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a b s t r a c t

Edge detection plays an important role in the field of image processing. In this paper,
we propose a novel variational model to automatically and adaptively detect one or
more prior shapes from the given dictionary to guide the edge detection process. In that
way, we can effectively detect the shapes of interest from the test image. Moreover, an
efficient algorithm based on the Alternating Direction Method of Multipliers (ADMM)
is proposed to solve this model with guaranteed convergence. A variety of numerical
experiments show that the proposed method has achieved ideal performance for edge
detection in images with missing information, various types of noise and complicated
background, and even multiple objects.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Edge detection techniques aim to extract the edges of objects within an image. It has been applied in various fields,
including computer vision, machine learning, and medical imaging [1,2]. Solving the edge detection problem in a reliable
way has been of prime interest for several decades and has produced an enormous number of publications.

There has been a large amount of operator-based methods developed for edge detection. For example, gradient
operators include Sobel operator [3], Roberts operator [4], Prewitt operator [5], and second-order differential operators
include Canny operator [6], and LOG operator [7]. However, these methods may lead to the loss of some geometric features
and corruption of edges in the original image because of gradient discretization. To address this issue, some methods have
been proposed to improve the accuracy of detected edges, including fuzzy algorithms [8], adaptive splitting algorithm [9],
wavelets [10], G-lets [11], and anisotropic diffusions [12–14]. In [15], a comprehensive comparison of various edge
detection methods for various image processing applications is provided. It is worth noting that edge detection becomes
very challenging when the original image has no salient edges or it is corrupted by non-Gaussian noise or a mixture of
several types of noise.

Another popular category of edge detection methods is to solve a minimization model which describes noise-reduction
and edge-detection properly and explicitly. One representative work is the popular Mumford–Shah (MS) model [16]:

min
u,Γ

{

E(u,Γ ) = µ

∫

Ω\Γ

|∇u|2dx +
ν

2

∫

Ω

(u − I)2dx + |Γ |

}

, (1)
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where I is a given image on an open bounded domain Ω ⊂ R
2, the minimizer u is expected to be a ‘‘good’’

piecewise smooth approximation of I , and |Γ | is the total length of the union of the targeted edges Γ . Here µ and
ν are positive tuning parameters. It is difficult to solve the model explicitly because of the third term about the edge
length. Instead, many methods have been proposed to solve an approximate model of (1) which is easier to obtain the
minimizer. In particular, Ambrosio and Tortorelli proposed a Γ -convergence approximation via the uniformly elliptic
functionals [17,18]. To overcome the over-segmentation of steep gradients, Blake and Zisserman proposed a variational
model based on second-order derivatives [19]. Later, Zanetti et al. combined the above two models to enhance the
detection effectiveness [20]. To detect open curves accurately, Wang et al. proposed the modified Mumford–Shah (MMS)
model by integrating the MS model with the binary level-set method [21], which is only effective for the Gaussian type of
noise. Recently, Shi et al. replaced the L2 fidelity term by the L1 fidelity term to enhance robustness to other noise types,
e.g., impulse noise [22]. To overcome the ill-posedness of the MMS model [23,24], Shi et al. has recently improved the
MMS model by adding a L1 regularization term of the edge and proposed the following model [25]:

min
u,ψ∈{0,1}

{

µ

∫

Ω

(1 − ψ)2|∇u|2dx +
ν

2

∫

Ω

(u − I)2dx + TV (ψ) + τ

∫

Ω

|ψ |dx

}

. (2)

The minimizer u belongs to the space of functions defined on Ω with bounded variations, denoted by BV (Ω), and u is
expected to be a piecewise smooth approximation of I . The tuning parameters µ, ν, τ are positive. The binary level set
function ψ = 1 if x ∈ Rd, while ψ = 0 otherwise. The closed region Rd is generated by a regular current and its parallel or
offset curve rd (refer to [25] for the concrete definition of Rd). Experimental results show that the model (2) can identify
clear edges for both open and closed edges. In this method, a pre-smoothing step is implemented to enhance the accuracy
of edge detection in noisy images, and fast numerical algorithms are proposed to solve the model through a binary labeling
process. Note that all of the aforementioned models that improve the MS model are based on the intensity information
of the given image.

However, using the image intensity information alone may lead to undesirable results when the image has low quality,
missing intensities or overlaps with complicated background. As a remedy, prior knowledge of shapes can be taken into
consideration in these situations [26–28]. Especially in real-world applications, the shapes of objects are known a priori
in an image.

Recently, shape-based segmentation approaches have drawn considerable attention (see e.g., [29]), especially for
medical images [30,31]. Tsai et al. proposed a parametric model to implicitly represent the segmentation curve [32], but
the method can only control uni-modal shape densities. On the other hand, nonparametric methods have been proposed
to handle multi-modal shape densities [33,34]. Furthermore, Gloger et al. [30] and [35] improved the existing technique
for prior shape level set segmentation to delineate the liver in tissue-specific liver probability maps. These methods
typically minimize an energy function containing regularization, data fidelity and shape terms. More recently, Guo et al.
proposed the Automatic Prior Shape Selection (APSS) method for image segmentation based on the sparse representation
of a dictionary containing prior shapes [36]:

min
u,v,s
d,h

{

1

2
∥u − I∥2

2+
η

2
∥v·∇u∥2

2+
ρ

2
∥∇v∥2

2+
∥v − 1∥2

2

8ρ
+θ ∥∇w∥1+ζ ∥s∥1+W (h)

}

, (3)

subject to As + w = v(h).

Here v is the edge strength function of the image with range [0, 1],w is discrepancy, A is a dictionary that contains all prior
shapes, s contains the weights of prior shapes, h is the transformation between the detected edge and the approximated
shape represented by the dictionary, W (h) is a regularization term with respect to h, and η, ρ, θ, ζ are positive tuning
parameters. However, since the detected edges especially on the corners are sometimes thick (see Figs. 2(b) and 2(f)), one
more post-processing step, i.e., thresholding the edge strength function v, is required to get the desired thin edges (see
Figs. 2(c) and 2(g)).

Inspired by Shi et al. [25] and Guo et al. [36], we propose a new edge detection model whose energy functional has the
advantages of accurate boundaries and prior shape information. This paper makes the following four major contributions.
Firstly, we present a novel variational model that takes advantage of the prior shape information together with the
intensity information for edge detection. The proposed model characterizes the relation between the prior shapes and
the detected edges. In fact, this method allows the adaptive learning of shapes through the iterative algorithm. Secondly,
we provide theoretical convergence guarantees of the proposed algorithm. Note that the standard ADMM convergence
analysis is not applicable here since the objective function in (5) is not jointly convex with respect to all variables. Thirdly,
our approach is robust which can deal with translation, uniform scaling and rotation of prior shapes in the given dictionary,
and it also works for multi-shape images. Lastly, the proposed framework is able to generate the desired edges by directly
solving a minimization problem without any post-processing steps.

The rest of the paper is organized as follows. In Section 2, we propose our new edge detection model using prior
shapes. In Section 3, we describe in detail an efficient algorithm based on ADMM for solving the minimization problem (5).
Section 4 provides convergence analysis of the proposed algorithm. Section 5 shows a variety of numerical experiments
to demonstrate effectiveness and robustness of the proposed approach in edge detection. Concluding remarks and future
work are given in Section 6.
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2. The proposed model

Before presenting the edge detection model using prior shape that we proposed in this paper, we need to introduce

the following notations. For the convenience, we vectorize an image by column-wise stacking.

Let I ∈ R
m̃ñ be the vectorization of the reference image, u ∈ R

m̃ñ a piecewise smooth approximation of I , and

ψ ∈ [0, 1]m̃ñ := Γ an edge strength function, i.e., a convex relaxation of the binary edge indicator function. Assume

that A ∈ R
m̃ñ×l is a dictionary which consists of l prior shapes such that

As + w + e = ψ(h), (4)

where w is the discrepancy between ψ(h) and the approximated edge using the dictionary, h is the geometric transfor-

mation and e is additive noise. That is, the discrete noise-free edge strength function ψ ∈ R
m̃ñ can be decomposed into a

sparse linear combination of prior shapes and a piecewise constant part after registration. If no geometric transformation

is involved, then ψ(h) is simply ψ .

Motivated by the models (2) and (3), we propose a new variational model using prior shapes for edge detection as

follows:

min
u,w,s,ψ∈Γ

{

µ ∥(1 − ψ) ⊙ |Du|∥2
2 +

ν

2
∥u − I∥2

2 + τ ∥ψ∥1 + ∥Dψ∥1 + β ∥Dw∥1 + α ∥s∥1 +
γ

2
∥As + w − ψ∥2

2

}

. (5)

Here D = [DT
1,D

T
2]

T ∈ R
2m̃ñ×m̃ñ is the discrete gradient operator with the symmetric boundary conditions, ⊙ is

componentwise multiplication of two vectors.

The first term in the above model (5) can be further written as

∥(1 − ψ) ⊙ |Du|∥2
2 =



DψD1u




2

2
+


DψD2u




2

2
. (6)

Here Dψ = E − diag(ψ), where E is the identity matrix and diag(·) is the diagonalization operator which turns a vector

into a diagonal matrix. The model is robust to noise since that there are three total variation terms in the proposed

model, where the first, fourth, fifth terms which allow us to smoothen homogeneous areas of the recovered image while

preserving sharp edges. The last two terms in the proposed model (5) can be considered as shape terms, which essentially

evaluate the shape difference among the prior shapes in the given dictionary. One can see that seeking the solution of (5)

corresponds to the learning of edges that best fit the given prior shapes. In other words, the minimizer is achieved when

the prior shapes have been fully learned through an iterative algorithm.

In this paper, we consider three basic types of geometric transformations: translation, uniform scaling and rotation.

As rigid transformations, translation and rotation do not change lengths and angle measures. The uniform scaling

transformation stretches or shrinks a given object and thereby changes lengths and angles. However, the shape of a

geometric object will not be changed. That is, planar curves including lines, circles and ellipsoids are not changed under

the aforementioned transformations. But the position and orientation of the object will be changed. It implies that these

three types of transformations can be easily controlled. Further, more general affine transformations will be considered

in our future work.

3. Proposed algorithm

We focus in this section on the numerical algorithm of a solution of problem (5). A lot of algorithms have been proposed

in the literature for solving a similar problem, such as the Fast Total Variation deconvolution (FTVd) algorithm [37],

fixed point algorithm [38,39], Algebraic Multigrid (AMG) algorithm [40], ADMM [41], dual algorithm [42], gradient

projection [43,44], domain decomposition [45,46]. Many algorithms attempt to solve the edge detection problem in a

generalized level set framework to obtain numerical results easily. With no intent of being exhaustive, interested readers

are referred to [20,25,47,48] and the references therein for a comprehensive study. Since ADMM can solve decomposable

minimization problems efficiently and even lead to parallelization for large-scale problems, we design an algorithm by

applying ADMM to solve the proposed model (5). The proposed algorithm decomposes the original sophisticated problem

into several simple subproblems, whose solutions can be easily obtained with relatively low computational cost.

Similar to the methods in [49,50], we decompose the original problem into several simpler subproblems and solve

them in an alternating fashion. More precisely, by introducing the new variables x = (x1, x2), y, z, q, we can reformulate

(5) as

min
u,w,s,ψ
x1,x2,y,z

{

µ ∥x1∥
2
2 + µ ∥x2∥

2
2 +

ν

2
∥u − I∥2

2 + τ ∥q∥1 + ∥y∥1 + β ∥z∥1 + α ∥s∥1

+
γ

2
∥As + w − ψ∥2

2

}

, (7)

subject to DψD1u = x1, DψD2u = x2, Dψ = y, Dw = z, ψ = q.
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Then we define the augmented Lagrangian function

L = µ ∥x1∥
2
2 + µ ∥x2∥

2
2 +

ν

2
∥u − I∥2

2 + τ ∥q∥1 + ∥y∥1 + β ∥z∥1 + α ∥s∥1

+
γ

2
∥As + w − ψ∥2

2 +
ρ1

2

2
∑

m=1



DψDmu − xm + x̃m




2

2
+
ρ2

2



Dψ − y + ỹ




2

2

+
ρ3

2



Dw − z + z̃




2

2
+
ρ4

2



ψ − q + q̃




2

2
.

(8)

There are eight variables to be determined in (8), which lead to the following eight subproblems with respect to u, ψ ,
q, s, w, xm, y, z, respectively:

• u-subproblem: For the fixed ψ , xm and x̃m, we solve

min
u

{

ℜ(u) :=
ν

2
∥u − I∥2

2 +
ρ1

2

2
∑

m=1



DψDmu − xm + x̃m




2

2

}

. (9)

• ψ-subproblem: For the fixed u, q, q̃, s, w, xm, x̃m, y and ỹ, we solve

min
ψ

{

S(ψ) :=
ρ1

2

2
∑

m=1



DψDmu − xm + x̃m




2

2
+
ρ2

2



Dψ − y + ỹ




2

2
+
ρ4

2



ψ − q + q̃




2

2
+
γ

2
∥As + w − ψ∥2

2

}

.

(10)

• q-subproblem: For the fixed ψ and q̃, we solve

min
q
τ ∥q∥1 +

ρ4

2



ψ − q + q̃




2

2
. (11)

• s-subproblem: For the fixed w and ψ , we solve

min
s
α ∥s∥1 +

γ

2
∥As + w − ψ∥2

2 . (12)

• w-subproblem: For the fixed s, z, z̃ and ψ , we solve

min
w

γ

2
∥As + w − ψ∥2

2 +
ρ3

2



Dw − z + z̃




2

2
. (13)

• xm-subproblem: For the fixed ψ , u and x̃m with m = 1, 2, we solve

min
xm
µ ∥xm∥2

2 +
ρ1

2

2
∑

m=1



DψDmu − xm + x̃m




2

2
. (14)

• y-subproblem: For the fixed ψ and ỹ, we solve

min
y

∥y∥1 +
ρ2

2



Dψ − y + ỹ




2

2
. (15)

• z-subproblem: For the fixed w and z̃, we solve

min
z
β ∥z∥1 +

ρ3

2



Dw − z + z̃




2

2
. (16)

Despite the number of subproblems, each subproblem can be efficiently solved and some subproblems have the similar
solutions. Specifically, the closed-form solutions of (11), (15), (16)-subproblems can be expressed using the shrinkage
operator:

q = sgn(ψ + q̃) ⊙ max

{

|ψ + q̃| −
τ

ρ4
, 0

}

. (17)

y = sgn(Dψ + ỹ) ⊙ max

{

|Dψ + ỹ| −
1

ρ2
, 0

}

. (18)

z = sgn(Dw + z̃) ⊙ max

{

|Dw + z̃| −
β

ρ3
, 0

}

. (19)

Here sgn(·) is the signum function which returns the componentwise sign of the input vector. Once un+1, xn+1
m , ψn+1, yn+1,

wn+1 and zn+1 are available, the Lagrangian multipliers x̃m, ỹ, z̃ and q̃ can be updated via the following formulas:

x̃n+1
m = x̃nm + (Dψn+1Dmu

n+1 − xn+1
m ), m = 1, 2, (20)
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ỹn+1 = ỹn + (Dψn+1 − yn+1), (21)

z̃n+1 = z̃n + (Dwn+1 − zn+1), (22)

q̃n+1 = q̃n + (ψn+1 − qn+1). (23)

The detailed process can be referred to [25,51,52]. Moreover, the s-subproblem (12) is a Lasso type of problem which
can be directly solved [41,53]. Below we elaborate on how to solve these four subproblems about (9), (10), (13) and
(14). Here we apply the fixed-point iteration method to solve the u-subproblem. ADMM is applied again to solve the
ψ-subproblem and the w-subproblem. For the convenience of description, the image is written in matrix form in order
to solve these subsequent subproblems. In what follows, we present the respective method in detail for solving the u-,
ψ-, w- and xm-subproblems. To impose boundary conditions, especially non-periodic ones, we resort to the PDE based
methods by deriving an Euler–Lagrange equation in matrix form corresponding to the specific minimization problem.

3.1. Fixed-point iteration method for solving u

Due to the convexity of the objective function with respect to u, the problem (9) admits a unique minimizer. By
considering an image as a BV function defined on a rectangular region Ω ⊂ R

2, we can get the following corresponding
Euler–Lagrange equation with the Neumann boundary condition:

⎧

⎨

⎩

− ρ1div
(

(1 − ψ)2∇u
)

+ ρ1div
(

(1 − ψ)x̂
)

+ ν(u − I) = 0, in Ω,

∂u

∂n

⏐

⏐

⏐

∂Ω
= 0, on Ω,

(24)

where x̂ = (x1 − x̃1, x2 − x̃2) = (x̂1, x̂2) and n is the unit outer normal vector to the boundary ∂Ω .
As a measure of edge strength, the function ψ takes small values in the homogeneous region, i.e., 1 − ψ ≈ 1. Hence,

inspired by the ideas in [14,54], we use a fixed-point iteration method [39] based on the relaxation technique to solve the
above elliptic equation. First we discretize the rectangular domain Ω by generating a uniform grid over Ω . By the finite
difference scheme, we get the following discrete approximation of (24):

νui,j = ρ1
[

(1 − ψ)2i,j+1(ui,j+1 − ui,j) + (1 − ψ)2i,j−1(ui,j−1 − ui,j)

+ (1 − ψ)2i−1,j(ui−1,j − ui,j) + (1 − ψ)2i+1,j(ui+1,j − ui,j)
]

− ρ1
[

(1 − ψ)i,j(x̂1)i,j − (1 − ψ)i−1,j(x̂1)i−1,j

+ (1 − ψ)i,j(x̂2)i,j − (1 − ψ)i,j−1(x̂2)i,j−1

]

+ νIi,j, (25)

where ui,j ≡ u(i, j) is the approximate solution of (24) at the (i, j)th grid point. After applying the Gauss–Seidel method
to the system of equations (25), we get

(

ρ1(CE + CW + CN + CS) + ν
)

uk+1
i,j = ρ1C

′ − ρ1F̂ + νIi,j, (26)

where

CE = (1 − ψk)2i,j+1, CW = (1 − ψk)2i,j−1,

CN = (1 − ψk)2i−1,j, CS = (1 − ψk)2i+1,j,

C ′ = CEu
k
i,j+1 + CWuk+1

i,j−1 + CNu
k+1
i−1,j + CSu

k
i+1,j,

F̂ = [(1 − ψk)i,j(x̂
k
1)i,j − (1 − ψk)i−1,j(x̂

k
1)i−1,j

+ (1 − ψk)i,j(x̂
k
2)i,j − (1 − ψk)i,j−1(x̂

k
2)i,j−1].

To speed up the iteration (26), we can use the relaxation technique. Let

uk+1
i,j = uk

i,j − ω1r
k+1
i,j , (27)

where ω1 > 0 is the relaxation factor, and rk+1
i,j denotes the residue obtained by subtracting the right-hand side from the

left-hand side in (26), which approaches zero in the relaxed scheme. Combining with (27), we get the following updating
scheme:

uk+1
i,j =

uk
i,j + ω1(νIi,j + ρ1C

′ − ρ1F̂ )

1 + ω1[ρ1(CE + CW + CN + CS) + ν]
. (28)

3.2. ADMM algorithm for solving ψ

The minimization problem (10) is a typical variational model which uses the total variation as the regularization term
and the L2 fidelity term. Now we denote y = (y1, y2) and ỹ = (ỹ1, ỹ2). Then we can get the following equivalent iterative
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scheme

(ψn+1, yn+1
1 , yn+1

2 )

= argmin
ψ,y1,y2

ρ1

2

2
∑

m=1



DψDmu − xm + x̃m




2

2
+
ρ2

2



D1ψ − y1 + ỹn1





2

2

+
ρ2

2



D2ψ − y2 + ỹn2





2

2
+
ρ4

2



ψ − q + q̃




2

2
+
γ

2
∥As + w − ψ∥2

2 . (29)

and

ỹn+1
1 = ỹn1 + (D1ψ

n+1 − yn+1
1 ), (30)

ỹn+1
2 = ỹn2 + (D2ψ

n+1 − yn+1
2 ). (31)

If we fix y1 and y2, the discrete Euler–Lagrange equation of (29) for ψ can be written as

ρ1

2
∑

m=1

(Dmu)
∗(Dmu)ψ − ρ1

2
∑

m=1

(Dmu)
∗(Dmu) + ρ1

2
∑

m=1

(Dmu)
∗(xm − x̃m)

− ρ2△ψ + ρ4(ψ − q + q̃) − ρ2D
∗
1(y1 − ỹn1) − ρ2D

∗
2(y2 − ỹn2) − γ (As + w − ψ) = 0.

(32)

Following the same idea as the u-subproblem, we can apply the relaxation technique and get the following updating

scheme for ψ:

ψk+1
i,j =

ψk
i,j + ω2

[

F k
i,j + ρ2(ψ

k
i+1,j + ψk+1

i−1,j + ψk+1
i,j−1 + ψk

i,j+1)
]

1 + ω2

⎡

⎣ρ1

(

2
∑

m=1

(Dmu)
∗(Dmu)

)k+1

i,j

+ 4ρ2 + ρ4 + γ

⎤

⎦

, (33)

where ω2 > 0 is the relaxation factor and

F : = ρ1

2
∑

m=1

(Dmu)
∗(Dmu) + ρ4(q − q̃) + ρ2D

∗
1(y1 − ỹn1) + ρ2D

∗
2(y2 − ỹn2)

+ γ (As + w) − ρ1

2
∑

m=1

(Dmu)
∗(xm − x̃m). (34)

Similar to [48], to further enforce ψ ∈ [0, 1], we define the truncation function

Tr(ψ) =

{

1 , ψ > 1;
ψ , 0 ≤ ψ ≤ 1;
0 , ψ < 0,

(35)

which satisfies that ψ ∈ [0, 1].

3.3. ADMM algorithm for solving w

Similar to the ψ-subproblem, we can apply ADMM to get the solution w. We let z = (z1, z2) and z̃ = (z̃1, z̃2) and

use the same parameters ρ3, γ as before. Here we skip the derivation but show the Euler–Lagrange equation for w as

follows:

− ρ3∆w − ρ3D
∗
1(z1 − z̃n1 ) − ρ3D

∗
2(z2 − z̃n2 ) + γ (As + w − ψ) = 0, (36)

Thus, the solution w of (36) is given by

wk+1
i,j =

F̃ k
i,j + ρ3(w

k
i+1,j + wk+1

i−1,j + wk+1
i,j−1 + wk

i,j+1)

4ρ3 + γ
, (37)

where

F̃ := ρ3D
∗
1(z1 − z̃n1 ) + ρ3D

∗
2(z2 − z̃n2 ) − γ (As − ψ). (38)

Notice that there is no need to relax the w-subproblem, since the coefficient matrix of the linear system is positive

definite.
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3.4. Fixed-point iteration method for solving xm

Following the same idea as the u-subproblem, we can get the following Euler–Lagrange equation with respect to x1
and x2:

2µxm − ρ1
[

(1 − ψ)Dmu − xm + x̃m
]

= 0, m = 1, 2. (39)

Then we have the following updating scheme for xm with m = 1, 2:

(xm)
k+1
i,j =

ρ1
[

(1 − ψk+1
i,j )(Dmu)

k+1
i,j + (x̃m)

k
i,j

]

2µ+ ρ1
. (40)

In summary, the proposed algorithm to solve the minimization problem (8) is described in the Algorithm 1.

Algorithm 1 Image edge detection with automatic prior shape selection

Inputs: reference image u0, parameters µ, ν, τ , β , α, γ , ρ1, ρ2, ρ3, and ρ4.
Initialization: set ψ0 = 0, s0 = 0, w0 = 0, y01 = y02 = ỹ01 = ỹ02 = 0, x̃m = 0, xm = 0, q̃0 = 0,
For n = 0, 1, . . . ,

(a) Compute un+1 by solving (28);
(b) Compute ψn+1 by solving (33), then set ψn+1 = Tr(ψn+1);
(c) Compute wn+1 by solving (37);
(d) Compute sn+1 by solving the Lasso problem;
(e) Compute yn+1 by the shrinkage formula (18);
(f) Update ỹn+1 by (21);
(g) Compute zn+1 by the shrinkage formula (19);
(h) Update z̃n+1 by (22);
(i) Compute qn+1 by the shrinkage formula (17);
(j) Update q̃n+1 by (23);
(k) Compute xn+1

m by solving (40);
(l) Update x̃n+1

m by (20).

Exit when the stopping criteria are met.

4. Convergence analysis

In this section, we discuss the convergence of the proposed Algorithm 1. Since the entire algorithm has ‘‘inner’’ and
‘‘outer’’ iterations, we first prove the convergence of the generated sequence to the solution of each subproblem. Then
we show the convergence of the proposed algorithm to the minimizer of the problem (5). Note that the convergence
rate of the Lasso problem has been discussed in [55]. Therefore, we can focus on the u-subproblem, ψ-subproblem and
w-subproblem and show the convergence of each iterative scheme. The detailed proofs can be found in Appendix A.

Theorem 1. The sequence {uk}k≥0 (resp. {ψk}k≥0 or {wk}k≥0) generated by the inner iterative scheme (28) (resp. (33) or (37))
converges to the solution u∗ (resp. ψ∗ or w∗) of the problem (9) (resp. (10) or (13)).

Following the argument for the convergence analysis in [49,50], we can show the convergence of the full ADMM-based
algorithm. Notice that we can derive the first order optimality condition of (29) for the variables u, ψ, y, respectively:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1D
∗((1 − ψ∗)2Dun+1) + ũn+1 = 0,

− ρ2△ψ
n+1+ρ1

2
∑

m=1

(Dmu
∗)∗(Dmu

∗)(ψn+1 − 1)+ψ̃n+1−ρ2D
∗(yn−ỹn) = 0,

pn+1 + ρ2(y
n+1 − Dψn+1 − ỹn) = 0,

ỹn+1 = ỹn + (Dψn+1 − yn+1).

(41)

where

ũn+1 = −ρ1(1 − ψ∗)

2
∑

m=1

D∗
m(x

∗
m − x̃∗

m) + ∂(
ν

2
∥un+1 − I∥

2

2);

ψ̃n+1 = ρ1

2
∑

m=1

(Dmu
∗)∗(x∗

m − x̃∗
m) + ∂(

ρ4

2
∥ψn+1 − q∗ + q̃∗∥

2

2 +
γ

2
∥ As∗ + ω∗ − ψn+1 ∥2

2);

pn+1 ∈ ∂|yn+1|.
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Fig. 1. The sample shapes in the dictionary A.

Theorem 2. Let (u∗, ψ∗) be the pair of minimizers of the subproblems (9)–(10). Given ω1, ω2 > 0 in (28) and (33), we have

lim
n→+∞

S(ψn) = S(ψ∗) , lim
n→+∞

ℜ(un) = ℜ(u∗), (42)

where S and ℜ are the objective functions of the u- and ψ-subproblems, respectively. Moreover, if the pair of minimizers

(u∗, ψ∗) is unique, we get

lim
n→∞

∥ψn − ψ∗∥ = 0, lim
n→∞

∥un − u∗∥ = 0. (43)

We provide the detailed proof in Appendix B.

5. Numerical experiments

In this section, we provide a variety of numerical results to show the performance of the proposed model and algorithm.
All experiments are implemented using Matlab (R2016a) on a laptop with Intel(R) Core(TM) i5-8250U @1.60 GHz, 8.0 GB
RAM, Windows 10.

Edge detection can be considered as a process of learning fitting shapes from the prior shapes dictionary, which also
corresponds to the iterative process of solving the minimization problem (5). The images containing prior shapes in the
given dictionary are called the training images. Then the images that we want to detect edges are called the test images. A
test image usually contains one or multiple test shapes. For example, Fig. 2(a) has one test shape and Fig. 4(h) has three
test shapes. Every training image contains one prior shape (see Fig. 1). In order to describe the difference between the
test image (resp. test shape) and the training image (resp. prior shape), here we consider three basic types of geometric
transformations: translation, scaling and rotation. Especially, the scaling cases include two types. For the sake of discussion
simplicity, we consider the following four cases for various test and training images:

S1. The size of the test image is the same as that of the training images. For example, the size of Fig. 1(a) is the same
as that of Fig. 2(a).

S2. The size of the test shape in the test image is the same as that of the prior shapes in the training images. For
example, the size of the star in Fig. 2(a) is the same as that of the star in Fig. 1(a).

T. The center of the shape in the test image lies in the same position as that of the prior shape in the training images.
For example, the center of the star in Fig. 2(a) matches that of the star in Fig. 1(a).

R. The shape does not rotate an angle comparing with the prior shape in the training images (see the star in Fig. 4(a)
and the star in Fig. 1(a)).

In the following examples, we set the stopping criteria by using the iteration numbers Iin, Iout and the relative error


un+1 − un




1


un+1




1

≤ η, (44)

where η > 0, Iin is the number of inner iterations, Iout is the number of outer iterations. The iteration process is terminated
when the prior shapes specified have been learned well. To show the robustness of our algorithm, we set η = 10−4, µ = 1,
ν = 10−2, τ = 10−1, β = 102, α = 5 × 10−5, γ = 102, ω1 = 5 × 10−4, ω2 = 1, ρ1 = 102, ρ2 = 1, ρ3 = 102, ρ4 = 102,
Iin = 10, Iout = 11 in the all experiments. Since there are only few shapes in a test image, the dictionary A can be reduced
in this experiment as long as the edge of the target object is detected. Our dictionary consists of 26 training images with
different types of shapes, such as star and tortoise. All of the training images have the same size (356 × 320). Some of
them are shown in Fig. 1.

5.1. Experiment 1

To begin with, we consider the simplest case when the test image and the training images satisfy S1, S2, T, R.
As mentioned above, the proposed model (5) is closely related to the APSS [36]. So we first test two images from [36]

to compare the results by our method and APSS. One image has a star partially occluded by the background rectangles,
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Fig. 2. Column 1: the input images; Column 2: the output edges strength function v by APSS (3); Column 3: the extracted edges being post-processed

with APSS (3); Column 4: our detect edges 1 − ψ for the convenience of performance comparison.

Fig. 3. Row 1: the contaminated images. Row 2: the detected edges ψ .

and the other image has a star with missing parts and contaminated by the Gaussian noise with zero mean and standard

deviation δ = 0.8.

In Fig. 2, one can see that our method and APSS can supplement the insufficiency of input data by learning a shape

from the dictionary. However, our method yields results different from APSS in several aspects. Firstly, our result has

clearer edges especially for the corners. Secondly, the edges of APSS need to be post-processed by hard thresholding but

the proposed method can directly get thin edges without post-processing. To compare with APSS, we also visualize the

detected edges by setting the image intensities as 1−ψ in Fig. 2. Note that ψ is one on edges and zero otherwise in (5).

5.2. Experiment 2

In the second experiment, the test images and the training images still satisfy S1, S2, T, but fail to meet R. To show the

robustness of our model, the test images are created by adding different kinds of degradations to the original image (see

Fig. 3). Fig. 3(a) is a star degraded by many lines. The center of star in Fig. 3(b) is partly covered by a black area. Fig. 3(c)

is surrounded and overlapped by some little stars which are not in the given dictionary. Fig. 3(d) is a tortoise, which is

contaminated by some stars.
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Fig. 4. Row 1: the contaminated images. Row 2: the detected edges ψ .

In Fig. 3(e), we can clearly find the missing part of the image in Fig. 3(a). The contaminated part (see Fig. 3(f)) is visible.
For the images with complicated background (see Figs. 3(c) and 3(d)), our model can also extract the desired edges (see
Figs. 3(g) and 3(h)).

5.3. Experiment 3

In practice, a test image may not have the same size as the training images in the dictionary. Therefore, we consider
the test image and the training images do not meet S2-T (see Figs. 4(a), 4(c)). In Fig. 4(a), the test image is of 712 × 640
which is larger than the training images in the given dictionary, where each training image is of 356 × 320. Fig. 4(b) is a
star with rotation and contaminated by many lines. In Fig. 4(c), one angle is missing and the star is translated and rotated.
Then we also test a multi-shape image with a complicated background, where the two different stars and one tortoise are
included in the dictionary (see Fig. 4(d)). It implies that multi-shape image edge detection can be done by solely solving
a minimization problem if the detected shapes are stored in the given dictionary in advance.

Fig. 4 shows that our model can get clear and complete edges from the training images with translation, scaling and
rotation. Moreover, the edge of each shape can be detected with high accuracy in a multi-shape image as illustrated in
Fig. 4(d).

5.4. Experiment 4

Fig. 5 shows the results of the four test images degraded by different noises. Figs. 5(a) and 5(b) are both contaminated
by the Gaussian noise with zero mean and standard deviation δ = 0.1. In Fig. 5(a), the test image is translated and contains
a large region of missing intensities. Fig. 5(b) is contaminated by many lines without translation. Fig. 5(c) is degraded by
the mixed noises which combines the Salt & pepper noise with density 0.3 and the Gaussian noise with zero mean and
standard deviation δ = 0.3. In Fig. 5(d), the test image containing three prior shapes is contaminated by the Salt & pepper
noise with density 0.02 and the Gaussian noise with zero mean and standard deviation δ = 0.01.

From Fig. 5, we can clearly observe that the edges are detected accurately with all noise suppressed. It shows that our
model can deal with different types of noise, even excessive or mixed noises (see Fig. 5(c)). Since there is serious noise,
some parameters are modified as µ = 90, ν = 10−3, τ = 0.19, α = 10−6, γ = 80, ω1 = 6 × 10−4, β = 104, ρ2 = 10−2

and ρ3 = 103, and the others are the same as above.

5.5. Experiment 5

Fig. 7 shows the edge detection results of gray images with more gray levels. Fig. 7(a) is the original ‘mushroom’
image of size 356 × 320 that is downloaded from the Berkeley image segmentation dataset (see the website: http:
//imageprocessingplace.com/root_files_ V3/image_ databases.htm). The intensities of the ‘mushroom’ image range from 0
to 255. The top left of the ‘mushroom’ images in Figs. 7(c) and 7(d) are partly covered by a gray area. Figs. 7(b) and 7(d)
are polluted by the mixed noises which are Salt & Pepper noise with density 0.02 and Gaussian noise with zero mean
and standard deviation δ = 0.08. From the detected edges (see the second row in Fig. 7), one can clearly observe that all
noises have been removed and the edges are detected significantly and completely.

To evaluate the performance of the proposed algorithm, we also show the standard edge images from the dataset in
Fig. 6. We can see that more detailed edges are detected.

http://imageprocessingplace.com
http://imageprocessingplace.com
http://imageprocessingplace.com
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Fig. 5. Row 1: the contaminated images. Row 2: the detected edges ψ .

Fig. 6. The detected edges ψ in Berkeley image segmentation dataset.

Fig. 7. Row 1: (a) the original image; (b) noisy image; (c) partly covered image; (d) partly covered image polluted by mixed noises. Row 2: the

detected edges ψ .

5.6. Experiment 6

In the sixth experiment, the test images are the binary image (Fig. 8(a)) and the real ‘bird’ image (Fig. 8(e)) of size
356 × 320 that is also downloaded from the Berkeley image segmentation dataset. The intensities of the ‘bird’ image
range from 0 to 255. Figs. 8(b) and 8(f) are the detected edges by our model when the dictionary contains the prior shape
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Fig. 8. Column 1: the original images; Column 2: detected edges by the proposed method with prior shape of the target in the library; Column 3:

detected edges by the proposed method without prior shape of the target in the library; Column 4: detected edges by the proposed method without

any prior in the library.

Table 1

Test times for different images.

Image Fig. 3(b) Fig. 4(c) Fig. 5(h) Fig. 6(a) Fig. 6(b) Fig. 6(c) Fig. 6(d) Fig. 7(a) Fig. 7(h)

Time 20.65 s 19.15 s 13.89 s 14.30 s 20.76 s 20.49 s 18.98 s 16.27 s 16.30 s

of the target image. Figs. 8(c) and 8(g) are the detected edges when the dictionary does not contain any prior shape, that

means the dictionary is empty. Figs. 8(d) and 8(h) show the detected edges when the dictionary does not contain the

prior shape of the target image. It means that there is no shape in the dictionary to match the image, then s should be

0. Our algorithm is still able to detect all of the edges of the original image, not limited to the edge of the target (see the

last columns of Fig. 8). Shapes that are not included in the dictionary could be removed as noise.

For the above six experiments, we compare computational times in Table 1. On the one hand, one can observe that it

takes a little longer when we dealt with large coverage areas, rotations and mixed noises such as shown in Figs. 3(f), 4(g),

7(f) and 7(h). On the other hand, the whole experimental process is done using Matlab(R2016a) on a laptop with Intel(R)

Core(TM) i5-8250U @1.60 GHz, 8.0 GB RAM, Windows 10. Due to the separable subproblems of the proposed algorithm,

the computational time can be significantly reduced by using the parallel computing capability of GPUs, which is part of

our future work.

Finally, we show that our approach is robust to the selection of parameters and tested a large amount of parameters.

A basic selection guide for these parameters can be found in [25]. Larger µ or smaller ν, i.e., more weights on the

regularization term, results in a smoother restored image and fewer edges in ψ , so we keep the optimal value of µ/ν

in all experiments. The parameter τ is set to be less than 0.5 especially for noisy images. Larger β produces smoother

restored image, so we typically set β to be larger than 10. If β is too small, then some edges may not be detected well

such as the missing left-upper angle in Fig. 5(a). The smaller α implies sharper edges, so α is set to be less than 5× 10−4.

The relaxation parameters ω1, ω2 usually are set to be smaller than 1. To sum up, various experiments have shown that

the proposed approach is robust and can effectively generate edges with satisfactory visual qualities.

6. Conclusions

In this paper, we propose a novel variational model to detect edges in an image based on the prior shapes that are

stored in a shape dictionary. Due to the complexity of the proposed model, we derive an efficient numerical algorithm

based on ADMM. Each subproblem can either be converted to solving a Euler–Lagrange equation or be solved by the

shrinkage operator. The detailed convergence analysis of the proposed algorithm is provided. A variety of numerical

experiments show that the proposed method is able to extract edges from a given image with the guidance of prior

shapes regardless of noise types and geometric transformations. It also performs well for the edge detection of an image

with multiple objects. Furthermore, this framework can be extended for object recognition and various related real-world

applications in the future.
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Appendix A. Proof of Theorem 1

The proof is motivated by the idea in [50]. Here only the convergence analysis for the u-subproblem is provided, as

the other two subproblems can be discussed similarly. We begin the discussion by rewriting the iterative scheme (28) as

[1 + ω1 (ρ1(CE + CW + CN + CS) + ν)] uk+1
i,j − ρ1ω1CWuk+1

i,j−1 − ρ1ω1CNu
k+1
i−1,j

= uk
i,j + ρ1ω1CSu

k
i+1,j + ρ1ω1CEu

k
i,j+1 + (ρ1

2
∑

m=1

DψD
∗
m(xm − x̃m))

k
i,j + νω1Ii,j,

(45)

where

CE = (1 − ψk)2i,j+1, CW = (1 − ψk)2i,j−1,

CN = (1 − ψk)2i−1,j, CS = (1 − ψk)2i+1,j.

Thus it can be rewritten in a matrix form

(L + D́ + Ú)Uk+1 = (E + D̀ + Ù)Uk + G + Î. (46)

Here E is the identity matrix, Uk is obtained by stacking entries of uk column-wise. Similarly, the vectors G, Î are also

obtained by stacking the corresponding matrix entries. The matrices Ú , Ù , D́ and D̀ are lower or upper triangular matrices

with the respective nonzero off-diagonal entries [25]. The matrix L is a diagonal matrix with diagonal entries

Li,j = 1 + ω1ρ1(CE + CW + CN + CS) + ω1ν. (47)

Suppose that λ́ is an eigenvalue of the iteration matrix

A = (L + D́ + Ú)−1(E + D̀ + Ù) = (ai,j). (48)

According to the Hadamard theorem, there exists one integer k such that

|akkλ́| ≤ |λ́|

k−1
∑

j=1

|akj| +

n
∑

j=k+1

|akj|. (49)

Thus, we have λ́ < 1.

That implies lim
k→∞

uk = u∗. The convergence discussions about the sequences {ψk} and {wk} follow the same argument

as above.

Appendix B. Proof of Theorem 2

Let ψ∗ be the exact solution of the problem (10). Considering the first order optimality condition, ψ∗ satisfies

ρ1

2
∑

m=1

(

(Dmu
∗)∗(Dmu

∗)
)

(ψ∗ − 1) + ∂

(ρ2

2
∥Dψ∗ − y + ỹ∥2

2

)

+ ψ̃∗ = 0, (50)

for the fixed u∗ and

ψ̃∗ = ρ1

2
∑

m=1

(Dmu
∗)∗(x∗

m − x̃∗
m) + ∂

(ρ4

2
∥ψ∗ − q + q̃∥2

2 +
γ

2
∥As∗ + ω∗ − ψ∗∥2

2

)

. (51)

Similarly, let u∗ be an arbitrary exact solution of (9). By the first order optimality condition, u∗ satisfies

ρ1D
∗((ψ∗ − 1)2Du) + ũ∗ = 0, (52)

with the fixed ψ∗ and

ũ∗ = −ρ1(1 − ψ∗)

2
∑

i=1

D∗
m(x

∗
m − x̃∗

m) + ∂

(ν

2
∥u∗ − I∥2

2

)

. (53)
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Therefore, we have that (u∗, ψ∗, y∗, p∗) must satisfy
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1D
∗
(

(1 − ψ∗)2Du∗
)

+ ũ∗ = 0,

− ρ2△ψ
∗ + ρ1

(

2
∑

m=1

(ψ∗ − 1)(Dmu
∗)∗(Dmu

∗)

)

+ ψ̃∗ − ρ2D
∗(y∗ − ỹ∗) = 0,

p∗ + ρ2(y
∗ − Dψ∗ − ỹ∗) = 0,

ỹ∗ = ỹ∗ + (Dψ∗ − y∗) .

(54)

The above Eqs. (54) show that (u∗, ψ∗, y∗, p∗) is a fixed point of (41). Denote the errors by

un
e = un − u∗, ψn

e = ψn − ψ∗,

ũn
e = ũn − ũ∗, ψ̃n

e = ψ̃n − ψ̃∗,

pn
e = pn − p∗, ỹne = ỹn − ỹ∗,

yne = yn − y∗.

Subtracting the second equation of (41) from the second equation of (54), we obtain

−ρ2△ψ
n+1
e +ρ1

2
∑

m=1

(Dmu
∗)∗(Dmu

∗)
(

(ψn+1 − 1) − (ψ∗ − 1)
)

+ψ̃n+1
e −ρ2D

∗(yne −ỹne ) = 0. (55)

By taking the inner product of both sides of the above equation with ψn+1
e , we get

ρ2∥Dψ
n+1
e ∥2 + ρ1∥ψ

n+1
e ∥2

2
∑

m=1

(Dmu
∗)∗(Dmu

∗) + ⟨ψ̃n+1
e , ψn+1

e ⟩

− ⟨ρ2D
∗(yne − ỹne ), ψ

n+1
e ⟩ = 0.

(56)

Applying the same technique to the third equation of (41) and the third equation of (54), we obtain

⟨pn
e , y

n+1
e ⟩ + ρ2∥y

n+1
e ∥2 − ρ2⟨y

n+1
e ,Dψn+1

e + ỹne ⟩ = 0. (57)

Summing up (56) and (57), we get

ρ2∥Dψ
n+1
e ∥2 + ρ1∥ψ

n+1
e ∥2

2
∑

m=1

(Dmu
∗)∗(Dmu

∗) + ⟨ψ̃n+1
e , ψn+1

e ⟩ + ⟨pn
e , yn+1

e ⟩

+ ρ2∥y
n+1
e ∥2 − ρ2⟨Dψ

n+1
e , yn+1

e + yne ⟩ + ρ2⟨Dψ
n+1
e − yn+1

e , ỹne ⟩ = 0. (58)

Furthermore, by subtracting the fourth equation of (41) from the fourth equation of (54), we obtain

ỹn+1
e = ỹne + Dψn+1

e − yn+1
e , (59)

which leads to

∥ỹn+1
e ∥2 = ∥ỹne∥

2 + ∥Dψn+1
e − yn+1

e ∥2 + 2⟨ỹne ,Dψ
n+1
e − yn+1

e ⟩. (60)

That is,

⟨ỹne ,Dψ
n+1
e − yn+1

e ⟩ =
1

2
(∥ỹn+1

e ∥2 − ∥ỹne∥
2) −

1

2
∥Dψn+1

e − yn+1
e ∥2. (61)

Substituting (61) into (58), we have

ρ2

2
(∥ỹne∥

2 − ∥ỹn+1
e ∥2)

= ρ2∥Dψ
n+1
e ∥2 + ρ1∥ψ

n+1
e ∥2

2
∑

m=1

(Dmu
∗)∗(Dmu

∗) + ⟨ψ̃n+1
e , ψn+1

e ⟩

+⟨pn
e , y

n+1
e ⟩ + ρ2∥y

n+1
e ∥2 − ⟨ρ2Dψ

n+1
e , yn+1

e + yne ⟩ −
ρ2

2
∥Dψn+1

e − yn+1
e ∥2. (62)

Then, by summing up the above inequalities from 0 to N , we obtain

ρ2

2
(∥ỹ0e∥

2 − ∥ỹN+1
e ∥2)

= ρ1

N
∑

n=0

2
∑

m=1

(Dmu
∗)∗(Dmu

∗)∥ψn+1
e ∥2 +

N
∑

n=0

(⟨ψ̃n+1
e , ψn+1

e ⟩
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+⟨pn
e , yn+1

e ⟩) +
ρ2

2

(

N
∑

n=0

∥Dψn+1
e − yne∥

2 + ∥yN+1
e ∥2

)

−
ρ2

2
∥y0e∥

2. (63)

Noting that all terms involved in (63) are nonnegative, and the facts 0 ≤ ψ∗ ≤ 1, |·| and ∥ · ∥2 are convex, we derive that

ρ2

2
(∥y0e∥

2 + ∥ỹ0e∥
2) ≥ ρ1

N
∑

n=0

2
∑

m=1

(Dmu
∗)∗(Dmu

∗)∥ψn+1
e ∥2 +

N
∑

n=0

(⟨ψ̃n+1
e , ψn+1

e ⟩

+ ⟨pn
e , yn+1

e ⟩) + ρ2

(

1

2

N
∑

n=0

∥Dψn+1
e − yne∥

2 +
1

2
∥yN+1

e ∥2

)

. (64)

Firstly, (64) leads to

N
∑

n=0

2
∑

m=1

(Dmu
∗)∗(Dmu

∗)∥ψn+1
e ∥2 < ∞, (65)

which, together with Theorem 1, implies

lim
n→∞

2
∑

m=1

(Dmu
n)∗(Dmu

n)∥ψn − ψ∗∥2 = 0. (66)

Denote the first term in (5) by

F(ψ) = µ∥|Dun| ⊙ (ψ − 1)∥2
2. (67)

By the nonnegativity of the Bregman distance, we have lim
n→∞

B
p∗
ψ

F
(ψn, ψ∗) = 0, i.e.,

lim
n→∞

(

F(ψn) − F(ψ∗) − ⟨|Dun|
2
⊙ (ψ∗ − 1), ψn − ψ∗⟩

)

= 0. (68)

Secondly, (64) leads to

N
∑

n=0

⟨pn
e , yn+1

e ⟩ < +∞, so lim
n→∞

⟨pn
e , yn+1

e ⟩ = 0. (69)

Associating it with the nonnegativity of the Bregman distance (see [49,56]), we obtain

lim
n→∞

(|yn| − |y∗| − ⟨yn − y∗, p∗⟩) = 0. (70)

Thirdly, (64) leads also to

N
∑

n=0

∥Dψn+1
e − yne∥

2 < ∞, which means

lim
n→∞

∥Dψn+1
e − yne∥

2 = 0. (71)

By Dψ∗ = y∗, we have

lim
n→∞

∥Dψn+1 − yn∥ = 0. (72)

Moreover, by the continuous property of |·|, we obtain

lim
n→∞

(

|Dψn| − |Dψ∗| − ⟨Dψn − Dψ∗, p∗⟩
)

= 0. (73)

Similarly, we have

lim
n→∞

(

Hψ (ψ
n) − Hψ (ψ

∗) − ⟨ψn − ψ∗, ψ̃∗⟩
)

= 0. (74)

Combining (68), (73), (74) and (50), we have

lim
n→∞

(

F(ψn) + |Dψn| + Hψ (ψ
n)
)

= F(ψ∗) + |Dψ∗| + Hψ (ψ
∗). (75)

This gives the first equation in (42). In the similar way as above, by denoting the first term in (9) be G(u), we have

lim
n→∞

(

G(un) + Hu(u
n)
)

= G(u∗) + Hu(u
∗), (76)

where we have used the formula (52). This gives the second equation in (42).
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Next, we prove the second equation in (43) by assuming that (9) has a unique solution. We prove that by contradiction.
Assume that the second equation in (43) does not hold, which implies that there exists a subsequence uni such that
∥uni − u∗∥ > ϵ for some ϵ > 0 and for all i. Let c = tu∗ + (1 − t)uni with t ∈ (0, 1). By the convexity of ℜ and u∗ is the
unique minimizer of ℜ(u), we have

ℜ(uni ) > tR(u∗) + (1 − t)ℜ(uni ) ≥ ℜ(c) ≥ min{R(u) : ∥u − u∗∥ = ϵ}. (77)

Denote

u = arg min
u

{ℜ(u) : ∥u − u∗∥ = ϵ}. (78)

By applying the second equation in (43), we have

ℜ(u∗) = lim
i→∞

ℜ(uni ) ≥ ℜ(u) > ℜ(u∗) , (79)

which is a contradiction.
The first equation in (43) follows the same arguments as above.
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