Energy and Performance Analysis of STTRAM
Caches for Mobile Applications

Kyle Kuan and Tosiron Adegbija
Department of Electrical & Computer Engineering
University of Arizona, Tucson, AZ, USA
Email: {ckkuan, tosiron}@email.arizona.edu

Abstract—Spin-Transfer Torque RAMs (STTRAMs) have been
shown to offer much promise for implementing emerging cache
architectures. This paper studies the viability of STTRAM
caches for mobile workloads from the perspective of energy
and latency. Specifically, we explore the benefits of reduced
retention STTRAM caches for mobile applications. We analyze
the characteristics of mobile applications’ cache blocks and how
those characteristics dictate the appropriate retention time for
mobile device caches. We show that due to their inherently inter-
active nature, mobile applications’ execution characteristics—and
hence, STTRAM cache design requirements—differ from other
kinds of applications. We also explore various STTRAM cache
designs in both single and multicore systems, and at different
cache levels, that can efficiently satisfy mobile applications’
execution requirements, in order to maximize energy savings
without introducing substantial latency overhead.

Index Terms—Spin-Transfer Torque RAM (STTRAM) cache,
mobile applications; performance analysis; retention time; non-
volatile memory; energy efficient; multicore processor.

I. INTRODUCTION

The past few years have witnessed a mobile tipping point
wherein more mobile devices (e.g., smartphones and tablets)
are being sold and used than all other kinds of computers com-
bined. In addition, mobile devices continue to run increasingly
complex applications in line with users’ increasing demands
for high-performance, low-energy systems. As a result, the
processors featured in mobile devices are becoming more
sophisticated, with advanced microarchitecture optimizations,
such as out-of-order execution, deep pipelines, multi-level
cache hierarchies, asymmetric configurations, etc. [1].

While mobile devices contain several components that im-
pact energy and performance, such as the display and radios,
the cache subsystem remains one of the most important com-
ponents of mobile device processors. The cache bridges the
processor-memory performance gap, and is consequential to
the processor’s overall energy efficiency [2]. As such, there is
much ongoing research into technologies for enabling energy
efficient caches for resource-constrained processors.

An increasingly popular approach for improving caches’
energy efficiency involves replacing the traditional SRAM with
emerging non-volatile memory (NVM) technologies. The spin-
transfer torque RAM (STTRAM) [3], especially, is attractive
for implementing on-chip memories, due to several charac-
teristics, such as high density, higher reliability (compared to

This work was supported in part by NSF Grant CAREER 1844952.

other NVMs), etc. There is also much ongoing research to mit-
igate STTRAM’s overheads of high write latency, high write
energy, reliability issues, etc [4]. However, to maximize the
benefits of STTRAM caches in mobile devices, we must first
understand the execution characteristics of mobile applications
within the context of STTRAM caches’ unique characteristics.

This paper aims to explore and analyze the energy and per-
formance benefits of STTRAM caches for mobile applications.
Specifically, we approach our analysis from the perspective
of reduced retention STTRAM caches [5]. Prior work showed
that STTRAM’s long write latency and high write energy
can be attributed to the long retention time—the duration
for which data is maintained in the memory in the absence
of power. For caches, the intrinsic STTRAM retention time
of up to 10 years is unnecessary, since most cache blocks
need to be retained in the cache for no longer than Is [6].
As such, the retention time can be substantially reduced to
mitigate the write overheads. We note that other techniques for
addressing STTRAM’s write overheads have been proposed,
but we limit the studies herein to reduced retention STTRAM
caches, hereafter simply referred to as 'STTRAM caches.’

In order to maximize the benefits of STTRAM caches for
mobile applications, the retention time must suffice for the
applications’ cache block lifetimes. Similar to prior studies
on SRAM caches [7], we define cache block lifetimes as
the duration for which cache blocks must remain in the
cache before they are evicted or invalidated. Given that most
mobile applications are intrinsically interactive, and thus ex-
hibit execution characteristics that may differ from other non-
interactive applications, it is imperative to study STTRAM
caches in the context of mobile applications’ characteristics.

In this paper, we analyze mobile applications with respect to
their cache block lifetimes, and other execution characteristics
(e.g., read-write behavior) that impact how well STTRAM
caches are matched to mobile applications’ execution needs.
Furthermore, we explore the behavior of mobile applications
on STTRAM caches in single core and multicore processors,
and derive new insights, based on our analysis, on the tradeoffs
of STTRAM caches within these processor contexts.

II. BACKGROUND AND RELATED WORK

A. Overview of STTRAM

Similar to other resistive memories, STTRAM uses non-
volatile, resistive information storage in a cell. Fig. 1 illustrates

STTRAM'’s basic structure, comprising of a magnetic tunnel
junction (MTJ) and a transistor. The MTJ cell, which is used
as the binary storage cell, contains two ferromagnetic layers
(the free and fixed layers) separated by an oxide barrier/tunnel
layer. The free layer’s direction with respect to the fixed layer
(parallel or anti-parallel) generates low resistance and high
resistance states of the MTJ cell, to indicate the ”0” or ’1”
bit. The magnetization change in the free layer is controlled
by a transistor, which allows current to flow through the MTJ
cell and creates a spin torque that switches the magnetization
in the free layer. We direct the reader to [8] for additional
low-level details of STTRAM’s basic structure.

B. Overview of STTRAM-based Analysis

There has been much prior work on the benefits of replacing
SRAM with STTRAM. For instance, Noguchi et al. [9]
showed that replacing SRAM with STT-RAM reduced the last
level cache (LLC) energy by 60%, with a 2% performance
degradation. However, STTRAM still has drawbacks that have
slowed down the adoption of STTRAM in emerging processor
architectures. Notably, STTRAMs’ high write energy and
latency overheads have attracted much research attention. One
research thread involves relaxing STTRAM’s thermal stability
to reduce the retention time and thus, the write energy and
latency [10], [5]. Alternatively, prior work has explored other
techniques such as dynamic block allocation [11] for use in
hybrid (SRAM+STTRAM) caches, wherein write-active cache
blocks are written into SRAM, while read-active blocks are
written into STTRAM. Other techniques involve identifying
and eliminating redundant writes or utilizing opportunistic
replacement policies in order to minimize the write overheads
[12], [13], [14], [15]. Recently, Kuan et al. [16] studied the
characteristics of different SPEC 2006 benchmarks [17] and
showed that the STTRAM cache energy could be further im-
proved by adapting the retention time to different applications’
characteristics, without incurring much optimization overhead.

Yan et al. [18] proposed to partition the L2 cache for
user and kernel accesses in mobile devices based on in the
variability in access patterns between these two kinds of
accesses. However, to the best of our knowledge, there is
no prior work that has extensively analyzed the benefits of
reduced retention STTRAM caches for mobile applications.
Most of the aforementioned prior works used desktop or high
performance benchmark suites like SPEC2006 and PARSEC
[19] in their analysis. Given that STTRAMs offer multiple
advantages (e.g., low leakage, high density) for resource-
constrained systems, we anticipate that STTRAM caches will

Bit-line
T
<> Free layer
Tunnel layer

_—> Fixed layer
L
=
= MT]
*‘é ¢—— | Transistor
=

Source-line

Fig. 1: STT-RAM basic cell structure

play an important role in emerging mobile computing systems.
Furthermore, since mobile applications’ execution characteris-
tics differ drastically from traditional benchmarks, due in part
to mobile applications’ interactive nature [20], it is imperative
to analyze STTRAM caches with relevant benchmarks that
represent mobile applications’ characteristics [18].

III. METHODOLOGY

This section describes our methodology for gathering the
data for the analysis presented herein. We first describe some
design assumptions made, and thereafter, present our experi-
mental setup.

A. Design Assumptions

We assume that STTRAM caches can be fabricated as
desired with different retention times. We note that reducing
the retention time trades off other factors like the reliability
[21]. As such, there is much on-going research to address
this and other fabrication and device challenges of STTRAMSs
(e.g., process variation) [22], but addressing these challenges
is outside the scope of this paper. This subsection summarizes
modeling techniques that we have employed for achieving
reduced retention times and for preventing data corruption in
reduced retention STTRAM caches.

1) Achieving Reduced Retention Times: Prior work showed
that STTRAM’s thermal stability (A) can be substantially
reduced to lower the write energy and latency [5]. This is
more so beneficial for storage media that don’t require long
retention, such as CPU caches. Thus, to model the STTRAM
caches analyzed in this paper, we followed the technique
proposed in [8]. We decreased the MTJ’s planar area to
obtain the desired retention times and lower thermal stability,
and used the models described in [8] to determine the MTJ
characteristics for different retention times. Based on these
characteristics, we calculated write pulse, write current, and
MT] resistance values Rap and Rp.

2) Preventing Data Corruption: A challenge that arises
after reducing STTRAM cache’s retention time is that some
cache blocks may need to remain in the cache beyond the
cache’s predetermined retention time. As such, the data could
become unstable or corrupt, and could cause incorrect results
if reused by the CPU. Thus, to prevent data corruption, we
incorporate a per-block counter to keep track of the cache
blocks’ lifetimes [6], [7]. The counter detects the expiration
of a cache block and evicts the block just before the retention
time elapses. Dirty blocks are first written to main memory
before eviction. We implemented the counter as a finite state
machine, with a clock period defined as the retention time
divided by N, where NN dictates the granularity of block evic-
tion. When a block is written to the cache, the counter’s state
advances from the initial state until it reaches the maximum
state. The block is then evicted, and the counter is reset to
the initial state whenever a new fetch operation occurs for
the block. We note that this is a low overhead technique that
only requires a few bits per block. The implementation in our
experiments only required two bits per block for a four-state
(N = 4) counter.

B. Experimental Setup and Workloads

For the analysis presented herein, we used an in-house
modified version of the GEMS5 simulator [23]. The modified
GEMS5! models the behavior of relaxed retention STTRAM
caches with specified retention times. We modeled single- and
quad-core processors with base configurations similar to those
featured in modern mobile devices (e.g., ARM Cortex-A76).
The processor featured a 1.9GHz clock frequency, out-of-order
execution, private level one (L1) instruction and data caches,
and shared unified L2 caches (for the multicore experiments).
The L1 caches had 32KB size, 4-way set associative, and
64B line size, while the L2 cache had 2MB size, 16-way set
associative, and 64B line size.

We considered retention times ranging from lus to 100ms
in *10 increments. Later in our analysis, we focus on only the
1ms, 10ms, and 100ms retention times, since we found that
smaller retention times were severely under-provisioned for
all the mobile applications considered with respect to energy
and latency. To model STTRAM and SRAM cache energy, we
used NVSim [24] integrated with the GEMS statistics. We used
the MTJ cell modeling technique proposed in [8] to obtain
essential parameters, such as the write pulse, write current, and
MT]J resistance value R 4p, and then applied these parameters
to NVSim to construct the STTRAM caches.

To represent mobile applications, we used ten benchmarks
from the Moby benchmark suite [25]. Moby comprises of
a variety of popular android applications, including web
browser, social networking, email client, music player, map,
document processing, etc., all of which are selected from the
Google Play Store. The benchmarks were run in GEMS5 Full
System mode using Android Ice Cream Sandwich (ICS) as the
operating system. We ran all the benchmarks to completion
after skipping the boot process using checkpointing.

IV. STTRAM-AWARE CHARACTERIZATION

In the analysis presented in this section, we focus on
STTRAM-specific insights, since the mobile applications have
been analyzed with respect to SRAM caches in prior work
[25]. We first analyze the characteristics of mobile appli-
cations in the context of STTRAM caches, with respect to
the read-write activity, cache block lifetimes, and expiration
misses; these characteristics directly affect the applications’
performance on STTRAM caches. In the following section,
we analyze the energy and performance (latency) of mobile
applications in different STTRAM cache design scenarios.

A. Read-Write Activity

An application’s read-write activity—the ratio of reads to
writes—can substantially affect the efficiency of executing
those applications on STTRAM memories. Since STTRAMs
suffer the most overheads during write operations (due to the
high write energy and latency), applications with more reads
than writes tend to benefit more from STTRAM caches. Thus,

'The modified GEMS version can be found at www.ece.arizona.edu/tosiron/
downloads.php

@1; % Read mWrite
516
Z 14
g3 %97
208 77 7 7
%87 iR
8 .
S P RY DE S PP DK
SO R
07’045’ S < > S
< &

Fig. 2: Read-write ratio for data cache memory accesses

120%
100%
80%
60%
40% S eeo
20% -~
0%

== iCache = @<= dCache

Percentage of persistent
blocks

Persistence of cache blocks

Fig. 3: Percentage of persistent blocks. The results depicted
are on average across all the benchmarks.

we analyzed the read-write behavior of the mobile applications
in the context of single and multicore systems.

Figure 2 depicts the read-write ratio of data cache accesses
(in billions of instructions) of the mobile benchmarks in
a single core execution. Even though the total number of
accesses differed substantially across the different applications,
we observed that the read-write ratio was relatively stable
across the applications. Overall, the reads were, on average,
67% of total accesses, ranging from 66% to 70%.

It is possible for an application’s threads to exhibit different
read-write behaviors when they are distributed across different
cores vs when the application is running on a single core. Thus,
we also analyzed the read-write behaviors across different
threads in a multicore scenario. The trends were consistent
across all the threads running on different cores: on average
across all the benchmarks, the reads were 64% of the total
accesses, ranging from 59% to 73%. This high proportion of
reads suggests that the considered mobile applications, in gen-
eral, would consistently be less susceptible to the overheads of
STTRAM caches than applications that exhibit high variability
in the read-write ratios, such as SPEC benchmarks [6].

B. Cache Block Lifetimes and Persistence

Cache block lifetimes and reuse are interrelated and refer
to how long a cache block must remain in the cache before
it is evicted or invalidated. The cache block lifetime directly
affects an application’s retention time requirements and, in
effect, an STTRAM cache’s performance for the application.
We studied the mobile applications’ cache block lifetimes
to derive insights into their retention time requirements. We
observed that, on average, the cache block lifetimes of the
mobile applications varied across the different applications,
but mostly ranged from 1ms to 100ms. These observations
about the cache block lifetimes dictate the retention times that
perform best for the different applications, as will become
more evident in subsequent sections.

ret_period, start ret_periodg start ret_period, start ret_period, end

T T T%{—/T T time
block A block B read A retention a0y g read A
write write (conflict miss; time expires (expiration miss)
(evict A) fetch A)

Fig. 4: Tllustration of expiration miss.

To further understand the behavior of mobile applications in
the context of STTRAM caches, we analyzed the percentage of
unique cache blocks that were persistent, given a persistence
threshold (thd). We define a block as persistent if it is loaded
into cache at least thd times after it is evicted from the cache.
The persistence of a cache block can provide a sense of how
long the block must ideally remain in the cache to service all
its future references. We analyzed the blocks’ persistence for
both instruction and data caches with thd values of 1 to 8, in
power-of-two increments.

Figure 3 depicts the persistence of instruction and data cache
blocks for persistence thresholds of 1, 2, 4, and 8. In the
instruction cache, 100% of cache blocks were loaded more
than four times, and 94% were loaded more than eight times,
revealing a high degree of persistence. In the data cache, on the
other hand, only 45% of cache blocks were loaded more than
once, and 15% were loaded more than eight times. We also
observe a much sharper drop in the blocks’ persistence as the
persistence threshold increases from 1 to 8 for the data cache.
On average across all the benchmarks, the data cache had
substantially more (72x, on average) unique blocks referenced
than the instruction cache. However, the instruction cache’s
total accesses exceeded the data cache’s by more than 2x, due
to the high persistence of the instruction cache blocks.

C. Expiration Misses

In STTRAM caches, an important characteristic that can
significantly impact the energy and latency is what we call
the expiration misses. The expiration misses are introduced
by reduced retention times and refer to the misses that result
from references to a block that was prematurely evicted due
to elapsed retention time. Figure 4 illustrates the occurrence
of an expiration miss. Assuming a block A and B reside in
the same cache set location, and a write of A, followed by a
write of B evicts A, a subsequent read request for A would
result in a conflict miss. A is then fetched and its retention
period is started. When the retention time elapses, A expires,
and a subsequent reference to A results in an expiration miss.

Figure 5 depicts the average number of expiration misses
for different retention times. The figure depicts the average
across all the benchmarks, since the trends were similar for
the different benchmarks. Unsurprisingly, as the retention
time increased, the number of expiration misses decreased
substantially. However, we observed a much sharper decrease
for the data cache than for the instruction cache. For instance,
the decrease from 1us to 10us, 10us to 100us, 100us to Ims,
and Ims to 10ms were approximately 3x, 9x, 13x, and 19x,

1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

miCache @dCache

Expiration misses

9 <]
ARSI

< S S
& & &
Y NN @

Fig. 5: Average expiration misses for different retention times.

14 6 —e—360buy —e—2adobe
" —— zz&‘ju“niap +;‘;‘Z’E:bubb‘e . baidumap frozenbubble
N == kImail —@— kingsoftoffice
—— k9mail —&—kingsoftoffice
10 —e—mxplayer —e—netease 4 —e&—mxplayer —e—netease

—e—sinaweibo
—e—AVERAGE

—e—sinaweibo —e—ttpod

—e—AVERAGE

—e—ttpod

N

Miss rate normalized to SRAM

Miss rate normalized to SRAM

o
o

fus 10us 100us 1ms 10ms 100ms 1us 10us

100us 1ms

(a) Instruction cache (b) Data cache

Fig. 6: Instruction and data cache miss rates for different
retention times normalized to SRAM

respectively, for the instruction cache; for the data cache, the
decreases were 4x, 11x, 25x, and 51x, respectively. Also, there
were substantially more expiration misses in the instruction
cache than the data cache, and the difference increased as the
retention time increased—ranging from 1.2x at 1us to 9x at
10ms. For both the instruction and data caches, the number
of expiration misses was 0 on the 100ms retention time.

In general, expiration misses of zero is ideal. However, we
also found that the expiration misses is an insufficient criterion
for evaluating the benefits of STTRAM cache and different
retention times for executing applications. Some applications
that have low persistence blocks as majority may tolerate
expiration misses better than others, depending on the kinds of
misses that occurred. An increase in expiration misses did not
necessarily increase energy or latency. For instance, a single
miss may accrue less energy and latency overhead than another
miss due to future accesses that depend on the miss. Overall,
we found that most of the applications were able to tolerate
some expiration misses. As such, even though 100ms resulted
in zero expiration misses, it was not necessarily the best for all
applications, as will become clear in the following sections.

V. SINGLE CORE EVALUATION
A. Cache Miss Rates and Energy

First, we analyze the benefits of STTRAM caches in the
context of a single core processor. Since mobile applications
typically execute in energy-constrained environments (i.e.,
battery-powered mobile devices), the goal is an STTRAM
cache that minimizes the energy without substantially increas-
ing the latency compared to SRAM. Thus, we first explore
how the instruction and data cache miss rates and energy

10ms 100ms

2 —&—360buy —e—adobe 0.7 —8—360buy —e—adobe
L baidumap frozenbubble L 6 baidumap frozenbubb
3 15 —e—k9mail —e—kingsoftoffice 2 ! B k9mail #— kingsoftoffic
2 —mxplayer netease g os —e— mxplayer —4—netease
g= —e—ttpod €S 04 —e—ttpod
53 5g
[S&o3
> >
g 05 g 0.2
LIE.I UC_I 0.1

0 0
1us 10us 100us 1ms 10ms 100ms 1us

(a) Instruction cache (b) Data cache

Fig. 7: Instruction and data cache energy consumption for
different retention times normalized to SRAM

consumption change for different retention times, and in
comparison to SRAM.

Figure 6 depicts the instruction and data cache miss rates of
different retention times normalized to SRAM. As expected,
as the retention time increased, the cache miss rates trended
towards SRAM for both the instruction and data caches.
Importantly, we observed that both the data (Figure 6b)
and instruction (Figure 6a) caches exhibit high variability
in cache miss rates. That is, different applications require
different retention times—for both the instruction and data
caches—to achieve the lowest miss rates. This observation is
contrary to prior that studied SPEC benchmarks and showed
that variability only exists in the data cache, while a single
retention time sufficed for the instruction cache across all the
SPEC benchmarks [16]. We attribute our observation to the
interactive nature of mobile applications, which introduces
variability to the instruction cache behavior [20].

For the energy consumption, we observed similar trends
between the instruction and data caches. However, there were a
few differences. Figure 7 depicts the instruction and data cache
energy consumption trends for different retention times nor-
malized to SRAM. Even though lower retention times would
consume less energy per access than SRAM, the behavior
is different in the context of application execution. For both
the instruction (Figure 7a) and data (Figure 7b) caches, the
smallest retention times (1us and 10us) substantially increased
the cache accesses, and in effect the energy consumption.

In the instruction cache, despite the substantial energy
savings of low retention times, the cache accesses due to ex-
piration misses (Section IV-C) were so substantially increased
that the energy consumption at 1us was more than SRAM for
some applications (e.g., 360buy, kingsoftof fice, netease,
etc.). For instance, on average®, the 1us retention time in-
creased the energy consumption by 7.1%, and by up to
86.4% for 360buy. The average energy savings for the other
retention times ranged from 57% for 10us to 87.3% for 1us,
with little variance for the 100us, Ims, 10ms, and 100ms
retention times. For the data cache, on the other hand, none
of the retention times exceeded SRAM in energy consumption
despite the increase in cache accesses at lower retention times.
The average energy savings ranged from 55.9% for 1us to
87% for 100ms.

2We used the geometric mean for the averages discussed in the evaluations.

10us 100us 1ms 10ms 100ms

BN
N

21ms ©10ms ®@100ms

§§

210ms @100ms

Best retention
normalized to base
cooco
ovrO®
Best retention
normalized to base

cooo
ol s> ®

¢ s
peisisieiy

5 L P S & K NP & 2L P
oS 2° @ P & SHESICS WP
s @(ﬁ@ \\Q(gy & %6g>°\w§@°<\&$®q}®,§z \@&v
N SN & & T 8
B 07 ¢ S B w
«© Ky

(a) Cache energy (b) Execution time

Fig. 8: Benefits of variable retention times. The best retention
time for (a) energy and (b) execution time for each benchmark
is normalized to a base of 1ms, 10ms, and 100ms. The
instruction and data caches exhibited similar energy trends.

These results illustrate the variable retention time needs of
different mobile applications. Due to the cache block lifetimes
(Section I'V-B), the best retention times for energy ranged from
Ims to 100ms, with a majority at 10ms—five and seven
benchmarks for the instruction and data cache, respectively.
None of the benchmarks required less than 1ms for either
cache for minimum energy.

B. Benefits of Retention Time Specialization

Prior work (e.g., [16]) suggested using a variety of cache
units with different retention times in a single chip to enable
close specialization to applications’ retention time needs.
Thus, we also explored the benefits of specializing the re-
tention time to individual benchmarks’ needs vs. using a base
configuration of 1ms, 10ms, or 100ms. We selected these
three retention times as base, since they covered the best
options for all the benchmarks. A design option for such a
variable retention time system is described in [16], wherein
the cache chip is designed with different cache units featuring
different retention times to satisfy a variety of applications’
needs. During runtime, the applications’ cache accesses are
serviced by the cache unit that best satisfies the applications’
needs as determined via sampling or a tuning algorithm.

Figure 8 depicts the benefits of such a system in a single
core. We assumed a design similar to [16], with a sampling
technique, which samples the application on each cache unit
for a sampling interval of 10M instructions to determine the
best retention time for different objective functions (energy
or latency). The energy savings were similar for both the
instruction and data caches. On average across the bench-
marks, the best retention times improved the energy for the
instruction cache by 8.5%, 20.2%, and 9.1%, compared to the
Ims, 10ms, and 100ms base retention times, respectively.
The data cache energy savings were 7%, 16%, and 5.7%,
respectively (Figure 8a is used to illustrate the cache energy
due to the similar trends). As depicted in Figure 8b, on average
across the benchmarks, the best retention times improved the
performance (execution time) by 7.3%, 17.7%, and 6.5%,
respectively.

B1ms @10ms @100ms

S1ms @10ms @100ms

Execution time
normalized to SRAM

Energy normalized to

(b) Execution time

(a) Total energy

Fig. 9: Energy and execution time of STTRAM cache normal-
ized to SRAM in a quad-core system

VI. MULTICORE EVALUATION

A. Single Level Cache

Next, we explore the benefits of STTRAM caches in a
quad-core system with a single level cache. We assumed that
a single multi-threaded mobile application was running with
the threads distributed among the four cores. Similar to the
single core (Figure 6), as the retention time increased, the
miss rates trended toward SRAM. Overall, no retention time
below 1ms sufficed for any of the considered applications.
For instance, for the instruction cache, the 100us retention
time increased the cache miss rates by 30.3%, on average,
whereas 1ms achieved similar cache miss rates to SRAM. We
observed similar behaviors for the data cache. Thus, we limit
the following discussions to only include the 1ms, 10ms, and
100ms retention times.

Just like the single core system, the multicore STTRAM
caches achieved substantial energy savings compared to
SRAM. We observed similar trends for both the instruction
and data caches, so show results for total cache energy savings.
Figure 9a depicts the total cache energy of STTRAM normal-
ized to SRAM in a quad-core system. On average across all
the benchmarks, 1ms, 10ms, and 100ms STTRAM caches
reduced the energy by 87.0%, 86.6%, and 85.2%, respectively,
compared to SRAM, with energy savings ranging from 82%
to up to 87%. The energy savings were consistent across
the benchmarks, except for batdumap, which was an outlier
on the 100ms retention time—due to its sensitivity to the
increased write access energy—with 51.3% energy savings.

The energy savings was at the expense of some execution
time overhead. Figure 9b depicts the execution time of the
quad-core system with STTRAM normalized to SRAM. On
average across all the benchmarks, the 1ms and 10ms reten-
tion times achieved similar execution times to SRAM. How-
ever, the 100ms retention time increased the execution time

by 10.8%, owing to baidumap, for which the execution time
was substantially higher (3x) than SRAM, due its sensitivity
to the increased write access latency.

B. Two-Level Cache

The results were substantially different when an L2 cache
was incorporated into the system. Figure 10 depicts the total
STTRAM L1 energy (10a), L2 energy (10b), and execution
time (10c) normalized to SRAM. When the L2 cache was
incorporated, the energy savings in the L1 caches reduced
significantly from the system without L2. As shown in Figure
10a, on average, the Ims, 10ms, and 100ms L1 STTRAM
caches’ energy savings were 64.9%, 73.4%, and 69.3%, re-
spectively, compared to SRAM. For the L2 cache, as shown in
Figure 10b, on average, the 1ms STTRAM L2 cache reduced
the energy by 80.7% compared to SRAM. However, the 10ms
and 100ms caches increased the average energy by 4.4% and
12.1%, respectively, compared to SRAM. This was due to the
increase in write latency of the 10ms and 100ms caches.

Figure 10c depicts the execution time of the quad-core
system featuring L1 and L2 STTRAM caches normalized to
SRAM. On average, the 1ms and 100ms STTRAM caches
increased the execution time by 3.7% and 6.4%, respectively,
while the 10ms reduced the execution time by 7.6%. The
10ms cache provided a balance between the overhead of
expiration misses in the 1ms cache and the write latency of
the 100ms cache. We also note that the STTRAM system
with the L2 cache improved the execution time compared to
the system without the L2 cache by 8.2%, 12.4%, and 12.1%
for the 1ms, 10ms, and 100ms caches, respectively. These
performance improvements were at the expense of increased
energy consumption incurred by introducing the L2 cache.

For most applications, the presence of the L2 cache in-
creased the energy compared to the system without the L2
cache. However, a notable difference was that the STTRAM-
based systems suffered substantially less energy overhead from
the presence of the L2 cache than the SRAM-based systems.
Figure 11 illustrates this observation. The figure depicts the
total cache energy consumption of the quad-core system with
L2 cache normalized to the quad-core system without the
L2 cache, for both STTRAM and SRAM. For brevity, the
STTRAM results represent the averages of the energy of the
1ms, 10ms, and 100ms retention times, since the trends were
similar for the different retention times. On average across all
the benchmarks, for the STTRAM-based system, introducing

5< 20 S1ms B10ms @100ms s S1ms @10ms @100ms s 14 Sims @10ms @100ms
o< ? B 5 0 g 12
5% 15 o 4 En 1 7
oo S0 08 [
29 1 =3 C = |
5} [oRe} O 06 H
8805 gé 582 Eﬁ 3804 |

@ o. Ny g f
:%OM oo VB o (01 e G o YR 820 ol mlmm “ﬁgo'é 1
- E . N E . W E
S5 NP R DS PP -5 S R DP S L LK <]
58 o PP P g P PP F P <
° o P T F 0 P TS P O N T o

&
LS M P & TS F

<&

(a) Total L1 cache energy

(b) L2 cache energy

(c) Execution time

Fig. 10: Total STTRAM L1 and L2 cache energy and time normalized to SRAM. We assume homogeneous STTRAM retention

times across all cache levels

STTRAM @SRAM

3

§<§E10

o 8

(DU)

8= o

o$4

23 2 ‘

EE " A W s =22 B A

= c

n @@ > @ & N ob ®<</
IS L & & & & & L
o9 » & %é\o +<} Q@& \Q@& S A((/Qy

© ° v

Fig. 11: Total cache energy of quad-core system with L2
normalized to system without L2.

the L2 cache increased the energy by 32.4%. For the SRAM-
based system, on the other hand, introducing the L2 cache
increased the energy by 6.0x. Even though the L2 cache did
not introduce as much energy in the STTRAM-based system
as it did in the SRAM-based system, system designers must
carefully consider the tradeoffs of including an L2 cache,
especially for energy-constrained systems.

VII. ASYMMETRIC STTRAM CACHE DESIGN

The results presented so far have shown that STTRAM can
provide substantial energy benefits over SRAM for mobile
applications. We have also shown that while STTRAM per-
formed well for all the mobile applications, the benefits varied
for different applications. This observation is in line with prior
research that has shown that different applications may have
different cache requirements. Thus, to further improve the
energy efficiency of STTRAM caches for mobile applications,
we propose asymmetric retention time cache as a simple design
approach for mobile device processors.

A. Proposed Retention Time Asymmetry

Figure 12 illustrates the proposed asymmetric retention
STTRAM cache design. The multicore processor is designed
using different retention times in each core such that threads
requiring similar retention times can be scheduled to their best
core during runtime by the operating system. In the private L1
instruction and data caches, different cores feature different
retention times, which are carefully chosen via design-time
exploration, to satisfy a variety of applications’ execution
requirements. Additional asymmetry can also be implemented
in lower cache levels. For example, shared caches (e.g.,
L2, L3) can be designed with different retention times in
different banks in a multi-banked design, and cache blocks are
opportunistically written to the bank that most closely matches
the blocks’ lifetimes [26]. In the following subsection, for
brevity, we limit our evaluations to the benefits of asymmetric
L1 STTRAM cache design.

B. Asymmetric Retention L1 STTRAM Cache

In the asymmetric L1 STTRAM cache, during runtime,
threads are scheduled to the core that most closely matches
the threads’ execution requirements as determined during a
profiling period. Unlike the scenario described in Section V-B
where different applications are run using different retention
times on a single chip, in the asymmetric setup, different
threads of the same application—or different applications in

Fig. 12: Tllustration of proposed asymmetric retention caches.
The L1 caches feature different retention times to satisfy a
variety of execution requirements.

a multi-programmed workload—are run on the cores with
retention times that most closely satisfy the threads’ needs.
Overall, asymmetric retention L1 STTRAM cache achieved
energy savings compared to a base homogeneous L1 STTRAM
cache without degrading the execution time. Figure 13 com-
pares the asymmetric retention design to a base homogeneous
retention time (baseline of one). The base homogeneous
retention time is chosen as the single best retention time
that achieved the lowest energy on all the cores for each
benchmark. For a stringent comparison, we used application-
specific homogeneous retention times; thus, the homogeneous
configuration changed for different benchmarks. On average,
the asymmetric design reduced the energy by 9.6% compared
to the base homogeneous retention time, with energy savings
as high as 16.0% for ttpod. In the worst case, the asymmetric
design performed similarly to the homogeneous design for
baidumap. These results suggest that that the asymmetric
design is a viable approach to further improve the energy
efficiency of STTRAM caches for mobile applications.

C. Profiling for Retention Time

To fully leverage the benefits of an asymmetric LI
STTRAM cache design, one important challenge is how to
determine the best retention time during runtime. Solving this
challenge is outside the scope of this paper; however, we
suggest a few potential solutions, some of which have been
explored by related work.

The first potential technique for determining the best re-
tention time is a sampling technique as described in prior
work [16]. The executing application is run on each core for a
brief profiling interval (e.g., 10M instructions) after which the
energy consumption is calculated. The rest of the application
is then run on the core whose cache consumed the least
energy. Sampling can be used without introducing substantial

el
[}
Ny 1
=]
£ 5095
s c 09
c 8085
29 038 I
‘qES € 075
° K
S @ Q% D@ & 2.0 QL
Ee R 0@(0\»‘00 q‘(@o‘&o & @7’%\@& &°
? TS L L &
< P 4@ g ¢ BN N
W v

Fig. 13: Energy consumption of asymmetric retention times
normalized to the best homogeneous retention time.

overheads if only a few retention times (e.g., four) must be
sampled. However, in larger-scale systems, other techniques
must be explored.

Unlike traditional cache configurations (cache size, line size,
and associativity), the best retention time cannot be directly
predicted using statistics obtained from performance counters
(e.g., cache miss rates). Thus, an alternative solution is to
use design-time machine learning algorithms to model the
correlation of retention time requirements to easily obtainable
statistics. These models can then be used during runtime to
directly predict the best retention time, given the execution
statistics obtained during a profiling interval. We plan to
evaluate these solutions for mobile applications in future work.

VIII. CONCLUDING REMARKS

Spin-Transfer Torque RAMs (STTRAMs) have the poten-
tial to replace SRAMs in implementing on-chip caches in
emerging mobile devices. Reduced retention STTRAMs, in
addition to area benefits, offer further energy savings potential,
if the retention times are carefully chosen to satisfy the cache
block lifetimes of executing applications. In this paper, we
explore and evaluate the benefits of STTRAM caches for
mobile applications. We characterize mobile applications from
the perspective of reduced retention STTRAM caches, and
show that STTRAMSs provide much energy benefits for mobile
applications without introducing substantial latency overheads.
We also explored the benefits of an asymmetric retention
time design to provide further energy savings compared to
a homogeneous retention time design. The analysis herein
is performed without any orthogonal techniques for making
STTRAMs more efficient (e.g., limiting the number of writes,
hybrid caches), thereby minimizing runtime implementation
overheads. However, our future work includes a detailed study
of the synergy of prior techniques for energy efficient cache
hierarchies for mobile applications and evaluating different
STTRAM cell models for emerging mobile devices.

REFERENCES

[1] “Cortex-a76,” https://developer.arm.com/ip-products/processors/cortex-
a/cortex-a76, accessed: April 2019.

[2] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustainable Computing: Informatics and Systems,
vol. 4, pp. 33-43, 2014.

[3] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong et al., “Spin-transfer torque mag-
netic random access memory (stt-mram),” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 9, no. 2, p. 13, 2013.

[4] M. Kang, S. K. Gonugondla, M.-S. Keel, and N. R. Shanbhag, “An
energy-efficient memory-based high-throughput vlsi architecture for
convolutional networks,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2015, pp.
1037-1041.

[5] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on. 1EEE, 2011, pp. 50-61.

[6] A.Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: architecting volatile stt-ram caches for enhanced
performance in cmps,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 243-252.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting gen-
erational behavior to reduce cache leakage power,” ACM SIGARCH
Computer Architecture News, vol. 29, no. 2, pp. 240-251, 2001.

K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H.
Kim, “A scaling roadmap and performance evaluation of in-plane and
perpendicular mtj based stt-mrams for high-density cache memory,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598-610, 2013.
H. Noguchi, K. Ikegami, N. Shimomura, T. Tetsufumi, J. Ito, and
S. Fujita, “Highly reliable and low-power nonvolatile cache memory
with advanced perpendicular stt-mram for high-performance cpu,” in
2014 Symposium on VLSI Circuits Digest of Technical Papers, June
2014, pp. 1-2.

Z. Sun, X. Bi, H. H. Li, W.-FE. Wong, Z.-L. Ong, X. Zhu, and W. Wu,
“Multi retention level stt-ram cache designs with a dynamic refresh
scheme,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2011, pp. 329-338.

J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. Li, “A coherent
hybrid sram and stt-ram 11 cache architecture for shared memory
multicores,” in Design Automation Conference (ASP-DAC), 2014 19th
Asia and South Pacific. 1EEE, 2014, pp. 610-615.

J. Ahn, S. Yoo, and K. Choi, “Dasca: Dead write prediction assisted stt-
ram cache architecture,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), Feb 2014, pp.
25-36.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-ram
using early write termination,” in Proceedings of the 2009 International
Conference on Computer-Aided Design. ACM, 2009, pp. 264-268.
E. Reed, A. R. Alameldeen, H. Naeimi, and P. Stolt, “Probabilistic
replacement strategies for improving the lifetimes of nvm-based caches,”
in Proceedings of the International Symposium on Memory Systems.
ACM, 2017, pp. 166-176.

K. Qiu, Y. Zhu, Y. Xu, Q. Huo, and C. J. Xue, “Brloop: Constructing
balanced retimed loop to architect stt-ram-based hybrid cache for vliw
processors,” Microelectronics Journal, vol. 83, pp. 137 — 146, 2019.
K. Kuan and T. Adegbija, “Lars: Logically adaptable retention time
sttram cache for embedded systems,” in Design, Automation & Test in
Europe Conference & Exhibition, 2018. DATE’1S. IEEE Computer
Society, 2018.

“Spec cpu2006,” http://www.spec.org/cpu2006, accessed: March 2019.
K. Yan, L. Peng, M. Chen, and X. Fu, “Exploring energy-efficient cache
design in emerging mobile platforms,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 22, no. 4, p. 58, 2017.
C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72-81.

A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization
of interactive smartphone applications,” in 2011 IEEE International
Symposium on Workload Characterization (IISWC). 1EEE, 2011, pp.
81-90.

W. Kang, L. Zhang, W. Zhao, J. Klein, Y. Zhang, D. Ravelosona, and
C. Chappert, “Yield and reliability improvement techniques for emerging
nonvolatile stt-mram,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 5, no. 1, pp. 28-39, March 2015.

S. Senni, L. Torres, G. Sassatelli, and A. Gamatie, “Non-volatile
processor based on mram for ultra-low-power iot devices,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 13, no. 2,
p- 17, 2017.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” Computer Architecture News, vol. 40, no. 2, p. 1, 2012.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile mem-
ory,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 31, no. 7, pp. 994-1007, 2012.

Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark
suite for architectural simulators,” in 2014 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). 1EEE,
2014, pp. 45-54.

K. Kuan and T. Adegbija, “Halls: An energy-efficient highly adaptable
last level stt-ram cache for multicore systems,” IEEE Transactions on
Computers, 2019.

