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Abstract— Android, the most dominant Operating System 
(OS), experiences immense popularity for smart devices for the 
last few years. Due to its’ popularity and open characteristics, 
Android OS is becoming the tempting target of malicious apps 
which can cause serious security threat to financial institutions, 
businesses, and individuals. Traditional anti-malware systems do 
not suffice to combat newly created sophisticated malware. Hence, 
there is an increasing need for automatic malware detection 
solutions to reduce the risks of malicious activities.  In recent 
years, machine learning algorithms have been showing promising 
results in classifying malware where most of the methods are 
shallow learners like Logistic Regression (LR). In this paper, we 
propose a deep learning framework, called Droid-NNet, for 
malware classification. However, our proposed method Droid-
NNet is a deep learner that outperforms existing cutting-edge 
machine learning methods. We performed all the experiments on 
two datasets (Malgenome-215 & Drebin-215) of Android apps to 
evaluate Droid-NNet. The experimental result shows the 
robustness and effectiveness of Droid-NNet.   
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I. INTRODUCTION 
Malware is malicious software (e.g. viruses, ransomware, 

trojan horses, and spyware) that can damage or execute harmful 
actions on devices [2].  Android is one of the most accepted OS 
for smart devices like phones, tablets, and other mobile devices. 
Due to its popularity and open characteristics, Android is prone 
to malware attacks, which can cause devastating effects such as 
stealing information, corrupting files, infecting entire network 
of devices [1]. Therefore, malware poses a major security threat 
to financial institutions, businesses, and individuals.  

The number of malware threats on Android-based smart 
devices are increasing exponentially and the newly created 
malware has become more sophisticated and variants. Hence, 
traditional malware detection techniques such as signature-
based detection, heuristic detection or behavior-based detection 
are not adequate to combat malicious software [2].  

 Machine learning algorithms have been showing promising 
results in classifying Android malware. The algorithms can 
overcome the limitations of traditional detection methods and 
provide a rewarding accuracy score. Machine learning 
approaches like Support Vector Machine (SVM), Logistic 
Regression (LR), and Decision Tree (DT) were previously 
proposed for malware detection [5].  

 

 

Neural networks are currently widely used for many 
applications due to the capability of highly non-linear systems 
and flexibility in architecture design. In this paper, we propose 
a deep neural network framework named Droid-NNet for 
Android malware detection. Our contributions include: (1) We 
conduct a comprehensive assessment with rigorous 
experimental setting to asses Droid-NNet performance with two 
publicly available real-world Android application datasets, and 
(2) Droid-NNet provides high weighted F-beta score, high true 
positive rate and low false positive rate based on deep neural 
network architecture which suggests that detecting Android 
malware using deep learning technique is promising.  

The rest of the paper is organized as follows: In Section II, 
we introduce the related work of Android malware detection. 
Section III describes the methodology of our proposed method 
Droid-NNet along with the other three classifiers that are 
implemented in this paper. The experimental setting and results 
are explained in Section IV. Finally, Section V concludes the 
paper.    

II. BACKGROUND & RELATED WORK 
Traditional detection techniques have been applied for 

classifying Android malware. Signature-based detection is the 
most widely used anti-malware system. It identifies a malware 
instance by searching specified byte sequences (called 
signatures) into an object to investigate matching with known 
signatures from blacklisted malicious programs. The detection 
method is not effective against “zero-day attacks” as the system 
is formed based on known malware signatures [3]. A signature-
based detection method was proposed to Android malware 
detection that leverages signature matching algorithms. An 
extension of signature-based method was proposed that 
combines anomaly-based and signature-based mechanisms. The 
combined approach achieved 96% accuracy in classifying 
malicious apps by experimenting on three different data sets [8].  

 To overcome the limitations of signature-based detection, 
behavior-based malware detection was proposed [4]. The 
behavior-based technique analyzes the behavior of a program 
when it is executing and defines the program as malware if it 
does not execute normally. However, the method affects the 
system’s performance, requires more space, and generates many 
false positives and false negatives [3]. Behavior-based Android 
malware detection method MADAM was proposed which 
simultaneously analyzes and correlates features at different 
levels. MADAM achieved 95% accuracy in classifying malware 
[8].  
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 Addressing the constraints of the traditional methods, 
researchers have proposed machine learning algorithms for 
malware classification.  A linear SVM was applied to detect 
Android malware. A set of 32 features that are highly related to 
targeted malware are used in this study and achieved an F-
measure of 0.954 [13]. A multilevel classifier fusion approach, 
DroidFusion, was proposed for Android malware detection. 
DroidFusion contains two layers wherein the upper layer, a 
regular classifier is used, and a ranking based classifier was then 
applied to reassign the label of test data. DroidFusion 
experimented with four different datasets including 
Malgenome-215 and Drebin-215 datasets. For Malgenome-215 
data, DroidFusion achieved 0.9840 weighted F-measure score 
while 0.9872 weighted F-measure was obtained for the Drebin-
215 dataset.  

 Neural Network for Android Detection of Malware 
(NADM) was proposed leveraging two fully connected hidden 
layers. NADM was implemented on large-scale data that 
contains more than 1 million samples and achieved an average 
90% accuracy in detecting malware [16].  Random Forest (RF) 
classifier and deep neural network with three different 
architecture (2, 4, and 7 layers) implemented on a dataset where 
11,308 malicious files were collected from the Malacia project 
and 2,819 benign files were collected from “virustotal.com” 
[14]. The paper also presented four more different 
experimentation with varying the number of features which 
were extracted using autoencoder with different threshold 
approach. Irrespective of feature sets, RF outperformed the deep 
network and obtained 99% accuracy. DeepDetector, an Android 
malware detection method based on deep learning, was 
proposed that can detect malicious applications and fine-grained 
malware families at the same time. DeepDetector was tested 
with varying hidden layers and a different number of neurons 
and a maximum 94% F1 score was obtained in malware 
classification.  

 Our proposed method Droid-NNet, a neural network 
framework, was optimized with different parameters and 
hyperparameters and experimented with two real-world Android 
applications datasets. The experimental results show the 
robustness and effectiveness of Droid-NNet.   

III. METHODOLOGY 

A. Support Vector Machine 
SVM is a well-known supervised learning technique to 

analyze high-dimensional data. SVM searches for an optimal 
hyperplane in the input space that categorizes two classes given  

 
Fig. 1: Hyperplane for an SVM trained with samples from two classes 

 
Fig. 2: An example of sigmoid function 

training data. Therefore, the hyperplane is used to classify new 
data [6]. Fig. 1 illustrates a hyperplane for SVM that separates 
two classes.  

B. Decision Tree  
Decision Tree is a well-known supervised machine learning 

technique for classification. It builds a classification model in 
the shape of a tree structure through a process known as binary 
recursive partitioning [7]. It iteratively splits the data into 
smaller and smaller subsets (branches) until each of the branches 
achieves homogeneous partitions. Therefore, it finally creates a 
tree with decision nodes and leaf nodes where the decision nodes 
contain two or more branches and leaf node assigns a class or 
decision. 

C. Logistic Regression 
Logistic regression is a classical classifier of supervised 

learning. It utilizes the sigmoid function to squeeze the output 
of a linear equation between 0 and 1. Thus, the output of logistic 
regression can be used to predict the probability of a class [6]. 
Fig. 2 shows an example of a sigmoid function.   

D. Neural Network 
At present, neural networks are widely used for many 

applications due to the capability of highly non-linear systems 
and flexibility in architecture design. The neural network’s basic 
architecture contains input layers, one or more hidden layers, 
and output layers where each of the layers includes a certain 
number of neurons. Weighted linear combination of neurons of 
a layer is computed and then used as input to another neuron in 
the succeeding layer. To capture the non-linearity of the data, a 
non-linear function, called activation function, can be applied to 
the weighted sums of neurons. All the weights of a neural 
network are set to random values at the initial stage of training. 
Data is fed into the input layer of the network, then it travels 
through the hidden layers, and finally output is produced in the 
output layer. The network continually updates the weights 
applying backpropagation based on the output and desired target 
of the neural network. The network consequently reduces the 
error between the output and target in each iteration [17]. In the 
process, a loss function is used to  

 
Fig. 3: Architecture of Droid-NNet 
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calculate the error of the network and the error is minimized by 
applying optimization function during backpropagation. 

In this paper, we propose a neural network framework 
named Droid-NNet. Fig. 3 shows the architecture of Droid-NNet 
which is a neural network containing three layers: input layer, 
hidden layer, and output layer. A threshold is applied to the 
output layer to classify the instances as malware apps or benign 
apps. The input layer contains 215 neurons (number of features 
of samples), the hidden layer contains 25 neurons and the output 
layer includes only one neuron since the problem is a binary 
classification. We applied binary cross-entropy as loss function 
and Adaptive Moment Estimation (Adam) optimizer for 
calculating error and updating the parameters.  

IV. EXPERIMENT & RESULTS 

A. Dataset specification 
We performed all experiments on two datasets 

(Malgenome-215 & Drebin-215) of Android apps to evaluate 
Droid NNet. Each of the dataset’s details are shown in Table I. 
Drebin-215 dataset is publicly available and Malgenome-215 
dataset is collected from the supplementary section of [10]. 
Malgenome-215 dataset has a total of 3,799 app samples, where 
2,539 and 1,260 are benign and malware samples, respectively 
from the Android malware genome project [11]. The Drebin-
215 dataset consists of 15,036 samples of apps in which 9,476 
are benign and the remaining 5,560 are malware from the 
Drebin project [12]. Both datasets contain 215 features.  

B. Model evaluation metrics  
Both datasets we utilized in this paper are unbalanced. The 

proportion among benign and malware samples in the 
Malgenome-215 dataset is approximately 66% and 33% 
respectively. In the Drebin-215 dataset, the ratio of benign and 
malware samples is approximately 63%: 37%. Therefore, we 
ought not to consider the "accuracy" metric to assess the 
performance of the models. Thus, the following performance 
measurements are considered in the assessment of the models 
[10].  

1. TPR (True Positive Rate / Recall): The proportion of 
correctly identified malware apps (TP) to the total 
number of malware applications (TP+FN). TP (True 
Positive) is the quantity of correct predictions while FN 
(False Negative) is the amount of malware 
misclassified.  

��� �
��
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Table I: Details of Datasets 

Datasets 
Number 
of apps 

Number 
of benign 
apps 

Number 
of 

malware 
apps 

Number 
of 

features 

Malgenome
-215 

3,799 2,539 1,260 215 

Drebin-215 15,036 9,476 5,560 215 

 

2. FPR (False Positive Rate): The percentage of benign 
apps incorrectly classified (FN) to the total number of 
benign apps (TN+FP). FP (False Positive) is the 
number of incorrect predictions of benign and TN 
(True Negative) is the number of correct predictions of 
benign samples.  

��� �
��
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3. Precision: The proportion of the correctly identified 
benign apps to all the predicted benign apps.  

�	
��
��� �
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4. ���
��	
: The harmonic mean of Precision and Recall. 
���
��	
  is a better performance metric than the 
accuracy metric for imbalanced data [10].  
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The F-beta score is the weighted harmonic mean of 
precision of recall where F-beta value at 1 means 
perfect score (perfect precision and recall) and 0 is 
worst.   
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When � � � , F-beta is ���
��	
��The �  parameter 
determines the weight of precision and recall. � � � 
can be picked, if we want to give more weight to 
precision, while  � � � values give more weight to 
recall. Since we want to identify maximum number of 
malware apps, we give more weights to recall and 
utilize � � �� values. Hence, the F-beta score is 
considered the principal performance metric to 
evaluate models in our experiments.   

5. Wilcoxon rank-sum test: Wilcoxon rank-sum test 
evaluates the statistical significance of the model 
performance. The test checks the null hypothesis that 
two measurement sets are taken from the same 
distribution while the alternative hypothesis is that 
measurements are more likely to be higher in one 
study than those in the other. 

C. Experimental Design 
We evaluated our model performance by comparing it with 

the performance of LR, SVM, and DT methods. Both datasets 
were randomly split into training and test data while 
maintaining the apps class ratio between benign and malware 
samples. Trained data was used to train each of the models we 
experimented with while test data was used for evaluating the 
performance of the models. To verify the consistency of the 
model, we experimented with each of the models with 10-fold 
cross-validation.  

The SVM, LR, and DT classifiers were applied to both 
datasets for comparing results with our proposed Droid-NNet. 
The algorithms were implemented using Python scikit-learn 
library with available hyperparameter options.  ‘rbf’ (Radial 
Basis Kernel) were chosen for SVM, ‘gini’ index was chosen 
for DT, and L2 penalty was chosen for LR classifier.  
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Our proposed method is a deep neural network. We used 
‘ReLu’ activation function in the hidden layer and ‘sigmoid’ 
function in the output layer. ‘Adam’ and ‘binary cross-entropy’ 
were used for optimizer and loss function respectively.  We 
implemented an early stopping method to stop training once the 
model performance stops improving on the test data. We 
selected validation loss to be monitored for early stopping and 
set minimum delta to �
  ! (checks minimum change in the 
monitored quantity to qualify as an improvement) and patience 
to 10 (checks number of epochs that produced the monitored 
quantity with no improvement after which training will be 
stopped). Mini-batch gradient descent was considered and a 
batch size of 64 was chosen to train the model. The initial 
learning rate was set to 0.001 with a decay of �
  " in every 
epoch. The #�  regularization technique was applied to the 
output of the hidden layer to prevent the network from 
overfitting and the regularization parameter ‘lambda’ was set to 
0.001. The ‘beta’ parameter in calculating the F-beta score was 
set to 10 to give more weight to recall so that the maximum 
number of malware apps can be identified. All the parameters 
and hyperparameters used in the model were optimized by grid 
search. 

The experiments are carried out on a Windows 10 Intel(R) 
Core (TM) i7-8565U CPU 1.80 GHz with 16.0 GB RAM and 
NVIDIA GeForce MX250 2GB GDDR5. We implemented our 
experiment on Keras framework in Python 3.7 version.   

D. Experimental results  

We compared the results of Droid-NNet with the other three 
classifiers. The F-beta score was used to evaluate the models’ 
performance. 10-fold cross-validation was performed for each 
of the experiments. The same configuration was applied to each 
Malgenome-215 and Drebin-215 datasets for maintaining 
consistency. 

1)   Performance evaluation on Malgenome-215 dataset: 
We trained our proposed network Droid-NNet for 100 epochs 
with early stopping.  All the classifiers were trained on 90% of 
data and tested on the remaining 10% of the data. Table II 
illustrates the experimental results of different methods on this 
dataset. Droid-NNet outperformed other methods and achieved 
the highest F-beta score of 0.988157±0.007, whereas the 
second-highest was achieved by LR with 0.988859±0.006 F-
beta score. The findings of FPR and TPR for Droid-NNet are 
also higher than other approaches. Table III presents the 
statistical significance of the performance of the models. Droid-
NNet demonstrates a statistically better F-beta score than SVM, 
and DT, though superiority of Droid-NNet over LR was not 
statistically significant considering 0.05 significance level. The 
boxplot in Fig. 4 shows the distribution of F-beta score of ten 
folds.  

 

 

 

 

Table II: Experimental results of different classifiers on Malgenome-215 
dataset 

 
 
 
 
 
 

Table III: Statistical significance of Droid-NNet on Malgenome-215 dataset  

Classifiers Statistical significance 
Droid-NNet vs. DT 0.0031971*

Droid-NNet vs. SVM 0.00407199*

Droid-NNet vs. LR 0.0881054
 

*Statistical significance considering 0.05 significance level 
 

 
 

Fig. 4: Boxplot of F-beta score of ten folds on Malgenome-215 dataset 

2)   Performance evaluation on Drebin-215 dataset: The 
training and testing split ratio for all the classifiers  was 90%: 
10%. The experimental results of implementing our proposed 
network Droid-NNet and the other three algorithms on Drebin-
215 dataset are illustrated in Table IV. Droid-NNet 
outperformed all the other three classifiers considering the F-
beta score, FPR, and TPR. From Table IV, Droid-NNet had the 
maximum F-beta score (0.988157±0.002) whilst the nearest F-
beta score was 0.978311±0.002 obtained by the DT classifier. 
Fig. 5 presents the F-beta score achieved in each of the tenfold 
by all the classifiers. The boxplot shows that Droid-NNet 
performed better than other classifiers with better consistency. 
Table V illustrates that the Droid-NNet provides a statistically 
significant higher F-beta score than the other three classifiers 
considering 0.05 significance level.  

 
Table IV: Experimental results of different classifiers on Drebin-215 dataset 

Classifiers F-beta  TPR FPR
DT 0.978311 0.973176 0.018679

SVM 0.972919 0.953373 0.015619

LR 0.977644 0.962733 0.013613
Droid-NNet 0.988157 0.979297 0.006648

 

 

 

Classifiers F-beta  TPR FPR
DT 0.978411 0.973810 0.019305

SVM 0.981564 0.961111 0.008280

LR 0.988859 0.976190 0.004850
Droid-NNet 0.992623 0.988095 0.005124
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Table V: Statistical significance of Droid-NNet on Drebin-215 dataset 

Classifiers Statistical significance 
Droid-NNet vs. DT 0.000157052* 

Droid-NNet vs. SVM 0.000157052* 

Droid-NNet vs. LR 0.000506541* 
 

*Statistical significance considering 0.05 significance level 
 

 
 

Fig. 5: Boxplot of F-beta score of ten folds on Drebin-215 dataset 

V. CONCLUSION 
Malware is increasingly posing a serious security threat to 

Android OS smart device users. It is essential to develop an 
automatic malware detection solution to reduce the risks of 
malicious activities. In this paper, we proposed a neural 
network-based framework, Droid-NNet, for Android malware 
detection. We train the Droid-NNet with #�  regularization 
technique, early stopping criteria and mini-batch gradient 
descent method. We performed all the experiments on two 
datasets (Malgenome-215 & Drebin-215) of Android apps to 
evaluate Droid-NNet. We evaluated Droid-NNet performance 
by comparing it with the performance of LR, SVM, and DT 
algorithms. The experimental results show that Droid-NNet 
outperformed other methods and achieved the highest F-beta 
score for both the dataset.  
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