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Abstract—Spin-Transfer Torque RAMs (STTRAMs) have been
shown to offer much promise for implementing emerging cache
architectures. This paper studies the viability of STTRAM
caches for mobile workloads from the perspective of energy
and latency. Specifically, we explore the benefits of reduced
retention STTRAM caches for mobile applications. We analyze
the characteristics of mobile applications’ cache blocks and how
those characteristics dictate the appropriate retention time for
mobile device caches. We show that due to their inherently inter-
active nature, mobile applications’ execution characteristics—and
hence, STTRAM cache design requirements—differ from other
kinds of applications. We also explore various STTRAM cache
designs in both single and multicore systems, and at different
cache levels, that can efficiently satisfy mobile applications’
execution requirements, in order to maximize energy savings
without introducing substantial latency overhead.

Index Terms—Spin-Transfer Torque RAM (STTRAM) cache,
mobile applications; performance analysis; retention time; non-
volatile memory; energy efficient; multicore processor.

I. INTRODUCTION

The past few years have witnessed a mobile tipping point

wherein more mobile devices (e.g., smartphones and tablets)

are being sold and used than all other kinds of computers com-

bined. In addition, mobile devices continue to run increasingly

complex applications in line with users’ increasing demands

for high-performance, low-energy systems. As a result, the

processors featured in mobile devices are becoming more

sophisticated, with advanced microarchitecture optimizations,

such as out-of-order execution, deep pipelines, multi-level

cache hierarchies, asymmetric configurations, etc. [1].

While mobile devices contain several components that im-

pact energy and performance, such as the display and radios,

the cache subsystem remains one of the most important com-

ponents of mobile device processors. The cache bridges the

processor-memory performance gap, and is consequential to

the processor’s overall energy efficiency [2]. As such, there is

much ongoing research into technologies for enabling energy

efficient caches for resource-constrained processors.

An increasingly popular approach for improving caches’

energy efficiency involves replacing the traditional SRAM with

emerging non-volatile memory (NVM) technologies. The spin-

transfer torque RAM (STTRAM) [3], especially, is attractive

for implementing on-chip memories, due to several charac-

teristics, such as high density, higher reliability (compared to
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other NVMs), etc. There is also much ongoing research to mit-

igate STTRAM’s overheads of high write latency, high write

energy, reliability issues, etc [4]. However, to maximize the

benefits of STTRAM caches in mobile devices, we must first

understand the execution characteristics of mobile applications

within the context of STTRAM caches’ unique characteristics.

This paper aims to explore and analyze the energy and per-

formance benefits of STTRAM caches for mobile applications.

Specifically, we approach our analysis from the perspective

of reduced retention STTRAM caches [5]. Prior work showed

that STTRAM’s long write latency and high write energy

can be attributed to the long retention time—the duration

for which data is maintained in the memory in the absence

of power. For caches, the intrinsic STTRAM retention time

of up to 10 years is unnecessary, since most cache blocks

need to be retained in the cache for no longer than 1s [6].

As such, the retention time can be substantially reduced to

mitigate the write overheads. We note that other techniques for

addressing STTRAM’s write overheads have been proposed,

but we limit the studies herein to reduced retention STTRAM

caches, hereafter simply referred to as ’STTRAM caches.’

In order to maximize the benefits of STTRAM caches for

mobile applications, the retention time must suffice for the

applications’ cache block lifetimes. Similar to prior studies

on SRAM caches [7], we define cache block lifetimes as

the duration for which cache blocks must remain in the

cache before they are evicted or invalidated. Given that most

mobile applications are intrinsically interactive, and thus ex-

hibit execution characteristics that may differ from other non-

interactive applications, it is imperative to study STTRAM

caches in the context of mobile applications’ characteristics.

In this paper, we analyze mobile applications with respect to

their cache block lifetimes, and other execution characteristics

(e.g., read-write behavior) that impact how well STTRAM

caches are matched to mobile applications’ execution needs.

Furthermore, we explore the behavior of mobile applications

on STTRAM caches in single core and multicore processors,

and derive new insights, based on our analysis, on the tradeoffs

of STTRAM caches within these processor contexts.

II. BACKGROUND AND RELATED WORK

A. Overview of STTRAM

Similar to other resistive memories, STTRAM uses non-

volatile, resistive information storage in a cell. Fig. 1 illustrates



STTRAM’s basic structure, comprising of a magnetic tunnel

junction (MTJ) and a transistor. The MTJ cell, which is used

as the binary storage cell, contains two ferromagnetic layers

(the free and fixed layers) separated by an oxide barrier/tunnel

layer. The free layer’s direction with respect to the fixed layer

(parallel or anti-parallel) generates low resistance and high

resistance states of the MTJ cell, to indicate the ”0” or ”1”

bit. The magnetization change in the free layer is controlled

by a transistor, which allows current to flow through the MTJ

cell and creates a spin torque that switches the magnetization

in the free layer. We direct the reader to [8] for additional

low-level details of STTRAM’s basic structure.

B. Overview of STTRAM-based Analysis

There has been much prior work on the benefits of replacing

SRAM with STTRAM. For instance, Noguchi et al. [9]

showed that replacing SRAM with STT-RAM reduced the last

level cache (LLC) energy by 60%, with a 2% performance

degradation. However, STTRAM still has drawbacks that have

slowed down the adoption of STTRAM in emerging processor

architectures. Notably, STTRAMs’ high write energy and

latency overheads have attracted much research attention. One

research thread involves relaxing STTRAM’s thermal stability

to reduce the retention time and thus, the write energy and

latency [10], [5]. Alternatively, prior work has explored other

techniques such as dynamic block allocation [11] for use in

hybrid (SRAM+STTRAM) caches, wherein write-active cache

blocks are written into SRAM, while read-active blocks are

written into STTRAM. Other techniques involve identifying

and eliminating redundant writes or utilizing opportunistic

replacement policies in order to minimize the write overheads

[12], [13], [14], [15]. Recently, Kuan et al. [16] studied the

characteristics of different SPEC 2006 benchmarks [17] and

showed that the STTRAM cache energy could be further im-

proved by adapting the retention time to different applications’

characteristics, without incurring much optimization overhead.

Yan et al. [18] proposed to partition the L2 cache for

user and kernel accesses in mobile devices based on in the

variability in access patterns between these two kinds of

accesses. However, to the best of our knowledge, there is

no prior work that has extensively analyzed the benefits of

reduced retention STTRAM caches for mobile applications.

Most of the aforementioned prior works used desktop or high

performance benchmark suites like SPEC2006 and PARSEC

[19] in their analysis. Given that STTRAMs offer multiple

advantages (e.g., low leakage, high density) for resource-

constrained systems, we anticipate that STTRAM caches will
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Fig. 1: STT-RAM basic cell structure

play an important role in emerging mobile computing systems.

Furthermore, since mobile applications’ execution characteris-

tics differ drastically from traditional benchmarks, due in part

to mobile applications’ interactive nature [20], it is imperative

to analyze STTRAM caches with relevant benchmarks that

represent mobile applications’ characteristics [18].

III. METHODOLOGY

This section describes our methodology for gathering the

data for the analysis presented herein. We first describe some

design assumptions made, and thereafter, present our experi-

mental setup.

A. Design Assumptions
We assume that STTRAM caches can be fabricated as

desired with different retention times. We note that reducing

the retention time trades off other factors like the reliability

[21]. As such, there is much on-going research to address

this and other fabrication and device challenges of STTRAMs

(e.g., process variation) [22], but addressing these challenges

is outside the scope of this paper. This subsection summarizes

modeling techniques that we have employed for achieving

reduced retention times and for preventing data corruption in

reduced retention STTRAM caches.
1) Achieving Reduced Retention Times: Prior work showed

that STTRAM’s thermal stability (Δ) can be substantially

reduced to lower the write energy and latency [5]. This is

more so beneficial for storage media that don’t require long

retention, such as CPU caches. Thus, to model the STTRAM

caches analyzed in this paper, we followed the technique

proposed in [8]. We decreased the MTJ’s planar area to

obtain the desired retention times and lower thermal stability,

and used the models described in [8] to determine the MTJ

characteristics for different retention times. Based on these

characteristics, we calculated write pulse, write current, and

MTJ resistance values RAP and RP .
2) Preventing Data Corruption: A challenge that arises

after reducing STTRAM cache’s retention time is that some

cache blocks may need to remain in the cache beyond the

cache’s predetermined retention time. As such, the data could

become unstable or corrupt, and could cause incorrect results

if reused by the CPU. Thus, to prevent data corruption, we

incorporate a per-block counter to keep track of the cache

blocks’ lifetimes [6], [7]. The counter detects the expiration

of a cache block and evicts the block just before the retention

time elapses. Dirty blocks are first written to main memory

before eviction. We implemented the counter as a finite state

machine, with a clock period defined as the retention time

divided by N , where N dictates the granularity of block evic-

tion. When a block is written to the cache, the counter’s state

advances from the initial state until it reaches the maximum

state. The block is then evicted, and the counter is reset to

the initial state whenever a new fetch operation occurs for

the block. We note that this is a low overhead technique that

only requires a few bits per block. The implementation in our

experiments only required two bits per block for a four-state

(N = 4) counter.



B. Experimental Setup and Workloads

For the analysis presented herein, we used an in-house

modified version of the GEM5 simulator [23]. The modified

GEM51 models the behavior of relaxed retention STTRAM

caches with specified retention times. We modeled single- and

quad-core processors with base configurations similar to those

featured in modern mobile devices (e.g., ARM Cortex-A76).

The processor featured a 1.9GHz clock frequency, out-of-order

execution, private level one (L1) instruction and data caches,

and shared unified L2 caches (for the multicore experiments).

The L1 caches had 32KB size, 4-way set associative, and

64B line size, while the L2 cache had 2MB size, 16-way set

associative, and 64B line size.

We considered retention times ranging from 1μs to 100ms
in *10 increments. Later in our analysis, we focus on only the

1ms, 10ms, and 100ms retention times, since we found that

smaller retention times were severely under-provisioned for

all the mobile applications considered with respect to energy

and latency. To model STTRAM and SRAM cache energy, we

used NVSim [24] integrated with the GEM5 statistics. We used

the MTJ cell modeling technique proposed in [8] to obtain

essential parameters, such as the write pulse, write current, and

MTJ resistance value RAP , and then applied these parameters

to NVSim to construct the STTRAM caches.

To represent mobile applications, we used ten benchmarks

from the Moby benchmark suite [25]. Moby comprises of

a variety of popular android applications, including web

browser, social networking, email client, music player, map,

document processing, etc., all of which are selected from the

Google Play Store. The benchmarks were run in GEM5 Full

System mode using Android Ice Cream Sandwich (ICS) as the

operating system. We ran all the benchmarks to completion

after skipping the boot process using checkpointing.

IV. STTRAM-AWARE CHARACTERIZATION

In the analysis presented in this section, we focus on

STTRAM-specific insights, since the mobile applications have

been analyzed with respect to SRAM caches in prior work

[25]. We first analyze the characteristics of mobile appli-

cations in the context of STTRAM caches, with respect to

the read-write activity, cache block lifetimes, and expiration
misses; these characteristics directly affect the applications’

performance on STTRAM caches. In the following section,

we analyze the energy and performance (latency) of mobile

applications in different STTRAM cache design scenarios.

A. Read-Write Activity

An application’s read-write activity—the ratio of reads to

writes—can substantially affect the efficiency of executing

those applications on STTRAM memories. Since STTRAMs

suffer the most overheads during write operations (due to the

high write energy and latency), applications with more reads

than writes tend to benefit more from STTRAM caches. Thus,

1The modified GEM5 version can be found at www.ece.arizona.edu/tosiron/
downloads.php

Fig. 2: Read-write ratio for data cache memory accesses

Fig. 3: Percentage of persistent blocks. The results depicted

are on average across all the benchmarks.

we analyzed the read-write behavior of the mobile applications

in the context of single and multicore systems.

Figure 2 depicts the read-write ratio of data cache accesses

(in billions of instructions) of the mobile benchmarks in

a single core execution. Even though the total number of

accesses differed substantially across the different applications,

we observed that the read-write ratio was relatively stable

across the applications. Overall, the reads were, on average,

67% of total accesses, ranging from 66% to 70%.

It is possible for an application’s threads to exhibit different

read-write behaviors when they are distributed across different

cores vs when the application is running on a single core. Thus,

we also analyzed the read-write behaviors across different

threads in a multicore scenario. The trends were consistent

across all the threads running on different cores: on average

across all the benchmarks, the reads were 64% of the total

accesses, ranging from 59% to 73%. This high proportion of

reads suggests that the considered mobile applications, in gen-

eral, would consistently be less susceptible to the overheads of

STTRAM caches than applications that exhibit high variability

in the read-write ratios, such as SPEC benchmarks [6].

B. Cache Block Lifetimes and Persistence

Cache block lifetimes and reuse are interrelated and refer

to how long a cache block must remain in the cache before

it is evicted or invalidated. The cache block lifetime directly

affects an application’s retention time requirements and, in

effect, an STTRAM cache’s performance for the application.

We studied the mobile applications’ cache block lifetimes

to derive insights into their retention time requirements. We

observed that, on average, the cache block lifetimes of the

mobile applications varied across the different applications,

but mostly ranged from 1ms to 100ms. These observations

about the cache block lifetimes dictate the retention times that

perform best for the different applications, as will become

more evident in subsequent sections.
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Fig. 4: Illustration of expiration miss.

To further understand the behavior of mobile applications in

the context of STTRAM caches, we analyzed the percentage of

unique cache blocks that were persistent, given a persistence
threshold (thd). We define a block as persistent if it is loaded

into cache at least thd times after it is evicted from the cache.

The persistence of a cache block can provide a sense of how

long the block must ideally remain in the cache to service all

its future references. We analyzed the blocks’ persistence for

both instruction and data caches with thd values of 1 to 8, in

power-of-two increments.

Figure 3 depicts the persistence of instruction and data cache

blocks for persistence thresholds of 1, 2, 4, and 8. In the

instruction cache, 100% of cache blocks were loaded more

than four times, and 94% were loaded more than eight times,

revealing a high degree of persistence. In the data cache, on the

other hand, only 45% of cache blocks were loaded more than

once, and 15% were loaded more than eight times. We also

observe a much sharper drop in the blocks’ persistence as the

persistence threshold increases from 1 to 8 for the data cache.

On average across all the benchmarks, the data cache had

substantially more (72x, on average) unique blocks referenced

than the instruction cache. However, the instruction cache’s

total accesses exceeded the data cache’s by more than 2x, due

to the high persistence of the instruction cache blocks.

C. Expiration Misses

In STTRAM caches, an important characteristic that can

significantly impact the energy and latency is what we call

the expiration misses. The expiration misses are introduced

by reduced retention times and refer to the misses that result

from references to a block that was prematurely evicted due

to elapsed retention time. Figure 4 illustrates the occurrence

of an expiration miss. Assuming a block A and B reside in

the same cache set location, and a write of A, followed by a

write of B evicts A, a subsequent read request for A would

result in a conflict miss. A is then fetched and its retention

period is started. When the retention time elapses, A expires,

and a subsequent reference to A results in an expiration miss.

Figure 5 depicts the average number of expiration misses

for different retention times. The figure depicts the average

across all the benchmarks, since the trends were similar for

the different benchmarks. Unsurprisingly, as the retention

time increased, the number of expiration misses decreased

substantially. However, we observed a much sharper decrease

for the data cache than for the instruction cache. For instance,

the decrease from 1μs to 10μs, 10μs to 100μs, 100μs to 1ms,

and 1ms to 10ms were approximately 3x, 9x, 13x, and 19x,

Fig. 5: Average expiration misses for different retention times.

(a) Instruction cache (b) Data cache

Fig. 6: Instruction and data cache miss rates for different

retention times normalized to SRAM

respectively, for the instruction cache; for the data cache, the

decreases were 4x, 11x, 25x, and 51x, respectively. Also, there

were substantially more expiration misses in the instruction

cache than the data cache, and the difference increased as the

retention time increased—ranging from 1.2x at 1μs to 9x at

10ms. For both the instruction and data caches, the number

of expiration misses was 0 on the 100ms retention time.

In general, expiration misses of zero is ideal. However, we

also found that the expiration misses is an insufficient criterion

for evaluating the benefits of STTRAM cache and different

retention times for executing applications. Some applications

that have low persistence blocks as majority may tolerate

expiration misses better than others, depending on the kinds of

misses that occurred. An increase in expiration misses did not

necessarily increase energy or latency. For instance, a single

miss may accrue less energy and latency overhead than another

miss due to future accesses that depend on the miss. Overall,

we found that most of the applications were able to tolerate

some expiration misses. As such, even though 100ms resulted

in zero expiration misses, it was not necessarily the best for all

applications, as will become clear in the following sections.

V. SINGLE CORE EVALUATION

A. Cache Miss Rates and Energy

First, we analyze the benefits of STTRAM caches in the

context of a single core processor. Since mobile applications

typically execute in energy-constrained environments (i.e.,

battery-powered mobile devices), the goal is an STTRAM

cache that minimizes the energy without substantially increas-

ing the latency compared to SRAM. Thus, we first explore

how the instruction and data cache miss rates and energy



(a) Instruction cache (b) Data cache

Fig. 7: Instruction and data cache energy consumption for

different retention times normalized to SRAM

consumption change for different retention times, and in

comparison to SRAM.

Figure 6 depicts the instruction and data cache miss rates of

different retention times normalized to SRAM. As expected,

as the retention time increased, the cache miss rates trended

towards SRAM for both the instruction and data caches.

Importantly, we observed that both the data (Figure 6b)

and instruction (Figure 6a) caches exhibit high variability

in cache miss rates. That is, different applications require

different retention times—for both the instruction and data

caches—to achieve the lowest miss rates. This observation is

contrary to prior that studied SPEC benchmarks and showed

that variability only exists in the data cache, while a single

retention time sufficed for the instruction cache across all the

SPEC benchmarks [16]. We attribute our observation to the

interactive nature of mobile applications, which introduces

variability to the instruction cache behavior [20].

For the energy consumption, we observed similar trends

between the instruction and data caches. However, there were a

few differences. Figure 7 depicts the instruction and data cache

energy consumption trends for different retention times nor-

malized to SRAM. Even though lower retention times would

consume less energy per access than SRAM, the behavior

is different in the context of application execution. For both

the instruction (Figure 7a) and data (Figure 7b) caches, the

smallest retention times (1μs and 10μs) substantially increased

the cache accesses, and in effect the energy consumption.

In the instruction cache, despite the substantial energy

savings of low retention times, the cache accesses due to ex-

piration misses (Section IV-C) were so substantially increased

that the energy consumption at 1μs was more than SRAM for

some applications (e.g., 360buy, kingsoftoffice, netease,
etc.). For instance, on average2, the 1μs retention time in-
creased the energy consumption by 7.1%, and by up to

86.4% for 360buy. The average energy savings for the other

retention times ranged from 57% for 10μs to 87.3% for 1μs,

with little variance for the 100μs, 1ms, 10ms, and 100ms
retention times. For the data cache, on the other hand, none

of the retention times exceeded SRAM in energy consumption

despite the increase in cache accesses at lower retention times.

The average energy savings ranged from 55.9% for 1μs to

87% for 100ms.

2We used the geometric mean for the averages discussed in the evaluations.

(a) Cache energy (b) Execution time

Fig. 8: Benefits of variable retention times. The best retention

time for (a) energy and (b) execution time for each benchmark

is normalized to a base of 1ms, 10ms, and 100ms. The

instruction and data caches exhibited similar energy trends.

These results illustrate the variable retention time needs of

different mobile applications. Due to the cache block lifetimes

(Section IV-B), the best retention times for energy ranged from

1ms to 100ms, with a majority at 10ms—five and seven

benchmarks for the instruction and data cache, respectively.

None of the benchmarks required less than 1ms for either

cache for minimum energy.

B. Benefits of Retention Time Specialization

Prior work (e.g., [16]) suggested using a variety of cache

units with different retention times in a single chip to enable

close specialization to applications’ retention time needs.

Thus, we also explored the benefits of specializing the re-

tention time to individual benchmarks’ needs vs. using a base

configuration of 1ms, 10ms, or 100ms. We selected these

three retention times as base, since they covered the best

options for all the benchmarks. A design option for such a

variable retention time system is described in [16], wherein

the cache chip is designed with different cache units featuring

different retention times to satisfy a variety of applications’

needs. During runtime, the applications’ cache accesses are

serviced by the cache unit that best satisfies the applications’

needs as determined via sampling or a tuning algorithm.

Figure 8 depicts the benefits of such a system in a single

core. We assumed a design similar to [16], with a sampling

technique, which samples the application on each cache unit

for a sampling interval of 10M instructions to determine the

best retention time for different objective functions (energy

or latency). The energy savings were similar for both the

instruction and data caches. On average across the bench-

marks, the best retention times improved the energy for the

instruction cache by 8.5%, 20.2%, and 9.1%, compared to the

1ms, 10ms, and 100ms base retention times, respectively.

The data cache energy savings were 7%, 16%, and 5.7%,

respectively (Figure 8a is used to illustrate the cache energy

due to the similar trends). As depicted in Figure 8b, on average

across the benchmarks, the best retention times improved the

performance (execution time) by 7.3%, 17.7%, and 6.5%,

respectively.



(a) Total energy (b) Execution time

Fig. 9: Energy and execution time of STTRAM cache normal-

ized to SRAM in a quad-core system

VI. MULTICORE EVALUATION

A. Single Level Cache

Next, we explore the benefits of STTRAM caches in a

quad-core system with a single level cache. We assumed that

a single multi-threaded mobile application was running with

the threads distributed among the four cores. Similar to the

single core (Figure 6), as the retention time increased, the

miss rates trended toward SRAM. Overall, no retention time

below 1ms sufficed for any of the considered applications.

For instance, for the instruction cache, the 100μs retention

time increased the cache miss rates by 30.3%, on average,

whereas 1ms achieved similar cache miss rates to SRAM. We

observed similar behaviors for the data cache. Thus, we limit

the following discussions to only include the 1ms, 10ms, and

100ms retention times.

Just like the single core system, the multicore STTRAM

caches achieved substantial energy savings compared to

SRAM. We observed similar trends for both the instruction

and data caches, so show results for total cache energy savings.

Figure 9a depicts the total cache energy of STTRAM normal-

ized to SRAM in a quad-core system. On average across all

the benchmarks, 1ms, 10ms, and 100ms STTRAM caches

reduced the energy by 87.0%, 86.6%, and 85.2%, respectively,

compared to SRAM, with energy savings ranging from 82%

to up to 87%. The energy savings were consistent across

the benchmarks, except for baidumap, which was an outlier

on the 100ms retention time—due to its sensitivity to the

increased write access energy—with 51.3% energy savings.

The energy savings was at the expense of some execution

time overhead. Figure 9b depicts the execution time of the

quad-core system with STTRAM normalized to SRAM. On

average across all the benchmarks, the 1ms and 10ms reten-

tion times achieved similar execution times to SRAM. How-

ever, the 100ms retention time increased the execution time

by 10.8%, owing to baidumap, for which the execution time

was substantially higher (3x) than SRAM, due its sensitivity

to the increased write access latency.

B. Two-Level Cache

The results were substantially different when an L2 cache

was incorporated into the system. Figure 10 depicts the total

STTRAM L1 energy (10a), L2 energy (10b), and execution

time (10c) normalized to SRAM. When the L2 cache was

incorporated, the energy savings in the L1 caches reduced

significantly from the system without L2. As shown in Figure

10a, on average, the 1ms, 10ms, and 100ms L1 STTRAM

caches’ energy savings were 64.9%, 73.4%, and 69.3%, re-

spectively, compared to SRAM. For the L2 cache, as shown in

Figure 10b, on average, the 1ms STTRAM L2 cache reduced

the energy by 80.7% compared to SRAM. However, the 10ms
and 100ms caches increased the average energy by 4.4% and

12.1%, respectively, compared to SRAM. This was due to the

increase in write latency of the 10ms and 100ms caches.

Figure 10c depicts the execution time of the quad-core

system featuring L1 and L2 STTRAM caches normalized to

SRAM. On average, the 1ms and 100ms STTRAM caches

increased the execution time by 3.7% and 6.4%, respectively,

while the 10ms reduced the execution time by 7.6%. The

10ms cache provided a balance between the overhead of

expiration misses in the 1ms cache and the write latency of

the 100ms cache. We also note that the STTRAM system

with the L2 cache improved the execution time compared to

the system without the L2 cache by 8.2%, 12.4%, and 12.1%

for the 1ms, 10ms, and 100ms caches, respectively. These

performance improvements were at the expense of increased

energy consumption incurred by introducing the L2 cache.

For most applications, the presence of the L2 cache in-

creased the energy compared to the system without the L2

cache. However, a notable difference was that the STTRAM-

based systems suffered substantially less energy overhead from

the presence of the L2 cache than the SRAM-based systems.

Figure 11 illustrates this observation. The figure depicts the

total cache energy consumption of the quad-core system with

L2 cache normalized to the quad-core system without the

L2 cache, for both STTRAM and SRAM. For brevity, the

STTRAM results represent the averages of the energy of the

1ms, 10ms, and 100ms retention times, since the trends were

similar for the different retention times. On average across all

the benchmarks, for the STTRAM-based system, introducing

(a) Total L1 cache energy (b) L2 cache energy (c) Execution time
Fig. 10: Total STTRAM L1 and L2 cache energy and time normalized to SRAM. We assume homogeneous STTRAM retention

times across all cache levels



Fig. 11: Total cache energy of quad-core system with L2

normalized to system without L2.

the L2 cache increased the energy by 32.4%. For the SRAM-

based system, on the other hand, introducing the L2 cache

increased the energy by 6.0x. Even though the L2 cache did

not introduce as much energy in the STTRAM-based system

as it did in the SRAM-based system, system designers must

carefully consider the tradeoffs of including an L2 cache,

especially for energy-constrained systems.

VII. ASYMMETRIC STTRAM CACHE DESIGN

The results presented so far have shown that STTRAM can

provide substantial energy benefits over SRAM for mobile

applications. We have also shown that while STTRAM per-

formed well for all the mobile applications, the benefits varied

for different applications. This observation is in line with prior

research that has shown that different applications may have

different cache requirements. Thus, to further improve the

energy efficiency of STTRAM caches for mobile applications,

we propose asymmetric retention time cache as a simple design

approach for mobile device processors.

A. Proposed Retention Time Asymmetry

Figure 12 illustrates the proposed asymmetric retention

STTRAM cache design. The multicore processor is designed

using different retention times in each core such that threads

requiring similar retention times can be scheduled to their best

core during runtime by the operating system. In the private L1

instruction and data caches, different cores feature different

retention times, which are carefully chosen via design-time

exploration, to satisfy a variety of applications’ execution

requirements. Additional asymmetry can also be implemented

in lower cache levels. For example, shared caches (e.g.,

L2, L3) can be designed with different retention times in

different banks in a multi-banked design, and cache blocks are

opportunistically written to the bank that most closely matches

the blocks’ lifetimes [26]. In the following subsection, for

brevity, we limit our evaluations to the benefits of asymmetric

L1 STTRAM cache design.

B. Asymmetric Retention L1 STTRAM Cache

In the asymmetric L1 STTRAM cache, during runtime,

threads are scheduled to the core that most closely matches

the threads’ execution requirements as determined during a

profiling period. Unlike the scenario described in Section V-B

where different applications are run using different retention

times on a single chip, in the asymmetric setup, different

threads of the same application—or different applications in

(Ret0) (Ret1) (Ret2) (Ret3)

Fig. 12: Illustration of proposed asymmetric retention caches.

The L1 caches feature different retention times to satisfy a

variety of execution requirements.

a multi-programmed workload—are run on the cores with

retention times that most closely satisfy the threads’ needs.

Overall, asymmetric retention L1 STTRAM cache achieved

energy savings compared to a base homogeneous L1 STTRAM

cache without degrading the execution time. Figure 13 com-

pares the asymmetric retention design to a base homogeneous

retention time (baseline of one). The base homogeneous

retention time is chosen as the single best retention time

that achieved the lowest energy on all the cores for each

benchmark. For a stringent comparison, we used application-

specific homogeneous retention times; thus, the homogeneous

configuration changed for different benchmarks. On average,

the asymmetric design reduced the energy by 9.6% compared

to the base homogeneous retention time, with energy savings

as high as 16.0% for ttpod. In the worst case, the asymmetric

design performed similarly to the homogeneous design for

baidumap. These results suggest that that the asymmetric

design is a viable approach to further improve the energy

efficiency of STTRAM caches for mobile applications.

C. Profiling for Retention Time

To fully leverage the benefits of an asymmetric L1

STTRAM cache design, one important challenge is how to

determine the best retention time during runtime. Solving this

challenge is outside the scope of this paper; however, we

suggest a few potential solutions, some of which have been

explored by related work.

The first potential technique for determining the best re-

tention time is a sampling technique as described in prior

work [16]. The executing application is run on each core for a

brief profiling interval (e.g., 10M instructions) after which the

energy consumption is calculated. The rest of the application

is then run on the core whose cache consumed the least

energy. Sampling can be used without introducing substantial

Fig. 13: Energy consumption of asymmetric retention times

normalized to the best homogeneous retention time.



overheads if only a few retention times (e.g., four) must be

sampled. However, in larger-scale systems, other techniques

must be explored.

Unlike traditional cache configurations (cache size, line size,

and associativity), the best retention time cannot be directly

predicted using statistics obtained from performance counters

(e.g., cache miss rates). Thus, an alternative solution is to

use design-time machine learning algorithms to model the

correlation of retention time requirements to easily obtainable

statistics. These models can then be used during runtime to

directly predict the best retention time, given the execution

statistics obtained during a profiling interval. We plan to

evaluate these solutions for mobile applications in future work.

VIII. CONCLUDING REMARKS

Spin-Transfer Torque RAMs (STTRAMs) have the poten-

tial to replace SRAMs in implementing on-chip caches in

emerging mobile devices. Reduced retention STTRAMs, in

addition to area benefits, offer further energy savings potential,

if the retention times are carefully chosen to satisfy the cache

block lifetimes of executing applications. In this paper, we

explore and evaluate the benefits of STTRAM caches for

mobile applications. We characterize mobile applications from

the perspective of reduced retention STTRAM caches, and

show that STTRAMs provide much energy benefits for mobile

applications without introducing substantial latency overheads.

We also explored the benefits of an asymmetric retention

time design to provide further energy savings compared to

a homogeneous retention time design. The analysis herein

is performed without any orthogonal techniques for making

STTRAMs more efficient (e.g., limiting the number of writes,

hybrid caches), thereby minimizing runtime implementation

overheads. However, our future work includes a detailed study

of the synergy of prior techniques for energy efficient cache

hierarchies for mobile applications and evaluating different

STTRAM cell models for emerging mobile devices.
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