
 978-1-7281-0858-2/19/$31.00 © 2019 IEEE

Droid-NNet: Deep Learning Neural Network for
Android Malware Detection

Abstract— Android, the most dominant Operating System
(OS), experiences immense popularity for smart devices for the
last few years. Due to its’ popularity and open characteristics,
Android OS is becoming the tempting target of malicious apps
which can cause serious security threat to financial institutions,
businesses, and individuals. Traditional anti-malware systems do
not suffice to combat newly created sophisticated malware. Hence,
there is an increasing need for automatic malware detection
solutions to reduce the risks of malicious activities. In recent
years, machine learning algorithms have been showing promising
results in classifying malware where most of the methods are
shallow learners like Logistic Regression (LR). In this paper, we
propose a deep learning framework, called Droid-NNet, for
malware classification. However, our proposed method Droid-
NNet is a deep learner that outperforms existing cutting-edge
machine learning methods. We performed all the experiments on
two datasets (Malgenome-215 & Drebin-215) of Android apps to
evaluate Droid-NNet. The experimental result shows the
robustness and effectiveness of Droid-NNet.

Keywords—neural network, android malware, android security

I. INTRODUCTION
Malware is malicious software (e.g. viruses, ransomware,

trojan horses, and spyware) that can damage or execute harmful
actions on devices [2]. Android is one of the most accepted OS
for smart devices like phones, tablets, and other mobile devices.
Due to its popularity and open characteristics, Android is prone
to malware attacks, which can cause devastating effects such as
stealing information, corrupting files, infecting entire network
of devices [1]. Therefore, malware poses a major security threat
to financial institutions, businesses, and individuals.

The number of malware threats on Android-based smart
devices are increasing exponentially and the newly created
malware has become more sophisticated and variants. Hence,
traditional malware detection techniques such as signature-
based detection, heuristic detection or behavior-based detection
are not adequate to combat malicious software [2].

 Machine learning algorithms have been showing promising
results in classifying Android malware. The algorithms can
overcome the limitations of traditional detection methods and
provide a rewarding accuracy score. Machine learning
approaches like Support Vector Machine (SVM), Logistic
Regression (LR), and Decision Tree (DT) were previously
proposed for malware detection [5].

Neural networks are currently widely used for many
applications due to the capability of highly non-linear systems
and flexibility in architecture design. In this paper, we propose
a deep neural network framework named Droid-NNet for
Android malware detection. Our contributions include: (1) We
conduct a comprehensive assessment with rigorous
experimental setting to asses Droid-NNet performance with two
publicly available real-world Android application datasets, and
(2) Droid-NNet provides high weighted F-beta score, high true
positive rate and low false positive rate based on deep neural
network architecture which suggests that detecting Android
malware using deep learning technique is promising.

The rest of the paper is organized as follows: In Section II,
we introduce the related work of Android malware detection.
Section III describes the methodology of our proposed method
Droid-NNet along with the other three classifiers that are
implemented in this paper. The experimental setting and results
are explained in Section IV. Finally, Section V concludes the
paper.

II. BACKGROUND & RELATED WORK
Traditional detection techniques have been applied for

classifying Android malware. Signature-based detection is the
most widely used anti-malware system. It identifies a malware
instance by searching specified byte sequences (called
signatures) into an object to investigate matching with known
signatures from blacklisted malicious programs. The detection
method is not effective against “zero-day attacks” as the system
is formed based on known malware signatures [3]. A signature-
based detection method was proposed to Android malware
detection that leverages signature matching algorithms. An
extension of signature-based method was proposed that
combines anomaly-based and signature-based mechanisms. The
combined approach achieved 96% accuracy in classifying
malicious apps by experimenting on three different data sets [8].

 To overcome the limitations of signature-based detection,
behavior-based malware detection was proposed [4]. The
behavior-based technique analyzes the behavior of a program
when it is executing and defines the program as malware if it
does not execute normally. However, the method affects the
system’s performance, requires more space, and generates many
false positives and false negatives [3]. Behavior-based Android
malware detection method MADAM was proposed which
simultaneously analyzes and correlates features at different
levels. MADAM achieved 95% accuracy in classifying malware
[8].

Mohammad Masum
Analytics and Data Science Institute

Kennesaw State University
Kennesaw, USA

mmasum@students.kennesaw.edu

Hossain Shahriar
Department of Information Technology

Kennesaw State University
Marietta, USA

hshahria@kennesaw.edu

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 5789

Authorized licensed use limited to: Kennesaw State University. Downloaded on May 25,2020 at 22:25:49 UTC from IEEE Xplore. Restrictions apply.

 Addressing the constraints of the traditional methods,
researchers have proposed machine learning algorithms for
malware classification. A linear SVM was applied to detect
Android malware. A set of 32 features that are highly related to
targeted malware are used in this study and achieved an F-
measure of 0.954 [13]. A multilevel classifier fusion approach,
DroidFusion, was proposed for Android malware detection.
DroidFusion contains two layers wherein the upper layer, a
regular classifier is used, and a ranking based classifier was then
applied to reassign the label of test data. DroidFusion
experimented with four different datasets including
Malgenome-215 and Drebin-215 datasets. For Malgenome-215
data, DroidFusion achieved 0.9840 weighted F-measure score
while 0.9872 weighted F-measure was obtained for the Drebin-
215 dataset.

 Neural Network for Android Detection of Malware
(NADM) was proposed leveraging two fully connected hidden
layers. NADM was implemented on large-scale data that
contains more than 1 million samples and achieved an average
90% accuracy in detecting malware [16]. Random Forest (RF)
classifier and deep neural network with three different
architecture (2, 4, and 7 layers) implemented on a dataset where
11,308 malicious files were collected from the Malacia project
and 2,819 benign files were collected from “virustotal.com”
[14]. The paper also presented four more different
experimentation with varying the number of features which
were extracted using autoencoder with different threshold
approach. Irrespective of feature sets, RF outperformed the deep
network and obtained 99% accuracy. DeepDetector, an Android
malware detection method based on deep learning, was
proposed that can detect malicious applications and fine-grained
malware families at the same time. DeepDetector was tested
with varying hidden layers and a different number of neurons
and a maximum 94% F1 score was obtained in malware
classification.

 Our proposed method Droid-NNet, a neural network
framework, was optimized with different parameters and
hyperparameters and experimented with two real-world Android
applications datasets. The experimental results show the
robustness and effectiveness of Droid-NNet.

III. METHODOLOGY

A. Support Vector Machine
SVM is a well-known supervised learning technique to

analyze high-dimensional data. SVM searches for an optimal
hyperplane in the input space that categorizes two classes given

Fig. 1: Hyperplane for an SVM trained with samples from two classes

Fig. 2: An example of sigmoid function

training data. Therefore, the hyperplane is used to classify new
data [6]. Fig. 1 illustrates a hyperplane for SVM that separates
two classes.

B. Decision Tree
Decision Tree is a well-known supervised machine learning

technique for classification. It builds a classification model in
the shape of a tree structure through a process known as binary
recursive partitioning [7]. It iteratively splits the data into
smaller and smaller subsets (branches) until each of the branches
achieves homogeneous partitions. Therefore, it finally creates a
tree with decision nodes and leaf nodes where the decision nodes
contain two or more branches and leaf node assigns a class or
decision.

C. Logistic Regression
Logistic regression is a classical classifier of supervised

learning. It utilizes the sigmoid function to squeeze the output
of a linear equation between 0 and 1. Thus, the output of logistic
regression can be used to predict the probability of a class [6].
Fig. 2 shows an example of a sigmoid function.

D. Neural Network
At present, neural networks are widely used for many

applications due to the capability of highly non-linear systems
and flexibility in architecture design. The neural network’s basic
architecture contains input layers, one or more hidden layers,
and output layers where each of the layers includes a certain
number of neurons. Weighted linear combination of neurons of
a layer is computed and then used as input to another neuron in
the succeeding layer. To capture the non-linearity of the data, a
non-linear function, called activation function, can be applied to
the weighted sums of neurons. All the weights of a neural
network are set to random values at the initial stage of training.
Data is fed into the input layer of the network, then it travels
through the hidden layers, and finally output is produced in the
output layer. The network continually updates the weights
applying backpropagation based on the output and desired target
of the neural network. The network consequently reduces the
error between the output and target in each iteration [17]. In the
process, a loss function is used to

Fig. 3: Architecture of Droid-NNet

5790

Authorized licensed use limited to: Kennesaw State University. Downloaded on May 25,2020 at 22:25:49 UTC from IEEE Xplore. Restrictions apply.

calculate the error of the network and the error is minimized by
applying optimization function during backpropagation.

In this paper, we propose a neural network framework
named Droid-NNet. Fig. 3 shows the architecture of Droid-NNet
which is a neural network containing three layers: input layer,
hidden layer, and output layer. A threshold is applied to the
output layer to classify the instances as malware apps or benign
apps. The input layer contains 215 neurons (number of features
of samples), the hidden layer contains 25 neurons and the output
layer includes only one neuron since the problem is a binary
classification. We applied binary cross-entropy as loss function
and Adaptive Moment Estimation (Adam) optimizer for
calculating error and updating the parameters.

IV. EXPERIMENT & RESULTS

A. Dataset specification
We performed all experiments on two datasets

(Malgenome-215 & Drebin-215) of Android apps to evaluate
Droid NNet. Each of the dataset’s details are shown in Table I.
Drebin-215 dataset is publicly available and Malgenome-215
dataset is collected from the supplementary section of [10].
Malgenome-215 dataset has a total of 3,799 app samples, where
2,539 and 1,260 are benign and malware samples, respectively
from the Android malware genome project [11]. The Drebin-
215 dataset consists of 15,036 samples of apps in which 9,476
are benign and the remaining 5,560 are malware from the
Drebin project [12]. Both datasets contain 215 features.

B. Model evaluation metrics
Both datasets we utilized in this paper are unbalanced. The

proportion among benign and malware samples in the
Malgenome-215 dataset is approximately 66% and 33%
respectively. In the Drebin-215 dataset, the ratio of benign and
malware samples is approximately 63%: 37%. Therefore, we
ought not to consider the "accuracy" metric to assess the
performance of the models. Thus, the following performance
measurements are considered in the assessment of the models
[10].

1. TPR (True Positive Rate / Recall): The proportion of
correctly identified malware apps (TP) to the total
number of malware applications (TP+FN). TP (True
Positive) is the quantity of correct predictions while FN
(False Negative) is the amount of malware
misclassified.

��� �
��

�� � ��

Table I: Details of Datasets

Datasets
Number
of apps

Number
of benign
apps

Number
of

malware
apps

Number
of

features

Malgenome
-215

3,799 2,539 1,260 215

Drebin-215 15,036 9,476 5,560 215

2. FPR (False Positive Rate): The percentage of benign
apps incorrectly classified (FN) to the total number of
benign apps (TN+FP). FP (False Positive) is the
number of incorrect predictions of benign and TN
(True Negative) is the number of correct predictions of
benign samples.

��� �
��

�� � ��

3. Precision: The proportion of the correctly identified
benign apps to all the predicted benign apps.

�	
��
��� �
��

�� � ��

4. ���
��	
: The harmonic mean of Precision and Recall.
���
��	
 is a better performance metric than the
accuracy metric for imbalanced data [10].

�� � � �
�	
��
���� � �
����

�	
��
��� � �
����

The F-beta score is the weighted harmonic mean of
precision of recall where F-beta value at 1 means
perfect score (perfect precision and recall) and 0 is
worst.

�� � �� � �
��

�	
��
���� � �
����

��� � ��	
��
���� � �
����

When � � � , F-beta is ���
��	
��The � parameter
determines the weight of precision and recall. � � �
can be picked, if we want to give more weight to
precision, while � � � values give more weight to
recall. Since we want to identify maximum number of
malware apps, we give more weights to recall and
utilize � � �� values. Hence, the F-beta score is
considered the principal performance metric to
evaluate models in our experiments.

5. Wilcoxon rank-sum test: Wilcoxon rank-sum test
evaluates the statistical significance of the model
performance. The test checks the null hypothesis that
two measurement sets are taken from the same
distribution while the alternative hypothesis is that
measurements are more likely to be higher in one
study than those in the other.

C. Experimental Design
We evaluated our model performance by comparing it with

the performance of LR, SVM, and DT methods. Both datasets
were randomly split into training and test data while
maintaining the apps class ratio between benign and malware
samples. Trained data was used to train each of the models we
experimented with while test data was used for evaluating the
performance of the models. To verify the consistency of the
model, we experimented with each of the models with 10-fold
cross-validation.

The SVM, LR, and DT classifiers were applied to both
datasets for comparing results with our proposed Droid-NNet.
The algorithms were implemented using Python scikit-learn
library with available hyperparameter options. ‘rbf’ (Radial
Basis Kernel) were chosen for SVM, ‘gini’ index was chosen
for DT, and L2 penalty was chosen for LR classifier.

5791

Authorized licensed use limited to: Kennesaw State University. Downloaded on May 25,2020 at 22:25:49 UTC from IEEE Xplore. Restrictions apply.

Our proposed method is a deep neural network. We used
‘ReLu’ activation function in the hidden layer and ‘sigmoid’
function in the output layer. ‘Adam’ and ‘binary cross-entropy’
were used for optimizer and loss function respectively. We
implemented an early stopping method to stop training once the
model performance stops improving on the test data. We
selected validation loss to be monitored for early stopping and
set minimum delta to �
 ! (checks minimum change in the
monitored quantity to qualify as an improvement) and patience
to 10 (checks number of epochs that produced the monitored
quantity with no improvement after which training will be
stopped). Mini-batch gradient descent was considered and a
batch size of 64 was chosen to train the model. The initial
learning rate was set to 0.001 with a decay of �
 " in every
epoch. The #� regularization technique was applied to the
output of the hidden layer to prevent the network from
overfitting and the regularization parameter ‘lambda’ was set to
0.001. The ‘beta’ parameter in calculating the F-beta score was
set to 10 to give more weight to recall so that the maximum
number of malware apps can be identified. All the parameters
and hyperparameters used in the model were optimized by grid
search.

The experiments are carried out on a Windows 10 Intel(R)
Core (TM) i7-8565U CPU 1.80 GHz with 16.0 GB RAM and
NVIDIA GeForce MX250 2GB GDDR5. We implemented our
experiment on Keras framework in Python 3.7 version.

D. Experimental results

We compared the results of Droid-NNet with the other three
classifiers. The F-beta score was used to evaluate the models’
performance. 10-fold cross-validation was performed for each
of the experiments. The same configuration was applied to each
Malgenome-215 and Drebin-215 datasets for maintaining
consistency.

1) Performance evaluation on Malgenome-215 dataset:
We trained our proposed network Droid-NNet for 100 epochs
with early stopping. All the classifiers were trained on 90% of
data and tested on the remaining 10% of the data. Table II
illustrates the experimental results of different methods on this
dataset. Droid-NNet outperformed other methods and achieved
the highest F-beta score of 0.988157±0.007, whereas the
second-highest was achieved by LR with 0.988859±0.006 F-
beta score. The findings of FPR and TPR for Droid-NNet are
also higher than other approaches. Table III presents the
statistical significance of the performance of the models. Droid-
NNet demonstrates a statistically better F-beta score than SVM,
and DT, though superiority of Droid-NNet over LR was not
statistically significant considering 0.05 significance level. The
boxplot in Fig. 4 shows the distribution of F-beta score of ten
folds.

Table II: Experimental results of different classifiers on Malgenome-215
dataset

Table III: Statistical significance of Droid-NNet on Malgenome-215 dataset

Classifiers Statistical significance
Droid-NNet vs. DT 0.0031971*

Droid-NNet vs. SVM 0.00407199*

Droid-NNet vs. LR 0.0881054

*Statistical significance considering 0.05 significance level

Fig. 4: Boxplot of F-beta score of ten folds on Malgenome-215 dataset

2) Performance evaluation on Drebin-215 dataset: The
training and testing split ratio for all the classifiers was 90%:
10%. The experimental results of implementing our proposed
network Droid-NNet and the other three algorithms on Drebin-
215 dataset are illustrated in Table IV. Droid-NNet
outperformed all the other three classifiers considering the F-
beta score, FPR, and TPR. From Table IV, Droid-NNet had the
maximum F-beta score (0.988157±0.002) whilst the nearest F-
beta score was 0.978311±0.002 obtained by the DT classifier.
Fig. 5 presents the F-beta score achieved in each of the tenfold
by all the classifiers. The boxplot shows that Droid-NNet
performed better than other classifiers with better consistency.
Table V illustrates that the Droid-NNet provides a statistically
significant higher F-beta score than the other three classifiers
considering 0.05 significance level.

Table IV: Experimental results of different classifiers on Drebin-215 dataset

Classifiers F-beta TPR FPR
DT 0.978311 0.973176 0.018679

SVM 0.972919 0.953373 0.015619

LR 0.977644 0.962733 0.013613
Droid-NNet 0.988157 0.979297 0.006648

Classifiers F-beta TPR FPR
DT 0.978411 0.973810 0.019305

SVM 0.981564 0.961111 0.008280

LR 0.988859 0.976190 0.004850
Droid-NNet 0.992623 0.988095 0.005124

5792

Authorized licensed use limited to: Kennesaw State University. Downloaded on May 25,2020 at 22:25:49 UTC from IEEE Xplore. Restrictions apply.

Table V: Statistical significance of Droid-NNet on Drebin-215 dataset

Classifiers Statistical significance
Droid-NNet vs. DT 0.000157052*

Droid-NNet vs. SVM 0.000157052*

Droid-NNet vs. LR 0.000506541*

*Statistical significance considering 0.05 significance level

Fig. 5: Boxplot of F-beta score of ten folds on Drebin-215 dataset

V. CONCLUSION
Malware is increasingly posing a serious security threat to

Android OS smart device users. It is essential to develop an
automatic malware detection solution to reduce the risks of
malicious activities. In this paper, we proposed a neural
network-based framework, Droid-NNet, for Android malware
detection. We train the Droid-NNet with #� regularization
technique, early stopping criteria and mini-batch gradient
descent method. We performed all the experiments on two
datasets (Malgenome-215 & Drebin-215) of Android apps to
evaluate Droid-NNet. We evaluated Droid-NNet performance
by comparing it with the performance of LR, SVM, and DT
algorithms. The experimental results show that Droid-NNet
outperformed other methods and achieved the highest F-beta
score for both the dataset.

REFERENCES
[1] Kakavand, Mohsen & Dabbagh, Mohammad & Dehghantanha, Ali.

(2018). Application of Machine Learning Algorithms for Android
Malware Detection. 32-36. 10.1145/3293475.3293489.

[2] Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D., Wang, Y., &
Iqbal, F. (2018, February). Malware classification with deep
convolutional neural networks. In 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS) (pp. 1-
5). IEEE.

[3] Mujumdar, A., Masiwal, G., & Meshram, D. B. (2013). Analysis of
signature-based and behavior-based anti-malware
approaches. International Journal of Advanced Research in Computer
Engineering and Technology (IJARCET), 2(6).

[4] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October).
Crowdroid: behavior-based malware detection system for Android.
In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices (pp. 15-26). ACM.

[5] Gavrilut, D., Cimpoesu, M., Anton, D. and Ciortuz, L. (2009) Malware
Detection Using Machine Learning, Proceedings of the International
Multiconference on Computer Science and Information Technology ,
735-741.

[6] Afrin, R., Haddad, H., & Shahriar, H. (2019, July). Supervised and
Unsupervised-Based Analytics of Intensive Care Unit Data. In 2019 IEEE
43rd Annual Computer Software and Applications Conference
(COMPSAC) (Vol. 2, pp. 417-422). IEEE.

[7] Liu, Z., Zeng, Y., Yan, Y., Zhang, P., & Wang, Y. (2017). Machine
Learning for Analyzing Malware. Journal of Cyber Security and
Mobility, 6(3), 227-244.

[8] Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam:
Effective and efficient behavior-based Android malware detection and
prevention. IEEE Transactions on Dependable and Secure
Computing, 15(1), 83-97.

[9] Yu, W., Zhang, H., Ge, L., & Hardy, R. (2013, December). On behavior-
based detection of malware on Android platform. In 2013 IEEE global
communications conference (GLOBECOM) (pp. 814-819). IEEE.

[10] Yerima, Suleiman Y., and Sakir Sezer. "Droidfusion: A novel multilevel
classifier fusion approach for Android malware detection." IEEE
transactions on cybernetics 49.2 (2018): 453-466.

[11] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. IEEE Symp. Security Privacy (SP), San
Francisco, CA, USA, May 2012, pp. 95–109.

[12] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin:
Efficient and explainable detection of Android malware in your pocket,”
in Proc. 20th Annu. Netw. Distrib. Syst. Security Symp. (NDSS), San
Diego, CA, USA, Feb. 2014, pp. 1–15.

[13] Ham, H. S., Kim, H. H., Kim, M. S., & Choi, M. J. (2014). Linear SVM-
based Android malware detection for reliable IoT services. Journal of
Applied Mathematics, 2014.

[14] Sewak, M., Sahay, S. K., & Rathore, H. (2018, June). Comparison of deep
learning and the classical machine learning algorithm for the malware
detection. In 2018 19th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD) (pp. 293-296). IEEE.

[15] Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam:
Effective and efficient behavior-based Android malware detection and
prevention. IEEE Transactions on Dependable and Secure
Computing, 15(1), 83-97.

[16] Duc, N. V., & Giang, P. T. (2018, December). NADM: Neural Network
for Android Detection Malware. In Proceedings of the Ninth
International Symposium on Information and Communication
Technology (pp. 449-455). ACM.

[17] Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., & Hossain, M. A.
(2018). A P2P Botnet detection scheme based on decision tree and
adaptive multilayer neural networks. Neural Computing and
Applications, 29(11), 991-1004.

5793

Authorized licensed use limited to: Kennesaw State University. Downloaded on May 25,2020 at 22:25:49 UTC from IEEE Xplore. Restrictions apply.

