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Abstract—The multiple measurement vector (MMV)
problem with jointly sparse signals has been of recent
interest across many fields and can be solved via `2,1
minimization. In such applications, prior information is
typically available and utilizing weights to incorporate
the prior information has only been empirically shown
to be advantageous. In this work, we prove theoretical
guarantees for a weighted `2,1 minimization approach to
solving the MMV problem where the underlying signals
admit a jointly sparse structure. Our theoretical findings
are complemented with empirical results on simulated and
real world video data.

I. INTRODUCTION

As the amount of available data grows, it becomes

demanding to design fast and scalable approaches to pro-

cessing this data. In particular, the control and analysis

of time-varying large scale data has recently attracted a

lot of attention in applications such as wireless commu-

nication [1, 2], medical imaging hyperspectral diffuse

optical tomography (hyDOT) [3, 4], and video signal

recovery [5, 6]. In such applications, the goal is to

recover a sequence of highly correlated signals {xxxt}T
t=1

from measurements of the form

yyyt = AAAxxxt + zzzt , (I.1)

where the unknown signals are assumed to be sparse,

i.e., few non-zero entries. Here, we use the measurement

matrix AAA ∈ R
M×N (M � N) and linear measurements

yyyt ∈ R
M without precise information about the additive

noise zzzt ∈ R
M .

Problem (I.1) can be solved using multiple mea-

surement vector (MMV) approaches, which can recover
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all signals {xxxt}T
t=1 simultaneously. Since MMV-based

approaches can leverage sequential correlation informa-

tion, there has been an increasing interest in developing

algorithms that can solve MMV problems [7, 8, 9]. In

addition to MMVs, prior information on the correlation

amongst signals can also be used to improve signal

recovery. In this work, we focus on the MMV model

where the underlying signals admit a jointly sparse

structure, i.e., the underlying signals xxxt share the same

sparse support, and prior information on the joint support

is available.

There are a lot of applications in which jointly

sparse signals and prior information are evident, e.g.,

hyperspectral diffuse optical tomography (hyDOT) [3, 4]

and video recovery [5, 6]. In hyDOT, each of the

measurement vectors corresponds to a specific wave-

length at which a fixed tissue sample is imaged. In this

application, non-zero entries in each xxxt correspond to

locations of cancerous cells. The jointly sparse structure

is attributed to the fact that cancerous cells consis-

tently have larger absorption coefficients across different

wavelengths. Practitioners with field expertise may have

general ideas on where cancerous cells can live and

where they cannot. This prior information can be useful

when trying to recover the location of cancerous cells,

i.e., the joint support. In the video recovery problem,

video frames have a small amount of variation between

consecutive frames, thus one could expect that the sup-

port of the frames stays relatively consistent, i.e., each

frame shares an approximately jointly sparse structure.

In video surveillance applications, there could be areas

of interest where activity is expected to occur. This

knowledge can act as prior information and be useful

in recovering video frames from measurements.

In this work, we provide recovery error bounds for the

approximation of jointly sparse vectors in the presence

of prior information using weighted `2,1 minimization. In

particular, we show that the average recovery error per

signal improves as more measurement vectors become

available and accurate prior information is provided.

While weighted `2,1 minimization for joint sparsity was

discussed in [7, 8], our work is the first to provide
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theoretical guarantees for signal recovery in this setting.

The remainder of this paper is organized as follows. In

Section II, we discuss necessary groundwork in the sin-

gle measurement vector (SMV) setting, i.e., when T = 1.

In Section III, we formulate our problem by introducing

the MMV model of interest and the related existing

results from [10]. In Section IV, we provide theoretical

guarantees for the weighted `2,1 minimization in the

presence of prior information. To verify our theoretical

findings, simulated data and real world video recovery

experiments are conducted in Section V. Finally, we

provide some concluding remarks and future directions

in Section VI.

II. PREVIOUS WORK

We refer to the problem consisting of a single signal as

the SMV problem. One of the most popular approaches

to recover a sparse signal xxx in the SMV framework is

to minimize the `1 norm of the signal subject to an

inequality constraint, i.e.,

min
xxx

‖xxx‖1 subject to ‖AAAxxx− yyy‖2 ≤ ε. (II.1)

The above `1 minimization has been widely studied

under a variety of settings and applications [11, 12, 13].

Note that the parameter ε is related to the noise level or,

assuming zzzt ∼ N (0,σ2I), the standard deviation σ of

the Gaussian noise. For other noise types, the constraints

can be modified accordingly.

For t = 1, . . .T , given measurements yyyt from (I.1), each

associated with an unknown signal xxxt , it is possible to

recover each xxxt one at a time using the `1 minimiza-

tion (II.1). However, this naive approach cannot take

advantage of correlation among signals at different times

and thereby loses reconstruction efficiency.

In addition, one can also use prior information from

previous signals to improve signal recovery at the next

time step with the SMV model. In particular, if signals

are slowly varying over time, the previous signal can be

a good proxy for the next signal. A common approach

for incorporating prior information on signals is to use

a weighting scheme to place emphasis on entries of

importance [14, 10]. Prior works have shown that when

accurate prior information is available, the solutions to

weighted optimization problems tend to outperform their

unweighted counterparts [10].

III. PROBLEM FORMULATION

A. Joint Sparse MMV Signal Recovery

In the MMV framework, we aim to recover multiple

signals simultaneously rather than sequentially, given

measurements yyyt =AAAxxxt +zzzt for t = 1, ...,T . For notational

simplicity, vectors are column-wise concatenated to form

the matrices XXX ∈R
N×T , YYY ∈R

M×T , and ZZZ ∈R
M×T . We

denote rows, columns, and entries of a matrix MMM by

MMM(i,·), MMM(·, j), and MMM(i, j), respectively. The joint support

of XXX is the set S ⊂ {1, ...,N} of indices such that XXX (i,·)
contains at least one non-zero entry. We say that XXX is

K-row sparse if |S| = K. Additionally, the best K-row

sparse approximation of XXX is denoted as XXXK = XXX |S with

S = argmin|S|=K ‖XXX |S −XXX‖2
F , that is, the matrix XXX with

rows indexed by {1, ...,N} \ S are replaced with zeros.

We will use S0 to denote the row support of XXXK .

Given a weight vector www ∈ R
N , which can be ob-

tained from the prior information (see more details in

Section III-B), we can recover each column of XXX one at

a time with weighted `1 minimization [10] and we refer

to this recovery strategy as weighted SMV throughout. In

the case when there is no prior information, i.e., www is the

all ones vector, the weighted `1 minimization reduces to

`1 minimization, which is referred to as the unweighted

SMV algorithm in this work. A more elegant way to

recover the jointly sparse matrix XXX is to recover the

whole matrix at one time. As in some previous works

[7, 8], we also consider the following weighted `2,1

minimization

min
XXX

‖XXX‖2,1,www s.t. ‖YYY −AAAXXX‖F ≤ ε, (III.1)

for jointly sparse MMV signal recovery when some prior

information is provided. Here, the weighted `2,1 norm

is defined as ‖XXX‖2,1,www , ∑
N
i=1 wi‖XXX (i,·)‖2. We use the

weighted `2,1 norm in (III.1) because minimizing the `2,1

norm promotes row sparsity. We denote program (III.1)

as the weighted MMV algorithm and use unweighted

MMV to denote the case when we have no prior infor-

mation.

B. Weight Vector with Prior Information

Given some prior information in the form of an

estimated joint support, Ŝ ⊂ {1, ...,N}, we set the weight

vector according to

wi =

{
pi ∈ R+, if i ∈ Ŝ

1, else
, (III.2)

as in [10]. Here, weights can take any non-negative value

and are not restricted to be uniform over all entries in the

estimate of the joint support. For arbitrary weights in the

weighted `1 minimization, the authors of [10] show that

under certain RIP conditions, the approximation of xxx can

be bounded above by a combination of the measurement

error, K-sparse approximation error, and accuracy of the
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prior information. In this work, we extend their results to

the weighted `2,1 minimization for arbitrarily weighted

rows.

While the theoretical guarantees presented in this work

are for generic weights pi, the experimental section

considers three different weighting schemes: (1) a fixed

weight of pi = 0.1, (2) a weighting scheme based on

the accuracy of the prior information, i.e., pi = 1 −
|Ŝ∩S0|

K
[11], and (3) an `1-optimal weighting scheme

based on [15], where the computed weight is optimal

in the sense of the number of measurements needed for

exact signal recovery is minimized.

IV. THEORETICAL GUARANTEES

In this section, we present the theoretical performance

guarantees for the weighted `2,1 minimization (Theo-

rem 4.1). In particular, we show that, under mild con-

ditions, the approximation error between the estimated

signal X̂XX and the true signal XXX is upper bounded by terms

dependent on the best K-row sparse approximation of XXX

and the reliability of the prior information. The constants

C′
0 and C′

1 that appear in Theorem 4.1 are made explicit

in Remark 4.1. Remark 4.2 makes explicit the benefit of

using MMVs.

Theorem 4.1: Let XXXK denote the best K-row sparse ap-

proximation of XXX ∈R
N×T , and S0 denote the row support

of XXXK . Let S̃i ⊂{1, ...,N} for i= 1, ...,n where 1≤ n≤N

be arbitrary disjoint sets and denote S̃ =
⋃n

i=1 S̃i. Without

loss of generality, assume that the weights are ordered

so that 1 ≥ w1 ≥ w2 ≥ ...≥ wN ≥ 0 and let ω = ∑
N
i=1 wi.

For each i, define the relative size ρi and accuracy αi

as ρi =
|S̃i|
K

and αi =
|S̃i∩S0|
|S̃i|

. Furthermore, suppose that

there exists a constant a satisfying a > 1, a ∈ 1
K
Z and

∑
N
i=1 ρi(1−αi)≤ a, and that the measurement matrix AAA

has the RIP with

δaK +
a

κN

δ(a+1)K <
a

κ2
N

−1,

where

κN = wN +(1−w1)

√√√√1+
N

∑
i=1

(ρi −2αiρi)

+
N

∑
j=2


(w j−1 −w j)

√√√√1+
N

∑
i= j

ρi −2αiρi)


 .

Then, the minimizer X̂XX of the weighted `2,1 minimiza-
tion (III.1) obeys

‖XXX − X̂XX‖F ≤C′
0ε +C′

1K− 1
2 ω‖XXXK − X̂XX‖2,1

+C′
1K− 1

2

(
(1−ω)‖XXX

S̃c∩S̃c
0

‖2,1 −
N

∑
i=1

N

∑
j=1, j 6=i

w j‖X
S̃i∩Sc

0

‖2,1

)
,

where C′
0 and C′

1 are well-behaved constants that depend

on the measurement matrix AAA, the weights wi, and

the parameters ρi and αi. We use Sc to denote the

complement of a set S.

Remark 4.1: As in [10], the constants C′
0 and C′

1 are

explicitly given by

C′
0 =

2
(

1+ κN√
a

)

√
1−δ(a+1)K − κN√

a

√
1+δaK

, (IV.1)

and

C′
1 =

2a−
1
2

(√
1−δ(a+1)K +

√
1+δaK

)

√
1−δ(a+1)K − κN√

a

√
1+δaK

. (IV.2)

Remark 4.2: To compare the recovery bounds for

SMV and MMV frameworks, we note that:

1) For any matrix MMM ∈ R
N×T ,

‖MMM‖2,1 ≤
√

T
N

∑
i=1

max
t

MMM2
(i, j).

2) The tolerance on the Frobenious error in (III.1),

i.e., ε , grows on the order of
√

T .

It can be seen that the average recovery error per signal

(of T total signals) for the non-uniformly weighted

`2,1 minimization depends inversely on
√

T . Therefore,

the average recovery error per signal decreases as the

number of MMVs increase.

V. EXPERIMENTS

In the first experiment, we compare the recovery per-

formance of the weighted and unweighted `2,1 minimiza-

tion and sequentially recovering signals with weighted

and unweighted `1 minimization.1 In this experiment,

we set the dimension of the data XXX ∈ R
M×N to be

M = 20, N = 100, and set the row sparsity K = 10.

Entries of the noise matrix ZZZ are drawn i.i.d. from a

normal distribution with mean 0 and standard deviation

σ = 0.1 so that the parameter ε in (III.1) is set as ε = σ .

Each result is averaged over 50 trials. The relative error

is defined as
‖X̂−XXX‖F

‖XXX‖F
, where X̂ is the estimation of the

ground truth XXX . In Figure 1, we fix the number of signals

T = 10. The weights pi introduced in (III.2) are being

varied and we assume that perfect prior information is

known, i.e., Ŝ = S0, where Ŝ and S0 denote the given

approximate joint support and the true joint support,

respectively. In Figure 2, we use pi = 0.1, pi = 1− |Ŝ∩S0|
K

,

1We use the CVX software package [16] to solve all of the
minimization programs.
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Figure 1: Performance of solving jointly sparse MMV

problems using weighted and unweighted versions of

SMV and MMV algorithms with different weights.
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Figure 2: The performance of solving weighted `1 min-

imization and weighted `2,1 minimization (III.1) using

different weighting schemes. Scheme 1 uses pi = 0.1,

scheme 2 uses pi = 1− |Ŝ∩S0|
K

, and scheme 3 uses the

“optimal weight” introduced in Section III.

and an “optimal weight” from paper [15] as introduced in

Section III. In Figure 3, we set pi = 0.1 and assume that

perfect prior information is known. Then, we present the

relationship between the number of available signals T in

the MMV framework and the square root of the average

error per signal, i.e.,
‖AAAXXX−YYY‖F√

T
. As indicated in our theory,

the recovery error ‖AAAXXX −YYY‖F for our proposed weighted

MMV algorithm does scale with
√

T .

In the second experiment, we compare the weighted

`2,1 and weighted `1 algorithms and their corresponding

unweighted versions on jointly sparse video sequence

reconstruction. We use a candle video which consists

of 75 frames from the Dynamic Texture Toolbox in

http://www.vision.jhu.edu/code/. An example of the 5th

frame is shown in Figure 4 (a). We select a subset of

the frames, i.e., the first 10 frames, each of which is of

size 64×32. Then we create a data matrix XXX ∈R
2048×10,

whose columns are a vectorization of all video frames.

To further obtain a sparse representation of XXX , we use a

Number of signals
2 4 6 8 10

‖A
X

−
Y
‖ F

/√
T

10
-2

10
-1

10
0

10
1

Unweighted SMV
Weighted SMV
Unweighted MMV
Weighted MMV

Figure 3: The scaled error:
‖AX−Y‖F√

T
(vertical axis) as a

function of number of signals T (horizontal axis).

2048×2048 Daubechies wavelet dictionary. An example

of the 5th reconstructed frame from the Daubechies

wavelet dictionary is shown in Figure 4 (b). The number

of non-zero rows in the sparse coefficient matrix is K =
393. We set the accuracy of Ŝ as (K − 2)/K = 0.9949.

Then, we use “scheme 2” as in Figure 2 to set the

weights for weighted algorithms, i.e., pi = 1 − |Ŝ∩S0|
K

.

We also use a random Gaussian sensing matrix of size

1179×2048 to compress XXX and add a random Gaussian

noise with mean 0 and variance σ = 0.02 to obtain the

measurements. The relative recovery errors for both the

sparse coefficient matrix Θ and the noiseless data matrix

XXX are shown in Table I. We present the 5th recovered

frame with different algorithms in Figure 4. It can be

seen that our proposed weighted MMV algorithm has a

lower recovery error than the other three algorithms.

VI. CONCLUSION

In this work, we extend the weighted SMV algorithm,

weighted `1 minimization, to the MMV framework and

consider the weighted `2,1 minimization for jointly sparse

signal recovery. We provide theoretical guarantees for the

weighted MMV algorithm, weighted `2,1 minimization,

as well as a series of experiments to show the advantage

over its unweighted and/or SMV counterparts. Currently,

we focus on signals with jointly sparse support moti-

vated by time-varying signals that admit a jointly sparse

structure. We leave the more general time-varying model

without joint support for future work.
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Coefficient (Θ) Data (X)
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