hopfian property is not a quasi-isometry invariant.

Example 1.5. (Cornulier) Let � be an arithmetic lattice in SL2(Qp)×SL2(Qq) for suitable

primes p,q. The group � acts geometrically on the product of the associated Bruhat–Tits

buildings: the product of two trees. Thus, the group � is quasi-isometric to F2 × F2, the

product of two free groups, which is not commensurably co-Hopfian.

The commensurable co-Hopficity of � can be deduced from Margulis’ Super-

rigidity Theorem. Indeed, suppose �′ � � is a finite-index subgroup and φ : �′ → �

is an infinite-index embedding. Then superrigidity (see [15,Prop. VII.5.3, p225], or

alternatively [18,Appendix C]), implies that φ extends to a continuous homomorphism

� : SL2(Qp) × SL2(Qq) → SL2(Qp) × SL2(Qq). It then follows from the representation

theory of p-adic Lie groups that � is an automorphism, contradicting the fact that φ

embeds �′ as an infinite-index subgroup.

We also note that the following question of Bestvina remains open.

Question 1.6. Does there exist a one-ended hyperbolic group that contains isomorphic

finite-index subgroups of different index?

1.1 Summary

The table below summarizes the results in this paper and related open problems.

JSJ decomposition JSJ decomposition JSJ decomposition G is one-ended
has only 2-ended has 2-ended, has only 2-ended and hyperbolic

G hyperbolic and maximal maximal hanging and rigid with trivial JSJ
hanging Fuchsian Fuchsian, and rigid vertex groups decomposition
vertex groups vertex groups

Commensurably Open Example 4.4 Example 5.1 Poincaré
co-Hopfian problem duality groups

[29]

Not commensurably Section 2; Example 4.1 Open Open
co-Hopfian Theorem 3.1 problem problem

Section 2 demonstrates the main example of the paper, and Section 3 generalizes

the main example to prove that all simple surface amalgams have fundamental

groups that are not commensurably co-Hopfian. Section 4 gives examples of one-ended

hyperbolic groups with mixed JSJ decompositions such that some groups are commen-

surably co-Hopfian and others are not. Section 5 gives an example of commensurably
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6 E. Stark and D. Woodhouse

co-Hopfian one-ended hyperbolic groups that have non-trivial JSJ decomposition and

vertex groups that are only two-ended and rigid.

2 The Main Example

A simple surface amalgam X is the union of a finite set of surfaces �1, . . . ,�k with k ≥ 3

and χ(�i) < 0 such that ∂�i
∼= S1 and all boundary components are identified to a single

copy of the circle S1 by a homeomorphism.

The following lemma determines the finite covers of a surface with boundary.

Lemma 2.1. [20,Lemma 3.2] Let � be an oriented surface with positive genus. Fix

a positive integer d. For each boundary component of �, pick a collection of degrees

summing to d. Then a d-sheeted covering �′ → � exists with the prescribed degree

coverings in the preimage of each boundary component of � if and only if the total

number of boundary components of �′ has the same parity as dχ(�).

We will repeatedly use Lemma 2.1 to construct finite covers of a surface amal-

gam. Indeed, given a simple surface amalgam X constructed from surfaces �1, . . . ,�k,

we can specify covers of each �i and then glue them together along boundary com-

ponents provided the covering degrees of identified boundary components over the

amalgamating curve in X match.

Proof. of Theorem 1.1 Let X be a simple surface amalgam with subsurfaces

�1,�2,�3, where �i is a surface of genus one with a single boundary component.

Demonstrating that π1(X) is not commensurably co-Hopfian follows from considering

Figure 1.

We first construct a degree-3 cover f1 : X1 → X. By Lemma 2.1, there exists

a degree-3 cover �′
i → �i so that �′

i has a single boundary component for i ∈ {1, 2, 3}.
By an elementary Euler characteristic computation, the surface �′

i has genus two. The

boundary components of each �′
i for i ∈ {1, 2, 3} can be identified to each other by a

homeomorphism to construct a 3-sheeted cover f1 : X1 → X.

We now build a degree-4 cover f2 : X2 → X. By Lemma 2.1, there exists a

degree-2 cover �′′
i → �i so that �′′

i has two boundary components for i ∈ {1, 2, 3}.
Again, by an elementary Euler characteristic computation, the surface �′′

i has genus

one. By identifying a single boundary component from each �′′
i and attaching

copies of �j,�k to the other boundary component of �′′
i we obtain the 4-sheeted

covering f2 : X2 → X.
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Non-Commensurably Co-Hopf Hyperbolic groups 7

Fig. 2. The spaces X ′ and X ′′ finitely cover the space X̂, and the space X ′ embeds π1-injectively

in the space X ′′, such that π1(X ′) embeds as an infinite-index subgroup of π1(X ′′). Thus, the
fundamental group of X̂ is not commensurably co-Hopfian since it contains a finite-index

subgroup and an infinite-index subgroup isomorphic to π1(X ′).

There is a π1-injective proper embedding φ : X1 → X2 as shown in Figure 1 that

yields an embedding of π1(X1) in π1(X2) as an infinite-index subgroup. Therefore, π1(X)

contains a finite-index subgroup that is isomorphic to an infinite-index subgroup. �

3 Simple Surface Amalgams Are Not Commensurably Co-Hopfian

Theorem 3.1. If G is the fundamental group of a simple surface amalgam, then G is

not commensurably co-Hopfian.

Proof. Let G be the fundamental group of a simple surface amalgam X with k

subsurfaces �1, . . . ,�k. We construct a degree-2 cover X̂ → X by an application of

Lemma 2.1. (This step allows us to resolve any parity issues in the future application

of Lemma 2.1.) Let X̂ be the union of k surfaces �̂1, . . . , �̂k, where χ(�̂i) = 2χ(�i). Let

χ̂i = χ(�̂i). The surface �̂i has two boundary components γi and γ ′
i , and X̂ is obtained by

identifying the curves {γi | 1 ≤ i ≤ k} to a single curve γ and the curves {γ ′
i | 1 ≤ i ≤ k} to

a single curve γ ′.
As in Section 2, we will construct two finite covers X ′ and X ′′ of the space X̂

so that the space X ′ embeds π1-injectively in the space X ′′, such that π1(X
′) embeds as

an infinite-index subgroup of π1(X
′′). See Figure 2. This construction relies on the next

claim.
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8 E. Stark and D. Woodhouse

Claim 3.2. There exists a set of positive integers {D,d,di | 1 ≤ i ≤ k} so that

(d + d1)χ̂1 + 2d1χ̂k + d1χ̂1 = Dχ̂1

(d + d2)χ̂2 + 2d2χ̂1 + d2χ̂2 = Dχ̂2

...

(d + dk)χ̂k + 2dkχ̂k−1 + dkχ̂k = Dχ̂k.

�

Proof of Claim. Rewrite the i-th equation in the following form (with indices mod k):

2di(χ̂i−1 + χ̂i) = (D − d)χ̂i.

Choose positive integers D and d such that D > d and (D−d) is divisible by 2lcm{(|χ̂i−1+
χ̂i|) | 1 ≤ i ≤ k}. Then, we obtain positive integers

di :=
(D − d)χ̂i

2(χ̂i−1 + χ̂i)
≥ 1.

�

Let D,d,d1, . . . ,dk be positive integers satisfying the equations given by

Claim 3.2. There exists a degree-D cover X ′ → X̂ constructed as follows. Let X ′ be

the union of k surfaces �′
1, . . . ,�

′
k, so that χ(�′

i) = Dχ̂i = 2Dχi, the surface �′
i has

two boundary components ρi and ρ′
i, and X ′ is obtained by identifying the curves

{ρi | 1 ≤ i ≤ k} to a single curve ρ and the curves {ρ′
i | 1 ≤ i ≤ k} to a single curve ρ′. By

Lemma 2.1, there exists a degree-D covering map �′
i → �̂i that restricts to a degree-D

cover on each of the boundary components ρ → γ and ρ′ → γ ′. Thus, these maps glue

to yield a degree-D cover X ′ → X̂.

To build the space X ′′, for i ∈ {1, . . . , k}, we will partition each surface �′
i ⊂ X ′

into three subsurfaces, �′
i1,�

′
i2,�

′
i3, and attach additional subsurfaces to the boundary

curves of �′
i2 as follows. The construction is illustrated in Figure 2. In particular, the

construction ensures that the space X ′ embeds in X ′′ π1-injectively, and π1(X
′) embeds

as an infinite-index subgroup of π1(X
′′). Let �′

i1 be the subsurface of �′
i with Euler

characteristic (d + di)χ̂i and four boundary components, two of which are the curves

ρi and ρ′
i; call the other boundary curves ρi1 and ρ′

i1. Let �′
i2 be the subsurface with

Euler characteristic 2diχ̂i−1 (subscript mod k) and four boundary components, two of
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Non-Commensurably Co-Hopf Hyperbolic groups 9

which are ρi1 and ρ′
i1; call the other boundary curves ρi2 and ρ′

i2. Finally, let �′
i3 be

the subsurface with Euler characteristic diχ̂i and two boundary curves, ρi2 and ρ′
i2.

Claim 3.2 implies that we indeed have the decomposition �′
i
∼= �′

i1 ∪ �′
i2 ∪ �′

i3, since the

Euler characteristics of �′
i1, �

′
i2, and �′

i3 sum toDχ̂i. For i ∈ {1, . . . , k} attach k−2 surfaces

{�i
j | j ∈ {1, . . . , k}, j �= i, i − 1} with two boundary components and Euler characteristics

χ(�i
j) = diχ̂j to the curves {ρi1, ρ′

i1}. Similarly, attach k− 2 surfaces {�′i
j | j ∈ {1, . . . , k}, j �=

i, i − 1} with two boundary components and Euler characteristics χ(�i
j) = diχ̂j to the

pair of curves {ρi2, ρ′
i2}.

We now prove there exists a degree-(d + 2
∑k

i=1 di) covering map X ′′ → X̂. We

describe the cover on the branching curves of X ′′, and then we use Lemma 2.1 to show

the cover extends to all of X ′′. As above, suppose the curves {ρi}ki=1 and {ρ′
i}ki=1 are glued

together to form the curves ρ and ρ′ in X ′′, respectively. Then, ρ and ρ′ cover the curves

γ and γ ′ by degree d. For all i ∈ {1, . . . , k}, the curves ρi1 and ρi2 cover the curve γ by

degree di, and the curves ρ′
i1 and ρ′

i2 cover the curve γ ′ by degree di. By Lemma 2.1, there

exists a degree (d + di) cover �′
i1 → �′

i, a degree 2di cover �′
i2 → �′

i−1, and a degree di

cover �′
i3 → �′

i. By Lemma 2.1, there are degree di covers �i
j → �′

j and �′i
j → �′

j. Since

these covering maps agree on their intersection, there exists a finite cover X ′′ → X̂.

4 Examples With Mixed JSJ Decomposition

Example 4.1. (Not commensurably co-Hopfian.) We adapt the proof in Section 2

to exhibit a one-ended hyperbolic group G whose JSJ decomposition contains both

maximal hanging Fuchsian vertex groups and rigid vertex groups and so that G is not

commensurably co-Hopfian. An illustration of this example appears in Figure 3 and

Figure 4. Let X0 be a simple surface amalgam with subsurfaces �1,�2,�3, where �i

is a surface of genus one with a single boundary component. Let ai be an essential

simple closed curve on �i that is not homotopic to the boundary. There exists a

homeomorphism φij : �i → �j so that φij(ai) = aj for all i, j ∈ {1, 2, 3}.
Let H be a torsion-free one-ended hyperbolic group that does not split over a

virtually cyclic subgroup, and let XH be a finite cell complex with π1(XH) ∼= H. Suppose

there exists an infinite-order element h ∈ H represented by a closed curve ah on XH so

that there exists a degree-2 cover X ′
H → XH in which ah lifts to a single closed curve on

X ′
H . (For a concrete example, let H ∼= π1(S) � 〈t〉 be the fundamental group of a closed

fibered hyperbolic 3-manifold with fiber a closed surface S, and let h = t.) For i ∈
{1, 2, 3}, let φi : XH → XHi be a homeomorphism, and let ahi = φ(ah). For i ∈ {1, 2, 3}
let Ai be an annulus. Glue one boundary component of Ai to the curve ai and the other
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10 E. Stark and D. Woodhouse

Fig. 3. A degree-3 cover of a surface � of genus one with one boundary component by a surface

of genus two and one boundary component. The red curve on � has two pre-images that lie in

subsurfaces separated by the blue curve. The existence of such a cover is evident from the “fat-

graph” representation of the surfaces, drawn on the top row. The vertical homeomorphisms are

color preserving.

Fig. 4. The squares represent cell complexes XH and 2-fold covers X ′
H of XH . The spaces X ′ and

X ′′ are finite covers of the space X, and the space X ′ embeds π1-injectively in X ′′, such that π1X ′
embeds as an infinite index subgroup of π1X ′′. Thus, the group π1(X) contains a finite-index

subgroup isomorphic to π1(X ′) and an infinite-index subgroup isomorphic to π1(X ′).
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Non-Commensurably Co-Hopf Hyperbolic groups 11

boundary component of the annulus to the curve ahi by homeomorphisms. Let X be the

resulting complex, and let G be the fundamental group of X. The JSJ decomposition of

G over 2-ended vertex groups contains three maximal hanging Fuchsian vertex groups,

π1(�i), and three rigid vertex groups, π1(XHi).

Claim 4.2. The group G is not commensurably co-Hopfian.

Proof. We first construct a degree-3 cover X ′ → X. As shown in Figure 3, for i ∈ {1, 2, 3}
there exists a degree-3 cover �′

i → �i so that �′
i has one boundary component and

genus two and so that the preimage of the curve ai has two components a′
i and a′′

i ,

where a′
i covers ai by degree one and a′′

i covers ai by degree two. Moreover, there exists

a closed curve γi (shown in blue in Figure 3) that separates �′
i into two subsurfaces;

one subsurface has boundary γi and contains the curve a′
i, and the other subsurface

has two boundary components and contains the curve a′′
i . Thus, as in Section 2, the

boundary components of �′
i can be glued together to form a degree three cover of the

simple surface amalgam X ′
0 → X0. By assumption on the group H, the degree-3 cover of

the simple surface amalgam extends to a degree-3 cover of X obtained by taking copies

of XH and copies of the degree-two cover X ′
H and attaching them along annuli to lifts of

the curves ahi on X ′
0. See Figure 4.

The degree-4 cover X ′′ → X is constructed in analogy to the construction in

Section 2. The space X ′′ contains the space X ′ as a subspace that induces a π1-injective

embedding of the fundamental group as an infinite-index subgroup, and for i ∈ {1, 2, 3}
to each of the curves γi ⊂ X ′ defined in the paragraph above a copy of �i ∪ XHi is

glued along the boundary component of �i. As above, the space X ′′ forms a degree-4

cover of X. Then X ′ embeds π1-injectively in X ′′ such that π1(X
′) embeds as an infinite-

index subgroup of π1(X
′′). So, the group G = π1(X) contains a finite-index subgroup

isomorphic to π1(X
′) and an infinite-index subgroup isomorphic to π1(X

′). Thus, G is

not commensurably co-Hopfian. �

Examples 4.4 and 5.1 make use of the notion of an acylindrical submanifold.

Let M be a Riemannian manifold and N ⊆ M a locally convex submanifold. Let A

denote the annulus. The submanifold N is said to be acylindrical if any π1-injective

map (A, ∂A) → (M,N) is relatively homotopic to a map (A, ∂A) → (N,N). Equivalently,

the subgroup π1(N) � π1(M) is malnormal in the sense that π1(N) ∩ π1(N)g = {1} for all
g ∈ π1(M) − π1(N). In particular, if M is a closed hyperbolic manifold and N is a simple

closed geodesic, then N is acylindrical in M.
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12 E. Stark and D. Woodhouse

We also require the following lemma; we include a proof as we are unaware of a

reference.

Lemma 4.3. Let � and �′ be compact surfaces with boundary with negative Euler

characteristic. If f : (�, ∂�) → (�′, ∂�′) is a π1-injective map, then f is homotopic to a

finite-degree covering map of �′.

Proof. It suffices to prove that f∗ : π1(�) → π1(�
′) embeds π1(�) as a finite-index

subgroup of π1(�
′). Let D� and D�′ be the doubles of � and �′ along their boundary

components. The spaces D� and D�′ are closed surfaces of genus greater than 1, and

the map f determines a π1-injective map F : D� → D�′. This last fact follows since

� and �′ have negative Euler characteristic so the subgroups corresponding to the

boundary components give malnormal families. Thus, the lift f̃ : �̃ → �̃′ sends each

boundary component to a unique boundary component. If T and T ′ are the Bass–Serre

trees corresponding to the splittings of π1(D�) and π1(D�′) given by the doubling, then

it follows from the previous observation that the F∗-equivariant map T → T ′ induced
by the morphism between the graphs of groups is locally injective, and hence globally

injective. Thus, F∗ : π1(D�) → π1(D�′) is injective.

The fundamental group of a closed surface D� can only embed in the funda-

mental group of a closed surface D�′ as a finite-index subgroup, so the map F is

homotopic to a finite-degree covering map F ′, which induces that same map on the

fundamental groups. The preimage (F ′)−1(�′) may not be �, but it will be a subspace

homeomorphic to �, so we can identify (F ′)−1(�′) with �′, to obtain a covering map

f ′ : (�, ∂�) → (�′, ∂�′) such that f∗ = f ′∗, so f ′ is homotopic to f . �

Example 4.4. (Commensurably co-Hopfian.) Let M be a closed hyperbolic 3-manifold,

and let γ be an embedded locally geodesic closed curve inM. Let � be a compact surface

with positive genus and boundary ∂� homeomorphic to S1. Identify γ with ∂� via a

homeomorphism to obtain a quotient space X. The fundamental group G = π1(X) is a

one-ended hyperbolic group given by the amalgamation of the 3-manifold group and the

free group π1(�) along the cyclic groups corresponding to γ and ∂�. This amalgamated

free product corresponds to the canonical JSJ decomposition for π1(X).

Proposition 4.5. The group G is commensurably co-Hopfian.

Proof. Let G′ � G be a finite-index subgroup and ϕ : G′ → G an injective

homomorphism. Without loss of generality, assume that G′ is a normal subgroup of G
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and let π : X ′ → X denote the corresponding finite regular cover. Take the π-preimages

of M and � to decompose X ′ as a collection of homeomorphic 3-manifolds M ′
1, . . . ,M

′
n

and a collection of homeomorphic surfaces with boundary �′
1, . . . ,�

′
m such thatM ′

i → M

and �′
j → � are regular covers.

We first argue that the homomorphism ϕ : G′ → G is induced by a map

� : X ′ → X such that the restriction of � to each 3-manifold M ′
i is a covering

map �i : M ′
i → M. Let T denote the Bass–Serre tree of the JSJ splitting of G.

The subgroup ϕ(G′) ≤ G acts on T. Since the group π1(M
′
i) does not split over a

virtually cyclic subgroup, the subgroup ϕ(π1(M
′
i)) stabilizes a vertex in T. Thus, there

exists gi ∈ G, such that ϕ(π1(M
′
i))

gi ≤ π1(M). As π1(M) is commensurably co-Hopfian,

ϕ(π1(M
′
i))

gi is a finite-index subgroup of π1(M). By Mostow rigidity [19], the covering

space corresponding the subgroup ϕ(π1(M
′
i))

gi is isometric to M ′
i, so the homomorphism

ϕgi : π1(M
′
i) → π1(M) is induced by a covering map �i : M ′

i → M. Since X and

X ′ have contractible universal covers, there exists a continuous map � : X ′ → X

such that �∗ = ϕ. As ϕgi induces the same map on the fundamental group as �i

and the space X is a classifying space, we can homotope � to a map � so that it

restricts to �i on each M ′
i ⊆ X ′ (see [10,Proposition 1B.9.]). Thus, the resulting map � is

as specified.

Suppose towards a contradiction that � : X ′ → X is not homotopic to a covering

map. Let Cj ⊂ �−1(γ ) be the set of curves in the full preimage of the amalgamating

curve γ ⊂ X that lie in the surface �′
j. After homotopy, we may assume that Cj is a set

of disjoint curves and ∂�′
j ⊆ Cj. Moreover, since the curves γ ⊂ M and ∂� ⊂ � are

acylindrical subspaces, applying a suitable homotopy removes parallel curves in the set

Cj. Lemma 4.3 implies that if Cj = ∂�′
j, then � can be homotoped on �′

j, relative to ∂�′
j, to

a covering map �′
j → �. Since we assumed that � is not homotopic to a covering map we

can say, without loss of generality, the set C1 contains a curve that is not a component

in ∂�′
1.

Let σ1, . . . , σ� denote the closures of the components of �′
1−C1. Each σi is mapped

by � into either � or M and we refer to the subsurfaces as either �-type or M-type,

accordingly. We verify the following claims:

Claim 4.6. If σi is �-type and σi ∩ σj �= ∅, for j �= i then σj is M-type.

�

Proof. Suppose not. Then we would have a π1-injective map f : (σi ∪ σj, ∂(σi ∪ σj)) →
(�, ∂�). By Lemma 4.3 the map f is homotopic to a covering map, which implies that the
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14 E. Stark and D. Woodhouse

curves σ1 ∩ σ2 would have to be homotopic to a boundary curve in σ1 ∪ σ2, contradicting

the fact that σi and σj are not annuli. �

Claim 4.7. If σi has a boundary component in ∂�′
1, then σi is �-type.

Proof. Suppose not. Then we have σi that intersects M ′
j such that σi ∪ M ′

j maps π1-

injectively intoM. But σi∪M ′
j has cohomological dimension 3 while on the other hand the

fundamental group will be infinite ended so it cannot induce a finite index embedding

into π1M. By Strebel’s theorem [29], such a map cannot exist. �

Combining Claims 4.6 and 4.7 with the assumption that C′
1 contains a curve not

in ∂�′
1 we can deduce that there exists at least some σj that isM-type. Moreover, for each

�-type σi, since � induces a π1-injective map (σi, ∂σi) → (�, ∂�). Lemma 4.3 implies we

can homotope, relative to its boundary curves, σi → � to a covering map.

Under the regular covering map π : X ′ → X corresponding to the finite-index

subgroup G′ ≤ G, each boundary component in ∂�′
j covers ∂� with degree d for some

d ∈ N. Thus, the Euler characteristic satisfies

χ(�′
j) = d|∂�′

j| · χ(�).

The degrees of the covering maps fromM ′
i toM given by either π or � must coin-

cide since they are determined by the ratio of the volumes. Similarly, if γ ′ is a curve in

∂�′
i, then since γ ′ and γ are geodesic curves in some M ′

j and M, respectively, the degrees

of the covering map γ ′ → γ given by π and � must also coincide since it is given by the

ratios of their length. It follows that each component in ∂�′
i covers γ with degree d.

Thus, we can deduce that

|χ(�′
1)| =

∑
i

|χ(σi)| >
∑

σiis�-type

|χ(σi)|

=
∑

σiis�-type

deg(� : ∂σi → γ )|χ(�)| > d|∂�′
1| · |χ(�)|.

(We let deg(� : ∂σi → γ ) denote the sum of the degrees of the map restricted to

each component in ∂σi.) The first inequality follows from discarding theM-type surfaces

σi, and the second inequality follows from only counting the degrees of the curves in

∂�′
1. This contradicts the previous equality, and thus, � is homotopic to a covering map.

Therefore, ϕ(G′) is a finite-index subgroup of G.
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Non-Commensurably Co-Hopf Hyperbolic groups 15

5 Commensurably Co-Hopfian Groups Without Hanging Fuchsian Subgroups in

Their JSJ Decomposition

In this section we provide an example of a one-ended hyperbolic group with non-trivial

JSJ decomposition and only rigid and two-ended vertex groups. The key point is that

we choose the rigid vertex groups to be commensurably co-Hopfian.

Example 5.1. Let M and N be closed hyperbolic 3-manifolds. For simplicity we will

assume that π1(M) and π1(N) are incommensurable. Let γ ⊆ M and σ ⊆ N be simple

closed geodesics, and let A be an annulus. Let X be the space obtained from M � A � N

by gluing one boundary component of the annulus to γ and the other to σ .

Claim 5.2. G = π1X is commensurably co-Hopfian.

Proof. The proof follows a similar strategy to Claim 4.5. Let G′ ≤ G be a finite-

index subgroup and ϕ : G′ → G is an injective homomorphism. Assuming G′ is a

normal subgroup, let X ′ → X be the finite-sheeted, regular cover corresponding to G′.
Considering the ϕ-preimages of M,N, and A, decompose X ′ as a graph of spaces with

vertex spaces Mu1
, . . . ,Mum

and Nv1 , . . . ,Nvn and edge spaces Ae1 , . . . ,Aea .

As π1(M) and π1(N) do not split over a virtually cyclic group, are commensurably

co-Hopfian, and are incommensurable with each other, there exists gi,hi ∈ G such

that ϕ(π1(Mui
))gi is a finite-index subgroup of π1(M) and ϕ(π1(Nvi))

hi is a finite-index

subgroup of π1(N). By Mostow rigidity, there exist covering maps �ui
: Mui

→ M

and �vi : Nvi → N that correspond to the embeddings ϕgi : π1(Mui
) → π1(M) and

ϕhi : π1(Nvi) → π1(N).

The spaces X ′ and X have contractible universal covers, so there exists a

continuous map � : X ′ → X such that �∗ = ϕ. After homotopy, � restricts to �ui
on

Mui
and �vi on Nvi . The map � may be homotoped to a covering map since any annulus

mapping (A, ∂) to either (M, γ ) or (N, σ) can be homotoped into γ or σ , since γ and σ are

acylindrical subspaces of M and N. Thus, ϕ(G′) is a finite-index subgroup of G. �
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