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Cell migration is centrally involved in a myriad of physiological
processes, including morphogenesis, wound healing, tissue repair, and
metastatic growth. The bioenergetics that underlie migratory behavior
are not fully understood, in part because of variations in cell culture
media and utilization of experimental cell culture systems that do not
model physiological connective extracellular fibrous networks. In this
study, we evaluated the bioenergetics of C2C12 myoblast migration
and force production on fibronectin-coated nanofiber scaffolds of
controlled diameter and alignment, fabricated using a nonelectrospin-
ning spinneret-based tunable engineered parameters (STEP) platform.
The contribution of various metabolic pathways to cellular migration
was determined using inhibitors of cellular respiration, ATP synthesis,
glycolysis, or glucose uptake. Despite immediate effects on oxygen
consumption, mitochondrial inhibition only modestly reduced cell
migration velocity, whereas inhibitors of glycolysis and cellular glu-
cose uptake led to striking decreases in migration. The migratory
metabolic sensitivity was modifiable based on the substrates present in
cell culture media. Cells cultured in galactose (instead of glucose)
showed substantial migratory sensitivity to mitochondrial inhibition.
We used nanonet force microscopy to determine the bioenergetic
factors responsible for single-cell force production and observed that
neither mitochondrial nor glycolytic inhibition altered single-cell
force production. These data suggest that myoblast migration is
heavily reliant on glycolysis in cells grown in conventional media.
These studies have wide-ranging implications for the causes, conse-
quences, and putative therapeutic treatments aimed at cellular migra-
tion.
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INTRODUCTION

Cell migration is involved in a vast array of pathological and
physiological processes, including cancer metastases (26), in-
flammation (7), tissue repair (22), and development (29). In
muscle tissues, myoblast migration is associated with tissue
growth and repair, with altered migratory behavior noted in

diseases such as muscular dystrophy (32, 51). Migratory cells
in vivo interact with the extracellular matrix (ECM), and little
is known on the role of mitochondrial and glycolytic pathways
affecting migration. This is in part the result of the complex
cellular environment and the challenges in recapitulating the
three-dimensional fibrous structures in laboratory settings in a
controlled and repeatable fashion (9, 24). ECM structure in-
fluences cell geometry and is involved in transmission of both
mechanical and biophysical cues to the cell (16). Cell migra-
tion has been traditionally studied using two-dimensional sub-
strates, such as flat glass cover slips, which have yielded
significant insights. Recently, three-dimensional ECM model
systems [gels (14), cell-derived matrixes (12), and micro-
grooves (20)] provide a more integrative and physiological
environment to study cellular behavior. In this study, we used
the nonelectrospinning spinneret-based tunable engineered pa-
rameters (STEP) fiber manufacturing platform (23, 43, 45) to
determine how bioenergetics in cell-three-dimensional fiber
interactions influence cell migration and cell force production.

Glycolysis and mitochondrial oxidative phosphorylation are
two major cellular metabolic processes that oxidize carbon
sources from carbohydrates, proteins, and fatty acids into ATP.
Glycolysis is a rapid yet low-yield pathway to generate ATP,
whereas mitochondrial oxidative phosphorylation generates a
substantially higher amount of ATP per mole of glucose, albeit
at a slower rate. Previous studies have examined the energetics
of cell migration and have shown that cell migration is pre-
dominantly glycolytic (4, 34). Although promising, most stud-
ies use glucose as the primary carbon source in the media, and
many migration studies are conducted in cancer cell lines that
exhibit their own unique metabolic characteristics, including
the Warburg effect (39, 51).

In this study, we set out to determine the underlying bioen-
ergetic contributors to cellular migration and force production
in myoblast muscle cells cultured on suspended and aligned
fibers. With this goal in mind, we altered carbon sources in the
culture media and used a variety of pharmacological inhibitors
to quantify the effects of various metabolic pathways on
single-cell behavior.

METHODS

Cell lines and culture. C2C12 myoblasts (ATCC) were cultured
and maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Fischer Scientific, Hampton, NH) using previously described proto-
cols (5). Cells were cultured to 70–80% confluency before running
experiments and were not used after passage 25. In glucose-enriched
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conditions, the media contained 4 mM glucose and 1 mM sodium
pyruvate. A separate subset of experiments was conducted with 10
mM galactose in the DMEM (0 mM glucose, 0 mM pyruvate, and 0
mM HEPES), supplemented with 15% FBS and 1% Penn-Strep
(Fischer Scientific) for 14 days (3–4 passages). Migration and single-
cell force production studies were performed in the same media in
which cells were cultured, with inhibitors added at specific timepoints,
as indicated below in Microscopy for migration/force analysis section.
Pyruvate was excluded from the galactose-containing media using the
rationale that this would force cells to rely on galactose catabolism, an
approach with some limitations (see discussion below in Study limi-
tations section). The osmolarity of the glucose- and galactose-en-
riched media was calculated to be around 330–335 mOsm/L. We
cannot rule out that slight differences in our media osmolarity may
have influenced the cellular growth conditions in glucose- versus
galactose-grown cells.

Mitochondrial oxygen consumption rate and extracellular acidifi-
cation rate. An Agilent Seahorse XF96 Extracellular Flux Analyzer
(Agilent Technologies, Santa Clara, CA) was used to measure oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR)
per our established techniques (5). C2C12 cells were seeded into the
XF96 plate at a density of 15,000/well and incubated at 37°C (5%
CO2) for 24 h. Before the assay was run, cells were placed in Seahorse
Base Media (pH 7.4). For OCR, a baseline respiration rate was
measured, and antimycin-A (AMA: 2 �M) was added to determine
the optimal concentration of mitochondrial respiratory (complex III)
inhibition. ECAR was determined by monitoring the changes in pH
after the sequential addition of glucose, oligomycin, and 2-deoxy-D-
glucose (2DG, injections spaced 30 min apart). Cells were allowed to
equilibrate in the SeaHorse chamber for 30 min, followed by injec-
tions of glucose (10 mM), the ATP synthase inhibitor oligomycin (2.5
�M; Millipore Sigma, Burlington, MA), and the glycolysis inhibitor
2DG (ranging from 0 to 75 mM). Glutamine (2 mM) was added to the
XF Base Media before cell seeding. Cells were seeded at the same
density as the OCR assay.

STEP fibrous substrate. We engineered a suspended network of
polystyrene nanofibers using our established nonelectrospinning
STEP technique (25, 50). Briefly, the migration scaffolds were made
of parallel fibers of ~800 nm diameter deposited ~15 �m apart, with
regions of orthogonally deposited fibers at the end. The orthogonal
regions were fused at the interjections. The force nanonets were
manufactured by depositing a layer of large-diameter fibers (~2 �m)
deposited at a spacing of ~350 �m, and, orthogonal to it, smaller-
diameter fibers (~250 nm) were deposited 10–12 �m apart.

Preparation of scaffolds. For both the migration and force studies,
scaffolds were mounted on a six-well plate (MatTek, Ashland, MA)
followed by sterilization using 3 mL of 70% ethanol for 10 min. After
ethanol was aspirated, each well was washed two times with 3 mL of
PBS. One hundred microliters of fibronectin (4 �g/mL) were then
added, and scaffolds were incubated for 1 h in a 37°C CO2 incubator
before cell seeding at a density of 100,000/mL. After the addition of
cells, scaffolds were placed in the incubator for 2 h to ensure cell
adherence to the fibrous substrate followed by addition of 3 mL of
media.

Microscopy for migration/force analysis. For migration and force
studies, time-lapse videos of cells attached to STEP nanonets were
generated using a �20 (NA � 0.8) magnification objective on a Zeiss
AxioObserver Z1 equipped with an incubation chamber. A preinhi-
bition (control) measurement was taken, and cells were imaged every
4 min for 1 h. Next, cells were incubated with two different concen-
trations of a potent glycolytic inhibitor (2DG), glycolytic flux inhib-
itor [3-bromo pyruvic acid (3-BP); Millipore Sigma, Burlington, MA],
a mitochondrial complex III inhibitor (AMA), and complex V inhib-
itor (oligomycin) for 1 h and subsequently imaged every 4 min for 6
h. Upon completion of the experiment, files were exported into Image
J (version 1.8.0_66). For migration analysis, the displacement of the
nucleus was tracked by selecting a single central point within the cell

nucleus every 12 min. Cells that reversed direction were excluded
from analysis. Cell migration velocities were then averaged every
hour. For the force studies, fiber deflection was tracked every hour and
then further analyzed using MATLAB (2017a) per our established
methods (44, 49). Briefly, the small-diameter fibers (~250 nm) were
modeled as beams with fixed-fixed boundary conditions. The error
between deflection profiles predicted from finite element model and
those obtained experimentally was minimized using an optimization
framework while iteratively updating the force values. In our model,
the force vectors originate at the paxillin focal adhesion sites and are
directed along the F-actin stress fibers. The angles made by dominant
stress fibers were determined using fixed stained fluorescent images of
F-actin.

Glucose uptake analysis. Cellular glucose uptake was performed
using our established protocols (3). C2C12 cells were plated at a
confluency of 30–40% in a MatTek six-well plate. The cells were
incubated with 1 �M mensacarcin, a compound known to influence
mitochondrial function (28, 35), for 30 min in Krebs-Henseleit buffer
containing (in mM) 118 NaCl, 24 NaHCO3, 4.8 KCl, 2 CaCl2, 1.2
MgSO4, 1.2 KH2PO4, and 10 glucose. Radioactive 2DG (1.5 Ci/mL)
and 2DG (10 �M) were placed in the media for an additional 30 min.
Glucose uptake was quantified using a scintillation counter. In these
studies, we validated that mensacarcin inhibited cellular glucose
uptake, and, accordingly, this concentration (1 �M) was used in
subsequent migration studies. Acute (within 6 h) mensacarcin
treatment was not associated with any observable cellular death/
toxicity. Longer-duration studies were conducted to determine any
dose-dependent toxicity of mensacarcin by incubating the cells as
described above for 24 h in mensacarcin doses ranging from 0.01
to 100 �M.

Lactate secretion assay. C2C12 cells assayed for lactate secretion
were grown and plated in the same manner as the glucose uptake
assays. On the day of the experiment, cells were incubated for 1 h in
Krebs-Henseleit buffer containing (in mM) 118 NaCl, 24 NaHCO3,
4.8 KCl, 2 CaCl2, 1.2 MgSO4, and 1.2 KH2PO4 and subsequently
treated with 4.5 g/L glucose with either 0, 12 mM, or 50 mM
2-deoxyglucose for 1 h. Cell culture medium was then collected and
lactate concentration was assessed via a commercially available kit
(cat. no. A-108; Biomedical Research Service Center, University of
Buffalo, State University of New York). Protein content per well was
assessed via a bicinchoninic acid assay (Thermo Fisher, Waltham,
MA) and lactate secretion was normalized to protein content.

High-resolution mitochondrial respiration. OCRs were determined
using our previously established methods (2). Mitochondria were
isolated from rat heart ventricle per our previously published proto-
cols (47). The following substrates were added in succession after
OCRs stabilized: glutamate (10 mM), malate (2 mM), rotenone (0.5
�M), succinate (10 mM), ADP (5 mM; Millipore Sigma, Burlington,
MA), and rates of respiration were normalized to milligram of
mitochondrial protein.

Statistical analysis. All data were analyzed and graphed using
GraphPad Prism (V8) software. Data are presented as means � SE,
with dot plots representing individual data points to show raw data
points, consistent with publication policies of the American Physio-
logical Society. Migration and force measurements were analyzed
using an ANOVA, followed by Tukey’s post hoc. F statics are
reported in the legends of each figure and were calculated using
Brown-Forsythe. Significance values were reported if P � 0.05.

RESULTS

Mitochondrial inhibition modestly affects cell migration. We
quantified the influence of inhibiting mitochondrial energetics
on cell migration. Despite a clear and immediate inhibition of
mitochondrial function (Fig. 1, A and B), there was a delayed
and modest effect of respiratory chain inhibition on cell mi-
gration along fiber scaffolds. Representative images at 1 h
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after inhibition (red cell, Fig. 1C) and at the end of 6 h
postinhibition (black cell, Fig. 1C) indicate discernible cell
movement despite clear inhibition of the respiratory chain
with AMA. This can also be observed in Supplemental
Video S1 (Supplemental Material is available at https://
doi.org/10.6084/m9.figshare.8256641.v1).

We then inquired how inhibition of the ATP synthase
(complex V) would alter cellular migration on our engineered
scaffolds. Once again, there was only a modest effect of cells
treated with oligomycin. Representative images at the onset of
inhibition (blue cell, Fig. 1D) and at the end of 6 h (black cell,
Fig. 1D) indicate cellular movement despite inhibiting mito-
chondrial ATP production. Quantified data in Fig. 1E indicate
the modest and delayed effects of inhibiting mitochondrial
bioenergetics on cellular migration along engineered nanofiber
scaffolds.
Glycolysis inhibition significantly affects cell migration.

Next, we determined the influence of aerobic glycolysis on cell

migratory velocity. We first validated the dose-dependent ef-
ficacy of glycolytic inhibition (Fig. 2, A and B). The highest
extent of glycolytic inhibition (reflected by a decline in ECAR
after the 2DG injection) was observed at 2DG concentrations at
or above 50 mM. Because tricarboxylic acid cycle-derived
CO2 has been shown to contribute to cellular acidification
(31), lactate secretion data were also quantified as a direct
measure of aerobic fermentation. Consistent with the ECAR
data, lactate excretion was observed after treatment with 50
mM 2DG (Fig. 2C). Informed by these results, we deter-
mined the effects of moderate (12 mM 2DG) and higher (50
mM 2DG) glycolytic inhibition on cellular migration. Time-
lapse images are presented in Fig. 2, D–F, as well as
Supplemental Video S2. High doses of 2DG that substan-
tially inhibited glycolysis essentially arrested cellular mi-
gration immediately, and this effect persisted for the dura-
tion of the 6-h procedure (Fig. 2, D, E, and G). Similar
findings were observed with a different glycolytic inhibitor
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Fig. 1. Influence of inhibiting mitochondrial energetics on cell migration. A: oxygen consumption rate (OCR) in myoblasts displaying an immediate decrease
in OCR after treatment with the complex III inhibitor antimycin-A (AMA; 2 �M). B: OCR data after 1 h of inhibition. C: representative time-lapse microscopy
overlay images after the addition of 2 �M AMA. D: representative time-lapse microscopy overlay images after the addition of 2.5 �M oligomycin. Blue/red
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(3-BP), which also led to a statistically significant inhibition
of migration (Fig. 2, F and G).

Increasing cell reliance on mitochondrial respiration with
galactose. Given that most cells grown in glucose-enriched
culture media predominantly rely on aerobic glycolysis for
energetic needs (10), we derived a series of studies where we
removed glucose and sodium pyruvate from the cell culture
media and supplemented with 10 mM galactose. This paradigm
is postulated to force cellular utilization of mitochondria for
energy generation (1, 30, 38), although this assumption has
limitations (see Study limitations).

Migratory data from galactose-grown cells are presented in
Fig. 3. Interestingly, unlike cells grown in conventional media,

cellular migratory behavior in galactose-grown cells was
quickly and substantially halted with mitochondrial inhibition.
Influence of glucose availability on cell migration. Next, we

examined the effects of glucose availability on migration
velocity. We used two parallel approaches to determine the
effects of cellular glucose catabolism on migratory velocity
(Fig. 4). The first approach used a novel compound, mensac-
arcin, a highly oxygenated polyketide isolated from Strepto-
myces bacteria (35). This compound has previously been
shown to influence mitochondrial function, although it was not
clear if this was a direct or indirect effect of the compound on
cellular metabolism. In the second approach we omitted glu-
cose from the media during the experiments.
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Migration velocity in cells treated with mensacarcin (Fig. 4,
A and B) or in the absence of glucose (Fig. 4, A and C) was
significantly slowed. Using radiolabeled substrate assays, we
found that mensacarcin substantially blunted cellular glucose
uptake (Fig. 4D). Interestingly, there were no observable ef-
fects of mensacarcin on mitochondrial function regardless of
the substrates present in isolated mitochondria (Fig. 4E), con-
firming that the immediate actions of this compound on mi-
gratory velocity appear to be “upstream” of mitochondrial
metabolism. We did not observe any discernable toxicity
effects of mensacarcin during the first 6-h window. However,
prolonged (24-h) mensacarcin exposure led to a dose-depen-
dent decrease in cell viability (Fig. 4F).
Bioenergetic contribution to single-cell force production.

We also determined the energetics of C2C12 single-cell force
production. We used fused-fiber nanonet-based nanonet force
microscopy (NFM) to measure single-cell forces (Fig. 5A).
NFM uses force vectors that originate from focal adhesion
cluster sites and are directed along tension-bearing F-actin
stress fibers (Fig. 5A; see Refs. 44 and 49). Representative
cells on nanonet force sensors in the presence of AMA and
2DG ae shown in Fig. 5, B and C. F-actin stress fiber angle
measurements from fixed immunofluorescence staining
showed slightly higher angles for cells treated with 2DG, but
the forces for both drug conditions of mitochondrial (2 �M
AMA) and glycolytic (50 mM 2DG) inhibition had an indis-
cernible effect on C2C12 force production for the 6 h following
treatment (Fig. 5, D and E). C2C12 cells grown in galactose
had similar preinhibition force measurements (94 nN; n � 11
cells) compared with conventionally grown C2C12 cells (107
nN; n � 20 cells). Cells grown in galactose detached from one
or both of the fibers after metabolic inhibition, thus preventing
force calculations.

DISCUSSION

Overview. In this study, we determined the bioenergetic
contributors to C2C12 cell migration and force production on
ECM-mimicking fibers. To the best of our knowledge, there

are several novel aspects to our study. First, we demonstrated
that, despite having rapid profound inhibitory effects on mito-
chondria, chemical inhibitors of oxidative phosphorylation had
a very modest effect on migration velocity in the time frame
studied. Second, glucose uptake and utilization appear to be
critical to support migratory behavior. Third, we found that the
bioenergetic contributors to cell migration can be modulated,
specifically by incubating cells in galactose, which sensitized
cells to mitochondrial inhibitors. Finally, we provide novel
insight into single-cell force production in our models, where
neither mitochondrial nor glycolytic inhibition altered cellular
force production during the time course examined.
Reliance on aerobic glycolysis for cellular migration in

C2C12 cells. Our observation that glucose uptake and aerobic
glycolysis were major contributors to cell migration comple-
ments recent studies across experimental models. Inhibition of
glycolysis has been shown to reduce migratory behavior in
breast cancer cells (13), endothelial cells (and subsequently
angiogenesis; see Ref. 39), and glioblastoma cells (17, 40).

Inhibition of mitochondrial bioenergetics had a modest, and
much more delayed, effect on C2C12 migration. These data are
generally consistent with other studies, indicating that, across
models, glycolytically derived ATP ostensibly generated in
close proximity to active cytoskeletal proteins is overwhelm-
ingly responsible for cellular motility (46). Interestingly, across
these studies, the metabolic substrate for cells is primarily
glucose. We next determined how carbon sources within cell
culture media influenced the susceptibility of migratory behav-
ior to bioenergetic inhibitors.
Inhibiting cellular migration by limiting glucose availability.

As it became increasingly clear that glucose-grown cells rely
heavily on glucose catabolism for migration, we tested the
direct effects of removing glucose availability on C2C12 mi-
gration. Omission of glucose had rapid and significant effects
on cellular migration, indicating that intracellular glycogen
stores are very limited, essentially exhausted within an hour as
migration was substantially blunted. We also used a new
approach to limit cellular glucose uptake with the novel com-
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pound mensacarcin. Mensacarcin is a recently described highly
oxygenated polyketide recently isolated from Streptomyces
bacteria (35) that is currently being tested in melanoma cell
models. In this study we demonstrated that mensacarcin rap-
idly reduces cellular glucose uptake without being acutely
cytotoxic, which resulted in substantial blunting of migratory
velocity. Our results suggest that glycolysis is necessary for
migration and that the carbon sources (glucose) must be con-
stantly replenished for cells to continue moving. Mensacarcin

adds to the small group of complex natural products that
influence cellular uptake (27). Its inhibitory activity in cellular
migration in these studies further supports investigation in
cancer cell lines.
Bioenergetics underlying migration in galactose-grown

cells. Cells grown in culture often have minimal energy de-
mands, mostly needing ATP for proliferation, protein turnover,
and maintenance of membrane gradients. It seems intuitive that
cultured cells rely primarily on the rapid but quantitatively
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small ATP content generated by aerobic glycolysis. Cells/
tissues in vivo (notably striated muscle) have exponentially
higher energy demands, and, accordingly, the reliance on
mitochondrial energy generation is postulated to be much

greater than quiescent cultured cells. We next determined the
bioenergetic contributors to migratory behavior in cells forced
to rely on mitochondrial oxidative phosphorylation. We cul-
tured cells in glucose/pyruvate-free media that was supple-
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mented with galactose. Galactose supplementation has previ-
ously been shown to result in cellular upregulation of mito-
chondrial proteins, heightened sensitivity to mitochondrial
toxicants, and an increased reliance on oxidative phosphoryla-
tion (11, 30, 38).

Our novel findings that galactose-supplemented cells showed
augmented migratory inhibition to mitochondrial inhibitors has
a number of implications, notably that physiological movement
of cells in vivo (versus grown in vitro) may be augmented (or
arrested) by treatments aimed at mitochondria. These data
indicate that the paradigms employed herein (physiologically
relevant ECM scaffolds coupled with substrates that require
mitochondrial oxidative phosphorylation) reflect a platform
with higher likelihood to discover mitochondria-directed ther-
apies targeting cellular migration in vivo than conventional
approaches. While promising, there are also clear limitations
with the use of galactose in vitro, which is expanded upon
below in the Study limitations section.

Bioenergetics underlying single-cell force production. We
coupled our studies on cellular migration with experiments
aimed to advance our understanding at how single cells are
able to generate forces. Cells generate force (inside out) and
also respond to forces that originate outside the extracellular
matrix (ECM) (outside in). Cells pull directionally, and these
forces are then transmitted back to the substrate by focal

adhesions (41). Because cells are able to sense and respond to
changes in fiber curvature and structural stiffness (45), deflec-
tion of these fibers can be converted to a force measurement
(18, 42, 44, 49). Our results showed that, even in the presence
of energetic inhibition, the cells were able to sustain a similar
amount of force, suggesting that tonic C2C12 force production
is a low-energy turnover process, perhaps analogous to the
“latch state” observed in other muscle types. Studies conducted
in muscle have shown that force is maintained with minimal
energy (ATP) consumption (48). We caution that our in vitro
fibrous assay attempts to recapitulate the complex native en-
vironment in which few cell attachment points (large pore size)
force cells to make contact with only a few fibers (12, 15, 19).
Further improvements in density, organization, and size of
fibers will provide a comprehensive understanding in energetic
pathways used by cells exhibiting diverse modes of cell mi-
gration in varying shapes (23) and invasion modes (single
versus collective) (43).
Study limitations. The use of both galactose and 2DG pro-

vides insight into cellular metabolic pathways, although there
are clear limitations with the use of these compounds. Galac-
tose treatment has been shown to mediate cellular glutamine
catabolism instead of galactose catabolism (36), so our studies
using galactose as a carbon substrate must be interpreted with
caution, especially since the media contained no glucose to

Fig. 5. Bioenergetic contribution to single-cell force production. A: graphical depiction of the spinneret-based tunable engineered parameters (STEP) platform
and the variables used to calculate single-cell force production based on fiber deflection. Fiber is modeled as a beam with fixed ends and discretized into N-1
elements with N nodes. Displacement in the y-direction is v and in the x-direction is u. Resultant force vectors R1 and R2 act at angles �1 and �2, respectively.
FH and FV are the horizontal and vertical components of forces, respectively., and FR is the resultant force vector. VEXP is the vector of vertical displacements
(�i) generated after interpolating the experimental vertical displacements, and VFEM is the vector of computational vertical displacements obtained from the finite
element model. B: representative image of cells treated with the complex III inhibitor antimycin-A (AMA). C: representative image of cells in 2-deoxyglucose
(2DG). D: the F-actin stress fiber angle data were quantified (*P � 0.05; n � 23–40 stress fibers per group). E: time-dependent force calculations (in nN) are
presented based on fiber deflections. There were no significant effects of either mitochondrial or glycolytic inhibition on single-cell force production (n � 10–20
cells per group). Scale bar: 50 �m. ANOVA results: F(2,93) � 4.28, P � 0.0167.

Fig. 6. Summary overview of bioenergetic
pathways studied in migration studies de-
picting the dominant contribution of glyco-
lytic energy production in driving cell mi-
gration. No significant alterations in single-
cell force production were observed by
inhibiting glycolysis or oxidative phosphoryla-
tion in the time frame studied. 2DG, 2-deoxy-
glucose; 3-BP, 3-bromopyruvic acid; AMA,
antimycin-A; ECM, extracellular matrix.
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support a UDP-glucose pool (Leloir pathway). We also did not
determine if galactose-grown cells had higher maximal glyco-
lytic flux in our studies. Furthermore, 2DG has been shown to
impair respiration and likely influences cellular metabolism via
multiple pathways (6, 21), again requiring thoughtful interpre-
tation of the data.
Summary and future directions. Our studies highlight the

importance of cellular substrates and the physical environment
as critical determinants to cellular migration. The combination
of physiologically relevant scaffolds with substrate conditions
that may better reflect energy demands in vivo have provided
new insight into the bioenergetics that underlie cellular migra-
tion. Conventionally grown cells rely largely on aerobic gly-
colysis coupled with trans-cellular glucose replenishment for
migration, whereas cells cultured in galactose become more
reliant on oxidative phosphorylation for migration. Mainte-
nance of cell force does not appear to require the similar degree
of energy turnover as migration (Fig. 6). Future studies deter-
mining cellular energy requirements for specific phases of the
cell migration cycle, determining how glycolytic proteins may
comigrate with cellular protrusions (8, 25, 33, 37), and deter-
mining the changes in bioenergetics when cells are adhered to
fibers of varying sizes and geometries will advance our under-
standing of this exciting field.
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