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ABSTRACT (235/250 WORDS)

Over the past decades, crop yields have risen in parallel with increasing use of fossil-fuel
derived nitrogen (N) fertilizers, but with concomitant negative impacts on climate and
water resources. There is a need for more sustainable agricultural practices, and
biological nitrogen fixation (BNF) could be part of the solution. A variety of nitrogen-fixing,
epiphytic and endophytic plant growth promoting bacteria (PGPB) are known to stimulate
plant growth. However, compared to the rhizobium-legume symbiosis, little mechanistic
information is available as to how PGPB affect plant metabolism. Therefore, we
investigated the metabolic changes in roots of the model grass species Setaria viridis
upon endophytic colonization by Herbaspirillum seropedicae SmR1 (fix*) or a fix- mutant
strain (SmR54), compared to uninoculated roots. Endophytic colonization of the root is
highly localized and, hence, analysis of whole root segments dilutes the metabolic
signature of those few cells impacted by the bacteria. Therefore, we utilized in situ laser
ablation electrospray ionization mass spectrometry (LAESI-MS) to sample only those root

segments at or adjacent to the sites of bacterial colonization. Metabolites involved in
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purine, zeatin, and riboflavin pathways were significantly more abundant in inoculated
plants while metabolites indicative of nitrogen, starch, and sucrose metabolism were
reduced in roots inoculated with the fix- strain or uninoculated, presumably due to N
limitation. Interestingly, compounds, involved in indole-alkaloid biosynthesis were more
abundant in the roots colonized by the fix- strain, perhaps reflecting a plant defense

response.

KEYWORDS
Nitrogen fixation, metabolites, Herbaspirillum seropedicae, PGPB, associative bacteria,
plant growth promotion, nifA, rhizosphere, mass spectrometry, laser ablation electrospray

ionization

INTRODUCTION

Plant development and productivity rely on nutrients that are naturally available in
the soil. However, in many situations, specific nutrients necessary for plant growth are
present in low abundance or may not be available in a form that can be readily absorbed
by the roots. For instance, nitrogen is a critical macronutrient for plant growth and is
commonly a limiting nutrient in many environments. N is also the most energy expensive
for plants to uptake (Galloway et al., 2004; Galloway et al., 2008). Crop production
requires large amounts of N fertilizer for maximum yield, especially for cereals, such as
maize and rice (Smil, 2001; Godfray et al., 2010; Tilman et al., 2011). However, actual

utilization of applied N fertilizer has an efficiency of 50% or less (Raun and Johnson, 1999;
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Edmonds et al., 2013). Thus, improvement in nitrogen use efficiency is needed and

essential for sustainable and eco-friendly agriculture.

The overuse of nitrogen fertilizer leads to detrimental soil and environmental
consequences. Hence, a major challenge for sustainable agricultural production is how
to deliver nitrogen to the plant to maintain high yield, while negating the negative
consequences of nitrogen fertilizer addition (Dobermann, 2007; Westhoff, 2009; Sutton
et al., 2011). In this context, the use of biological nitrogen fixation (BNF) has often been
proposed as one possible solution, at least to reduce, if not to eliminate, the need for
heavy N fertilization of non-legume crops (Franche et al., 2009; Lugtenberg and
Kamilova, 2009). However, in most situations, the contribution of BNF to growth induced
by plant growth promoting bacteria (PGPB) remains unclear or, at least, undefined

(Franche et al., 2009; Lugtenberg and Kamilova, 2009).

A variety of BNF bacteria are commonly present in the plant rhizosphere that can
establish close associations with roots, colonizing the roots either epiphytically or
endophytically. Indeed, PGPB can reach quite high numbers (e.g., 108/g) in roots without
inducing a noticeable plant defense response (Reinhold-Hurek and Hurek, 1998, 2011;
do Amaral et al., 2017; Faoro et al., 2017). Previous studies showed that PGPB commonly
impact root architecture and plant health, attributing these effects to such things as BNF,
enhancing stress tolerance, production of phytohormones, enhancing nutrient acquisition,
and protection against pathogens and pests (Pérez-Montano et al., 2014; Pankievicz et
al., 2015). Nevertheless, definitive evidence that defines the specific mechanism of
PGPB-mediated plant growth promotion remains lacking. In similar plant-microbe

interactions (e.g., legume symbiosis), the use of bacterial and/or plant mutants have been
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particularly useful in defining molecular mechanism. For example, our laboratory recently
demonstrated that disruption of the genes for biosynthesis and utilization of poly-3-
hydroxybutyrate (PHB), in the endophytic bacterium, Herbaspirillum seropedicae, directly
affected its ability to promote the growth of Setaria viridis (Alves et al., 2019). PHB is a
type of polyhdroxyalkanoate (PHA) polymer, produced as a carbon storage compound by
a variety of bacterial species. The PHB cycle provides carbon skeletons to synthetic and
energetic metabolism, as well as providing reducing power for nitrogen fixation (Lodwig
et al., 2005). A few other studies have identified other genes essential for plant growth
promotion in other PGPB (Krause et al., 2006; Sessitsch et al., 2012; Shidore et al., 2012;
Sarkar and Reinhold-Hurek, 2014). However, while much remains to be done from both
the bacterial and plant side, data are particularly missing regarding the molecular

response of the plant host to PGPB association.

In order to define the plant response to PGPB, researchers are applying the full
repertoire of modern technologies, including transcriptomics, proteomics, and
metabolomics. While the detection of specific transcripts and proteins provides evidence
of the potential for a function or pathway to be active, it is only metabolomic analysis that
provides definitive evidence that indeed specific metabolism is occurring. There are, for
example, specific studies in which metabolomic analysis was nicely integrated into efforts
of crop improvement (Zivy et al., 2015; Kumar et al., 2017). Studies in oats, for instance,
identified specific metabolic pathways involved with drought tolerance (Sanchez-Martin
et al., 2015) and similar efforts identified metabolite-phenotype associations for selecting
drought-tolerant ecotypes of Brachypodium (Fisher et al., 2016). However, few studies

have used metabolomics to investigate PGPB-plant interactions. One example is
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Brusamarello-Santos et al. (2017), who profiled the metabolite distribution of two inbred
maize lines upon inoculation with the diazotrophic PGPB, Azospirillum brasilense and

Herbaspirillum seropedicae.

A general limitation with most published metabolomic studies is that they rely on
bulk analysis from whole tissues when it is clear, for example, that PGPB colonization of
plant roots is highly localized. A diversity of technologies and methodologies are currently
available for such a large scale metabolomic analysis, including nuclear magnetic
resonance (NMR) spectrometry, gas chromatography-mass spectrometry (GC-MS),
liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis mass
spectrometry (CE-MS) and tandem mass spectrometry (Gemperline et al., 2016;
Tenenboim and Brotman, 2016; Mhlongo et al., 2018). However, in addition to generally
requiring a significant amount of starting plant tissue, these methods are also usually low
throughput and do not support in situ analysis. Therefore, especially when examining
localized areas of PGPB colonization of roots, technologies that allow in situ metabolic
profiling and imaging of biological tissues via a high throughput approach have clear

advantages.

Metabolomic methods that can be performed in situ and spatially explicit,
commonly suffer from required in-depth and challenging sample preparation procedures.
For example, matrix-assisted laser desorption/ionization (MALDI) MS is a method
capable of routine, relatively high lateral resolution molecular imaging (10s pym), but
requires extensive sample preparation, including the spraying a weak-organic acid onto
the sample that assists in facilitating desorption and ionization of molecules (Gemperline

et al., 2016; Velickovi¢ et al., 2018). In contrast, ambient ionization mass spectrometry-
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based approaches, such as laser-ablation electrospray ionization (LAESI), involve
minimal sampling methods, while acquiring spatial information of metabolites in biological
tissues in their native conditions (Nemes and Vertes, 2007; Nemes et al., 2009; Mdller et
al., 2011; Stopka et al., 2019). Previously, we demonstrated the utility of using LAESI-MS
with ion mobility separation (IMS) to explore the spatial distribution of metabolites in
soybean root tissues and nodules infected with BNF rhizobia (Stopka et al., 2017). We
also demonstrated that LAESI-MS is useful in identifying the metabolite changes
associated with the use of plant and bacterial mutants defective in the soybean-rhizobia

symbiosis (Agtuca et al., submitted).

In this study, we demonstrate the utility of LAESI-MS to profile the metabolites
associated with localized regions of Setaria viridis roots colonized by an endophytic
bacterium, Herbaspirillum seropedicae SmR1 and, for comparison, a corresponding
mutant (SmR54) lacking functional nitrogenase activity (Roncato-Maccari et al., 2003).
SmR54 is a nifA mutant strain, where NifA functions as a transcriptional activator for nif
gene expression (Sarkar and Reinhold-Hurek, 2014). This work builds on our previously
work, where using nitrogen-13 tracer studies, we showed that S. viridis, at least under
defined laboratory conditions, obtained a significant amount of its N needs from PGPB-

mediated BNF (Pankievicz et al., 2015).

RESULTS

Our past work revealed that co-inoculation of H. seropedicae SmR1 and

Azosprillum brasilense FP2 resulted in significant growth promotion of S. viridis with



oNOYTULT D WN =

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

Molecular Plant-Microbe Interactions

Agtuca MPMI

measurable incorporation of 3N, and concomitant shifts in the general abundance of leaf
amino acid pools (Pankievicz et al., 2015). A more recent study demonstrated that
inoculation of S. viridis solely with H. seropedicae SmR1 resulted in a significant increase
of plant growth within 25 days post-inoculation (Alves et al., 2019). Collectively, these
studies demonstrate the ability of H. seropedicae to stimulate S. viridis growth and the
potential for significant effects on plant metabolism. Hence, we focused on this interaction
in order to better define the plant metabolomic response, especially at the specific sites

of bacterial colonization of the root.

Bulk metabolomics of S. viridis roots colonized by H. seropedicae.

In order to bolster confidence in our later LAESI-MS analyses, we first used bulk
extraction of S. viridis plant tissues to sample the metabolome. The experimental samples
were derived from two-week-old Setaria plants inoculated with either H. seropedicae
strain SmR1 (fix*) or SmR54 (fix), compared to control uninoculated plants (CTRL). The
whole plant roots were ground and extracted in methanol and those samples, with 20
replicates in each sample group, were analyzed by LAESI mass spectrometry (Fig. S1a).
Multivariate statistical analysis was performed and showed that all three groups
overlapped with no degree of separation according to the Partial Least Squares
Discriminant Analysis (PLS-DA) (Fig. S1b). In total, we detected about 130 spectral
features with none showing significant differences in abundance based on treatment (Fig.
S1c). We interpret these findings to be the result of highly localized zones of bacterial

colonization; hence, diluting out any effects that would be infection-site specific.
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Spatial information in specific root segments colonized by endophytic bacteria.

Instead of bulk analysis, S. viridis root segments taken from areas with the highest
level of colonization (as shown by GFP) were selected in order to specifically observe the
host’s response. These samples were then analyzed by LAESI-MS. Again, root segments
inoculated with H. seropedicae strains SmR1, SmR54, or uninoculated were compared
(Fig. S2). Based on GFP expression by the colonizing bacteria, specific root sections
were selected, cut, and flash frozen for subsequent LAESI-MS analyses (Fig. 1). As
described in Methods, comparable roots were used to quantify the level of bacterial
colonization (Fig. S3b), demonstrating that H. seropedicae strain SmR1 or SmR54
colonized Setaria roots to equivalent levels. Measurements of root and shoot biomass of
inoculated plants, relative to uninoculated plants, showed significant growth promotion

regardless of BNF (Fig. S3a), similar to our recently published study (Alves et al., 2019).

Using this approach, six biological replicates in each sample group were
examined, where our data showed a clear distinction based on treatment (Fig. 2) in sharp
contrast to our bulk analysis (Fig. S1). The heat map (Fig. 2a) showed different metabolic
patterns in the CTRL and SmR1 roots. In addition, the CTRL and SmR1 root samples
contained the most metabolites that differed in abundance compared to the mutant
SmR54 samples (Fig. 2a). Additionally, the PLS-DA scores plot showed a high spectral
similarity within sample groups and a high degree of separation among different sample
types (Fig. 2b). Component 1 captured the spectral difference between plants that were
inoculated (SmR1 and SmR54) and uninoculated. Component 2 reflected spectral

differences between plants based on their ability for BNF, i.e., SmR1 relative to CTRL
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and SmR54 root segments (Fig. 2b). A total of 305 spectral features were detected by
LAESI-MS between the CTRL and SmR1 roots. Specifically, the CTRL had 12
significantly upregulated metabolites, whereas SmR1 had 15 upregulated metabolites
with biological and statistical cutoffs for fold change > 2 and a p-value of < 0.05 (Fig. 2c).
When comparing the CTRL and SmR54 roots, 135 spectral features were observed in
total. Among these, 27 metabolites were significantly upregulated in the CTRL samples,
and 8 were upregulated in the SmR54 roots. Additionally, a total of 281 peaks were
detected between roots inoculated with the two bacterial strains, where 59 metabolites
were notably abundant in the SmR1 roots and 4 were found upregulated in the SmR54
samples (Fig. 2c). After statistical analyses, there were 36 significantly regulated
metabolites with a fold change of at least 2 that were identified (Table 1). Figure 2d shows
the box-and-whisker plots for a few of the metabolites that showed significant changes in
abundance. For example, glucose phosphate and hydroxyjasmonic acid glucoside were
more abundant in the CTRL than in the inoculated roots. Sequoyitol was significantly
increased in the SmR1 roots relative to the SmR54 and CTRL samples, while norajmaline

was more abundant in the SmR54 roots than the other samples (Fig. 2d).

The high abundance of glucose phosphate present in the CTRL roots was
expected since it is involved with starch and sucrose metabolism. We assume that carbon
metabolism would be affected due to the need for carbon utilization by the colonizing
bacteria, especially given the need for energy and reductant to support BNF (Mus et al.,
2016). Consistent with our findings, a related study found reduced levels of sugars in
PGPB inoculated maize grown hydroponically (da Fonseca Breda et al., 2018). Most of

the identified flavonoid metabolites were more abundant in plants inoculated with the

10
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SmR1 strain, relative to those colonized by the SmR54 mutant (Table 1). This finding is
difficult to interpret since flavonoids play a wide variety of roles in plants. For example,
these compounds have been shown to serve in signaling and recognition between
symbiotic partners (Webster et al., 1998; Balachandar et al., 2006; Shaw et al., 2006;
Hardoim et al., 2008). Flavonoids can also modulate internal plant hormone levels, and
they may also be signs of plant defense pathway induction (Gough et al., 1997;
Subramanian et al., 2007; Tadra-Sfeir et al., 2011; Falcone Ferreyra et al., 2012; Marin
et al., 2013; Liu and Murray, 2016). Given the lack of any observable plant defense
response and the absence of specific data that flavonoids act as signals to PGPB, we
favor the possibility that these flavonoids may be modulating plant metabolism in direct
response to colonization. However, at this point, this is merely speculation requiring

considerably more work for clarification.

Due to the limitations of our experiments, in some cases we cannot ascertain
definitively whether the metabolites detected in the root segments are of plant or bacterial
origin. However, we suggest we are primarily analyzing plant metabolites in these
samples, given the overall relative mass of the bacterial and plant tissue being analyzed.
To further delineate the origin of specific metabolites, it would be necessary to analyze
specific plant and/or bacterial mutants blocked in the corresponding pathways.
Previously, for example, we used this approach to assign changes in trehalose seen in

soybean root hairs to the infecting bacterial symbiont (Brechenmacher et al., 2010).

Allocation of metabolites in the leaves from plants colonized by endophytic PGPB.

11
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The main focus of our work was to analyze and characterize those metabolites of
PGPB colonized roots. However, simultaneously, we took the opportunity to also examine
the metabolome of the youngest, newly emerged sink leaf from the same set of plants
used for the root analyses (see the PLS-DA scores plot in Fig. 3). We again used six
biological replicates for the leaf analyses. Perhaps surprisingly, the comparison of the
spectra from the roots and leaves of similarly inoculated and uninoculated plants showed
a degree of similarity and separation between plant tissues (Fig. 3). The first component
in PLS-DA represented the separation between different types of tissues (root and leaf)
from the plants. The second component showed no separation since all of these tissues

are from the same plants.

The leaf metabolites significantly more abundant in either the CTRL, SmR1 or
SmR54 plant tissues were identified (Table S1). In contrast to roots, there were no
detectable differences in the abundance of flavonoid-like compounds in the leaf samples,
consistent with the stronger expression of these compounds in roots (Webster et al.,
1998). Similarly, consistent with the localization of photosynthesis and starch biosynthesis
in leaves, compounds associated with these pathways were more abundant in leaves,
irrespective of bacterial strain, with a log,(FC) of 1.72, 2.77, and 1.56 for sucrose, ferulyl

glucose, and hexose phosphate, respectively (Table S1).

Of note, especially with regard to possible impact on plant growth promotion, we
measured high levels of auxin, indole-3-acetic acid (IAA), in the leaves of SmR1
inoculated plants, relative to those from the uninoculated control and SmR54 inoculated
plants (Table S1). A number of earlier reports (Lugtenberg and Kamilova, 2009; Spaepen

and Vanderleyden, 2011; Monteiro et al., 2012), implicated changes in phytohormone

12
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levels, especially auxin, as a possible mechanism to explain bacterial plant growth
promotion. IAA has a variety of effects in plants, including impacting root branching and
vascular development in the shoots (McSteen, 2010). The main auxin biosynthesis
pathway is activated when tryptophan converts to IAA in plants, and we found a greater
abundance with a log,(FC) of 2.08 in the SmR1 than the SmR54 leaves (Table S1). PGPB
are capable of synthesizing auxin as well as other plant relevant hormones (Fulchieri et
al., 1993; Dobbelaere et al., 2001; Kramer and Bennett, 2006; Baca and Elmerich, 2007;
Spaepen and Vanderleyden, 2011). Therefore, our LAESI-MS analysis correlates well
with other studies regarding IAA from PGPB in the host. However, note that based on
measurements three-weeks after inoculation, strain SmR54, lacking BNF ability, did
promote plant growth, similar to strain SmR1 (Fig. S3a). Hence, there is no correlation
between the elevated presence of IAA, plant growth promotion and the occurrence of
BNF in the roots. It is equally likely that other metabolomic changes, more attributable to
BNF, could impact IAA levels in the SmR1-inoculated plants without a measurable impact
on plant growth. PGPB can produce auxin but, unlike leaves, significant levels of IAA or
tryptophan were not found in the inoculated root segments analyzed, irrespective of BNF
(Table S1). Overall, even though the elevation of IAA in the leaves of SmR1-inoculated
plants is interesting, we are unable to strongly argue it is playing a key role in bacterial

plant growth promotion.

A variety of other metabolites were identified significantly more abundant in either
roots or leaves, relative to treatment (Tables S2-S3). These were analyzed by ANOVA
with f values ranging from 3 to 130 in SmR1 tissues (Table S2) and 3 to 85 in SmR54

tissues (Table S3).

13
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Metabolic pathways involved in plant growth promotion associated with

endophytic bacteria.

After identifying the significant metabolites (Tables 1, S1-S4), their KEGG
identification numbers were used for pathway fold enrichment analyses in MetaboAnalyst
4.0 against the rice (Oryza sativa) library. Specifically, three-fold enrichment graphs were
created: 1) SmR1 versus CTRL tissues (Fig. S4), 2) SmR54 versus CTRL tissues (Fig.
S5), and 3) SmR1 versus SmR54 (Fig. 4). Comparing between the SmR1 and CTRL
samples, 36 metabolites were used for SmR1 analyses and 20 for the CTRL. Between
SmR54 and CTRL samples, there were 28 compounds in the SmR54 and 34 in the CTRL.
Additionally, 60 metabolites were used for SmR1 plant tissues and 28 compounds for
SmR54. From these analyses, we detected pathways that had a range from 1- to 35-fold

enrichment.

There was a total of 15 pathways enriched in the CTRL, 17 in the SmR1, and 8 in
the SmR54 roots. Metabolic pathways, including starch and sucrose metabolism, nitrogen
metabolism, amino sugar metabolism, and chlorophyll metabolism were highly influenced
in the CTRL compared to SmR1 and SmR54 samples as expected (Figs. S4-S5). Even
with only 2-weeks of growth, the CTRL and SmR54 plants were slightly N starved since
a N source was not provided during growth. However, our previous measurements
estimated that only ~7% of the daily nitrogen needs of the plant could be provided by
inoculation with wild-type, BNF bacteria (Pankievicz et al., 2015). However, this same
study showed that plants grown with bacterial associations under mild nitrogen limiting

conditions behaved metabolically and physiologically like normal unstressed plants based

14
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on carbon-11 tracer experiments (Pankievicz et al., 2015). Therefore, one must be
cautious in attributing specific metabolic differences only to BNF. These comparisons
highlight just how difficult it is to have appropriate controls when comparing differing

nutrient levels, since nutrient deprivation can have a variety of consequences.

The relative abundance of purine, zeatin, and riboflavin metabolites was
significantly higher in the SmR1 and SmR54 inoculated roots, relative to CTRL (Figs. S4-
S5). There was ~7- to 11-fold enrichment of purine metabolism in the SmR1 and SmR54
roots, relative to CTRL roots. An explanation for this is not obvious, but may reflect a
stimulation of localized plant metabolism, although we also cannot rule out elevation of
these compounds due to plant growth. Perhaps more interesting is the elevation of both
zeatin and riboflavin in bacterial infected roots, irrespective of BNF (Figs. S4-S5). These
data suggest a positive correlation between the elevation of these compounds and
measurements of bacterial growth promotion. Zeatin (cytokinin) has a variety of effects
on plant growth, including modulating root architecture (Aloni et al., 2006). Cytokinin is a
key phytohormone involved in legume nodule formation and elevation in zeatin was
detected during soybean root nodulation (Oldroyd and Downie, 2008; Oldroyd et al.,
2011; Stopka et al., 2017). There have also been reports in legumes in which rhizobia
produced riboflavin was shown to promote plant growth, but riboflavin can also have a

variety of other effects (Kanu and Dakora, 2012).

The pathway analyses between SmR1 versus SmR54 were of great interest in
order to determine what pathways were affected by BNF (Fig. 4). A total of 11 pathways
were detected in the SmR54 roots, and there were 16 in the SmR1 plants. Similar LAESI-

MS results using nodulated soybean plants (Agtuca et al., submitted) also found that
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zeatin, purine, and riboflavin metabolism were elevated in plants infected with fix*
bacteria, relative to those infected with a fix- strain. Whereas in plant roots infected with
SmR54, pentose and glucuronate, indole alkaloid, pyrimidine, terpenoid biosynthesis,

and sugar metabolism were enriched (Fig. 4).

DISCUSSION

The variable and sometimes high cost of N fertilizer (derived from fossil fuels), as
well as the detrimental consequences of continued use of high levels of N fertilizer, have
led to efforts to enhance the ability to use BNF in non-legume crops. Barriers to the wide-
spread adoption of BNF in such cropping systems are those common to the agricultural
use of all biological agents, such as: variability of field-to-field efficacy, competition from
endogenous soil organisms, ease of application, etc. An improved understanding of the
molecular mechanisms by which PGPB stimulate plant growth, including the potential for
BNF to mediate these effects, would contribute to solutions to these practical problems.
Efforts to address the questions of molecular mechanism in our lab have included
laboratory demonstration that high levels of BNF can be achieved in S. viridis when roots
were inoculated with an A. brasilense strain specifically engineered to secrete ammonium
(Pankievicz et al., 2015). In other work, we also demonstrated the advantages of adopting
model grass species for studies of PGPB (Do Amaral et al., 2016), as well as conducted
more detailed studies of bacterial genes essential for plant growth promotion (Alves et
al., 2019). In the current study, we expanded these investigations by examining metabolic
changes that occur at the localized sites of bacterial colonization of S. viridis roots using

LAESI-MS analysis.
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Root colonization of S. viridis roots by fix* and fix- endophytic bacteria results in a

variety of complex and diverse metabolic changes.

As we demonstrated, bulk analysis of roots colonized by H. seropedicae SmR1 or
SmR54, relative to uninoculated plants, failed to detect any significant differences. This
is not surprising given that, judging by the distribution of bacterial infection in the root (as
visualized by GFP expression), the great majority of the root is not in contact with the
bacteria and, hence, may not be responding to any significant level. Dilution of the overall
metabolite pool by these non-responding tissues would likely overwhelm any localized
responses due to bacterial infection. Thus, the use of an in situ sampling method, such
as LAESI-MS, was essential to our ability to detect changes in plant metabolism resulting
from PGPB association. Indeed, by this method, there were a number of metabolites
whose abundance changed significantly as a result of inoculation with either H.
seropedicae SmR1 or SmR54, relative to the uninoculated plants. Collectively, the data
clearly show that bacterial inoculation had a dramatic effect on metabolite abundance in
general and that BNF also contributed significantly to changes in metabolism. Our
findings are consistent with a variety of previous reports that used less localized analyses
to conclude that colonization by endophytic bacteria can dramatically affect the plant
metabolome and transcriptome, as well as growth (Matilla et al., 2007; Hauberg-Lotte et
al., 2012; Shidore et al., 2012; Vacheron et al., 2013; do Amaral et al., 2014; Pankievicz
et al., 2015; Aguiar et al., 2016; Pankievicz et al., 2016; Dall’Asta et al., 2017; da Fonseca
Breda et al., 2018). Specifically, Brusamarello-Santos et al. (2017) and Sarkar and

Reinhold-Hurek (2014) obtained somewhat similar results where there were induced
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changes in abundance and expression between plants that were inoculated with a fix*
bacterium relative to a fix mutant strain deleted in nifA, a transcriptional activator for nif

genes.

Our previous study used 3N, labeling to show that dual inoculation of Setaria
viridis plants with wild-type H. seropedicae and A. brasilense could provide roughly 7%
of the N needs of the plant (Pankievicz et al., 2015). However, inoculation with a hyper-
fixing, ammonium-excreting mutant of A. brasilense provided up to 100% of the plant’'s N
needs. This latter result demonstrated the potential for BNF by PGPB to support plant
growth. In this same study, changes in general metabolite classes (e.g., amino acids)
were determined using carbon-11 radiotracers. The results documented significant shifts
in metabolic pools due both to bacterial inoculation and BNF (Pankievicz et al., 2015). An
analysis in maize plants inoculated with H. seropedicae wild-type SmR1 (fix*) and the
BNF defective mutant strain SmR54 (fix') also documented shifts in both starch and
sucrose metabolism in the fix* plants relative to those not fixing nitrogen (Brusamarello-
Santos et al., 2017). Although both of these studies provide results consistent with our
findings, the use of LAESI-MS on the specific sites of bacterial colonization provides more

specific data and a larger set of differentially affected metabolites.

Although inoculation clearly impacted plant metabolism, a few compounds
appeared more abundant in the uninoculated roots. One example is hydroxyjasmonic acid
glucoside, which is a component of jasmonic acid biosynthesis (Koch et al., 1997).
Jasmonic acid is a well-characterized phytohormone playing key roles in plant
development, as well as in the defense response to wounding, abiotic and biotic stress

(Liechti and Farmer, 2002; Wasternack, 2007; Wasternack and Hause, 2013; Koo, 2018).
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The elevation of JA-related compounds in the CTRL roots may be due to nitrogen
deprivation, but then we would also expect this in the SmR54 infected roots, which was
not seen in our analysis. Hydroxyjasmonic acid glucoside is a glycosidic conjugate formed
during jasmonic acid biosynthesis (Widemann et al., 2013) and its formation switches off
jasmonic acid signaling (Miersch et al., 2008). However, we cannot rule out other
functions for this compound in plant metabolism. It is interesting to speculate that the
higher abundance of hydroxyjasmonic acid glucoside in CTRL roots is a reflection of the
lack of infection, with hydrolysis of this compound occurring in roots upon PGPB infection.
The interplay of specific phytohormones, plant defense pathways, and plant growth is

complex but could be a significant contributor to PGPB-induced plant growth.

Sequoyitol was detected and more abundant in the SmR1 roots with a log2(FC) of
2.15 and 1.43, relative to the SmR54 and CTRL root samples (Table 1). However, there
is little data on the function of this metabolite in plants. Sequoyitol is a cyclitol, which may
function as an osmolyte or osmoprotectant (Ford, 1984), as well as a carbon storage
compound in plants (Richter and Popp, 1992). It was shown that cyclitols increase in
abundance in both legumes and non-legumes in response to drought and other abiotic
stresses (Ford, 1984; Keller and Ludlow, 1993; Guo and Oosterhuis, 1995, 1997; Wanek
and Richter, 1997; Streeter et al.,, 2001). Regarding nitrogen-fixing, symbiotic
associations, cyclitols, including sequoyitol, are abundant in the infected cells within the
central region of soybean root nodules (Streeter and Bosler, 1976; Streeter, 1980; Phillips

et al., 1982). However, their specific role in nodule metabolism remains undefined.
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Intersections between the metabolome of PGPB-infected roots and plant innate

immunity.

Roots colonized by the SmR1 strain had an abundance of ajmaline and
norajmaline, relative to roots infected by the wild-type SmR54 or CTRL samples.
Ajmaline, norajmaline, and related compounds (vinblastine, vincristine, vindoline) are
involved in terpenoid indole alkaloid (TIA) biosynthesis that occurs in a jasmonate-
responsive manner and has been studied in a variety of plant systems, including
Rauvolfia serpentine and Catharanthus roseus (St-Pierre et al., 1999; Facchini and St-
Pierre, 2005; Facchini and De Luca, 2008; Guirimand et al., 2011). These alkaloid
metabolites are low-molecular-weight, heterocyclic compounds and have been studied in
large part due to their pharmacological activities (Jacobs et al., 2004; Verma et al., 2012).
However, these compounds are present in plants in low amount making them expensive
to purify from plant tissues. Studies have focused on finding ways to increase the
accumulation of these metabolites for therapeutic and pharmaceutical uses (Jacobs et
al., 2004). However, they appear to be absent in most plants, including the well-studied
model system, Arabidopsis (Van Moerkercke et al., 2013). There are examples,
nonetheless, where infection by fungal endophytes, such as those infecting C. roseus,
significantly enhances terpenoid biosynthesis (Kumar et al., 2013; Tiwari et al., 2013;
Pandey et al., 2016). In these specific situations, the presence of the fungal endophyte
also significantly affects plant growth, as well as stress tolerance. Hence, it is intriguing
that higher levels of such terpenoid compounds were found in Setaria roots after PGPB
inoculation, although clearly the data do not establish cause and effect between these

compounds and growth promotion. However, here again, a perfect correlation is not found
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since it was the roots infected by the SmR54 strain that showed the highest elevation of
TIA abundance (i.e., 7-10 fold), while both the SmR1 and SmR54 inoculated plants

showed measurable effects on plant growth.

If one reads reviews on the legume-rhizobial symbiosis, as well as articles
describing associative (PGPB) associations, one might get the impression that the former
is quite complex, while the latter can be explained by relatively simple changes (e.g., in
auxin or cytokinin levels) (Oldroyd and Downie, 2008; Lugtenberg and Kamilova, 2009;
Oldroyd et al., 2011; Chagas et al., 2018). However, a major conclusion from our study
is that colonization of Setaria roots by H. seropedicae elicits a large variety of complex
metabolic changes suggesting the bacteria may have the ability to exploit the plant in
specific ways to support its growth and stability. In this way, the interaction of PGPB with
plants would not be that different, in a general sense, from other plant-microbe
interactions, many of which have been studied in far greater detail than PGPB-plant
associations. With regard to plant symbionts, PGPB are also similar to rhizobia in that
they can colonize the root to quite high, numerical levels without the induction of a visible
plant defense response. Our metabolomics data confirms the absence of many
metabolites one would associate with plant defense, although it is not clear that PGPB
are totally benign to the plant. Since our laboratory has also conducted metabolite
profiling of soybean root nodules, we compared and contrasted the results of these
studies (Agtuca et al., submitted). There are clear similarities. For example, both systems
show a significant impact on auxin, purine, zeatin, riboflavin, and starch and sucrose
metabolism, as well as induction of flavonoid accumulation. We are still in the very early

stages of understanding the complexity of PGPB infection, establishment, and function in
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plants, especially in comparison to the wealth of knowledge available on the legume

symbiosis.

MATERIALS AND METHODS
Bacterial culture conditions.

H. seropedicae SmR1 (fix*) and SmR54 (fix") strains were grown in NFbHP-malate
liquid medium that contained 20 mL L' of NH4CI as the nitrogen source (Klassen et al.,
1997) at 30 °C and 130 RPM overnight. Streptomycin at a final concentration of 80 ug
ml-' and Kanamycin at a final concentration of 200 ug ml-' were added to the medium.
Once the cultures reached an ODggg of 1.0 (108 cells ml-'), the bacteria were pelleted and
washed 3 times with 0.9% of NaCl solution. The bacterial suspension was diluted to 107

cells mI""and 1 ml per seedling was used for inoculation.

Plant growth and inoculation.

Setaria viridis A10.1 seeds were pre-treated with sulfuric acid for 15 min. Seeds
were then rinsed with water and sterilized with 1% (v/v) bleach plus 0.1% (v/v) Tween 20
for 3 min and washed 3x with sterile deionized water. The seeds were transferred and
germinated on Hoagland’s solution on 1% (w/v) phytagel agar (Hoagland and Arnon,
1950). Seeds were incubated at 30 °C for 1 day in the dark, followed by 2 days in the
light. At three days post germination, seedlings were soaked in either SmR1 or SmR54

bacterial suspensions for 30 min. The control seedlings were soaked in sterile Hoagland’s
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solution with no inoculum. Upon inoculation, all seedlings from different sample groups
(CTRL, SmR1, SmR54) were planted in soil comprised of a 3:1 Turface:Vermiculite
mixture, respectively. The Setaria plants grew for 2 weeks post-inoculation after which
they were either observed by microscopy or rapidly frozen in liquid nitrogen for
subsequent extraction for bulk or LAESI-MS metabolomic analyses. A subset of the roots
was also used to measure the level of bacterial colonization. Some plants from the same

batch were grown for an additional week in order to quantify plant growth promotion.

Confocal and fluorescence imaging of root colonization.

H. seropedicae SmR1 (fix*) and SmR54 (fix"), both constitutively expressing GFP,
were used to identify areas of bacterial colonization in the roots of S. viridis A10.1. The
control and inoculated roots were placed on a slide separately with a drop of water, which
was covered with a glass coverslip to view either using a laser scanning confocal
microscope or fluorescence microscope (Zeiss Axiovert 200M) with Leica DFC290 color
camera. The roots were closely examined in order to define a segment with the highest
level of endophytic bacterial colonization (as judged by GFP). Bright and fluorescence
images were obtained and overlaid in the Metamorph v.7.8.12 software program. After
imaging, 20 root segments of ~1 cm in length were harvested from 10 different roots,
frozen in liquid nitrogen, and stored at -80 °C until LAESI analysis. Each segment
represents a biological replicate. A similar number of root segments from roughly the
same regions of the root were harvested from uninoculated plants to serve as the control.

Shoots from 10 different plants, but from the same set of plants used to harvest the root
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tissue, were also harvested, frozen in liquid nitrogen, and stored at -80 °C until LAESI

analysis.

LAESI-MS instrumentation.

The instrumentation was similar as for our previous paper (Stopka et al., 2017). A
mid-IR laser (IR OpoletteHE 2731, Opotek, Carlsbad, CA, USA) operating at 2.94 ym
wavelength and 20 Hz repetition rate was used for direct ablation of the root segments.
The laser beam was steered using gold-coated mirrors through a 50-mm focal length
plano-convex CaF, focusing lens. The frozen root segments were placed onto a
microscope slide on an automated XY stage (MLS203-1, Thorlabs, Newton, NJ, USA) in
direct line with the focused laser beam. An ablation plume of neutrals was produced as
the root segment was targeted, which was then ionized by an electrospray and the ions
where sampled by the mass spectrometer that was operating in negative ion mode (see
Fig. 1). The electrospray solvent composition was 2:1 (v/v) MeOH:CHCI; and was
dispensed at a flow rate of 500 nL/min through a stainless steel emitter held at 2.7 kV
spray voltage. For targeted ablation a side microscope (AM4815ZTL, Dino-lite, Torrance,
CA, USA) was used to ensure the whole root segment was ablated and the sample was

correctly positioned using the automated stage.

Setaria viridis bulk analyses.

Approximately 10 mg of frozen root tissue from the control and inoculated plants

were homogenized for LAESI-MS bulk analyses. The tissues were placed into 2 mL
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Eppendorf tubes and suspended with 40 uL of DI water. The samples were probe
sonicated (QSonica Q125, Newton, CT, USA), for 30 sec with 1 sec pulse durations, at
an amplitude of 30% while on ice. Approximately 10 pL of the sonicated material was

placed on a glass microscope slide for LAESI-MS analysis.

Metabolic profiling of plant tissues and bacterial pellets.

After fluorescence imaging, the harvested, root segments with the highest
endophytic colonization (SmR1 and SmR54) and uninoculated segments (n = 6) were
analyzed by LAESI-MS. For the leaf analyses from the inoculated and uninoculated
plants, the frozen leaves (same set of plants as analyzed from the root segments by
fluorescence imaging) were observed and out of the 3 developed leaves on each plant,
the youngest, newly emerged sink leaf was selected, cut to ~1 cm in length, and used for
in situ metabolic profiling. The frozen selected tissues, including the sink leaf and root
segments, were placed on a microscope slide and 2 sec later 2 uL of sterile water was
added on top of the root segments in order to have higher water content for LAESI-MS
ablation. After 10-20 sec from when the samples were placed on the microscope slide,
the leaves and the hydrated root segments were then analyzed by LAESI-MS. A laser
energy of ~1.5 mJ per pulse with a 20 Hz repetition rate was used to ablate the plant

tissues in a raster formation.

Free-living cultures of H. seropedicae SmR1 (fix*) wildtype and SmR54 fix- mutant
strains were grown in the appropriate medium as stated in the bacterial culture conditions

section. These bacteria were then sub-cultured and grown overnight in NFbHP-malate
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medium that had 20 ml L-! of NH,ClI as a nitrogen source without antibiotics until reaching
an ODggp = 1.0 (108 cells mL"). The bacterial cultures were centrifuged at 5,000 rpm for
2 min and washed with sterile water. This was repeated a total of 3-times. After washing,
the bacterial pellets were resuspended in 20 uL of deionized water. The suspended pellet
(10 uL) was placed onto a microscope glass slide. Six biological replicates of the

suspended pellets were analyzed by LAESI-MS.

Biomass measurements and bacterial colonization assay.

Plant roots at 2 weeks after inoculation were used to measure the level of bacterial
colonization. Fresh roots were macerated in 1 mL of 0.9% (w/v) NaCl solution. The
homogenized roots were then serially diluted and 10 uL of the final dilution were plated
on solid NFbHP-malate medium with addition of the respective antibiotics. Plates were
incubated for 3 days at 30 °C and colony-forming units (CFU) were counted and

converted into CFU g-' of fresh tissue.

The remaining plants grown for 3 weeks after inoculation were dried completely
in a 45 °C incubator for biomass measurements. Roots and shoots were weighed

separately. Total biomass was calculated by summing the two dry weight measurements.

Metabolite identification.

In order to obtain a library of S. viridis root and leaf metabolites, 10 plants were

grown as described above and their leaves and whole roots harvested, flash frozen in
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liquid nitrogen and stored at -80 °C until use. Approximately 1 g of the frozen root and
leaf tissues were ground separately by mortar and pestle in liquid nitrogen until a fine
powder was obtained. The ground samples were transferred to 1.5 mL Eppendorf tubes
and resuspended in 2:1 (v/v) chloroform:methanol solution. The samples were vortexed
and centrifuged at 5000xg for 5 min at room temperature. Then, the supernatant was
transferred to a new 1.5 mL Eppendorf tube. The samples were centrifuged two more
times in order to have a clear supernatant extract. These extracts were then transferred
to a 500 yL Hamilton syringe for electrospray ionization tandem mass spectrometry (ESI-
MS/MS) analyses. A syringe pump was used to drive the syringe that included the
prepared lysates. In addition, the syringe was connected to a stainless-steel emitter
(MT320-50-5-5, New Objective, Woburn, MA) through a fused silica tube. The flow rate
of the syringe pump was at 500 nL/min and the prepared solution was sprayed by
employing a spraying voltage of -2200 V to the emitter. A Q-TOF mass spectrometer
(Synapt G2S, Waters, Milford, MA) was used to analyze the generated ions. Significant
metabolites previously detected by LAESI-MS were chosen for tandem MS by collision
induced dissociation (CID) with collision energies from 10 to 50 eV. The Metabolite
Standard Initiative (MSI) levels for metabolite identification were implemented for peak
assignments. All steps for metabolite identification were adapted from our previous study

(Stopka et al., 2017).

Data and statistical analyses.

After LAESI-MS analyses, the raw mass spectra from plant samples and bacterial

pellets with six biological replicates were processed by averaging ten MS scans and
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subtracting the background from equal numbers of ESI only scans. The processed data
were analyzed by MetaboAnalyst 4.0, a web-based metabolomic processing software,
using univariate, multivariate, and hierarchical clustering statistical approaches. The data
were normalized as described in the supporting methods from Stopka et al. (2017). Heat
maps, PLS-DA scores and loading plots, and box-and-whisker plots were constructed by
MetaboAnalyst 4.0. Volcano plots were also generated for all detected ions and the
significant ions with a p < 0.05 and a fold change of > 2 were highlighted based on
Student’s t-test. The pathway analyses were conducted by MetaboAnalyst 4.0. The rice
(Oryza sativa) pathways were downloaded from KEGG (https://www.genome.jp/kegg/)

and were used in the pathway enrichment analysis as the reference set.
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FIGURE LEGENDS

Fig. 1 Schematic of experimental design. Three-day-old seedlings of Setaria viridis
A10.1 were inoculated with either H. seropedicae SmR1 (fix*) or SmR54 (fix), while the
control (CTRL) plants were uninoculated. The plants grew for two weeks after inoculation
under greenhouse conditions. The roots and leaves were harvested. Roots from plants
that were inoculated with SmR1 or SmR54 were analyzed by fluorescence microscopy.
The root area with the highest GFP expression, indicative of endophytic bacterial
colonization, were cut into segments and used for analyses. The roots from uninoculated
control plants were observed by microscopy and screening for GFP to check if there was
any bacterial contamination, and then a comparable root segment was taken for analysis.
Finally, the youngest, newly emerged sink leaf, the selected root segments, and the free-
living bacterial cultures were analyzed by LAESI-MS using previously described methods

(Stopka et al., 2017).
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Fig. 2 Comparison of root segments from uninoculated (CTRL) plants in red and
plants that were inoculated with either SmR1 (fix*) in green or SmR54 (fix-) in blue.
(a) Heat map of the significant metabolites that were abundant in each sample group. The
red row z-score indicates the highest abundance, while the dark blue is the lowest
abundance. Each row represents a metabolite, while the column characterizes the
biological replicates from each sample group. (b) PLS-DA plot showing the covariance of
all root sample groups. (c) Volcano plots presenting the number of spectral features that
were statistically different with at least a fold change of 2 and a p-value < 0.05. The first
plot shows the lower abundance in CTRL roots and the higher abundance in roots that
were colonized by SmR1. The second plot represents the lower abundance in CTRL
roots, while the higher abundance in SmR54 roots. The third plot represents the
inoculated roots of SmR1 at lower abundance, while the SmR54 at higher abundance. (d)

Box-and-whisker plots of four significant metabolites showing their relative abundances.

Fig. 3 Differences between spectra of uninoculated and inoculated plants,
comparing to the root and leaf samples. PLS-DA scores plot showing contrast between
the spectra of leaf and root samples. Root segment spectra of CTRL are in red, SmR1
are in green, and SmR54 are in blue. Leaf sample spectra of CTRL are in yellow, SmR1

are in light gray, and SmR54 are in dark gray.
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Fig. 4 Metabolic pathways significantly impacted by infection with SmR1 H.
seropedicae (fix*; green) or with SmR54 H. seropedicae (fix-; blue). All the identified
metabolites with a fold change > 2 and a p-value < 0.05 were used for the enrichment
analysis using the MetaboAnalyst 4.0 web resource using the rice metabolite library as
reference. These pathways highlight the importance of symbiosis, BNF, growth
promotion, and metabolism. The pathway analyses had a range of p values 106 < p <

3x10".

TABLE TITLES

Table 1 List of identified metabolites and pathways affected in Setaria viridis roots
infected with either SmR1 or SmR54. The uninoculated (CTRL) plants were also
analyzed for comparison. These metabolites had a significant fold change of at least 2
and p-value of < 0.05 shown in bold. The positive fold change is the up-regulation number,

while the negative fold change is the down-regulation in abundance.
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Fig. 1. Schematic of experimental design. Three-day-old seedlings of Setaria viridis A10.1 were
inoculated with either H. seropedicae SmR1 (fix*) or SmR54 (fix), while the control (CTRL) plants were
uninoculated. The plants grew for two weeks after inoculation under greenhouse conditions. The roots and
leaves were harvested. Roots from plants that were inoculated with SmR1 or SmR54 were analyzed by
fluorescence microscopy. The root areas with the highest GFP expression, indicative of endophytic bacterial
colonization, were cut into segments and used for analyses. The roots from uninoculated control plants were
observed by microscopy and screening for GFP to check if there was any bacterial contamination, and then
comparable root segments was taken for analysis. Finally, the youngest, newly emerged sink leaf, the
selected root segments, and the free-living bacterial cultures were analyzed by LAESI-MS using previously
described methods (Stopka et al. (2017)).
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Fig. 2. Comparison of root segments from uninoculated (CTRL) plants in red and plants that were

inoculated with either SmR1 (fix*) in green or SmR54 (fix") in blue. (a) Heat map of the significant
metabolites that were abundant in each sample group. The red row z-score indicates the highest abundance,
while the dark blue is the lowest abundance. Each row represents a metabolite, while the column
characterizes the biological replicates from each sample group. (b) PLS-DA plot showing the covariance of all
root sample groups. (c) Volcano plots presenting the number of spectral features that were statistically
different with at least a fold change of 2 and a p-value < 0.05. The first plot shows the lower abundance in
CTRL roots and the higher abundance in roots that were colonized by SmR1. The second plot represents the
lower abundance in CTRL roots, while the higher abundance in SmR54 roots. The third plot represents the
inoculated roots of SmR1 at lower abundance, while the SmR54 at higher abundance. (d) Box-and-whisker
plots of four significant metabolites showing their relative abundances.

257x180mm (150 x 150 DPI)



Page 41 of 73

CoONOU A WN =
N W
o o
1 ]

-—
o
1

Component 2 (7.3%)

28 -30

Molecular Plant-Microbe Interactions

CTRL-RT
°

'S
o). SmR1-RT
®

SmR1-LF
®e
‘ ®
o® SMR54-LF

® [
| ! °

%

SmR54-RT

CTRL-LF

2 .40 -30 -20 -10 0

10 20 30 40 50 60
Component 1 (20.4%)

Fig. 3. Differences between spectra of uninoculated and inoculated plants, comparing the root

and leaf samples. PLS-DA scores plot showing contrast between the spectra of leaf and root samples. Root

segment spectra of CTRL are in red, SmR1 are in green, and SmR54 are in blue. Leaf sample spectra of

36 CTRL are in yellow, SmR1 are in light gray, and SmR54 are in dark gray.
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Fig. 4. Metabolic pathways significantly impacted by infection with SmR1 H. seropedicae (fix*;

green) or with SmR54 H. seropedicae (fix"; blue). All the identified metabolites with a fold change > 2
and a p-value < 0.05 were used for the enrichment analysis using the MetaboAnalyst 4.0 web resource
using the rice metabolite library as reference. These pathways highlight the importance of symbiosis, BNF,

growth promotion, and metabolism. The pathway analyses had a range of p values 8x1077 < p < 6x1071,

241x182mm (300 x 300 DPI)
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2

Z Table 1. List of identified metabolites and pathways affected in Setaria viridis roots

5 . . . .

6 infected with either SmR1 or SmR54. The uninoculated (CTRL) plants were also

7

8 analyzed for comparison. These metabolites had a significant fold change of at least 2

9

1(1’ and p-value of < 0.05 shown in bold. The positive fold change is the up-regulation number,

g while the negative fold change is the down-regulation in abundance.

14

15

16 Log, (FC)

17

. KEGG SmR1vs. SmR54vs. SmR54vs.

1 g Pathways Metabolites D CTRL CTRL SmR1

20

2 Methylpyranosyl 5.10 6.67* 2.33*
glucoside?

22

23

24 Hydroxybutyrate -0.05 -2.24 -2.40*

55 glucoside

;? Trihydroxyflavonea  C06563 -1.63 -3.48 -2.86*

28 Dimethoxy-flavone C11620 1.67 -0.97 -3.34**

29

30 Tetramethoxyflava C14472 150 .2 2

31 none?

32

33 Acetyl-

34 prenylphenol C04608 1.79 -1.88 -2.51*

35 glucoside?

g? Flavonoid Hvd q

i Biosynthesis yaroyrnavanone  c1eos9  1.62* 1.76* -1.44
glucoside?

39

40 i

hp Dihydrochalcone  co1504 0,52 -2.05*
glucoside

42

43 Dihydroxy

44 methoxyflavone C10381 0.16 -2.29*

45 glucoside?

46

47 Hydroxy

jg dimethoxyflavone 0.69 -2.13*

50 glucoside?

51 Dihydroxyisoflavon

gg e malonyl C16191 2.24* -1.62

54 glucoside?

55

56

57

58

59 1
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Trihydroxy
trimethoxyflavone -0.69 -1.90* -2.02*
glucoside
Trihydroxy-
tetramethoxyflavo -1.50 -3.18*
ne glucoside
Glucose? C00031 -0.48 -1.81* -1.53*
Starch and Glucose
Sucrose C00103 -1.30* -3.02** -1.65
. Phosphate?
Metabolism
Dissacharide? C00089 -2.06* -3.84** -1.97
Cysteine and Sulfolactate? C11537 -2.12* -3.28* -0.75
methionine
metabolism Gutathione? C00051 -2.01* -3.20*
Pyrimidine UDPa C00015 -1.50 -2.52*
metabolism  ;pa C00105  0.38 -2.56 1.73*
Indole alkaloid Norajmaline C11810 8.65* 6.17** 2.07*
biosynthesis  Ajmglines C06542  8.65* 6.43% 1.60*
Phenylpropanoid Sinapoylglucose?  C01175 -1.15 -3.03* -2.36*
biosynthesis  pjminellina C09285  -2.08* -3.49*
Heptose
Fatty acid phosphate? C07836 -0.24 -1.51*
biosynthesis Hydroxyjasmonic
acid glucoside? C08558 -2.08* -3.18* -1.68
Pentose and
glucuronate
interconversions Gulonate? C00800 0.11 -1.94* -2.22
Naphthalene Dihydroibenzothio
degradation phene C14092 0.50 -1.59* -1.99
Puromycin Puromycin C01610
biosynthesis aminonucleoside 3.09* 3.89* 1.96**
Salicylate Dihydroxybenzoat C00628
degradation e glucoside? 0.13 -2.25* -3.05**
Aminobenzoate Dehydrodivanillate C18347
degradation a -2.00** -2.60* -1.70
2
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Pyruvate
metabolism Lactoylglutathione  C03451 -1.13 -3.02* -1.68

Thiolutin/
methylmalate -0.41 -2.76 -2.56*

oNOYTULT D WN =

2 Sequoyitol® C03365 1.43* -2.15**

11 Miscellaneous  \jethyibutanoylapi
12 osylhexose? C11916 1.12* -1.84*

14 Bis(glycerophosph C03274
15 oglycerol) -0.65 -2.27* -1.96

20 *P < 0.05 and **P < 0.005

23 a Metabolites assigned by in-house reference standard MS/MS performed under

identical conditions.
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Fig. S1. Bulk analyses of Setaria roots segments. (a) Mass spectra of root segments: uninoculated
plants (CTRL; in red) and plants that were inoculated by either H. seropedicae SmR1 (fix*; in green) or

in blue). (b) A PLS-DA scores plot showing no separation for the spectra of the three different

root segment sample types. (c) Box-and-whisker plots for unidentified compounds that display no

differences in their abundances.
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31 Fig. S2. Microscopy images of bacterial colonization. (a) Images by confocal microscopy: right image

32 demonstrates a root segment with colonization endophytically and epiphytically by H. seropedicae SmR1,

and left image displays a root segment with colonization epiphytically by H. seropedicae SmR1. (b) Images
by fluorescence microscopy. Left image exemplifies that there was no bacterial colonization in the

34 uninoculated roots. Middle image represents colonization by SmR1 on the roots, whereas right image shows

35 SmR54 colonization. These roots were cut into segments for LAESI-MS analyses. White and black scale bars

36 =50 pm

38 255x190mm (300 x 300 DPI)



oNOYTULT D WN =

_—
()
f=1

250%

200%

150%

100%

Relative % of growth improvement
g
=

o
=

Fig. S3. Growth promotion of Setaria viridis A10.1 inoculated by either H. seropedicae SmR1

(fix*) or SmR54 (fix"). (a) Plants were grown with no addition of nitrate and harvested at 3 weeks after
inoculation. The data represents % growth changes in inoculated plants compared to the uninoculated plants
(n = 30). The dry weight (g) of roots and leaves and total biomass were analyzed. Asterisks represent the
statistically significant differences as determined by t-tests; ***, p-value <0.001. (b) The total root
colonization by SmR1 and SmR54 in Setaria roots at 2 weeks after inoculation. Bars represent £ SD.

Molecular Plant-Microbe Interactions

(b)

9
@CTRL @SmR1 mSmR54 -
£8
2
ek k. T sk dokk - g 7
E%e
38
Ycs
=3
g4
LD 3
@2
02
o
3
0
Shoot Dry Weight  Root Dry Weight Total Biomass SmR1

@ (9 Dry Weight (g)

254x90mm (300 x 300 DPI)

SmR54

Page 48 of 73



Page 49 of 73

oNOYTULT D WN =

Molecular Plant-Microbe Interactions

Pentose and glucuronate interconversions
Starch and sucrose metabolism
Glutathione metabolism
Galactose metabolism
Nitrogen metabolism
Butanoate metabolism
Indole alkaloid biosynthesis
Alanine, aspartate and glutamate metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Glycolysis or Gluconeogenesis
Porphyrin and chlorophyll metabolism
Arginine and proline metabolism
Amino sugar and nucleotide sugar BSmR1
Purine metabolism mCTRL

Aminoacy|-tRNA biosynthesis

Zeatin biosynthesis

Riboflavin metabolism

Lysine biosynthesis

Nicotinate and nicotinamide metabolism
Cyanoamino acid metabolism
beta-Alanine metabolism

Pyrimidine metabolism

h,

Carbon fixation in p ynthetic or

Glycine, serine and threonine metabolism

Cysteine and methionine metabolism

0 2 4 6 8 10 12 14 16

Fold Enrichment

Fig. S4. Enriched pathways detected when comparing plants inoculated by SmR1 (fix*; green)
versus the uninoculated plants (CTRL; red). These pathways highlight functions of importance to
biological nitrogen fixation, growth promotion, symbiosis, and metabolism. All the identified metabolites

were used for enrichment analyses. Pathway analysis showed a range of p-values 4x10™% < p < 5x10°L,
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Fig. S5. Pathways enriched for symbiosis and metabolism compared for uninoculated plants
(CTRL; red) and inoculated plants of SmR54 (fix"; blue). All the identified metabolites were used for
enrichment analyses. Pathway analysis showed a range of p-values 4x1073 < p-value < 4x10°1,
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2
z Table S1. Identified metabolites and pathways abundant in Setaria viridis youngest
5
6 newly emerged sink leaf with roots either infected by SmR1 or SmR54, or the
7
8 uninoculated plants (CTRL). These metabolites had a significant fold change of at least
9
1(1) 2 and a p-value of < 0.05 shown in bold. The positive fold change is the up-regulation
:g number, while the negative fold change is the down-regulation in abundance.
14
15
16 Log, (FC)
17
. KEGG SmR1vs. SmR54vs. SmR54 vs.
12 Pathways Metabolites D CTRL CTRL SMR1
;? Glyoxylate C00048  -2.48* -0.33 1.92*
22 Glutamate? C00025 -3.08* -0.98 2.11
23
24 . . Guanosine? C00387 -2.56* -0.36 243
25 Purine metabolism
26 Adenosine " .
p e C00020 2.31 213 0.77
28
29 GMP2 C00144 0.83 1.97* 277
30
31 PC (33:2) -4.58 -0.41 4.16*
> PG (34:3)° -3.32% 0.08 1.39
34 Glycerophospholipid . 5., -3.49* -0.05
35 metabolism
gg Pl (34:3)2 -4.58* 0.63 1.33
38 Pl (34:2)2 -3.99* -0.01 2.34
39
40 Luteolin C03515  0.29 1.57* 161
41 glucuronide
42
43 Quercetagetin C05623 2,05
44 glucoside? ’
45
46 Flavonoid Kaempferol C12667  -3.19* -1.32 1.97
47 . . diglucoside?
48 biosynthesis
49 Kaempferide -3.64 0.56 4.78*
50 triglycoside
51
52 Tetramethoxyfl
53 avone 1.96* 0.62
54 glucoside?
55
56
57
58
59 1
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Sucrose? C00089 0.67 2.28* 1.72*
Ferulyl glucose C17759 -2.76 0.12 2.77*
Starch and sucrose Hexose
metabolism phosphatea C00668 -03 1 16 156
zﬂaonosaCCha”d C00181  -2.33* 1.23* 0.39
Maleate? C01384 -1.85* 0.12 2.05*
Sl Malate? C00497  -1.83* 0.14 2.02*
metabolism
Hexylmalate C17227 0.72 1.40* 1.02
Indole-3-acetic 954 1.5 -0.81
acid
Plant hormone _
signal transduction  Hydroxyjasmo
nic acid C08558 0.84 2.76* 1.37
glucoside?
Lactaldehyde C00424 2.27* -1.15
Pyruvate Metabolism :
Lactoylglutathi 3,51 5 gge 1.93* 04
one
Nitrocatechol C02235 -0.47 0.35 -1.73*
Aminobenzoate _ _
degradation gf:aydmd“’a”” C18347  0.63 2.57* 4.49*
Phenylpropanoid Chavicol C16930 -1.73* -0.39 0.69
biosynthesis Pimpinellina C09285 0.8 -1.03* -1.81
Pyrroline . . .
Amino acid carboxylate C04281 -2.59 1.54 2.18
metabolism
Tryptophana C00078 0.14 -1.64 -2.08*
Polycyclic aromatic
hydrocarbon 2-oxobut-3- C16149  2.22* -1.70* -0.01
. enoate
degradation
Citrate cycle Citrate? C00158 1.39* -2.23 .77
Puromvein Puromycin
. yein aminonucleosi  C01610 1.89* 2.34*
biosynthesis
de
. . Amino hydroxy .
Folate biosynthesis dihydropteridin C04895 2.58 1.8
2
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Riboflavin
cyclic C16071 1.44 1.65* 0.29
phosphate
Diapolycopene -1.94* -1.35* -0.22
dioate
Dalnigrein
glucopyranosid 213" 2.65*
e
Benzaldehyde -0.87 -1.89* -1.08
Methyl
erythritol 2.70* 1.24 -1.43
phosphate?

*P <0.05 and **P < 0.005

a Metabolites assigned by in-house reference standard MS/MS performed under
identical conditions.
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Table S2. Identified metabolites and pathways that were affected between Setaria

viridis inoculated with SmR1 and CTRL plants that were not infected. These

metabolites were significant by ANOVA with a f-value range of 3 to 130. The samples that

were analyze were SmR1-RT, SmR1-LF, SmR1-Bact, CTRL-RT, and CTRL-LF.

KEGG

Sample Pathways Metabolites D f.value Fisher's LSD
SmR1-RT > CTRL-RT; SmR1-
gi}rf;?r:(gx flavone 8.19* U= OURTS D SIS =
Xy : SmR1-Bact; SmR1-RT >
glucoside? SMR1-LF
SmR1-RT > CTRL-RT; SmR1-
Dlhydroxylsoflqvone C16191 5 31* RT > CTRL-L.F; SmR1-RT >
malonyl glucoside? SmR1-Bact; SmR1-RT >
SmR1-LF
SmR1-RT > CTRL-RT; SmR1-
" RT > CTRL-LF; SmR1-RT >
Coumesterol? C10205 5.16 SmRA1-Bact: SmR1-RT >
SmR1-LF
: SmR1-RT > CTRL-RT; SmR1-
Dihydrox ’
met};ox f)I/avone C10381 5.07* RT > CTRL-LF; SmR1-RT >
<y : SmR1-Bact; SmR1-RT >
glucoside? SMR1-LF
~ B_F'a"°t"h°'d_ SmR1-RT > CTRL-RT; SmR1-
O R RT > CTRL-LF; SmR1-RT >
(2 . g * ;
- Dimethoxy-flavone C10029 4.84 SmRA1-Bact: SmR1-RT >
“E‘ SmR1-LF
(7]
SmR1-RT > CTRL-RT; SmR1-
Tetrahydroxyflavano . RT > CTRL-LF; SmR1-RT >
ne glucoside? Cileats e SmR1-Bact; SmR1-RT >
SmR1-LF
SmR1-RT > CTRL-RT; SmR1-
Acetyl-prenylphenol . RT > CTRL-LF; SmR1-RT >
glucoside GBI e SmR1-Bact; SmR1-RT >
SmR1-LF
SmR1-RT > CTRL-RT; SmR1-
Tetramethoxyflavan N RT > CTRL-LF; SmR1-RT >
one? C14472 3.99 SmR1-Bact; SmR1-RT >
SmR1-LF
SmR1-RT > CTRL-LF; SmR1-
Trihydroxyflavone? C06563 3.94* RT > SmR1-Bact; SmR1-RT >
SmR1-LF
Ajmaline? C06542 6.72* SmR1-RT > CTRL-RT; SmR1-

Indole

RT > CTRL-LF; SmR1-RT >
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alkaloid
biosynthesis

Norajmaline

C11810

5.90*

SmR1-Bact; SmR1-RT >
SmR1-LF

SmR1-RT > CTRL-RT; SmR1-
RT > CTRL-LF; SmR1-RT >
SmR1-Bact; SmR1-RT >
SmR1-LF

Puromycin
biosynthesis

Puromycin
aminonucleoside

C01610

5.56*

SmR1-RT > CTRL-RT; SmR1-
RT > CTRL-LF; SmR1-RT >
SmR1-Bact; SmR1-RT >
SmR1-LF

Starch and
sucrose
metabolism

Methylbutanoylapios
ylhexose?

C11916

4.81*

SmR1-RT > CTRL-RT; SmR1-
RT > CTRL-LF; SmR1-RT >
SmR1-Bact; SmR1-RT >
SmR1-LF

Miscellaneou
s

Sulfolactaldehyde

Sequoyitol?

C20798

C03365

15.89*

10.96*

SmR1-RT > CTRL-RT; CTRL-
RT > SmR1-Bact; CTRL-RT >
SmR1-LF; SmR1-RT > CTRL-
LF; SmR1-RT > SmR1-Bact;
SmR1-RT > SmR1-LF

SmR1-RT > CTRL-RT; SmR1-
RT > CTRL-LF; SmR1-RT >
SmR1-Bact; SmR1-RT >
SmR1-LF

SmR1-LF

Amino acid
metabolism

Citrate?

Aspartic acid?

C00158

C00049

5.08*

5.01*

SmR1-LF > CTRL-RT; CTRL-

LF > SmR1-Bact; SmR1-LF >

SmR1-RT; SmR1-LF > SmR1-
Bact

SmR1-LF > CTRL-RT; SmR1-
LF > CTRL-LF; SmR1-LF >
SmR1-RT; SmR1-LF > SmR1-
Bact

SmR1-Bact

Amino acid
metabolism

Sulfur dioxide

Dihydroxybenzoate
glucoside?

Glutathione?

C09306

C00628

C00051

125.39*

9.39*

6.59*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

Calcium
signaling
pathway

Cyclic-ADP ribose?

C13050

130.25*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF
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Flavonoid
biosynthesis

Dihydroxyflavone
glucoside?

C10216

29.61*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

Purine
metabolism

Urate?

Adenine?

AMP2

Guanosine
phosphate?

Guanosine

Adenosine
Diphosphate?

C00366

C00147

C00020

C06193

C00387

C00008

73.41*

56.62*

47.96*

25.30*

11.56*

10.33*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

Pyrimidine
metabolism

ubDP2

CMP2

UMPa

C00015

C00055

C00105

19.86*

15.79*

4.16*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

Riboflavin
metabolism

Amino (ribitylamino)
uracil

C04732

52.02*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

Starch and
sucrose
metabolism

N-Acetyl-
glucosamine
phosphate

C00357

19.62*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF
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C00842

4.24*

MPMI

SmR1-Bact > CTRL-LF; SmR1-
Bact > SmR1-RT; SmR1-Bact >
SmR1-LF

Miscellaneou
s

Acetyl dihexose?

Riboflavin cyclic
phosphate

Metaphosphoric acid

C16071

C02466

75.81%

57.77*

4.67*

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

SmR1-Bact > CTRL-RT; SmR1-
Bact > CTRL-LF; SmR1-Bact >
SmR1-RT; SmR1-Bact >
SmR1-LF

CTRL-RT

Amino acid
metabolism

Sulfolactate/phosph
olactate?

C11537

4.13*

CTRL-RT > SmR1-RT; CTRL-
RT > SmR1-Bact; CTRL-RT >
SmR1-LF

Aminobenzoa
te
degradation

Dehydrodivanillate?

C18347

9.20*

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF; CTRL-LF > SmR1-Bact;
SmR1-LF > SmR1-Bact

Butanoate
metabolism

Maleate?

C01384

4.38*

CTRL-RT > SmR1-Bact; CTRL-
LF > SmR1-Bact; CTRL-LF >
SmR1-LF; SmR1-RT > SmR1-
Bact

Flavonoid
biosynthesis

Luteolin glucuronide

Hydroxyjasmonic
acid glucoside?

Quercetagetin
glucoside?

C03515

C08558

C05623

7.31*

6.73"

3.69*

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-LF; SmR1-Bact > CTRL-
LF; SmR1-Bact > SmR1-RT,;
SmR1-Bact > SmR1-LF

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

Phenylpropa
noid
Biosynthesis

Pimpinellin2

Sinapoylglucose?

C09285

C01175

5.95*

5.71*

CTRL-RT > SmR1-RT; CTRL-

RT > SmR1-Bact; CTRL-RT >

SmR1-LF; CTRL-LF > SmR1-
RT; CTRL-LF > SmR1-Bact

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF
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Purine
metabolism

CTRL-RT > SmR1-Bact; CTRL-
LF > SmR1-RT; CTRL-LF >
SmR1-Bact; SmR1-LF > SmR1-
Bact

Pentose phosphate? 4.09*

Starch and
sucrose
metabolism

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

Sucrose? C00089 8.00*

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

Trisaccharide 6.77*

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

Glucose phosphate2 C00103 5.35*

CTRL-RT > SmR1-Bact; CTRL-
LF > SmR1-Bact; SmR1-RT >
SmR1-Bact; SmR1-LF > SmR1-
Bact

Glucose? C00031 3.75*

Miscellaneou
s

CTRL-RT > CTRL-LF; CTRL-
RT > SmR1-RT; CTRL-RT >
SmR1-Bact; CTRL-RT > SmR1-
LF

Galactopinitol® 4.78*

CTRL-LF

Amino acid
metabolism

CTRL-LF > CTRL-RT; CTRL-LF
> SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF;
SmR1-LF > SmR1-Bact

Shitimic acid2 C00493 7.73*

CTRL-LF > CTRL-RT; CTRL-LF
Glutamate? C00025 6.33* > SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

Butanoate
metabolism

CTRL-LF > CTRL-RT; CTRL-LF
Malate? C00497 5.60* > SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

Polycyclic
aromatic

hydrocarbon
degradation

CTRL-LF > CTRL-RT; CTRL-LF
2-oxobut-3-enoate C16149 6.53* > SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

Purine
metabolism

CTRL-LF > CTRL-RT; CTRL-LF
Oxoalate C00209 8.51* > SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

CTRL-LF > CTRL-RT; SmR1-
LF > CTRL-RT; CTRL-LF >
GMPa C00144 5.43* SmR1-RT; CTRL-LF > SmR1-
Bact; SmR1-LF > SmR1-RT;
SmR1-LF > SmR1-Bact
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Starch and
sucrose
metabolism

Monosaccharide?

C00181

5.60*

CTRL-LF > CTRL-RT; CTRL-LF
> SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

Miscellaneou
s

*P <0.05

Diapolycopenedioat
e

Methylmalate

Furoic acid?

C01546

17.87*

5.48*

5.47*

CTRL-LF > CTRL-RT; CTRL-LF
> SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

CTRL-LF > CTRL-RT; CTRL-
RT > SmR1-Bact; CTRL-LF >
SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF;
SmR1-LF > SmR1-Bact

CTRL-LF > CTRL-RT; CTRL-LF
> SmR1-RT; CTRL-LF > SmR1-
Bact; CTRL-LF > SmR1-LF

a Metabolites assigned by in-house reference standard MS/MS performed under

identical conditions.
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Table S3. Pathways and metabolites in Setaria viridis colonized with SmR54

compared to the uninoculated plants. These metabolites were significant by ANOVA

with a f-value range of 2 to 800. The samples that were analyzed were SmR54-RT,

SmR54-LF, SmR54-Bact, CTRL-RT, and CTRL-LF.

. KE .
Sample Pathways Metabolites II()3 G f.value Fisher's LSD
SmR54-RT > CTRL-RT; SmMR54-RT >
gllﬁct:rggi?gf nosy! 12.12* CTRL-LF; SmR54-RT > SmR54-Bact;
Flavonoid SmR54-RT > SmR54-LF
Biosynthesis SMR54-RT > CTRL-RT; SmR54-RT >
Hlydm)%'ﬂfva"one C16989  6.89*  CTRL-LF; SmR54-RT > SmR54-Bact;
gJligeRkels SmR54-RT > SmR54-LF
SmR54-RT > CTRL-RT; SmR54-RT >
- Norajmaline C11810 43.14* CTRL-LF; SmR54-RT > SmR54-Bact;
% Indole alkaloid IR il
@ biosynthesis SmR54-RT > CTRL-RT; SmR54-RT >
‘% Ajmaline? C06542 41.13* CTRL-LF; SmR54-RT > SmR54-Bact;
SmR54-RT > SmR54-LF
. . SmR54-RT > CTRL-RT; SmMR54-RT >
b'.:um"t'zc"f P“r.°my°'T ” C01610  33.33*  CTRL-LF; SmR54-RT > SmR54-Bact:
losynthesis aminonucieosiae SMR54-RT > SMR54-LE
Riboflavin SmR54-RT > CTRL-RT; SMR54-RT >
taboli Lumichrome C01727 4.89* CTRL-LF; SmR54-RT > SmR54-Bact;
metabolism SmR54-RT > SmR54-LF
. . SmR54-LF > CTRL-RT; SmR54-LF >
Amt'";’ i’.c'd Oxoadipic acid® C00322  3.55% CTRL-LF; SmR54-LF > SmR54-RT;
metabolism SmR54-LF > SmR54-Bact
Chlorocyclohexa
ne and . SmR54-LF > CTRL-RT: SmR54-LF >
chlorobenzene  ClYcolate C00160 345 SmR54-RT; SmR54-LF > SmR54-Bact
degradation
Pentose . SmR54-LF > CTRL-RT; SmR54-LF >
" Phosphate Griucoiaf"”ate C20589  4.41* CTRL-LF; SmR54-LF > SMR54-RT;
= Pathway phosphate SmR54-LF > SmR54-Bact
<
0n
né SmR54-LF > CTRL-RT; SmR54-LF >
7] Heptose phosphate 9.03* CTRL-LF; SmR54-LF > SmR54-RT;
Starch and SmR54-LF > SmR54-Bact
sucrose
metabolism SmR54-LF > CTRL-RT: SmR54-LF >
Mannitol phosphate C00644 3.49* CTRL-LF; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact
Benzoyloxyhydroxypr
opyl yloxyhydroxyp SmR54-LF > CTRL-RT; SmR54-LF >
Miscellaneous 5.82* CTRL-LF; SmR54-LF > SmR54-RT;

glucopyranosiduronic
acid?

SmR54-LF > SmR54-Bact
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SmR54-Bact

Amino acid
metabolism

Sulfur dioxide

Glutathione?

Dihydroxybenzoate
glucoside?

C09306

C00051

C00628

785.30*

30.30*

8.24*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT,;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

Calcium
signaling
pathway

Cyclic-ADP ribose?

C13050

32.61*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

Flavonoid
Biosynthesis

Dihydroxyflavone
glucoside?

Methyl glucoside?

Luteone

C10216

C03619

C10498

43.62*

17.05*

5.73*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

Purine
metabolism

Adenine?

Adenosine
diphosphate?

AMP2

Urate?

uDP2

CMP?

Uridine2

CDP

C00147

C00008

C00020

C00366

C00015

C00055

C00299

C00112

305.41*

45.60*

39.17*

18.32*

45.64*

11.56*

8.30*

5.53*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

Riboflavin
metabolism

Amino (ribitylamino)
uracil

C04732

16.86*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF
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Starch and
sucrose
metabolism

N-Acetyl-glucosamine
phosphate?

C00357

60.14*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

Miscellaneous

Acetyl dihexose?

22.00*

SmR54-Bact > CTRL-RT; SmR54-Bact
> CTRL-LF; SmR54-Bact > SmR54-RT;
SmR54-Bact > SmR54-LF

CTRL-RT

Aminobenzoate
degradation

Dehydrodivanillate?

C18347

8.71*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF;CTRL-LF >
SmR54-Bact; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

Butanoate
metabolism

Maleate?

Malate?

C01384

C00497

6.98"

5.29*

CTRL-RT > SmR54-Bact;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

CTRL-RT > SmR54-Bact;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Flavonoid
Biosynthesis

Luteolin glucuronide

Hydroxyjasmonic acid
glucoside?

Hydroxyflavone?

Coumesterol?

Quercetagetin
glucoside?

Acetyl-prenylphenol
glucoside

Leucocyanidin

C03515

C08558

C11264

C10205

C05623

C04608

C05906

9.67*

8.65*

6.93*

5.40*

4.70*

4.64*

3.40*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
SmR54-LF > CTRL-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
SmR54-LF > CTRL-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-Bact; CTRL-RT > SmR54-LF

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

Phenylpropanoid
biosynthesis

Sinapoylglucose?

Pimpinellin@

Diphyllin

C01175

C09285

C10559

7.26*

6.84*

3.48*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

CTRL-RT > SmR54-RT; CTRL-RT >
SmR54-Bact; CTRL-RT > SmR54-
LF;CTRL-LF > SmR54-RT;CTRL-LF >
SmR54-Bact

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
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SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Riboflavin
metabolism

Riboflavin cyclic
phosphate

C16071

13.01*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; SmR54-Bact > CTRL-RT;
SmR54-Bact > CTRL-LF; SmR54-LF >
CTRL-LF; SmR54-Bact > SmR54-RT;

SmR54-LF > SmR54-RT; SmR54-Bact >
SmR54-LF

Starch and
sucrose
metabolism

Glucose phosphate?

Sucrose?

Glucose?

C00103

C00089

C00031

11.36*

9.60*

5.14*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-
Bact;CTRL-LF > SmR54-RT; SmR54-LF
> CTRL-LF; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
SmR54-LF > CTRL-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

CTRL-RT > SmR54-RT; CTRL-RT >
SmR54-Bact;CTRL-LF > SmR54-Bact;
SmR54-LF > SmR54-RT; SmR54-LF >

SmR54-Bact

Terpenoid
Biosynthesis

Methy! erythritol
phosphate

C11434

4.47*

CTRL-RT > CTRL-LF; CTRL-RT >
SmR54-RT; CTRL-RT > SmR54-Bact;
CTRL-RT > SmR54-LF

CTRL-LF

Amino acid
metabolism

Shitimic acida

Methylglyoxal

Phosphoglycerate

Citrate?

C00493

C00546

C00197

C00158

7.31*

4.22*

4.09*

3.68*

CTRL-LF > CTRL-RT; SmR54-LF >
CTRL-RT;CTRL-LF > SmR54-RT;CTRL-
LF > SmR54-Bact; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

CTRL-LF > SmR54-RT;CTRL-LF >
SmR54-Bact; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-
Bact;CTRL-LF > SmR54-LF

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-
Bact;CTRL-LF > SmR54-LF

Biosynthesis of
plant hormones

Jasmonic acid?

C08491

3.57*

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact;
SmR54-LF > SmR54-RT

Glutathione
metabolism

Ascorbic acid?

C00072

3.42*

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact

Polycyclic
aromatic
hydrocarbon
degradation

2-oxobut-3-enoate

C16149

8.10*

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-
Bact;CTRL-LF > SmR54-LF

Purine
metabolism

Oxoalate

Glyoxylic acid

C00209

C00048

7.16*

4.95*

CTRL-LF > CTRL-RT; SmR54-LF >
CTRL-RT;CTRL-LF > SmR54-RT;CTRL-
LF > SmR54-Bact; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact;
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SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

CTRL-LF > SmR54-RT;CTRL-LF >
SmR54-Bact; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

Starch and
sucrose
metabolism

Monosaccharide? C00181 7.58*

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-
Bact;CTRL-LF > SmR54-LF

Miscellaneous

Diapolycopenedioate 12.83*
Furoic acid? C01546 3.91*
Methylmalate 3.74*

Sequoyitol® C03365  3.63*

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-
Bact;CTRL-LF > SmR54-LF

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact

CTRL-LF > SmR54-RT;CTRL-LF >
SmR54-Bact; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

CTRL-LF > CTRL-RT;CTRL-LF >
SmR54-RT;CTRL-LF > SmR54-Bact

*P <0.05

a Metabolites assigned by in-house reference standard MS/MS performed under

identical conditions.
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Table S4. Metabolites that were significantly present in Setaria viridis inoculated

with SmR1 versus SmR54. These metabolites were significant by ANOVA with a f-value

range of 3 to 212. The samples that were analyzed were SmR1-RT, SmR1-LF, SmR1-

Bact, SmR54-RT, SmR54-LF, and SmR54-Bact.

Sample Pathways

Metabolites

KEGG
ID

f.value

Fisher's LSD

Amino acid
metabolism

Coumarate

Phenylacetaldehyde

Methylglutamate

C00811

C00601

C06034

4.09*

3.64*

3.10*

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

Biosynthesis
of plant
hormones

Jasmonic acid?

C08491

3.07*

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR54-Bact; SmR1-RT > SmR54-LF

Butanoate
metabolism

SmR1-RT

Maleate?

Malate

C01384

C00497

7.54**

4.81**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-Bact;
SmR54-LF > SmR1-Bact; SmR54-LF >
SmR1-LF; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR54-LF > SmR1-
Bact; SmR54-LF > SmR1-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

Flavonoid
biosynthesis

Dihydroxy
methoxyflavone
glucoside?

Coumesterol?

Dihydroxy
dimethoxyisoflavano
ne

Dimethyltricetin

C10381

C10205

9.72**

8.64**

8.33**

7.44**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF;

SmR54-RT > SmR1-Bact; SmR54-RT >

SmR1-LF; SmR54-RT > SmR54-Bact;

SMR54-RT > SmR54-LF

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR54-LF > SmR1-
Bact; SmR54-LF > SmR1-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF
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SmR1-RT > SmR1-Bact; SmR1-RT >

Dimethoxy-flavone C10029 5.85* SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Glucoside malonate C16222 5.80** SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Trihydroxyflavone?2 C06563 4.72% SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Hyctirr]oxy favone® 446"  SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
ISICGAENINE RT > SmR54-Bact; SmR1-RT > SmR54-LF
. . SmR1-RT > SmR1-Bact; SmR1-RT >
D'hlydrcixﬁ'sc’ﬂa.\éo:e C16191  3.84*  SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
HIZOIVATLCOSIEE RT > SmR54-Bact; SmR1-RT > SmR54-LF
] SmR1-RT > SmR1-Bact; SmR1-RT >
Qluerc‘.e;aget'n C05623  3.81*  SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
YlErstiol RT > SmR54-Bact; SmR1-RT > SmR54-LF
Dihydroxy SmR1-RT > SmR1-Bact; SmR1-RT >
dimethoxyisoflavone 3.74* SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
glucoside RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Tetramethoxyflavan  ¢14470 373+ SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
e RT > SmR54-Bact; SMR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-Bact;
'_Ilydm)fgﬂfvanone C16989  3.56*  SmR54-RT > SmR1-Bact; SmR54-RT >
GlEle SmR1-LF; SmR54-RT > SmR54-Bact;
SMR54-RT > SMR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Hydroxyflavone? C11264 3.43* SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Wydroxé'b:tyrate 3.33*  SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
JECUEICE RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Alcew' .zri“y'phem' C04608  3.17*  SmRI-LF; SmR1-RT > SmR54-RT; SmR1-
YleEestils RT > SmR54-Bact; SmR1-RT > SmR54-LF
SmR1-RT > SmR1-Bact; SmR1-RT >
Glyoxylate and . SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
dicarboxylate Ph.ZSphogWCO"C C00988  4.25*  RT > SmR54-Bact; SMR54-LF > SmR1-
metabolism  2° Bact: SmR54-LF > SmR1-LF:; SmR54-LF >
SmR54-Bact
SmR1-RT > SmR1-Bact, SmR1-RT >
Linoleic acid? C01595 5.78** SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
e s RT > SmR54-Bact; SmR1-RT > SmR54-LF
metabolism .
. SmR1-RT > SmR1-Bact; SmR1-RT >
.Epo’%gcwdecad'eno C16316  4.44* SMR1-LF; SmR1-RT > SmR54-Bact;
e &t SmR1-RT > SmR54-LF
2
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Epoxyoctadecenoic
acid*

C08368

3.60*

MPMI

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

Phenylpropano
id biosynthesis

Sinapoylglucose?

C01175

5.30**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

Purine
metabolism

GMP2

Glyoxylic acid

C00144

C00048

4.94*

4.79**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR54-LF > SmR1-
Bact; SmR54-LF > SmR1-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR54-RT; SmR1-RT > SmR54-Bact;
SmR54-LF > SmR1-Bact; SmR54-LF >

SmR1-LF; SmR54-LF > SmR54-RT;

SmR54-LF > SmR54-Bact

Riboflavin
metabolism

Lumichrome

Co1727

3.94*

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-Bact;
SmR1-RT > SmR54-LF; SmR54-RT >
SmR1-Bact; SmR54-RT > SmR1-LF;
SmR54-RT > SmR54-Bact; SmMR54-RT >
SmR54-LF

Starch and
sucrose
metabolism

Glucose?

Methylbutanoylapios
ylhexose?

C00031

C11916

13.10**

4.54**

SmR1-RT > SmR1-Bact; SmR1-RT >

SmR54-RT; SmMR1-RT > SmR54-Bact;
SmR1-LF > SmR1-Bact; SmR54-LF >
SmR1-Bact; SmR1-LF > SmR54-RT;
SmR1-LF > SmR54-Bact; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR54-LF > SmR1-
Bact; SmR54-LF > SmR54-RT

Terpenoid
biosynthesis

Farnesyl
diphosphate

C00448

5.32**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

Zeatin
biosynthesis

Zeatin?

C15545

4.92**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF

Miscellaneous

Sulfolactaldehyde

C20798

15.60**

SmR1-RT > SmR1-Bact; SmR1-RT >
SmR1-LF; SmMR1-RT > SmR54-RT; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF;

SmR54-RT > SmR1-Bact; SmR54-RT >

SmR1-LF; SmR54-RT > SmR54-Bact;

SmMR54-RT > SmR54-LF

SmR1-LF

Amino acid
metabolism

Citrate?

C00158

6.26™*

SmR1-LF > SmR1-RT; SmR1-LF > SmR1-
Bact; SmR1-LF > SmR54-RT; SmR1-LF >
SmR54-Bact; SmR1-LF > SmR54-LF

Aminobenzoat
e degradation

Dehydrodivanillate?

C18347

6.80**

SmR1-LF > SmR1-RT; SmR54-LF >
SmR1-RT; SmR1-LF > SmR1-Bact;
SmR54-LF > SmR1-Bact; SmR1-LF >
SmR54-RT; SmR1-LF > SmR54-Bact;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact
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Butanoate
metabolism

Butanediol

C03044

3.20*

SmR1-LF > SmR1-RT; SmR1-LF > SmR1-
Bact; SmR1-LF > SmR54-RT; SmR1-LF >
SmR54-Bact; SmR1-LF > SmR54-LF

Glutathione
metabolism

Ascorbic acid?

C00072

11.64**

SmR1-LF > SmR1-RT; SmR54-LF >
SmR1-RT; SmR1-LF > SmR1-Bact;
SmR54-LF > SmR1-Bact; SmR1-LF >
SMR54-RT; SmR1-LF > SmR54-Bact;
SmR54-LF > SmR1-LF; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

Glyoxylate and
dicarboxylate
metabolism

Mesaconate?

C01732

3.15*

SmR1-LF > SmR1-Bact; SmR54-LF >

SmR1-Bact; SmR1-LF > SmR54-Bact;

SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Phenylpropano
id biosynthesis

Diphyllin

C10559

6.82**

SmR1-LF > SmR1-RT; SmR1-LF > SmR1-
Bact; SmR54-LF > SmR1-Bact; SmR1-LF >
SMR54-RT; SmR1-LF > SmR54-Bact;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Miscellaneous

Methylmalate

4.50**

SmR1-LF > SmR1-Bact; SmR54-LF >
SmR1-Bact; SmR1-LF > SmR54-RT;
SmR1-LF > SmR54-Bact; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

SmR1-Bact

Amino acid
metabolism

Sulfur dioxide

Dihydroxybenzoate
glucoside?

C09306

C00628

212.51*

*

6.69**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR54-Bact > SmR1-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
LF; SmR54-Bact > SmR1-LF; SmR54-Bact

> SmR54-RT; SmR54-Bact > SmR54-LF

Calcium
signaling
pathway

Cyclic-ADP ribose?

C13050

55.76**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

Flavonoid
biosynthesis

Dihydroxyflavone
glucoside?

Luteolin glucuronide

C10216

C03515

31.26**

3.58*

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
LF; SmR54-Bact > SmR1-LF; SmR54-Bact

> SmR54-RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR54-LF >
SmR1-LF; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

Purine
metabolism

Fructose
biphosphate?

C06193

84.41**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR54-Bact > SmR1-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF
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Adenine*

GMP

AMP2

Urate?

AMP2

Guanosine
phosphate?

Adenosine
diphosphate?

Guanosine

C00147

C00942

C00020

C00366

C00575

C06193

C00008

C00387

MPMI

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

77.10**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

35.80**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR54-Bact > SmR1-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

35.45**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

34.63**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

20.11**

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

17.27*

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-

13.23** Bact > SmR54-RT; SmR1-Bact > SmR54-
LF; SmR54-Bact > SmR1-LF; SmR54-Bact

> SmR54-RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

9.53**

Pyrimidine
metabolism

UMP2

ubDP2

CMP2

C00105

C00015

C00055

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
48.71** Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR54-RT

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR54-Bact > SmR1-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

36.23**

12.45** SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-



oNOYTULT D WN =

Agtuca

Molecular Plant-Microbe Interactions

CMP

C00941  11.05**

MPMI

Bact > SmR54-RT; SmR1-Bact > SmR54-

Bact; SmR1-Bact > SmR54-LF; SmR54-

Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

Pyruvate
metabolism

Lactoylglutathione

C03451 5.64**

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

Riboflavin
metabolism

Amino (ribitylamino)
uracil

C04732  30.34*

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

Starch and
sucrose
metabolism

Acetylneuraminic
acid

Acetyl-glucosamine
phosphate?

dTDP-hexose

C00270  52.02**

C00357 49.45**

C00842  4.98*

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
LF; SmR54-Bact > SmR1-LF; SmR54-Bact

> SmR54-RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR54-Bact > SmR1-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-Bact > SmR54-LF

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

Zeatin
biosynthesis

Isopentenyl-ADP

C16426 3.34*

SmR1-Bact > SmR1-RT; SmR1-Bact >
SmR1-LF; SmR1-Bact > SmR54-RT;
SmR1-Bact > SmR54-Bact; SmR1-Bact >
SmR54-LF

Miscellaneous

Riboflavin cyclic
phosphate

Acetyl dihexose?

C16071  59.17**

25.54**

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
Bact; SmR1-Bact > SmR54-LF; SmR54-
Bact > SmR1-LF; SmR54-Bact > SmR54-
RT; SmR54-LF > SmR54-RT

SmR1-Bact > SmR1-RT; SmR54-Bact >
SmR1-RT; SmR1-Bact > SmR1-LF; SmR1-
Bact > SmR54-RT; SmR1-Bact > SmR54-
LF; SmR54-Bact > SmR1-LF; SmR54-Bact

> SmR54-RT; SmR54-Bact > SmR54-LF

SmR54-RT

Flavonoid
biosynthesis

Methylpyranosyl
glucoside?

Methyl glucoside?

9.81**

C03619 3.08*

SmR54-RT > SmR1-RT; SmR54-RT >
SmR1-Bact; SmR54-RT > SmR1-LF;
SmR54-RT > SmR54-Bact; SmMR54-RT >
SmR54-LF

SmR54-RT > SmR1-RT; SmR54-RT >
SmR1-Bact; SmR54-RT > SmR1-LF;
SmR54-RT > SmR54-Bact
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Indole alkaloid
biosynthesis

Norajmaline

Ajmaline?

C11810

C06542

29.09**

2411

SmR54-RT > SmMR1-RT; SmR1-RT >
SmR1-Bact; SmR1-RT > SmR1-LF; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF;

SmR54-RT > SmR1-Bact; SmR54-RT >

SmR1-LF; SmR54-RT > SmR54-Bact;

SmR54-RT > SmR54-LF

SmR54-RT > SmR1-RT; SmR1-RT >
SmR1-Bact; SmR1-RT > SmR1-LF; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF;

SmR54-RT > SmR1-Bact; SmR54-RT >

SmR1-LF; SmR54-RT > SmR54-Bact;

SmR54-RT > SmR54-LF

Puromycin
biosynthesis

Puromycin
aminonucleoside

C01610

23.64**

SmR54-RT > SmR1-RT; SmR1-RT >
SmR1-Bact; SmR1-RT > SmR1-LF; SmR1-
RT > SmR54-Bact; SmR1-RT > SmR54-LF;

SmR54-RT > SmR1-Bact; SmR54-RT >

SmR1-LF; SmR54-RT > SmR54-Bact;

SmR54-RT > SmR54-LF

SmR54-LF

Amino acid
metabolism

Shitimic acid?

Glutathione?

Methylglyoxal

Sulfolactate/phosph
olactate?

C00493

C00051

C00546

C11537

7.81**

4.59**

4.47*

3.25*

SmR54-LF > SmR1-RT; SmR1-LF >
SmR1-Bact; SmR54-LF > SmR1-Bact;
SmR1-LF > SmR54-Bact; SmR54-LF >

SmR1-LF; SmR54-LF > SmR54-RT;

SmR54-LF > SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Chlorocyclohe
xane and
chlorobenzene
degradation

Glycolate

C00160

4.78**

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Flavonoid
biosynthesis

Kaempferol
rhamnoside
glucoside

Pentahydroxy
methoxyflavone

Hydroxyjasmonic
acid glucoside?

C21854

C04527

C08558

10.94**

5.18**

4.65**

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Pentose
phosphate
pathway

Glucosaminate
phosphate

C20589

4.70**

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
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SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Phenylpropano
id biosynthesis

Chavicol

Pimpinellin@

C16930

C09285

5.91*

4.20*

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-Bact; SmR54-LF >
SmR1-LF; SmR54-LF > SmR54-RT;
SmR54-LF > SmR54-Bact

Purine
metabolism

Oxoalate

Pentose phosphate?

C00209

5.90**

5.31**

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR1-LF >
SmR1-Bact; SmR54-LF > SmR1-Bact;
SmR1-LF > SmR54-Bact; SmR54-LF >
SmR54-RT; SmR54-LF > SmR54-Bact

Starch and
sucrose
metabolism

Sucrose?

Glucose phosphate?

Trisaccharide

C00089

C00103

8.66™*

8.42**

3.83*

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Terpenoid
Biosynthesis

Methyl erythritol
phosphate

C11434

6.95**

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

Miscellaneous

Benzoyloxyhydroxyp

ropyl
glucopyranosiduroni
c acid?

Furoic acid@

Metaphosphoric acid

C01546

C02466

6.64**

3.53*

3.08*

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-LF > SmR1-RT; SmR54-LF >
SmR1-Bact; SmR54-LF > SmR1-LF;
SmR54-LF > SmR54-RT; SmR54-LF >
SmR54-Bact

SmR54-Bact

Flavonoid
biosynthesis

Luteone

C10498

5.65**

SmR54-Bact > SmR1-RT; SmR54-Bact >
SmR1-Bact; SmR54-Bact > SmR1-LF;
SmR54-Bact > SmR54-RT; SmR54-Bact >
SmR54-LF

Pyrimidine

Uridine?

C00299

7.95**

SmR54-Bact > SmMR1-RT; SmR54-Bact >
SmR1-Bact; SmR54-Bact > SmR1-LF;
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metabolism SmR54-Bact > SmR54-RT; SmR54-Bact >
SmR54-LF

SmR54-Bact > SmMR1-RT; SmR54-Bact >
SmR1-Bact; SmR54-Bact > SmR1-LF;
SmR54-Bact > SmR54-RT; SmR54-Bact >
SmR54-LF

CDP C00112 5.19**

oNOYTULT D WN =
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*P < 0.05 and **P < 0.005

—_
D wWwN

a Metabolites assigned by in-house reference standard MS/MS performed under

—_ -
o

identical conditions.
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