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Jointly Sparse Signal Recovery with Prior Info

Natalie Durginl, Rachel Grotheer?, Chenxi Huang3, Shuang Li* Anna Ma’, Deanna Needell®, and Jing Qin7

Abstract—The multiple measurement vector (MMYV)
problem with jointly sparse signals has been of recent
interest across many fields and can be solved via ¢,
minimization. In such applications, prior information is
typically available and utilizing weights to incorporate
the prior information has only been empirically shown
to be advantageous. In this work, we prove theoretical
guarantees for a weighted /, ; minimization approach to
solving the MMV problem where the underlying signals
admit a jointly sparse structure. Our theoretical findings
are complemented with empirical results on simulated and
real world video data.

I. INTRODUCTION

As the amount of available data grows, it becomes
demanding to design fast and scalable approaches to pro-
cessing this data. In particular, the control and analysis
of time-varying large scale data has recently attracted a
lot of attention in applications such as wireless commu-
nication [I, 2], medical imaging hyperspectral diffuse
optical tomography (hyDOT) [3, 4], and video signal
recovery [5, 6]. In such applications, the goal is to
recover a sequence of highly correlated signals {x,}tT:l
from measurements of the form

(1L.1)

where the unknown signals are assumed to be sparse,
i.e., few non-zero entries. Here, we use the measurement
matrix A € RM*N (M < N) and linear measurements
y, € RM without precise information about the additive
noise z, € RM,

Problem (I.1) can be solved using multiple mea-
surement vector (MMYV) approaches, which can recover
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all signals {x,}!_, simultaneously. Since MM V-based
approaches can leverage sequential correlation informa-
tion, there has been an increasing interest in developing
algorithms that can solve MMV problems [7, &, 9]. In
addition to MMVs, prior information on the correlation
amongst signals can also be used to improve signal
recovery. In this work, we focus on the MMV model
where the underlying signals admit a jointly sparse
structure, i.e., the underlying signals x, share the same
sparse support, and prior information on the joint support
is available.

There are a lot of applications in which jointly
sparse signals and prior information are evident, e.g.,
hyperspectral diffuse optical tomography (hyDOT) [3, 4]
and video recovery [5, 6]. In hyDOT, each of the
measurement vectors corresponds to a specific wave-
length at which a fixed tissue sample is imaged. In this
application, non-zero entries in each x;, correspond to
locations of cancerous cells. The jointly sparse structure
is attributed to the fact that cancerous cells consis-
tently have larger absorption coefficients across different
wavelengths. Practitioners with field expertise may have
general ideas on where cancerous cells can live and
where they cannot. This prior information can be useful
when trying to recover the location of cancerous cells,
i.e., the joint support. In the video recovery problem,
video frames have a small amount of variation between
consecutive frames, thus one could expect that the sup-
port of the frames stays relatively consistent, i.e., each
frame shares an approximately jointly sparse structure.
In video surveillance applications, there could be areas
of interest where activity is expected to occur. This
knowledge can act as prior information and be useful
in recovering video frames from measurements.

In this work, we provide recovery error bounds for the
approximation of jointly sparse vectors in the presence
of prior information using weighted ¢, ; minimization. In
particular, we show that the average recovery error per
signal improves as more measurement vectors become
available and accurate prior information is provided.
While weighted ¢ | minimization for joint sparsity was
discussed in [7, 8], our work is the first to provide
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theoretical guarantees for signal recovery in this setting.

The remainder of this paper is organized as follows. In
Section II, we discuss necessary groundwork in the sin-
gle measurement vector (SMV) setting, i.e., when 7' = 1.
In Section III, we formulate our problem by introducing
the MMV model of interest and the related existing
results from [10]. In Section IV, we provide theoretical
guarantees for the weighted ¢>; minimization in the
presence of prior information. To verify our theoretical
findings, simulated data and real world video recovery
experiments are conducted in Section V. Finally, we
provide some concluding remarks and future directions
in Section VI.

II. PREVIOUS WORK

We refer to the problem consisting of a single signal as
the SMV problem. One of the most popular approaches
to recover a sparse signal x in the SMV framework is
to minimize the ¢; norm of the signal subject to an
inequality constraint, i.e.,

min||x||; subject to ||Ax—y|, <e. (I.1)
X

The above ¢; minimization has been widely studied
under a variety of settings and applications [11, 12, 13].
Note that the parameter € is related to the noise level or,
assuming z, ~ .4(0,6°I), the standard deviation ¢ of
the Gaussian noise. For other noise types, the constraints
can be modified accordingly.

Fort=1,...T, given measurements y, from (I.1), each
associated with an unknown signal x;, it is possible to
recover each x; one at a time using the ¢; minimiza-
tion (II.1). However, this naive approach cannot take
advantage of correlation among signals at different times
and thereby loses reconstruction efficiency.

In addition, one can also use prior information from
previous signals to improve signal recovery at the next
time step with the SMV model. In particular, if signals
are slowly varying over time, the previous signal can be
a good proxy for the next signal. A common approach
for incorporating prior information on signals is to use
a weighting scheme to place emphasis on entries of
importance [14, 10]. Prior works have shown that when
accurate prior information is available, the solutions to
weighted optimization problems tend to outperform their
unweighted counterparts [10].

III. PROBLEM FORMULATION

A. Joint Sparse MMV Signal Recovery

In the MMV framework, we aim to recover multiple
signals simultaneously rather than sequentially, given

measurements y, = Ax; +z; fort =1,...,T. For notational
simplicity, vectors are column-wise concatenated to form
the matrices X € RN*T | Y e RM*T and Z € RM*T we
denote rows, columns, and entries of a matrix M by
Mg, M., and M ;) respectively. The joint support
of X is the set S C {1,...,N} of indices such that X;
contains at least one non-zero entry. We say that X is
K-row sparse if |S| = K. Additionally, the best K-row
sparse approximation of X is denoted as Xx = X|g with
§ = argming_g || X|s —X||%, that is, the matrix X with
rows indexed by {I,...,N}\ S are replaced with zeros.
We will use Sy to denote the row support of Xk.

Given a weight vector w € RY, which can be ob-
tained from the prior information (see more details in
Section III-B), we can recover each column of X one at
a time with weighted ¢; minimization [10] and we refer
to this recovery strategy as weighted SMV throughout. In
the case when there is no prior information, i.e., w is the
all ones vector, the weighted /| minimization reduces to
£; minimization, which is referred to as the unweighted
SMV algorithm in this work. A more elegant way to
recover the jointly sparse matrix X is to recover the
whole matrix at one time. As in some previous works
[7, 8], we also consider the following weighted ¢5 |
minimization

n}finHXHz’l_,w s.t. ||Y —AX || <&, (II.1)

for jointly sparse MMV signal recovery when some prior
information is provided. Here, the weighted /> ; norm
is defined as [|X[[2,1w = X2 willX(;.[2. We use the
weighted ¢> | norm in (III.1) because minimizing the /> |
norm promotes row sparsity. We denote program (II1.1)
as the weighted MMV algorithm and use unweighted
MMV to denote the case when we have no prior infor-
mation.

B. Weight Vector with Prior Information

Given some prior information in the form of an
estimated joint support, S C {1,...,N}, we set the weight
vector according to

{pi6R+, ifics
w; =

, (II1.2)

1 else

)

as in [10]. Here, weights can take any non-negative value
and are not restricted to be uniform over all entries in the
estimate of the joint support. For arbitrary weights in the
weighted ¢; minimization, the authors of [10] show that
under certain RIP conditions, the approximation of x can
be bounded above by a combination of the measurement
error, K-sparse approximation error, and accuracy of the
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prior information. In this work, we extend their results to
the weighted ¢» ; minimization for arbitrarily weighted
TOWS.

While the theoretical guarantees presented in this work
are for generic weights p;, the experimental section
considers three different weighting schemes: (1) a fixed
weight of p; = 0.1, (2) a weighting scheme based on
the accuracy of the prior information, ie., p; = 1 —

‘SQ—KSO‘ [11], and (3) an {;-optimal weighting scheme
based on [15], where the computed weight is optimal

in the sense of the number of measurements needed for
exact signal recovery is minimized.

IV. THEORETICAL GUARANTEES

In this section, we present the theoretical performance
guarantees for the weighted f>; minimization (Theo-
rem 4.1). In particular, we show that, under mild con-
ditions, the approximation error between the estimated
signal X and the true signal X is upper bounded by terms
dependent on the best K-row sparse approximation of X
and the reliability of the prior information. The constants
C{, and C that appear in Theorem 4.1 are made explicit
in Remark 4.1. Remark 4.2 makes explicit the benefit of
using MMVs.

Theorem 4.1: Let X ¢ denote the best K-row sparse ap-
proximation of X € RV*” and Sy denote the row support
of Xg. Let S; C{1,...,N} fori=1,...,n where | <n<N
be arbitrary disjoint sets and denote S = [J_, S;. Without
loss of generality, assume that the weights are ordered
sothat 1 >w; >wy > ... >wy >0 and let w:):fv:]w,-.
For each i, define the relative size p; and accuracy o;

as p; = % and o; = 7\5,«@0\

there exists a constant a satisfying a > 1, a € %Z and

Zfil pi(1 — ;) < a, and that the measurement matrix A
has the RIP with

. Furthermore, suppose that

i

a a
0, —0 <——1,
ak + Ky (a+1)K K_]%

N
1+Y pi—2aip;)

i=j

Then, the minimizer X of the weighted ¢> | minimiza-
tion (III.1) obeys

o~ _l o~
|X —X||r <Coe+CIK 20| Xx —X||21

N N
_1
+CIK 2 ((1w)|X§¢n§6|2,1 *; . 1Z?é'WﬂXgl.mssﬂz,l),
=1y=1Ly7

where C;, and C} are well-behaved constants that depend
on the measurement matrix A, the weights w;, and
the parameters p; and ;. We use S to denote the
complement of a set S.

Remark 4.1: As in [10], the constants C;; and C} are
explicitly given by

2(14+ =
c) = ( ﬁ) , aIv.1)
V1= Ok — JEVT+ 8k
and
1
2a72 (41 =0k +V 1+ 0k
Ci= ( - ) (IV.2)

1-— 5((1+1)K — %\/ 1 +5aK

Remark 4.2: To compare the recovery bounds for
SMV and MMV frameworks, we note that:

1) For any matrix M € RV*T,
. 2
[M]|[21 < ﬁ;mtaXM(i’j)'
iz

2) The tolerance on the Frobenious error in (III.1),
i.e., € grows on the order of VT.

It can be seen that the average recovery error per signal
(of T total signals) for the non-uniformly weighted
¢ 1 minimization depends inversely on \/T. Therefore,
the average recovery error per signal decreases as the
number of MMVs increase.

V. EXPERIMENTS

In the first experiment, we compare the recovery per-
formance of the weighted and unweighted ¢, | minimiza-
tion and sequentially recovering signals with weighted
and unweighted ¢; minimization." In this experiment,
we set the dimension of the data X € RV to be
M =20, N =100, and set the row sparsity K = 10.
Entries of the noise matrix Z are drawn i.i.d. from a
normal distribution with mean O and standard deviation
o =0.1 so that the parameter € in (I[l.1) is set as € = 0.
Each result is averaged over 50 trials. The relative error
is defined as H)\(;I’I(F”F , Where X is the estimation of the
ground truth X. &n Figure 1, we fix the number of signals
T = 10. The weights p; introduced in (II1.2) are being
varied and we assume that perfect prior information is
known, i.e., S =Sy, where S and Sy denote the given

approximate joint support and the true joint support,
|SI']SQ‘
K 9

respectively. In Figure 2, we use p; =0.1, pi=1—

'We use the CVX software package [16] to solve all of the
minimization programs.
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Figure 1: Performance of solving jointly sparse MMV
problems using weighted and unweighted versions of
SMV and MMV algorithms with different weights.
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Figure 2: The performance of solving weighted ¢; min-
imization and weighted ¢> ;| minimization (III.1) using
different weighting schemes. Scheme 1 uses p; = 0.1,
scheme 2 uses p; =1— m, and scheme 3 uses the
“optimal weight” introduced in Section III.

and an “optimal weight” from paper [15] as introduced in
Section III. In Figure 3, we set p; = 0.1 and assume that
perfect prior information is known. Then, we present the
relationship between the number of available signals 7" in
the MMV framework and the square root of the average
error per signal, i.e., M. As indicated in our theory,
the recovery error ||AX —Y || for our proposed weighted
MMV algorithm does scale with /7.

In the second experiment, we compare the weighted
0> and weighted /; algorithms and their corresponding
unweighted versions on jointly sparse video sequence
reconstruction. We use a candle video which consists
of 75 frames from the Dynamic Texture Toolbox in
http://www.vision.jhu.edu/code/. An example of the 5th
frame is shown in Figure 4 (a). We select a subset of
the frames, i.e., the first 10 frames, each of which is of
size 64 x 32. Then we create a data matrix X € R2048x10
whose columns are a vectorization of all video frames.
To further obtain a sparse representation of X, we use a

10'
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SR -e-Weighted MMV
=
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Figure 3: The scaled error: lIAX—Ylip (vertical axis) as a
function of number of signals T (horizontal axis).

2048 x 2048 Daubechies wavelet dictionary. An example
of the 5th reconstructed frame from the Daubechies
wavelet dictionary is shown in Figure 4 (b). The number
of non-zero rows in the sparse coefficient matrix is K =
393. We set the accuracy of S as (K —2)/K = 0.9949.
Then, we use “scheme 2” as in Figure 2 to set the
weights for weighted algorithms, i.e., p; =1 — mm—KS‘)‘
We also use a random Gaussian sensing matrix of size
1179 x 2048 to compress X and add a random Gaussian
noise with mean 0 and variance ¢ = 0.02 to obtain the
measurements. The relative recovery errors for both the
sparse coefficient matrix ® and the noiseless data matrix
X are shown in Table I. We present the Sth recovered
frame with different algorithms in Figure 4. It can be
seen that our proposed weighted MMV algorithm has a
lower recovery error than the other three algorithms.

VI. CONCLUSION

In this work, we extend the weighted SMV algorithm,
weighted ¢; minimization, to the MMV framework and
consider the weighted {» | minimization for jointly sparse
signal recovery. We provide theoretical guarantees for the
weighted MMV algorithm, weighted ¢» ; minimization,
as well as a series of experiments to show the advantage
over its unweighted and/or SMV counterparts. Currently,
we focus on signals with jointly sparse support moti-
vated by time-varying signals that admit a jointly sparse
structure. We leave the more general time-varying model
without joint support for future work.
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