

PENALIZED CONIC RELAXATIONS FOR QUADRATICALLY-CONSTRAINED QUADRATIC PROGRAMMING *

RAMTIN MADANI, MOHSEN KHEIRANDISHFARD, JAVAD LAVAEI, AND ALPER ATAMTÜRK

Abstract. In this paper, we give a new penalized conic programming relaxation for non-convex quadratically-constrained quadratic programs (QCQPs). Incorporating the penalty terms into the objective of convex relaxations enables the retrieval of feasible and near-optimal solutions for non-convex QCQPs. We introduce a generalized linear independence constraint qualification (GLICQ) criterion and prove that any GLICQ regular point that is sufficiently close to the feasible set can be used to construct an appropriate penalty term and recover a feasible solution. As a consequence, we describe a simple sequential penalized conic optimization procedure that preserves feasibility and aims to improve the objective of the solutions at each iteration. Numerical experiments on large-scale system identification problems as well as benchmark instances from the QPLIB library of quadratic programming demonstrate the ability of the proposed penalized conic relaxations in finding near-optimal solutions for non-convex QCQPs.

Key words. Semidefinite programming, nonconvex optimization, nonlinear programming, penalty methods

AMS subject classifications. 90C22, 90C26, 90C30

1. Introduction. Semi-definite programming (SDP) [39] has been critically important for constructing strong convex relaxations of non-convex optimization problems. In particular, forming hierarchies of SDP relaxations [11, 19, 25–28, 35, 40, 42] has been shown to yield the convex hull of non-convex problems. Geomans and Williamson [15] show that the SDP relaxation objective is within 14% of the optimal value for the MAXCUT problem. SDP relaxations have played a central role in developing numerous approximation algorithms for non-convex optimization problems [16, 17, 29, 38, 47–50]. They are also used within branch-and-bound algorithms [8, 10] for non-convex optimization. One of the primary challenges for the application of SDP hierarchies beyond small-scale instances is the rapid growth of dimensionality. In response, some studies have exploited sparsity and structural patterns to boost efficiency [5, 22, 23, 36, 37]. Another direction, pursued in [1, 2, 7, 31, 34, 41], is to use lower-complexity relaxations as alternatives to computationally demanding semidefinite programming relaxations. A relaxation is said to be *exact* if it has the same optimal objective value as the original problem. The exactness of the SDP relaxation has been verified for a variety of problems [9, 22, 24, 44, 45].

1.1. Contributions. This paper is concerned with non-convex quadratically-constrained quadratic programs (QCQPs) for which SDP or its low order conic relaxations are inexact. In order to recover feasible points to QCQP, we incorporate a linear penalty term into the objective of the conic relaxations and show that feasible and near-globally optimal points can be obtained for the original QCQP by solving the resulting penalized conic relaxation problem. The penalty term is based on an arbitrary initial point for the original QCQP. Our first result states that if the initial point is feasible and satisfies the linear independence constraint qualification (LICQ) condition, then the penalized conic relaxation has a unique solution that is feasible for the original QCQP and its objective value is not worse than that of the initial point. Our second result states that if the initial point is infeasible, but instead is sufficiently

*Ramtin Madani and Mohsen Kheirandishfard are with the Department of Electrical Engineering, the University of Texas at Arlington, Arlington, TX 76019, USA (emails: ramtin.madani@uta.edu, mohsen.kheirandishfard@uta.edu). Javad Lavaei, and Alper Atamtürk are with the Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, USA (emails: lavaei@berkeley.edu, atamturk@berkeley.edu). This work is in part supported by the NSF Award 1809454, a University of Texas System STARs award. Javad Lavaei has been supported by an AFOSR YIP Award and ONR N000141712933. Alper Atamtürk has been supported, in part, by grant FA9550-10-1-0168 from the Office of the Assistant Secretary of Defense for Research and Engineering and the NSF Award 1807260.

40 close to the feasible set and satisfies a generalized LICQ condition, then the unique optimal
 41 solution to the penalized relaxation is feasible for the QCQP. Lastly, motivated by these re-
 42 sults on constructing a feasible solution, we propose a sequential procedure for QCQP and
 43 demonstrate its performance on benchmark instances from the QPLIB library as well as on
 44 large-scale system identification problems.

45 The success of sequential frameworks and penalized cone programming relaxations in
 46 solving bilinear matrix inequalities (BMIs) is demonstrated in [18, 20, 21]. In [4], it is shown
 47 that penalized SDP relaxation is able to find the roots of overdetermined systems of poly-
 48 nomial equations. Moreover, the incorporation of penalty terms into the objective of conic
 49 relaxations is proven to be effective for solving non-convex optimization problems in power
 50 systems [30, 33, 51, 52]. These papers show that penalizing certain physical quantities in
 51 power network optimization problems such as reactive power loss and thermal loss facilitates
 52 the recovery of feasible points from convex relaxations. In [18], a sequential framework is
 53 introduced for solving BMIs without theoretical guarantees. Papers [20, 21] investigate this
 54 approach further and offer theoretical results through the notion of generalized Mangasarian-
 55 Fromovitz regularity condition. However, these conditions are not valid in the presence of
 56 equality constraints and for general QCQPs. Motivated by the success of penalized relax-
 57 ations, this paper offers a theoretical framework for penalized conic relaxation of general
 58 QCQP and, by extension, polynomial optimization problems.

59 **1.2. Notations.** Throughout the paper, scalars, vectors, and matrices are respectively
 60 shown by italic letters, lower-case italic bold letters, and upper-case italic bold letters. The
 61 symbols \mathbb{R} , \mathbb{R}^n , and $\mathbb{R}^{n \times m}$ denote the sets of real scalars, real vectors of size n , and real
 62 matrices of size $n \times m$, respectively. The set of $n \times n$ real symmetric matrices is shown
 63 by \mathbb{S}_n . For a given vector \mathbf{a} and a matrix \mathbf{A} , the symbols a_i and A_{ij} respectively indicate
 64 the i^{th} element of \mathbf{a} and the $(i, j)^{\text{th}}$ element of \mathbf{A} . The symbols $\langle \cdot, \cdot \rangle$ and $\|\cdot\|_F$ denote the
 65 Frobenius inner product and norm of matrices, respectively. The notation $|\cdot|$ represents either
 66 the absolute value operator or cardinality of a set, depending on the context. The notation $\|\cdot\|_2$
 67 denotes the ℓ_2 norm of vectors, matrices, and matrix pencils. The $n \times n$ identity matrix is
 68 denoted by \mathbf{I}_n . The origin of \mathbb{R}^n is denoted by $\mathbf{0}_n$. The superscript $(\cdot)^\top$ and the symbol $\text{tr}\{\cdot\}$
 69 represent the transpose and trace operators, respectively. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the
 70 notation $\sigma_{\min}(\mathbf{A})$ represents the minimum singular value of \mathbf{A} . The notation $\mathbf{A} \succeq 0$ means
 71 that \mathbf{A} is symmetric positive-semidefinite. For a pair of $n \times n$ symmetric matrices (\mathbf{A}, \mathbf{B}) and
 72 proper cone $\mathcal{C} \subseteq \mathbb{S}_n$, the notation $\mathbf{A} \succeq_{\mathcal{C}} \mathbf{B}$ means that $\mathbf{A} - \mathbf{B} \in \mathcal{C}$, whereas $\mathbf{A} \succ_{\mathcal{C}} \mathbf{B}$ means
 73 that $\mathbf{A} - \mathbf{B}$ belongs to the interior of \mathcal{C} . Given an integer $r > 1$, define \mathcal{C}_r as the cone of $n \times n$
 74 symmetric matrices whose $r \times r$ principal submatrices are all positive semidefinite. Similarly,
 75 define \mathcal{C}_r^* as the dual cone of \mathcal{C}_r , i.e., the cone of $n \times n$ symmetric matrices with factor-width
 76 bounded by r . Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and two sets of positive integers \mathcal{S}_1 and \mathcal{S}_2 , define
 77 $\mathbf{A}\{\mathcal{S}_1, \mathcal{S}_2\}$ as the submatrix of \mathbf{A} obtained by removing all rows of \mathbf{A} whose indices do not
 78 belong to \mathcal{S}_1 , and all columns of \mathbf{A} whose indices do not belong to \mathcal{S}_2 . Moreover, define
 79 $\mathbf{A}\{\mathcal{S}_1\}$ as the submatrix of \mathbf{A} obtained by removing all rows of \mathbf{A} that do not belong to \mathcal{S}_1 .
 80 Given a vector $\mathbf{a} \in \mathbb{R}^n$ and a set $\mathcal{F} \subseteq \mathbb{R}^n$, define $d_{\mathcal{F}}(\mathbf{a})$ as the minimum distance between \mathbf{a}
 81 and members of \mathcal{F} . Given a pair of integers (n, r) , the binomial coefficient “ n choose r ” is
 82 denoted by C_r^n . The notations $\nabla_{\mathbf{x}} f(\mathbf{a})$ and $\nabla_{\mathbf{x}}^2 f(\mathbf{a})$, respectively, represent the gradient and
 83 Hessian of the function f , with respect to the vector \mathbf{x} , at a point \mathbf{a} .

84 **1.3. Outline.** The remainder of the paper is organized as follows. In section 2, we re-
 85 view the basic lifted and RLT formulations as well as the standard conic relaxations. Section 3
 86 presents the main results of the paper: the penalized conic relaxation, its theoretical analysis
 87 on producing a feasible solution along with a generalized linear independence constraint qual-
 88 ification, and finally the sequential penalization procedure. In Section 4 we present numerical

89 experiments to test the effectiveness of the sequential penalization approach for non-convex
 90 QCQPs from the library of quadratic programming instances (QPLIB) as well as large-scale
 91 system identification problems. Finally, we conclude in section 5 with a few final remarks.

92 **2. Preliminaries.** In this section, we review the lifting and reformulation-linearization
 93 as well as the standard convex relaxations of QCQP that are necessary for the development of
 94 the main results on penalized conic relaxations in Section 3. Consider a general quadratically-
 95 constrained quadratic program (QCQP):

96 (2.1a)
$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \quad q_0(\mathbf{x})$$

97 (2.1b)
$$\text{s.t.} \quad q_k(\mathbf{x}) \leq 0, \quad k \in \mathcal{I}$$

98 (2.1c)
$$q_k(\mathbf{x}) = 0, \quad k \in \mathcal{E},$$

100 where \mathcal{I} and \mathcal{E} index the sets of inequality and equality constraints, respectively. For every
 101 $k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}$, $q_k : \mathbb{R}^n \rightarrow \mathbb{R}$ is a quadratic function of the form $q_k(\mathbf{x}) \triangleq \mathbf{x}^\top \mathbf{A}_k \mathbf{x} +$
 102 $2\mathbf{b}_k^\top \mathbf{x} + c_k$, where $\mathbf{A}_k \in \mathbb{S}_n$, $\mathbf{b}_k \in \mathbb{R}^n$, and $c_k \in \mathbb{R}$. Denote \mathcal{F} as the feasible set of the
 103 QCQP (2.1a)–(2.1c). To derive the optimality conditions for a given point, it is useful to
 104 define the Jacobian matrix of the constraint functions.

105 **DEFINITION 2.1** (Jacobian Matrix). *For every $\hat{\mathbf{x}} \in \mathbb{R}^n$, the Jacobian matrix $\mathcal{J}(\hat{\mathbf{x}})$ for
 106 the constraint functions $\{q_k\}_{k \in \mathcal{I} \cup \mathcal{E}}$ is*

107 (2.2a)
$$\mathcal{J}(\hat{\mathbf{x}}) \triangleq [\nabla_{\mathbf{x}} q_1(\hat{\mathbf{x}}), \dots, \nabla_{\mathbf{x}} q_{|\mathcal{I} \cup \mathcal{E}|}(\hat{\mathbf{x}})]^\top.$$

109 *For every $\mathcal{Q} \subseteq \mathcal{I} \cup \mathcal{E}$, define $\mathcal{J}_{\mathcal{Q}}(\hat{\mathbf{x}})$ as the submatrix of $\mathcal{J}(\hat{\mathbf{x}})$ resulting from the rows that
 110 belong to \mathcal{Q} .*

111 Given a feasible point for the QCQP (2.1a)–(2.1c), the well-known linear independence
 112 constraint qualification (LICQ) condition can be used as a regularity criterion.

113 **DEFINITION 2.2** (LICQ Condition). *A feasible point $\hat{\mathbf{x}} \in \mathcal{F}$ is LICQ regular if the rows
 114 of $\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})$ are linearly independent, where $\hat{\mathcal{B}} \triangleq \{k \in \mathcal{I} \cup \mathcal{E} \mid q_k(\hat{\mathbf{x}}) = 0\}$ denotes the set of
 115 binding constraints at $\hat{\mathbf{x}}$.*

116 Finding a feasible point for the QCQP (2.1a)–(2.1c), however, is NP-hard as the Boolean
 117 Satisfiability Problem (SAT) is a special case. Therefore, in Section 3, we introduce a notion of
 118 generalized LICQ as a regularity condition for both feasible and infeasible points.

119 **2.1. Lifting and reformulation-linearization.** A common approach for tackling the
 120 non-convex QCQP (2.1a)–(2.1c) introduces an auxiliary variable $\mathbf{X} \in \mathbb{S}_n$ accounting for
 121 $\mathbf{x}\mathbf{x}^\top$. Then, the objective function (2.1a) and constraints (2.1b)–(2.1c) can be written as
 122 linear functions of \mathbf{x} and \mathbf{X} . For every $k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}$, define $\bar{q}_k : \mathbb{R}^n \times \mathbb{S}_n \rightarrow \mathbb{R}$ as

123 (2.3)
$$\bar{q}_k(\mathbf{x}, \mathbf{X}) \triangleq \langle \mathbf{A}_k, \mathbf{X} \rangle + 2\mathbf{b}_k^\top \mathbf{x} + c_k.$$

125 Moreover, in the presence of affine constraints, the reformulation-linearization technique
 126 (RLT) of Sherali and Adams [43] can be used to produce additional inequalities with re-
 127 spect to \mathbf{x} and \mathbf{X} to strengthen convex relaxations. Define \mathcal{L} as the set of affine constraints in
 128 the QCQP (2.1a)–(2.1c), i.e., $\mathcal{L} \triangleq \{k \in \mathcal{I} \cup \mathcal{E} \mid \mathbf{A}_k = \mathbf{0}_n\}$. Define also

129 (2.4a)
$$\mathbf{H} \triangleq [\mathbf{B}\{\mathcal{L} \cap \mathcal{I}\}^\top, \mathbf{B}\{\mathcal{L} \cap \mathcal{E}\}^\top, -\mathbf{B}\{\mathcal{L} \cap \mathcal{E}\}^\top]^\top,$$

130 (2.4b)
$$\mathbf{h} \triangleq [\mathbf{c}\{\mathcal{L} \cap \mathcal{I}\}^\top, \mathbf{c}\{\mathcal{L} \cap \mathcal{E}\}^\top, -\mathbf{c}\{\mathcal{L} \cap \mathcal{E}\}^\top]^\top,$$

132 where $\mathbf{B} \triangleq [\mathbf{b}_1, \dots, \mathbf{b}_{|\mathcal{I} \cap \mathcal{E}|}]^\top$ and $\mathbf{c} \triangleq [c_1, \dots, c_{|\mathcal{I} \cap \mathcal{E}|}]^\top$. Every $\mathbf{x} \in \mathcal{F}$ satisfies

$$133 \quad (2.5) \quad \mathbf{H}\mathbf{x} + \mathbf{h} \leq 0,$$

135 and, as a result, all elements of the matrix

$$136 \quad (2.6) \quad \mathbf{H}\mathbf{x}\mathbf{x}^\top \mathbf{H}^\top + \mathbf{h}\mathbf{x}^\top \mathbf{H}^\top + \mathbf{H}\mathbf{x}\mathbf{h}^\top + \mathbf{h}\mathbf{h}^\top$$

138 are nonnegative if \mathbf{x} is feasible. Hence, the inequality

$$139 \quad (2.7) \quad \mathbf{e}_i^\top \mathbf{V}(\mathbf{x}, \mathbf{x}\mathbf{x}^\top) \mathbf{e}_j \geq 0$$

141 holds true for every $\mathbf{x} \in \mathcal{F}$ and $(i, j) \in \mathcal{H} \times \mathcal{H}$, where $\mathbf{V} : \mathbb{R}^n \times \mathbb{S}_n \rightarrow \mathbb{S}_{|\mathcal{H}|}$ is defined as

$$142 \quad (2.8) \quad \mathbf{V}(\mathbf{x}, \mathbf{X}) \triangleq \mathbf{H}\mathbf{X}\mathbf{H}^\top + \mathbf{h}\mathbf{x}^\top \mathbf{H}^\top + \mathbf{H}\mathbf{x}\mathbf{h}^\top + \mathbf{h}\mathbf{h}^\top,$$

144 $\mathcal{H} \triangleq \{1, 2, \dots, |\mathcal{L} \cap \mathcal{I}| + 2|\mathcal{L} \cap \mathcal{E}|\}$, and $\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{H}|}$ denote the standard bases in $\mathbb{R}^{|\mathcal{H}|}$.

145 **2.2. Convex relaxation.** Consider the following relaxation of QCQP (2.1a)–(2.1c):

$$146 \quad (2.9a) \quad \underset{\mathbf{x} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{S}_n}{\text{minimize}} \quad \bar{q}_0(\mathbf{x}, \mathbf{X})$$

$$147 \quad (2.9b) \quad \text{s.t.} \quad \bar{q}_k(\mathbf{x}, \mathbf{X}) \leq 0, \quad k \in \mathcal{I}$$

$$148 \quad (2.9c) \quad \bar{q}_k(\mathbf{x}, \mathbf{X}) = 0, \quad k \in \mathcal{E}$$

$$149 \quad (2.9d) \quad \mathbf{X} - \mathbf{x}\mathbf{x}^\top \succeq_{\mathcal{C}_r} 0$$

$$150 \quad (2.9e) \quad \mathbf{e}_i^\top \mathbf{V}(\mathbf{x}, \mathbf{X}) \mathbf{e}_j \geq 0, \quad (i, j) \in \mathcal{V}$$

152 where $\mathcal{V} \subseteq \mathcal{H} \times \mathcal{H}$ is a selection of RLT inequalities, the additional conic constraint (2.9d) is
153 a convex relaxation of the equation $\mathbf{X} = \mathbf{x}\mathbf{x}^\top$ and

$$154 \quad (2.10) \quad \mathcal{C}_r \triangleq \{\mathbf{Y} \mid \mathbf{Y}\{\mathcal{K}, \mathcal{K}\} \succeq 0, \quad \forall \mathcal{K} \subseteq \{1, \dots, n\} \wedge |\mathcal{K}| = r\}.$$

156 If $\mathcal{V} \neq \emptyset$, we refer to the convex problem (2.9a)–(2.9e) as the r th-order conic programming
157 relaxation of the QCQP (2.1a)–(2.1c) with RLT inequalities from \mathcal{V} . The choices $r = n$
158 and $r = 2$ yield the well-known semidefinite programming (SDP) and second-order conic
159 programming (SOCP) relaxations, respectively.

160 If the relaxed problem (2.9a)–(2.9e) has an optimal solution $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ that satisfies $\hat{\mathbf{X}} =$
161 $\hat{\mathbf{x}}\hat{\mathbf{x}}^\top$, then the relaxation is said to be *exact* and $\hat{\mathbf{x}}$ is a globally optimal solution for the QCQP
162 (2.1a)–(2.1c). The next section offers a penalization method for addressing the case where
163 the relaxation is not exact.

164 **3. Penalized conic relaxation.** If the conic relaxation problem (2.9a)–(2.9e) is not ex-
165 act, the resulting solution is not necessarily feasible for the original QCQP (2.1a)–(2.1c). In
166 this case, we use an initial point $\hat{\mathbf{x}} \in \mathbb{R}^n$ (either feasible or infeasible) to revise the objective
167 function, resulting in a *penalized conic programming relaxation* of the form:

$$168 \quad (3.1a) \quad \underset{\mathbf{x} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{S}_n}{\text{minimize}} \quad \bar{q}_0(\mathbf{x}, \mathbf{X}) + \eta(\text{tr}\{\mathbf{X}\} - 2\hat{\mathbf{x}}^\top \mathbf{x} + \hat{\mathbf{x}}^\top \hat{\mathbf{x}})$$

$$169 \quad (3.1b) \quad \text{s.t.} \quad \bar{q}_k(\mathbf{x}, \mathbf{X}) \leq 0, \quad k \in \mathcal{I}$$

$$170 \quad (3.1c) \quad \bar{q}_k(\mathbf{x}, \mathbf{X}) = 0, \quad k \in \mathcal{E}$$

$$171 \quad (3.1d) \quad \mathbf{X} - \mathbf{x}\mathbf{x}^\top \succeq_{\mathcal{C}_r} 0$$

$$172 \quad (3.1e) \quad \mathbf{e}_i^\top \mathbf{V}(\mathbf{x}, \mathbf{X}) \mathbf{e}_j \geq 0, \quad (i, j) \in \mathcal{V},$$

174 where $\eta > 0$ is a fixed penalty parameter. Note that the penalty term $\text{tr}\{\mathbf{X}\} - 2\hat{\mathbf{x}}^\top \mathbf{x} + \hat{\mathbf{x}}^\top \hat{\mathbf{x}}$
175 equals zero for $\mathbf{X} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$. The penalization is said to be *tight* if problem (3.1a)–(3.1e)
176 has a unique optimal solution $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ that satisfies $\hat{\mathbf{X}} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$. In the next section, we give
177 conditions under which the penalized conic programming relaxation is tight.

178 **3.1. Theoretical analysis.** The following theorem guarantees that if $\hat{\mathbf{x}}$ is feasible and
 179 satisfies the LICQ regularity condition (in Section 2), then the solution of (3.1a)–(3.1e) is
 180 guaranteed to be feasible for the QCQP (2.1a)–(2.1c) for an appropriate choice of η .

181 **THEOREM 3.1.** *Let $\hat{\mathbf{x}}$ be a feasible point for the QCQP (2.1a)–(2.1b) that satisfies the
 182 LICQ condition. For sufficiently large $\eta > 0$, the convex problem (3.1a)–(3.1e) has a unique
 183 optimal solution $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ such that $\hat{\mathbf{X}} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$. Moreover, $\hat{\mathbf{x}}$ is feasible for (2.1a)–(2.1c) and
 184 satisfies $q_0(\hat{\mathbf{x}}) \leq q_0(\hat{\mathbf{x}})$.*

185 If $\hat{\mathbf{x}}$ is not feasible, but satisfies a generalized LICQ regularity condition, introduced
 186 below, and is close enough to the feasible set \mathcal{F} , then the penalization is still tight for large
 187 enough $\eta > 0$. This result is described formally in Theorem 3.4. First, we define a distance
 188 measure from an arbitrary point in \mathbb{R}^n to the feasible set of the problem.

189 **DEFINITION 3.2** (Feasibility Distance). *The feasibility distance function $d_{\mathcal{F}} : \mathbb{R}^n \rightarrow \mathbb{R}$
 190 is defined as*

$$191 \quad (3.2) \quad d_{\mathcal{F}}(\hat{\mathbf{x}}) \triangleq \min\{\|\mathbf{x} - \hat{\mathbf{x}}\|_2 \mid \mathbf{x} \in \mathcal{F}\}.$$

193 **DEFINITION 3.3** (Generalized LICQ Condition). *For every $\hat{\mathbf{x}} \in \mathbb{R}^n$, the set of quasi-
 194 binding constraints is defined as*

$$195 \quad (3.3) \quad \hat{\mathcal{B}} \triangleq \mathcal{E} \cup \left\{ k \in \mathcal{I} \mid q_k(\hat{\mathbf{x}}) + \|\nabla q_k(\hat{\mathbf{x}})\|_2 d_{\mathcal{F}}(\hat{\mathbf{x}}) + \frac{\|\nabla^2 q_k(\hat{\mathbf{x}})\|_2}{2} d_{\mathcal{F}}(\hat{\mathbf{x}})^2 \geq 0 \right\}.$$

197 *The point $\hat{\mathbf{x}}$ is said to satisfy the GLICQ condition if the rows of $\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})$ are linearly independent. Moreover, the singularity function $s : \mathbb{R}^n \rightarrow \mathbb{R}$ is defined as*

$$199 \quad (3.4) \quad s(\hat{\mathbf{x}}) \triangleq \begin{cases} \sigma_{\min}(\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})) & \text{if } \hat{\mathbf{x}} \text{ satisfies GLICQ} \\ 0 & \text{otherwise,} \end{cases}$$

201 *where $\sigma_{\min}(\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}}))$ denotes the smallest singular value of $\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})$.*

202 Observe that if $\hat{\mathbf{x}}$ is feasible, then $d_{\mathcal{F}}(\hat{\mathbf{x}}) = 0$, and GLICQ condition reduces to the LICQ
 203 condition. Moreover, GLICQ is satisfied if and only if $s(\hat{\mathbf{x}}) > 0$.

204 **THEOREM 3.4.** *Let $\hat{\mathbf{x}} \in \mathbb{R}^n$ satisfy the GLICQ condition for the QCQP (2.1a)–(2.1b),
 205 and assume that*

$$206 \quad (3.5) \quad d_{\mathcal{F}}(\hat{\mathbf{x}}) < \frac{s(\hat{\mathbf{x}})}{2(1 + C_{n-1,r-1})\|\mathbf{P}\|_2}.$$

208 *If η is sufficiently large, then the convex problem (3.1a)–(3.1e) has a unique optimal solution
 209 $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ such that $\hat{\mathbf{X}} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$ and $\hat{\mathbf{x}}$ is feasible for (2.1a)–(2.1c).*

210 The rest of this section is devoted to proving Theorems 3.1 and 3.4. The next definition
 211 introduces the notion of matrix pencil corresponding to the QCQP (2.1a)–(2.1c), which will
 212 be used as a sensitivity measure.

213 **DEFINITION 3.5** (Pencil Norm). *For the QCQP (2.1a)–(2.1c), define the corresponding
 214 matrix pencil $\mathbf{P} : \mathbb{R}^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|} \rightarrow \mathbb{S}_n$ as follows:*

$$215 \quad (3.6) \quad \mathbf{P}(\gamma, \mu) \triangleq \sum_{k \in \mathcal{I}} \gamma_k \mathbf{A}_k + \sum_{k \in \mathcal{E}} \mu_k \mathbf{A}_k.$$

217 *Moreover, define the pencil norm $\|\mathbf{P}\|_2$ as*

$$218 \quad (3.7) \quad \|\mathbf{P}\|_2 \triangleq \max \{ \|\mathbf{P}(\gamma, \mu)\|_2 \mid \|\gamma\|_2^2 + \|\mu\|_2^2 = 1 \},$$

220 *which is upperbounded by $\sqrt{\sum_{k \in \mathcal{I} \cup \mathcal{E}} \|\mathbf{A}_k\|_2^2}$.*

221 In order to prove Theorems 3.1 and 3.4, it is convenient to consider the following opti-
 222 mization problem:

223 (3.8a)
$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \quad q_0(\mathbf{x}) + \eta \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$$

224 (3.8b)
$$\text{s.t.} \quad q_k(\mathbf{x}) \leq 0, \quad k \in \mathcal{I}$$

225 (3.8c)
$$q_k(\mathbf{x}) = 0, \quad k \in \mathcal{E}.$$

227 Consider an $\alpha > 0$ for which the inequality

228 (3.9)
$$|q_0(\mathbf{x})| \leq \alpha \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \alpha,$$

230 is satisfied for every $\mathbf{x} \in \mathbb{R}^n$. If $\eta > \alpha$, then the objective function (3.8a) is lower bounded
 231 by $-\alpha$ and its optimal value is attainable within any closed and nonempty subset of \mathbb{R}^n .

232 LEMMA 3.6. *Given an arbitrary $\hat{\mathbf{x}} \in \mathbb{R}^n$ and $\varepsilon > 0$, for sufficiently large $\eta > 0$, every
 233 optimal solution \mathbf{x}^* of the problem (3.8a)-(3.8c) satisfies*

234 (3.10)
$$0 \leq \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2 - d_{\mathcal{F}}(\hat{\mathbf{x}}) \leq \varepsilon.$$

236 *Proof.* Consider an optimal solution \mathbf{x}^* . Due to Definition 3.2, the distance between $\hat{\mathbf{x}}$
 237 and every member of \mathcal{F} is not less than $d_{\mathcal{F}}(\hat{\mathbf{x}})$, which concludes the left side of (3.10). Let
 238 \mathbf{x}_d be an arbitrary member of the set $\{\mathbf{x} \in \mathcal{F} \mid \|\mathbf{x} - \hat{\mathbf{x}}\|_2 = d_{\mathcal{F}}(\hat{\mathbf{x}})\}$. Due to the optimality
 239 of \mathbf{x}^* , we have

240 (3.11)
$$q_0(\hat{\mathbf{x}}) + \eta \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 \leq q_0(\mathbf{x}_d) + \eta \|\mathbf{x}_d - \hat{\mathbf{x}}\|_2^2.$$

242 According to the inequalities (3.11) and (3.9), one can write

243 (3.12a)
$$(\eta - \alpha) \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 - \alpha \leq (\eta + \alpha) \|\mathbf{x}_d - \hat{\mathbf{x}}\|_2^2 + \alpha$$

244 (3.12b)
$$\Rightarrow \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 \leq \|\mathbf{x}_d - \hat{\mathbf{x}}\|_2^2 + \frac{2\alpha}{\eta - \alpha} (1 + \|\mathbf{x}_d - \hat{\mathbf{x}}\|_2^2)$$

245 (3.12c)
$$\Rightarrow \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 \leq d_{\mathcal{F}}(\hat{\mathbf{x}})^2 + \frac{2\alpha}{\eta - \alpha} (1 + d_{\mathcal{F}}(\hat{\mathbf{x}})^2),$$

247 which concludes the right side of (3.10), provided that $\eta \geq \alpha + 2\alpha(1 + d_{\mathcal{F}}(\hat{\mathbf{x}})^2)[\varepsilon^2 + 2\varepsilon d_{\mathcal{F}}(\hat{\mathbf{x}})]^{-1}$. \square

249 LEMMA 3.7. *Assume that $\hat{\mathbf{x}} \in \mathbb{R}^n$ satisfies the GLICQ condition for the problem (3.8a)–
 250 (3.8c). Given an arbitrary $\varepsilon > 0$, for sufficiently large $\eta > 0$, every optimal solution \mathbf{x}^* of the
 251 problem satisfies*

252 (3.13)
$$s(\hat{\mathbf{x}}) - s(\mathbf{x}^*) \leq 2d_{\mathcal{F}}(\hat{\mathbf{x}})\|\mathbf{P}\|_2 + \varepsilon.$$

254 *Proof.* Let $\hat{\mathcal{B}}$ and \mathcal{B} denote the sets of quasi-binding constraints for $\hat{\mathbf{x}}$ and binding con-
 255 straints for \mathbf{x}^* , respectively (based on Definition 3.3). Due to Lemma 3.6, for every $k \in \mathcal{I} \setminus \hat{\mathcal{B}}$
 256 and every arbitrary $\varepsilon_1 > 0$, we have

257
$$q_k(\mathbf{x}^*) - q_k(\hat{\mathbf{x}}) = 2(\mathbf{A}_k \hat{\mathbf{x}} + \mathbf{b}_k)^\top (\mathbf{x}^* - \hat{\mathbf{x}}) + (\mathbf{x}^* - \hat{\mathbf{x}})^\top \mathbf{A}_k (\mathbf{x}^* - \hat{\mathbf{x}})$$

 258
$$\leq \|\nabla q_k(\hat{\mathbf{x}})\|_2 \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2 + \|\mathbf{A}_k\|_2 \|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2$$

 259 (3.14)
$$\leq \|\nabla q_k(\hat{\mathbf{x}})\|_2 d_{\mathcal{F}}(\hat{\mathbf{x}}) + \|\mathbf{A}_k\|_2 d_{\mathcal{F}}(\hat{\mathbf{x}})^2 + \varepsilon_1 < -q_k(\hat{\mathbf{x}}),$$

261 if η is sufficiently large, which yields $\hat{\mathcal{B}} \subseteq \hat{\mathcal{B}}$. Let $\nu \in \mathbb{R}^{|\hat{\mathcal{B}}|}$ be the left singular vector of
 262 $\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})$, corresponding to the smallest singular value. Hence

$$\begin{aligned} 263 \quad (3.15a) \quad s(\hat{\mathbf{x}}) &= \sigma_{\min}\{\mathcal{J}_{\hat{\mathcal{B}}}^*(\hat{\mathbf{x}})\} \geq \sigma_{\min}\{\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})\} = \|\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})^\top \nu\|_2 \\ 264 \quad (3.15b) \quad &\geq \|\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})^\top \nu\|_2 - \|[\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}}) - \mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})]^\top \nu\|_2 \\ 265 \quad (3.15c) \quad &\geq \sigma_{\min}\{\mathcal{J}_{\hat{\mathcal{B}}}(\hat{\mathbf{x}})\} \|\nu\|_2 - 2\|\mathbf{P}\|_2 \|\hat{\mathbf{x}} - \hat{\mathbf{x}}\|_2 \|\nu\|_2 \\ 266 \quad (3.15d) \quad &\geq s(\hat{\mathbf{x}}) - 2\|\mathbf{P}\|_2 \|\hat{\mathbf{x}} - \hat{\mathbf{x}}\|_2 \\ 267 \quad (3.15e) \quad &\geq s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}}) \|\mathbf{P}\|_2 - \varepsilon, \end{aligned}$$

269 if η is large, which concludes the inequality (3.13). \square

270 LEMMA 3.8. *Let $\hat{\mathbf{x}}$ be an optimal solution of the problem (3.8a)–(3.8c), and assume that
 271 $\hat{\mathbf{x}}$ is LICQ regular. There exists a pair of dual vectors $(\hat{\gamma}, \hat{\mu}) \in \mathbb{R}_+^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|}$ that satisfies the
 272 following Karush-Kuhn-Tucker (KKT) conditions:*

$$\begin{aligned} 273 \quad (3.16a) \quad 2(\eta \mathbf{I} + \mathbf{A}_0)(\hat{\mathbf{x}} - \hat{\mathbf{x}}) + 2(\mathbf{A}_0 \hat{\mathbf{x}} + \mathbf{b}_0) + \mathcal{J}(\hat{\mathbf{x}})^\top [\hat{\gamma}^\top, \hat{\mu}^\top]^\top &= 0, \\ 274 \quad (3.16b) \quad \hat{\gamma}_k q_k(\hat{\mathbf{x}}) &= 0, \quad \forall k \in \mathcal{I}. \end{aligned}$$

276 *Proof.* Due to the LICQ condition, there exists a pair of dual vectors $(\hat{\gamma}, \hat{\mu}) \in \mathbb{R}_+^{|\mathcal{I}|} \times
 277 \mathbb{R}^{|\mathcal{E}|}$, which satisfies the KKT stationarity and complementary slackness conditions. Due to
 278 stationarity, we have

$$\begin{aligned} 279 \quad 0 &= \nabla_{\mathbf{x}} \mathcal{L}(\hat{\mathbf{x}}, \hat{\gamma}, \hat{\mu})/2 \\ 280 \quad &= \eta(\hat{\mathbf{x}} - \hat{\mathbf{x}}) + (\mathbf{A}_0 \hat{\mathbf{x}} + \mathbf{b}_0) + \mathbf{P}(\hat{\gamma}, \hat{\mu}) \hat{\mathbf{x}} + \sum_{k \in \mathcal{I}} \hat{\gamma}_k \mathbf{b}_k + \sum_{k \in \mathcal{E}} \hat{\mu}_k \mathbf{b}_k \\ 281 \quad (3.17) \quad &= (\eta \mathbf{I} + \mathbf{A}_0)(\hat{\mathbf{x}} - \hat{\mathbf{x}}) + (\mathbf{A}_0 \hat{\mathbf{x}} + \mathbf{b}_0) + \mathcal{J}(\hat{\mathbf{x}})^\top [\hat{\gamma}^\top, \hat{\mu}^\top]^\top / 2. \end{aligned}$$

283 Moreover, (3.16b) is concluded from the complementary slackness. \square

284 LEMMA 3.9. *Consider an arbitrary $\varepsilon > 0$ and suppose $\hat{\mathbf{x}} \in \mathbb{R}^n$ satisfies the inequality*

$$285 \quad (3.18) \quad s(\hat{\mathbf{x}}) > 2d_{\mathcal{F}}(\hat{\mathbf{x}}) \|\mathbf{P}\|_2.$$

287 *If η is sufficiently large, for every optimal solution $\hat{\mathbf{x}}$ of the problem (3.8a)–(3.8c), there exists
 288 a pair of dual vectors $(\hat{\gamma}, \hat{\mu}) \in \mathbb{R}_+^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|}$ that satisfies the inequality*

$$289 \quad (3.19) \quad \frac{1}{\eta} \sqrt{\|\hat{\gamma}\|_2^2 + \|\hat{\mu}\|_2^2} \leq \frac{2d_{\mathcal{F}}(\hat{\mathbf{x}})}{s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}}) \|\mathbf{P}\|_2} + \varepsilon$$

291 as well as the equations (3.16a) and (3.16b).

292 *Proof.* Due to Lemma 3.8, there exists $(\hat{\gamma}, \hat{\mu}) \in \mathbb{R}_+^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|}$ that satisfies the equations
 293 (3.16a) and (3.16b). Let $\tau \triangleq [\hat{\gamma}^\top, \hat{\mu}^\top]^\top$ and let $\hat{\mathcal{B}}$ be the set of binding constraints for $\hat{\mathbf{x}}$.
 294 Due to equations (3.16a) and (3.16b), one can write

$$295 \quad (3.20) \quad 2(\eta \mathbf{I} + \mathbf{A}_0)(\hat{\mathbf{x}} - \hat{\mathbf{x}}) + 2(\mathbf{A}_0 \hat{\mathbf{x}} + \mathbf{b}_0) + \mathcal{J}_{\hat{\mathcal{B}}}^*(\hat{\mathbf{x}})^\top \tau \{\hat{\mathcal{B}}\} = 0.$$

297 Let $\phi \triangleq s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}}) \|\mathbf{P}\|_2$ and define

$$298 \quad (3.21) \quad \varepsilon_1 \triangleq \phi \times \frac{\varepsilon - 2\eta^{-1}\phi^{-1}(\|\mathbf{A}_0 \hat{\mathbf{x}} + \mathbf{b}_0\|_2 + d_{\mathcal{F}}(\hat{\mathbf{x}}) \|\mathbf{A}_0\|_2)}{\varepsilon + 2 + 2\eta^{-1}\|\mathbf{A}_0\|_2 + 2\phi^{-1}d_{\mathcal{F}}(\hat{\mathbf{x}})}.$$

300 If η is sufficiently large, ε_1 is positive and based on Lemmas 3.6 and 3.7, we have

$$\begin{aligned}
 301 \quad \frac{\|\tau\|_2}{\eta} &= \frac{\|\tau\{\mathcal{B}^*\}\|_2}{\eta} \leq \frac{2\|(\eta\mathbf{I} + \mathbf{A}_0)(\hat{\mathbf{x}} - \hat{\mathbf{x}}) + (\mathbf{A}_0\hat{\mathbf{x}} + \mathbf{b}_0)\|_2}{\eta\sigma_{\min}\{\mathcal{J}_{\mathcal{B}}^*(\hat{\mathbf{x}})\}} \\
 302 \quad &\leq \frac{2\eta\|\hat{\mathbf{x}} - \hat{\mathbf{x}}\|_2 + 2\|\mathbf{A}_0\|_2\|\hat{\mathbf{x}} - \hat{\mathbf{x}}\|_2 + 2\|\mathbf{A}_0\hat{\mathbf{x}} + \mathbf{b}_0\|_2}{\eta s(\hat{\mathbf{x}})} \\
 303 \quad &\leq \frac{2(d_{\mathcal{F}}(\hat{\mathbf{x}}) + \varepsilon_1) + 2\eta^{-1}[\|\mathbf{A}_0\|_2(d_{\mathcal{F}}(\hat{\mathbf{x}}) + \varepsilon_1) + \|\mathbf{A}_0\hat{\mathbf{x}} + \mathbf{b}_0\|_2]}{s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}})\|\mathbf{P}\|_2 - \varepsilon_1} \\
 304 \quad (3.22) \quad &= \frac{2d_{\mathcal{F}}(\hat{\mathbf{x}})}{s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}})\|\mathbf{P}\|_2} + \varepsilon,
 305
 \end{aligned}$$

306 where the last equality is a result of the equation (3.21). \square

307 LEMMA 3.10. Consider an optimal solution $\hat{\mathbf{x}}$ of the problem (3.8a)–(3.8c), and a pair
 308 of dual vectors $(\hat{\gamma}, \hat{\mu}) \in \mathbb{R}_+^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|}$ that satisfies the conditions (3.16a) and (3.16b). If the
 309 matrix inequality

$$310 \quad (3.23) \quad \eta\mathbf{I} + \mathbf{A}_0 + \mathbf{P}(\hat{\gamma}, \hat{\mu}) \succ_{\mathcal{D}_r} 0,$$

312 holds true, then the pair $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$ is the unique primal solution to the penalized convex
 313 relaxation problem (3.1a)–(3.1e).

314 *Proof.* With no loss of generality, it suffices to prove the lemma for the case $\mathcal{V} = \emptyset$ only.
 315 Let $\Lambda \in \mathbb{S}_n^+$ denotes the dual variable associated with the conic constraint (3.1d). Then, the
 316 KKT conditions for the problem (3.1a)–(3.1e) can be written as follows:

$$317 \quad (3.24a) \quad \nabla_{\mathbf{x}} \bar{\mathcal{L}}(\mathbf{x}, \mathbf{X}, \gamma, \mu, \Lambda) = 2 \left(\Lambda \mathbf{x} - \eta \hat{\mathbf{x}} + \mathbf{b}_0 + \sum_{k \in \mathcal{I}} \hat{\gamma}_k \mathbf{b}_k + \sum_{k \in \mathcal{E}} \hat{\mu}_k \mathbf{b}_k \right) = 0,$$

$$318 \quad (3.24b) \quad \nabla_{\mathbf{X}} \bar{\mathcal{L}}(\mathbf{x}, \mathbf{X}, \gamma, \mu, \Lambda) = \eta\mathbf{I} + \mathbf{A}_0 + \mathbf{P}(\gamma, \mu) - \Lambda = 0,$$

$$319 \quad (3.24c) \quad \gamma_k q_k(\mathbf{x}) = 0, \quad \forall k \in \mathcal{I}$$

$$320 \quad (3.24d) \quad \langle \Lambda, \mathbf{x}\mathbf{x}^\top - \mathbf{X} \rangle = 0,$$

322 where $\bar{\mathcal{L}} : \mathbb{R}^n \times \mathbb{S}_n \times \mathbb{R}^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|} \times \mathbb{S}_n \rightarrow \mathbb{R}$ is the Lagrangian function, equations (3.24a) and
 323 (3.24b) account for stationarity with respect to \mathbf{x} and \mathbf{X} , respectively, and equations (3.24c)
 324 and (3.24d) are the complementary slackness conditions for the constraints (3.1b) and (3.1d),
 325 respectively. Define

$$326 \quad (3.25) \quad \hat{\Lambda} \triangleq \eta\mathbf{I} + \mathbf{A}_0 + \mathbf{P}(\hat{\gamma}, \hat{\mu}).$$

328 Due to Lemma (3.8), if η is sufficiently large, $\hat{\mathbf{x}}$ and $(\hat{\gamma}, \hat{\mu})$ satisfy the equations (3.16a) and
 329 (3.16b), which yield the optimality conditions (3.24a)–(3.24d), if $\mathbf{x} = \hat{\mathbf{x}}$, $\mathbf{X} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$, $\gamma = \hat{\gamma}$,
 330 $\mu = \hat{\mu}$, and $\Lambda = \hat{\Lambda}$. Therefore, the pair $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$ is a primal optimal points for the penalized
 331 convex relaxation problem (3.1a)–(3.1e).

332 Since the KKT conditions hold for every pair of primal and dual solutions, we have

$$333 \quad (3.26) \quad \hat{\mathbf{x}} = \hat{\Lambda}^{-1} \left(\eta \hat{\mathbf{x}} - \mathbf{b}_0 - \sum_{k \in \mathcal{I}} \hat{\gamma}_k \mathbf{b}_k - \sum_{k \in \mathcal{E}} \hat{\mu}_k \mathbf{b}_k \right)$$

335 and $\hat{\mathbf{X}} = \hat{\mathbf{x}}\hat{\mathbf{x}}^\top$, according to the equations (3.24a) and (3.24d), respectively, which implies
 336 the uniqueness of the solution. \square

337 LEMMA 3.11. Consider an optimal solution $\hat{\mathbf{x}}$ of the problem (3.8a)-(3.8c), and a pair
 338 of dual vectors $(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\mu}}) \in \mathbb{R}_+^{|\mathcal{I}|} \times \mathbb{R}^{|\mathcal{E}|}$ that satisfies the conditions (3.16a) and (3.16b). If the
 339 inequality,

340 (3.27)
$$\frac{1}{\eta} \sqrt{\|\hat{\boldsymbol{\gamma}}\|_2^2 + \|\hat{\boldsymbol{\mu}}\|_2^2} < \frac{1}{C_{n-1,r-1}\|\mathbf{P}\|_2} - \frac{\|\mathbf{A}_0\|_2}{\eta\|\mathbf{P}\|_2}$$

 341

342 holds true, then the pair $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$ is the unique primal solution to the penalized convex
 343 relaxation problem (3.1a)–(3.1e).

344 *Proof.* Based on Lemma 3.10, it suffices to prove the conic inequality (3.23). Define

345 (3.28)
$$\mathbf{K} \triangleq \mathbf{A}_0 + \mathbf{P}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\mu}}).$$

 346

347 It follows that

348 (3.29a)
$$\|\mathbf{K}\|_2 \leq \|\mathbf{A}_0\|_2 + \sum_{k \in \mathcal{I}} \hat{\gamma}_k \|\mathbf{A}_k\|_2 + \sum_{k \in \mathcal{E}} \hat{\mu}_k \|\mathbf{A}_k\|_2,$$

349 (3.29b)
$$\leq \|\mathbf{A}_0\|_2 + \|\mathbf{P}\|_2 \sqrt{\|\hat{\boldsymbol{\gamma}}\|_2^2 + \|\hat{\boldsymbol{\mu}}\|_2^2}.$$

 350

351 Let \mathcal{R} be the set of all r -member subsets of $\{1, 2, \dots, n\}$. Hence,

352 (3.30)
$$\eta\mathbf{I} + \mathbf{K} = \sum_{\mathcal{K} \in \mathcal{R}} \mathbf{I}\{\mathcal{K}\}^\top \mathbf{R}_\mathcal{K} \mathbf{I}\{\mathcal{K}\},$$

 353

354 where

355 (3.31)
$$\mathbf{R}_\mathcal{K} = \binom{n-1}{r-1}^{-1} [\eta\mathbf{I}\{\mathcal{K}, \mathcal{K}\} + \mathbf{K}\{\mathcal{K}, \mathcal{K}\}].$$

 356

357 Due to the inequalities (3.27) and (3.29), we have $\mathbf{R}_\mathcal{K} \succ 0$ for every $\mathcal{K} \in \mathcal{R}$, which proves
 358 that $\eta\mathbf{I} + \mathbf{K} \succ_{\mathcal{D}_r} 0$. \square

359 *Proof of Theorem 3.4.* Let $\hat{\mathbf{x}}$ be an optimal solution of the problem (3.8a)–(3.8c). According to the assumption (3.5), the inequality (3.18) holds true, and due to Lemma 3.9, if η is sufficiently large, there exists a corresponding pair of dual vectors $(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\mu}})$ that satisfies the inequality (3.19). Now, according to the inequality (3.5), we have

363 (3.32)
$$\frac{2d_{\mathcal{F}}(\hat{\mathbf{x}})}{s(\hat{\mathbf{x}}) - 2d_{\mathcal{F}}(\hat{\mathbf{x}})\|\mathbf{P}\|_2} \leq \frac{1}{C_{n-1,r-1}\|\mathbf{P}\|_2}$$

 364

365 and therefore (3.19) concludes (3.27). Hence, according to Lemma 3.11, the pair $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$
 366 is the unique primal solution to the penalized convex relaxation problem (3.1a)–(3.1e). \square

367 *Proof of Theorem 3.1.* If $\hat{\mathbf{x}}$ is feasible, then $d_{\mathcal{F}}(\hat{\mathbf{x}}) = 0$. Therefore, the tightness of the
 368 penalization for Theorem 3.1 is a direct consequence of Theorem 3.4. Denote the unique
 369 optimal solution of the penalized relaxation as $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$. Then it is straightforward to verify the
 370 inequality $q_0(\hat{\mathbf{x}}) \leq q_0(\hat{\mathbf{x}})$ by evaluating the objective function (3.1a) at the point $(\hat{\mathbf{x}}, \hat{\mathbf{x}}\hat{\mathbf{x}}^\top)$. \square

371 **3.2. Sequential penalization procedure.** In practice, the penalized conic programming
 372 relaxation (3.1a)–(3.1e) can be initialized by a point that may not satisfy the conditions of
 373 Theorem 3.1 or Theorem 3.4 as these conditions are only sufficient, but not necessary. If the
 374 chosen initial point $\hat{\mathbf{x}}$ does not result in a tight penalization, the penalized convex relaxation

Algorithm 3.1 Sequential Penalized Conic Relaxation.

```

initiate  $\{q_k\}_{k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}}$ ,  $r \geq 2$ ,  $\hat{\mathbf{x}} \in \mathbb{R}^n$ , and the fixed parameter  $\eta > 0$ 
while stopping criterion is not met do
    solve the penalized problem (3.1a)–(3.1e) with the initial point  $\hat{\mathbf{x}}$  to obtain  $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ 
    set  $\hat{\mathbf{x}} \leftarrow \hat{\mathbf{x}}^*$ 
end while
return  $\hat{\mathbf{x}}^*$ 

```

375 (3.1a)–(3.1e) can be solved sequentially by updating the initial point until a feasible and near-optimal point is obtained. This procedure is described in Algorithm 3.1.

377 According to Theorem (3.4), once $\hat{\mathbf{x}}$ is close enough to the feasible set \mathcal{F} , the relaxation
378 becomes tight, i.e., a feasible solution $\hat{\mathbf{x}}$ is recovered as the unique optima solution to (3.1a)–
379 (3.1e). Afterwards, in the subsequent iterations, according to Theorem (3.1), feasibility is
380 preserved and the objective value does not increase. The following example illustrates the
381 application of Algorithm 3.1 for a polynomial optimization problem.

382 *Example 3.12.* Consider the following three-dimensional polynomial optimization:

383 (3.33a) $\underset{a, b, c \in \mathbb{R}}{\text{minimize}} \quad a$

384 (3.33b) $\text{s.t.} \quad a^5 - b^4 - c^4 + 2a^3 + 2a^2b - 2ab^2 + 6abc - 2 = 0$

386 To derive a QCQP reformulation of the problem (3.33a)–(3.33b), we consider a variable
387 $x \in \mathbb{R}^8$, whose elements account for the monomials $a, b, c, a^2, b^2, c^2, ab$, and a^3 , respectively.
388 This leads to the following QCQP:

389 (3.34a) $\underset{\mathbf{x} \in \mathbb{R}^8}{\text{minimize}} \quad x_1$

390 (3.34b) $\text{s.t.} \quad x_4x_8 - x_5^2 - x_6^2 + 2x_1x_4 + 2x_2x_4 - 2x_1x_5 + 6x_3x_7 - 2 = 0$

391 (3.34c) $x_4 - x_1^2 = 0$

392 (3.34d) $x_5 - x_2^2 = 0$

393 (3.34e) $x_6 - x_3^3 = 0$

394 (3.34f) $x_7 - x_1x_2 = 0$

395 (3.34g) $x_8 - x_1x_4 = 0$

397 The transformation of the polynomial optimization to QCQP is standard and it is described in
398 Appendix A for completeness. The global optimal objective value of the above QCQP equals
399 -2.0198 and the lower-bound, offered by the standard SDP relaxation equals -89.8901 . In
400 order to solve the above QCQP, we run Algorithm 3.1, equipped with the SDP relaxation
401 (no additional valid inequalities) and penalty term $\eta = 0.025$. The trajectory with three
402 different initializations $\hat{\mathbf{x}}^1 = [0, 0, 0, 0, 0, 0, 0]^\top$, $\hat{\mathbf{x}}^2 = [-3, 0, 2, 9, 0, 4, 0, 27]^\top$, and $\hat{\mathbf{x}}^3 =$
403 $[0, 4, 0, 0, 16, 0, 0, 0]^\top$ are given in Table 1 and shown in Fig. 1. In all three cases, the
404 algorithm achieves feasibility in 1–8 rounds. Moreover, a feasible solution with less than
405 $\%0.2$ gap from global optimality is attained within 10 rounds in all three cases. The example
406 illustrates that Appendix A is not sensitive to the initial point.

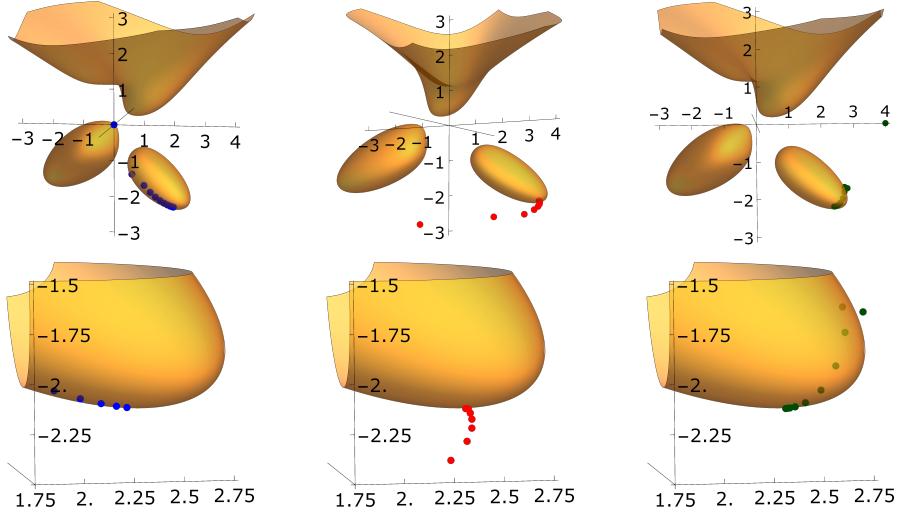


Fig. 1: Trajectory of Algorithm 3.1 for three different initializations. The yellow surface represents the feasible set and the blue, red and green points correspond to \hat{x}^1 , \hat{x}^2 and \hat{x}^3 , respectively.

Table 1: Trajectory of Algorithm 3.1 for three different initializations.

Round	\hat{x}^1			\hat{x}^2			\hat{x}^3					
	a (obj.)	b	c	$\text{tr}\{\bar{X} - \hat{x}\hat{x}^T\}$	a (obj.)	b	c	$\text{tr}\{\bar{X} - \hat{x}\hat{x}^T\}$	a (obj.)	b	c	$\text{tr}\{\bar{X} - \hat{x}\hat{x}^T\}$
0	0.0000	0.0000	0.0000	-	-3.0000	0.0000	2.0000	-	0.0000	4.0000	0.0000	-
1	-1.2739	0.6601	-0.4697	2.1884	-2.5377	1.2831	-0.7380	138.9796	-1.5721	2.6848	-0.9492	39.2455
2	-1.5173	1.1445	-1.0128	$< 10^{-11}$	-2.4389	2.0715	-1.3946	51.1170	-1.5749	2.7588	-1.3854	13.5140
3	-1.6882	1.3773	-1.2015	$< 10^{-11}$	-2.2889	2.2685	-1.7098	23.0050	-1.6678	2.6583	-1.5228	0.9995
4	-1.8021	1.5739	-1.3561	$< 10^{-11}$	-2.1878	2.3416	-1.8442	11.4963	-1.8322	2.6083	-1.5587	$< 10^{-11}$
5	-1.8824	1.7447	-1.4873	$< 10^{-11}$	-2.1194	2.3621	-1.9007	5.9206	-1.9460	2.5261	-1.6624	$< 10^{-11}$
6	-1.9386	1.8930	-1.5992	$< 10^{-11}$	-2.0733	2.3611	-1.9250	2.9082	-2.0002	2.4391	-1.7847	$< 10^{-11}$
7	-1.9760	2.0180	-1.6923	$< 10^{-11}$	-2.0423	2.3526	-1.9352	1.1594	-2.0156	2.3824	-1.8598	$< 10^{-11}$
8	-1.9985	2.1175	-1.7656	$< 10^{-11}$	-2.0214	2.3426	-1.9393	0.0938	-2.0189	2.3532	-1.8938	$< 10^{-11}$
9	-2.0104	2.1907	-1.8193	$< 10^{-11}$	-2.0197	2.3352	-1.9302	$< 10^{-11}$	-2.0196	2.3387	-1.9079	$< 10^{-11}$
10	-2.0160	2.2408	-1.8559	$< 10^{-11}$	-2.0198	2.3304	-1.9240	$< 10^{-11}$	-2.0197	2.3313	-1.9135	$< 10^{-11}$

407 **4. Numerical experiments.** In this section we describe numerical experiments to test
408 the effectiveness of the sequential penalization method for non-convex QCQPs from the
409 library of quadratic programming instances (QPLIB) [13] as well as large-scale system identi-
410 fication problems [12].

411 **4.1. QPLIB problems.** The experiments are performed on a desktop computer with a
412 12-core 3.0GHz CPU and 256GB RAM. MOSEK v8.1 [3] is used through MATLAB 2017a
413 to solve the resulting convex relaxations.

414 **4.1.1. Sequential penalization.** Tables 2, 3, 4, and 5 report the results of Algorithm 3.1
415 for SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations, respectively. The following valid
416 inequalities are imposed on all of the convex relaxations:

417 (4.1a) $X_{kk} - (x_k^{\text{lb}} + x_k^{\text{ub}})x_k + x_k^{\text{lb}}x_k^{\text{ub}} \leq 0, \quad \forall k \in \{1, \dots, n\}$

418 (4.1b) $X_{kk} - (x_k^{\text{ub}} + x_k^{\text{lb}})x_k + x_k^{\text{ub}}x_k^{\text{lb}} \geq 0, \quad \forall k \in \{1, \dots, n\}$

419 (4.1c) $X_{kk} - (x_k^{\text{lb}} + x_k^{\text{lb}})x_k + x_k^{\text{lb}}x_k^{\text{lb}} \geq 0, \quad \forall k \in \{1, \dots, n\}$

421 where $\mathbf{l}, \mathbf{u} \in \mathbb{R}^n$ are given lower and upper bounds on \mathbf{x} . Problem (2.9a)–(2.9e) is solved
 422 with the following four settings:

- 423 • *SOCP relaxation*: $r = 2$ and valid inequalities (4.1a) – (4.1c).
- 424 • *SOCP+RLT relaxation*: $\mathcal{V} = \mathcal{H} \times \mathcal{H}$ and $r = 2$.
- 425 • *SDP relaxation*: $r = n$ and valid inequalities (4.1a) – (4.1c).
- 426 • *SDP+RLT relaxation*: $\mathcal{V} = \mathcal{H} \times \mathcal{H}$ and $r = n$.

427 Let $(\hat{\mathbf{x}}, \hat{\mathbf{X}})$ denote the optimal solution of the convex relaxation (2.9a)–(2.9e). We use the
 428 point $\hat{\mathbf{x}} = \hat{\mathbf{x}}$ as the initial point of the algorithm. For each benchmark QCQP and convex
 429 relaxation, the optimal cost of convex relaxation is reported as $\text{LB} \triangleq q_0(\hat{\mathbf{x}}, \hat{\mathbf{X}})$.

430 The penalty parameter η is chosen via bisection as the smallest number of the form
 431 $\alpha \times 10^\beta$, which results in a tight relaxation during the first six rounds, where $\alpha \in \{1, 2, 5\}$
 432 and β is an integer. In all of the experiments, the value of η has remained static throughout
 433 Algorithm 3.1. Denote the sequence of penalized relaxation solutions obtained by Algorithm
 434 3.1 as

$$435 \quad (\mathbf{x}^{(1)}, \mathbf{X}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{X}^{(2)}), (\mathbf{x}^{(3)}, \mathbf{X}^{(3)}), \dots$$

437 The smallest i such that

$$438 \quad (4.2) \quad \text{tr}\{\mathbf{X}^{(i)} - \mathbf{x}^{(i)}(\mathbf{x}^{(i)})^\top\} < 10^{-7}$$

440 is denoted by i^{feas} , i.e., it is the number of rounds that Algorithm 3.1 needs to attain a tight
 441 penalization. Moreover, the smallest i such that

$$442 \quad (4.3) \quad \frac{q_0(\mathbf{x}^{(i-1)}) - q_0(\mathbf{x}^{(i)})}{|q_0(\mathbf{x}^{(i)})|} \leq 5 \times 10^{-4}$$

444 is denoted by i^{stop} , and $\text{UB} \triangleq q_0(\mathbf{x}^{(i^{\text{stop}})})$. The following formula is used to calculate the
 445 final percentage gaps from the optimal costs reported by the QPLIB library:

$$446 \quad (4.4) \quad \text{GAP}(\%) = 100 \times \frac{q_0^{\text{stop}} - q_0(\mathbf{x}^{\text{QPLIB}})}{|q_0(\mathbf{x}^{\text{QPLIB}})|}.$$

448 Moreover, $t(\text{s})$ denotes the cumulative solver time in seconds for the i^{stop} rounds. Our re-
 449 sults are compared with BARON [46] and COUENNE [6] by fixing the maximum solver
 450 times equal to the accumulative solver times spent by Algorithm 3.1. We ran BARON and
 451 COUENNE through GAMS v25.1.2 [14]. The resulting lower bounds, upper bounds and
 452 GAPs (from the equation (4.4)) are reported in Tables 2, 3, 4, and 5.

453 As demonstrated in the tables, penalized SOCP+RLT, SDP, and SDP+RLT relaxations
 454 have successfully obtained feasible points within 4% gaps from QPLIB solutions. Sequential
 455 SDP requires a smaller number of rounds compared sequential SOCP to meet the stopping
 456 criterion (4.3). Using any of the relaxations, the infeasible initial points can be rounded to a
 457 feasible point with only two round of Algorithm 3.1 and all relaxations arrive at satisfactory
 458 gaps percentages.

459 Figures 2, shows the convergence of Algorithm 3.1 for cases 1507. The choice of η for
 460 all curves are taken from the corresponding rows of the Tables 2, 3, 4, and 5.

461 **4.1.2. Choice of the penalty parameter η .** In this experiment the sensitivity of different
 462 convex relaxations to the choice of the penalty parameter η is tested. To this end, one round
 463 of the penalized relaxation problem (3.1a)–(3.1e) is solved for a wide range of η values. The
 464 benchmark case 1143 is used for this experiment. If η is small, none of the proposed penalized
 465 relaxations are tight for the case 1143. As the value of η increases, the feasibility violation

Table 2: Sequential penalized SOCP relaxation.

Inst	Sequential SOCP relaxation						BARON			COUENNE			
	η	i^{feas}	i^{stop}	$t(\text{s})$	LB	UB	GAP(%)	LB	UB	GAP(%)	LB	UB	GAP(%)
0343	5e+2	1	100	75.27	-223.281	-5.882	7.89	-95.372	-6.386	0.00	-7668.005	-6.386	0.00
0911	1e+1	1	29	22.91	-76.432	-30.675	4.58	-172.777	0.000	100	-172.777	-31.026	3.49
0975	5e+0	6	18	46.36	-78.263	-36.434	3.75	-47.428	-37.801	0.14	-171.113	-37.213	1.69
1055	1e+1	1	22	14.39	-94.532	-32.620	1.26	-37.841	-33.037	0.00	-199.457	-33.037	0.00
1143	2e+1	1	44	25.68	-178.842	-55.417	3.20	-69.522	-57.247	0.00	-384.45	-56.237	1.76
1157	2e+0	2	9	9.01	-18.715	-10.938	0.10	-11.414	-10.948	0.00	-80.51	-10.948	0.00
1353	5e+0	1	48	84.90	-22.310	-7.700	0.19	-7.925	-7.714	0.00	-73.28	-7.714	0.00
1423	5e+0	1	29	17.44	-31.719	-14.684	1.90	-16.313	-14.968	0.00	-76.13	-14.871	0.65
1437	5e+0	1	36	54.57	-26.473	-7.785	0.06	-9.601	-7.789	0.00	-87.58	-7.789	0.00
1451	2e+1	4	21	20.86	-226.152	-85.598	2.26	-135.140	-87.577	0.00	-468.04	-86.860	0.82
1493	2e+1	1	18	14.49	-137.428	-41.910	2.90	-47.239	-43.160	0.00	-395.69	-43.160	0.00
1507	2e+0	1	15	8.98	-16.635	-8.289	0.15	-49.709	-8.301	0.00	-44.37	-8.301	0.00
1535	5e+0	1	26	28.16	-40.236	-10.948	5.51	-13.407	-11.397	1.63	-107.86	-11.398	1.63
1619	5e+0	1	39	32.34	-31.294	-9.210	0.08	-10.302	-9.217	0.00	-74.55	-9.217	0.00
1661	5e+0	1	32	87.50	-44.147	-15.666	1.81	-19.667	-15.955	0.00	-139.25	-15.955	0.00
1675	2e+1	1	21	36.38	-197.509	-75.485	0.24	-96.864	-75.669	0.00	-435.48	-75.669	0.00
1703	5e+1	2	30	31.82	-408.812	-130.902	1.43	-180.935	-132.802	0.00	-929.92	-132.802	0.00
1745	2e+1	1	26	22.15	-133.719	-71.704	0.93	-77.465	-72.377	0.00	-317.99	-72.377	0.00
1773	5e+0	1	56	148.79	-48.971	-14.154	3.34	-21.581	-14.642	0.00	-118.65	-14.642	0.00
1886	2e+1	1	34	26.82	-163.362	-78.604	0.09	-135.615	-78.672	0.00	-324.87	-78.672	0.00
1913	1e+1	1	28	21.91	-82.384	-51.889	0.42	-68.555	-52.109	0.00	-164.26	-51.478	1.21
1922	1e+1	1	23	11.16	-62.466	-35.437	1.43	-121.872	-35.951	0.00	-123.2	-35.951	0.00
1931	1e+1	1	13	8.78	-102.943	-53.684	3.64	-85.196	-55.709	0.00	-204.08	-54.290	2.55
1967	5e+1	1	32	27.23	-306.859	-105.570	1.87	-136.098	0.000	100	-622.57	-107.581	0.00
Avg	33.9	1.4	31.2	36.68		2.04			8.41			0.58	
Max	500	6	100	148.79		7.89			100			3.34	

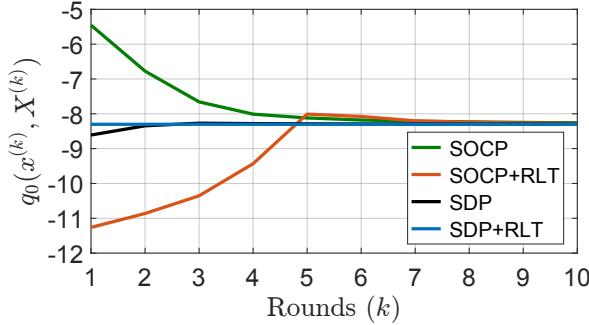


Fig. 2: Convergence of sequential SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations for inst. 1507.

466 $\text{tr}\{\mathbf{X}^* - \hat{\mathbf{x}}\hat{\mathbf{x}}^\top\}$ abruptly vanishes once crossing $\eta = 1.9$, $\eta = 7.7$, and $\eta = 19.6$, for the
467 penalized SOCP, SDP and SDP+RLT relaxations, respectively. Remarkably, if $\hat{\mathbf{x}}^{\text{SDP+RLT}}$
468 is used as the initial point and $\eta \simeq 2$, then the penalized SDP+RLT relaxation (3.1a)-(3.1e)
469 produces a feasible point for the benchmark case 1143 whose objective value is within %0.2
470 of the reported optimal cost $q_0(\mathbf{x}^{\text{QPLIB}})$.

471 **4.2. Large-scale system identification problems.** Following [12], this case study is
472 concerned with the problem of identifying the parameters of a linear dynamical system given
473 limited observation and non-uniform snapshots of the state vector. Consider a discrete-time
474 linear system described by the system of equations:

475 (4.5a) $\mathbf{z}[\tau + 1] = \mathbf{A}\mathbf{z}[\tau] + \mathbf{B}\mathbf{u}[\tau] + \mathbf{w}[\tau] \quad \tau = 1, 2, \dots, T - 1$

Table 3: Sequential penalized SOCP+RLT relaxation.

Inst	Sequential SOCP+RLT relaxation						BARON			COUENNE			
	η	i^{feas}	i^{stop}	$t(\text{s})$	LB	UB	GAP(%)	LB	UB	GAP(%)	LB	UB	GAP(%)
0343	1e+2	4	24	25.23	-7.269	-5.945	6.91	-95.372	-6.386	0.00	-7668.005	-6.386	0.00
0911	1e+1	1	33	27.69	-73.061	-30.923	3.81	-172.777	-32.148	0.00	-172.777	-31.026	3.49
0975	5e+0	6	15	4.10	-74.194	-36.300	13.17	-47.428	-37.794	0.16	-171.113	-36.812	2.75
1055	1e+1	1	24	16.78	-90.430	-32.666	1.12	-37.841	-33.037	0.00	-199.457	-33.037	0.00
1143	2e+1	1	30	32.66	-109.302	-55.507	3.04	-69.522	-57.247	0.00	-384.45	-56.237	1.76
1157	2e+0	1	0	1.14	-10.948	-10.948	0.00	-11.414	-10.948	0.00	-80.51	-10.948	0.00
1353	1e+0	3	11	19.41	-10.256	-7.711	0.05	-7.925	-7.714	0.00	-73.28	-7.714	0.00
1423	2e+0	3	14	16.41	-22.462	-14.730	1.59	-16.313	-14.968	0.00	-76.13	-14.871	0.65
1437	5e-1	4	8	21.62	-9.268	-7.788	0.02	-9.601	-7.789	0.00	-87.58	-7.789	0.00
1451	2e+1	2	36	100.50	-185.434	-87.502	0.09	-135.140	-87.577	0.00	-468.04	-87.283	0.34
1493	1e+1	3	13	13.69	-61.053	-41.804	3.14	-47.239	-43.160	0.00	-395.69	-43.160	0.00
1507	1e+0	6	13	10.31	-11.862	-8.295	0.08	-49.709	-8.301	0.00	-44.37	-8.301	0.00
1535	2e+0	3	23	83.47	-21.063	-11.241	2.98	-13.407	-11.586	0.00	-107.86	-11.398	1.62
1619	2e+0	3	20	35.62	-17.163	-9.213	0.05	-10.302	-9.217	0.00	-74.55	-9.217	0.00
1661	1e+0	3	8	35.85	-19.439	-15.666	1.81	-19.667	-15.955	0.00	-139.25	-15.955	0.00
1675	1e+1	3	11	41.30	-121.753	-75.537	0.17	-96.864	-75.669	0.00	-435.48	-75.669	0.00
1703	2e+1	5	22	62.63	-250.703	-131.330	1.11	-180.935	-132.802	0.00	-929.92	-132.802	0.00
1745	5e+0	4	19	40.44	-92.924	-72.351	0.04	-77.465	-72.377	0.00	-317.99	-72.377	0.00
1773	5e+0	1	56	120.65	-29.962	-14.176	3.19	-21.581	-14.642	0.00	-118.65	-14.642	0.00
1886	2e+1	1	35	28.19	-155.747	-78.620	0.07	-135.615	-78.672	0.00	-324.87	-78.672	0.00
1913	5e+0	4	18	15.10	-75.555	-51.879	0.44	-68.555	-52.109	0.00	-164.26	-51.348	1.46
1922	1e+1	1	26	13.22	-57.575	-35.451	1.39	-121.872	-35.951	0.00	-123.2	-35.951	0.00
1931	1e+1	1	13	8.59	-97.100	-53.709	3.59	-85.196	-55.709	0.00	-204.08	-54.290	2.55
1967	5e+1	1	38	33.01	-297.981	-105.616	1.83	-136.098	0.000	100	-622.57	-107.581	0.00
Avg	13.4	2.7	21.3	33.65		2.07			4.17			0.61	
Max	100	6	56	120.65		13.17			100			3.49	

477 where

- $\{\mathbf{z}[\tau] \in \mathbb{R}^n\}_{\tau=1}^T$ are the state vectors that are known at times $\tau \in \{\tau_1, \dots, \tau_o\}$,
- $\{\mathbf{u}[\tau] \in \mathbb{R}^m\}_{\tau=1}^T$ are the known control command vectors,
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$ are fixed unknown matrices, and
- $\{\mathbf{w}[\tau] \in \mathbb{R}^n\}_{\tau=1}^T$ account for the unknown disturbance vectors.

478 Our goal is to estimate the pair of ground truth matrices $(\bar{\mathbf{A}}, \bar{\mathbf{B}})$, given a sample trajectory of the control commands $\{\bar{\mathbf{u}}[\tau] \in \mathbb{R}^m\}_{\tau=1}^T$ and the incomplete state vectors $\{\bar{\mathbf{z}}[\tau] \in \mathbb{R}^n\}_{\tau \in \{\tau_1, \dots, \tau_o\}}$. To this end, we employ the minimum least absolute value estimator which amounts to the following QCQP:

$$(4.6a) \quad \underset{\substack{\{\mathbf{y}[\tau] \in \mathbb{R}^n\}_{\tau=1}^{T-1} \\ \{\mathbf{z}[\tau] \in \mathbb{R}^n\}_{\tau=1}^T \\ \mathbf{A} \in \mathbb{R}^{n \times n} \\ \mathbf{B} \in \mathbb{R}^{n \times m}}}{\text{minimize}} \quad \sum_{\tau=1}^{T-1} \mathbf{1}_n^\top \mathbf{y}[\tau]$$

$$(4.6b) \quad \text{subject to} \quad \mathbf{y}[\tau] \geq +\mathbf{z}[\tau+1] - \mathbf{A}\mathbf{z}[\tau] - \mathbf{B}\bar{\mathbf{u}}[\tau] \quad \tau \in \{1, 2, \dots, T-1\},$$

$$(4.6c) \quad \mathbf{y}[\tau] \geq -\mathbf{z}[\tau+1] + \mathbf{A}\mathbf{z}[\tau] + \mathbf{B}\bar{\mathbf{u}}[\tau] \quad \tau \in \{1, 2, \dots, T-1\},$$

$$(4.6d) \quad \mathbf{z}[\tau] = \bar{\mathbf{z}}[\tau] \quad \tau \in \{\tau_1, \dots, \tau_o\}.$$

491 For every $\tau \in \{1, 2, \dots, T-1\}$, the auxiliary variable $\mathbf{y}[\tau] \in \mathbb{R}^n$ accounts for $|\mathbf{z}[\tau+1] - \mathbf{A}\mathbf{z}[\tau] - \mathbf{B}\bar{\mathbf{u}}[\tau]|$. This relation is imposed through the pair of constraints (4.6b) and (4.6c).

492 The problem (4.6a)–(4.6d), can be cast in the form of (2.1a)–(2.1c), with respect to the vector

$$(4.7) \quad \mathbf{x} \triangleq [\mathbf{z}[1]^\top, \dots, \mathbf{z}[T]^\top, \text{vec}\{\mathbf{A}\}^\top, \alpha \mathbf{y}[1]^\top, \dots, \alpha \mathbf{y}[T-1]^\top, \text{vec}\{\mathbf{B}\}^\top],$$

Table 4: Sequential penalized SDP relaxation.

Inst	Sequential SDP relaxation						BARON			COUENNE			
	η	i^{feas}	i^{stop}	$t(\text{s})$	LB	UB	GAP(%)	LB	UB	GAP(%)	LB	UB	GAP(%)
0343	1e+2	1	53	29.24	-99.082	-6.379	0.12	-95.372	-6.386	0.00	-7668.005	-6.386	0.00
0911	2e+0	1	9	5.19	-36.068	-31.811	1.05	-172.777	0.000	100	-172.777	-31.026	3.49
0975	2e+0	2	13	8.18	-41.989	-37.845	0.02	-47.428	-37.794	0.16	-171.113	-36.812	2.75
1055	5e+0	1	8	4.36	-36.760	-32.528	1.54	-37.841	-33.037	0.00	-199.457	-33.037	0.00
1143	5e+0	4	15	7.89	-68.328	-55.606	2.87	-69.522	-57.247	0.00	-384.45	-53.367	6.78
1157	1e+0	1	5	3.15	-12.392	-10.945	0.03	-11.414	-10.948	0.00	-80.51	-10.948	0.00
1353	1e+0	1	10	6.12	-9.047	-7.712	0.03	-7.925	-7.714	0.00	-73.28	-7.714	0.00
1423	1e+0	1	5	3.28	-15.933	-14.676	1.95	-16.313	-14.968	0.00	-76.13	-14.078	5.94
1437	1e+0	1	7	4.30	-10.185	-7.787	0.03	-9.601	-7.789	0.00	-87.58	-7.789	0.00
1451 [†]	5e+0	2	6	5.09	-109.318	-85.972	1.83	-135.140	-	-	-468.04	-	-
1493	5e+0	1	6	4.10	-52.396	-43.160	0.00	-47.239	-43.160	0.00	-395.69	-43.160	0.00
1507	5e-1	3	6	3.28	-9.433	-8.291	0.12	-49.709	-8.301	0.00	-44.37	-8.301	0.00
1535	1e+0	1	16	13.05	-13.916	-11.363	1.93	-13.407	-11.397	1.63	-107.86	-11.398	1.63
1619	1e+0	1	7	4.64	-10.376	-9.213	0.05	-10.302	-9.217	0.00	-74.55	-9.217	0.00
1661	1e+0	1	12	7.57	-18.440	-15.955	0.00	-19.667	-15.955	0.00	-139.25	-15.955	0.00
1675	5e+0	1	5	3.75	-93.125	-75.550	0.16	-96.864	-75.669	0.00	-435.48	-75.669	0.00
1703	1e+1	1	10	6.96	-152.774	-132.539	0.20	-180.935	-131.466	1.01	-929.92	-	-
1745 [†]	5e+0	1	8	4.75	-81.668	-71.828	0.76	-77.465	-72.377	0.00	-317.99	-72.377	0.00
1773	1e+0	1	8	5.44	-17.307	-14.633	0.06	-21.581	-14.642	0.00	-118.65	-14.636	0.04
1886	5e+0	2	9	5.84	-87.184	-78.659	0.02	-135.615	-49.684	36.84	-324.87	-78.672	0.00
1913	5e+0	1	20	12.48	-57.441	-51.866	0.47	-68.555	-52.109	0.00	-164.26	-51.348	1.46
1922	5e+0	1	7	4.34	-39.969	-35.452	1.39	-121.872	-35.916	0.10	-123.2	-35.951	0.00
1931	5e+0	1	10	5.87	-60.460	-54.894	1.46	-85.196	-55.709	0.00	-204.08	-54.290	2.55
1967	1e+1	1	6	5.49	-121.990	-104.752	2.63	-136.098	0.000	100	-622.57	-107.581	0.00
Avg	7.6	1.3	11.1	6.92		0.76			10.85			1.12	
Max	100	4	53	29.24		2.87			100			6.78	

[†] Rows 1751 and 1745 are excluded from average and maximum computations due to missing entries.

497 where α is a preconditioning constant. To solve the resulting problem, we use the sequential
498 Algorithm 3.1 equipped with the SOCP relaxation and the initial point $\hat{\mathbf{x}} = \mathbf{0}$.

499 We consider system identification problems with $n = 25$, $m = 20$, $T = 500$ and
500 $o = 400$. In every experiment, $\{\tau_1, \dots, \tau_o\}$ is a uniformly selected subset of $\{1, 2, \dots, T\}$.
501 The resulting QCQP variable \mathbf{x} is 23605-dimensional and the problem is 16100-dimensional
502 if we exclude the known state vectors $\{\bar{\mathbf{z}}[\tau] \in \mathbb{R}^n\}_{\tau \in \{\tau_1, \dots, \tau_o\}}$. Due to sparsity of the QCQP
503 (4.6a)-(4.6d) each round of the penalized SOCP relaxation is solved within 30 minutes, by
504 omitting the elements of the lifted variable \mathbf{X} that do not appear in the objective and con-
505 straints. All of the convex relaxations are solved using MOSEK v8.1 [3] through MATLAB
506 2017a and on a desktop computer with a 12-core 3.0GHz CPU and 256GB RAM.

507 The ground truth values are chosen as follows:

- The elements of $\bar{\mathbf{A}} \in \mathbb{R}^{25 \times 25}$ have zero-mean Gaussian distribution and the matrix is scaled in such a way that the largest singular value is equal to 0.5.
- Every element of $\bar{\mathbf{B}} \in \mathbb{R}^{25 \times 20}$, $\{\bar{\mathbf{u}}[\tau] \in \mathbb{R}^{20}\}_{\tau=1}^T$ and $\bar{\mathbf{z}}[1] \in \mathbb{R}^{25}$ have standard normal distribution.
- The elements of $\{\bar{\mathbf{w}}[\tau] \in \mathbb{R}^{25}\}_{\tau=1}^{T-1}$ have independent zero-mean Gaussian distribution with the standard deviation $\sigma \in \{0.01, 0.02, 0.05, 0.10\}$.

514 For each experiment, we ran Algorithm 3.1 for 10 rounds. The preconditioning and penalty
515 terms are set to $\alpha = 10^{-3}$ and $\eta = 40$, respectively. For each $\sigma \in \{0.01, 0.02, 0.05, 0.10\}$,
516 we have run 10 random experiments resulting in the average recovery errors 0.0005, 0.0010,
517 0.0026, and 0.0062, respectively, for $\|\bar{\mathbf{A}} - \mathbf{A}^{(10)}\|_F/n$, and the average errors 0.0014, 0.0028,
518 0.0070, and 0.0141, respectively, for $\|\bar{\mathbf{B}} - \mathbf{B}^{(10)}\|_F/\sqrt{mn}$. In all of the trials, a feasible point
519 is obtained in the first round of Algorithm 3.1. Figure 3 illustrates the convergence behavior
520 of the objective functions for one of the trials for each disturbance level.

Table 5: Sequential penalized SDP+RLT relaxation.

Inst	Sequential SDP+RLT relaxation						BARON			COUENNE			
	η	i^{feas}	i^{stop}	$t(\text{s})$	LB	UB	GAP(%)	LB	UB	GAP(%)	LB	UB	GAP(%)
0343	0e+0	0	0	1.42	-6.386	-6.386	0.00	-95.372	-6.386	0.00	-7668.005	-6.386	0.00
0911	2e-1	4	5	13.08	-32.982	-32.147	0.00	-172.777	0.000	100	-172.777	-31.026	3.49
0975	2e-1	3	5	12.75	-38.633	-37.852	0.00	-47.428	-37.794	0.16	-171.113	-36.812	2.75
1055	1e+0	5	8	9.56	-33.909	-32.874	0.49	-37.841	-33.037	0.00	-199.457	-33.037	0.00
1143	5e-1	4	5	7.27	-58.908	-57.241	0.01	-69.522	-57.247	0.00	-384.45	-53.367	6.78
1157	0e+0	0	0	0.88	-10.948	-10.948	0.00	-11.414	-10.948	0.00	-80.51	-10.948	0.00
1353	0e+0	0	0	0.45	-7.714	-7.714	0.00	-7.925	-7.714	0.00	-73.28	-7.714	0.00
1423	2e-1	1	2	2.82	-15.154	-14.929	0.25	-16.313	-14.968	0.00	-76.13	-14.078	5.94
1437	1e-2	1	2	7.02	-7.795	-7.789	0.00	-9.601	-7.789	0.00	-87.58	-7.789	0.00
1451	2e+0	2	5	24.45	-94.346	-87.573	0.01	-135.140	-87.577	0.00	-468.04	-86.860	0.82
1493	5e-1	1	2	2.76	-43.883	-43.160	0.00	-47.239	-43.160	0.00	-395.69	-43.160	0.00
1507	0e+0	0	0	0.61	-8.301	-8.301	0.00	-49.709	-8.301	0.00	-44.37	-8.301	0.00
1535	5e-1	1	10	38.01	-12.203	-11.536	0.43	-13.407	-11.397	1.63	-107.86	-11.398	1.62
1619	0e+0	0	0	2.38	-9.217	-9.217	0.00	-10.302	-9.217	0.00	-74.55	-9.217	0.00
1661	1e-1	1	2	12.88	-16.028	-15.955	0.00	-19.667	-15.955	0.00	-139.25	-15.955	0.00
1675	5e-1	4	0	4.22	-76.342	-75.669	0.00	-96.864	-75.669	0.00	-435.48	-75.669	0.00
1703	2e+0	1	3	13.50	-137.543	-132.626	0.13	-180.935	-132.381	0.32	-929.92	-132.802	0.00
1745 [†]	1e+0	6	0	2.53	-73.773	-72.376	0.00	-77.465	-	-	-317.99	-72.377	0.00
1773	2e-1	3	4	18.01	-15.490	-14.626	0.11	-21.581	-14.642	0.00	-118.65	-14.636	0.04
1886	2e+0	2	4	9.05	-81.846	-78.643	0.04	-135.615	-78.672	0.00	-324.87	-78.672	0.00
1913	1e+0	2	6	11.49	-53.290	-52.108	0.00	-68.555	-52.109	0.00	-164.26	-51.348	1.46
1922	2e+0	1	5	3.35	-38.075	-35.556	1.10	-121.872	-35.741	0.58	-123.2	-35.951	0.00
1931	1e+0	1	2	2.99	-56.165	-55.674	0.06	-85.196	-53.760	3.50	-204.08	-54.290	2.55
1967	5e+0	1	8	16.11	-113.802	-107.052	0.49	-136.098	0.000	100	-622.57	-107.581	0.00
Avg	0.8	1.7	3.39	9.35			0.14			8.96		1.11	
Max	5	5	10	38			1.1			100		6.78	

[†] Row 1745 is excluded from average and maximum computations due to missing entries.

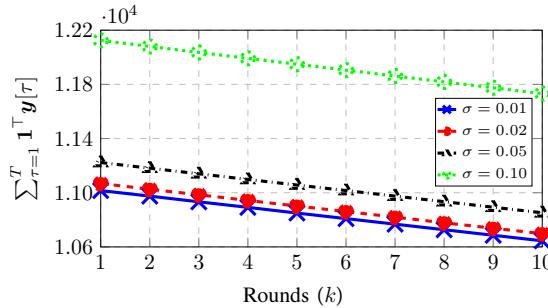


Fig. 3: Convergence of the sequential penalized SOCP relaxation for large-scale system identification with different disturbance levels.

521 **5. Conclusions.** This paper introduces a penalized conic relaxation approach for con-
 522 structing feasible and near-optimal solutions to nonconvex quadratically-constrained quadratic
 523 programming (QCQP) problems. Given an arbitrary initial point (feasible or infeasible) for
 524 the original QCQP, a penalized relaxation is formulated by adding a linear term to the ob-
 525 jective. A generalized linear independence constraint qualification (LICQ) condition is intro-
 526 duced as a regularity criterion for the initial points, and it is shown that the solution of the
 527 penalized relaxation is feasible for QCQP if the initial point is regular and close to the feasi-
 528 ble set. We show that the proposed penalized conic programming relaxations can be solved
 529 sequentially in order to improve the objective of the feasible solution. Numerical experiments
 530 on QPLIB benchmark cases demonstrate that the proposed sequential approach compares fa-

531 vorably with nonconvex optimizers BARON and COUENNE. Moreover, the scalability of
 532 the proposed method is demonstrated on large-scale system identification problems.

533 **Acknowledgment.** The authors are grateful to GAMS Development Corporation for
 534 providing them with unrestricted access to a full set of solvers throughout the project.

535 REFERENCES

- 536 [1] A. A. AHMADI AND A. MAJUMDAR, *DSOS and SDSOS optimization: more tractable alternatives to sum of
 537 squares and semidefinite optimization*, SIAM Journal on Applied Algebraic Geometry, (2018).
- 538 [2] F. ALIZADEH AND D. GOLDFARB, *Second-order cone programming*, Mathematical Programming, 95
 539 (2003), pp. 3–51.
- 540 [3] M. APS, *The MOSEK optimization toolbox for MATLAB manual. Version 8.1.*, 2017, <http://docs.mosek.com/8.1/toolbox/index.html>.
- 541 [4] M. ASHRAPHIJUO, R. MADANI, AND J. LVAEI, *Characterization of rank-constrained feasibility problems
 542 via a finite number of convex programs*, in 2016 IEEE 55th Conference on Decision and Control (CDC),
 543 IEEE, 2016, pp. 6544–6550.
- 544 [5] X. BAO, N. V. SAHINIDIS, AND M. TAWARMALANI, *Semidefinite relaxations for quadratically constrained
 545 quadratic programming: A review and comparisons*, Mathematical Programming, 129 (2011), pp. 129–
 546 157.
- 547 [6] P. BELOTTI, *COUENNE: A user's manual*, tech. report, Technical report, Lehigh University, 2013.
- 548 [7] D. BIENSTOCK AND G. MUÑOZ, *LP formulations for polynomial optimization problems*, SIAM Journal on
 549 Optimization, 28 (2018), pp. 1121–1150.
- 550 [8] S. BURER AND D. VANDENBUSSCHE, *A finite branch-and-bound algorithm for nonconvex quadratic pro-
 551 gramming via semidefinite relaxations*, Mathematical Programming, 113 (2008), pp. 259–282.
- 552 [9] S. BURER AND Y. YE, *Exact semidefinite formulations for a class of (random and non-random) nonconvex
 553 quadratic programs*, arXiv preprint arXiv:1802.02688, (2018).
- 554 [10] C. CHEN, A. ATAMTÜRK, AND S. S. OREN, *A spatial branch-and-cut method for nonconvex QCQP with
 555 bounded complex variables*, Mathematical Programming, 165 (2017), pp. 549–577.
- 556 [11] J. CHEN AND S. BURER, *Globally solving nonconvex quadratic programming problems via completely positive
 557 programming*, Mathematical Programming Computation, 4 (2012), pp. 33–52.
- 558 [12] S. FATTABI AND S. SOJOURDI, *Data-driven sparse system identification*, in 56th Annual Allerton Conference
 559 on Communication, Control, and Computing (Allerton), IEEE, 2018.
- 560 [13] F. FURINI, E. TRAVERSI, P. BELOTTI, A. FRANGIONI, A. GLEIXNER, N. GOULD, L. LIBERTI, A. LODI,
 561 R. MISENER, H. MITTELMANN, N. SAHINIDIS, S. VIGERSKE, AND A. WIEGELE, *QPLIB: A library
 562 of quadratic programming instances*, tech. report, February 2017, http://www.optimization-online.org/DB_HTML/2017/02/5846.html. Available at Optimization Online.
- 563 [14] GAMS DEVELOPMENT CORPORATION, *General Algebraic Modeling System (GAMS) Release 24.2.1*.
 564 Washington, DC, USA, 2013, <http://www.gams.com/>.
- 565 [15] M. X. GOEMANS AND D. P. WILLIAMSON, *Improved approximation algorithms for maximum cut and sat-
 566 isfiability problems using semidefinite programming*, Journal of the ACM (JACM), 42 (1995), pp. 1115–
 567 1145.
- 568 [16] S. HE, Z. LI, AND S. ZHANG, *Approximation algorithms for homogeneous polynomial optimization with
 569 quadratic constraints*, Mathematical Programming, 125 (2010), pp. 353–383.
- 570 [17] S. HE, Z. LUO, J. NIE, AND S. ZHANG, *Semidefinite relaxation bounds for indefinite homogeneous quadratic
 571 optimization*, SIAM Journal on Optimization, 19 (2008), pp. 503–523.
- 572 [18] S. IBARAKI AND M. TOMIZUKA, *Rank minimization approach for solving BMI problems with random
 573 search*, in Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), vol. 3, IEEE,
 574 2001, pp. 1870–1875.
- 575 [19] C. JOSZ AND D. K. MOLZAHN, *Lasserre hierarchy for large scale polynomial optimization in real and
 576 complex variables*, SIAM Journal on Optimization, 28 (2018), pp. 1017–1048.
- 577 [20] M. KHEIRANDISHFARD, F. ZOHRIZADEH, M. ADIL, AND R. MADANI, *Convex relaxation of bilinear ma-
 578 trix inequalities part II: Applications to optimal control synthesis*, in IEEE 57th Annual Conference on
 579 Decision and Control (CDC), 2018.
- 580 [21] M. KHEIRANDISHFARD, F. ZOHRIZADEH, AND R. MADANI, *Convex relaxation of bilinear matrix inequal-
 581 ities part I: Theoretical results*, in IEEE 57th Annual Conference on Decision and Control (CDC), 2018.
- 582 [22] S. KIM AND M. KOJIMA, *Exact solutions of some nonconvex quadratic optimization problems via SDP and
 583 SOCP relaxations*, Computational Optimization and Applications, 26 (2003), pp. 143–154.
- 584 [23] S. KIM, M. KOJIMA, AND M. YAMASHITA, *Second order cone programming relaxation of a positive
 585 semidefinite constraint*, Optimization Methods and Software, 18 (2003), pp. 535–541.
- 586 [24] J. B. LASSEUR, *An explicit exact SDP relaxation for nonlinear 0-1 programs*, in Integer Programming and

589 Combinatorial Optimization, Springer, 2001, pp. 293–303.

590 [25] J. B. LASSERRE, *Global optimization with polynomials and the problem of moments*, SIAM Journal on
591 Optimization, 11 (2001), pp. 796–817.

592 [26] J. B. LASSERRE, *Convergent SDP-relaxations in polynomial optimization with sparsity*, SIAM Journal on
593 Optimization, 17 (2006), pp. 822–843.

594 [27] L. LOVÁSZ AND A. SCHRIJVER, *Cones of matrices and set-functions and 0–1 optimization*, SIAM journal
595 on optimization, 1 (1991), pp. 166–190.

596 [28] L. LOVÁSZ AND A. SCHRIJVER, *Cones of matrices and set-functions and 0–1 optimization*, SIAM Journal
597 on Optimization, 1 (1991), pp. 166–190.

598 [29] Z. LUO, N. SIDIROPOULOS, P. TSENG, AND S. ZHANG, *Approximation bounds for quadratic optimization*
599 *with homogeneous quadratic constraints*, SIAM Journal on Optimization, 18 (2007), pp. 1–28.

600 [30] R. MADANI, M. ASHRAPHIJO, AND J. LAVAEI, *Promises of conic relaxation for contingency-constrained*
601 *optimal power flow problem*, IEEE Transactions on Power Systems, 31 (2016), pp. 1297–1307.

602 [31] R. MADANI, A. ATAMTÜRK, AND A. DAVOUDI, *A scalable semidefinite relaxation approach to grid*
603 *scheduling*, arXiv preprint arXiv:1707.03541, (2017).

604 [32] R. MADANI, G. FAZELNIA, AND J. LAVAEI, *Rank-2 matrix solution for semidefinite relaxations of arbitrary*
605 *polynomial optimization problems*, Preprint, (2014).

606 [33] R. MADANI, S. SOJOURDI, AND J. LAVAEI, *Convex relaxation for optimal power flow problem: Mesh net-*
607 *works*, IEEE Transactions on Power Systems, 30 (2015), pp. 199–211.

608 [34] A. MAJUMDAR, A. A. AHMADI, AND R. TEDRAKE, *Control and verification of high-dimensional systems*
609 *with DSOS and SDSOS programming*, in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
610 IEEE, 2014, pp. 394–401.

611 [35] A. MOHAMMAD-NEZHAD AND T. TERLAKY, *A rounding procedure for semidefinite optimization*, Submitted
612 to Operations Research Letters, (2017).

613 [36] M. MURAMATSU AND T. SUZUKI, *A new second-order cone programming relaxation for max-cut problems*,
614 Journal of the Operations Research Society of Japan, 46 (2003), pp. 164–177.

615 [37] K. NATARAJAN, D. SHI, AND K.-C. TOH, *A penalized quadratic convex reformulation method for random*
616 *quadratic unconstrained binary optimization*, Optimization Online, (2013).

617 [38] Y. NESTEROV, *Semidefinite relaxation and nonconvex quadratic optimization*, Optimization Methods and
618 Software, 9 (1998), pp. 141–160.

619 [39] Y. NESTEROV, A. S. NEMIROVSKII, AND Y. YE, *Interior-point polynomial algorithms in convex program-*
620 *ming*, SIAM, 1994.

621 [40] D. PAPP AND F. ALIZADEH, *Semidefinite characterization of sum-of-squares cones in algebras*, SIAM Jour-
622 *nal on Optimization*, 23 (2013), pp. 1398–1423.

623 [41] F. PERMENTER AND P. PARRILLO, *Partial facial reduction: simplified, equivalent sdps via approximations of*
624 *the psd cone*, Mathematical Programming, (2014), pp. 1–54.

625 [42] H. D. SHERALI AND W. P. ADAMS, *A hierarchy of relaxations between the continuous and convex hull*
626 *representations for zero-one programming problems*, SIAM Journal on Discrete Mathematics, 3 (1990),
627 pp. 411–430.

628 [43] H. D. SHERALI AND W. P. ADAMS, *A reformulation-linearization technique for solving discrete and contin-*
629 *uous nonconvex problems*, vol. 31, Springer Science & Business Media, 2013.

630 [44] S. SOJOURDI AND J. LAVAEI, *On the exactness of semidefinite relaxation for nonlinear optimization over*
631 *graphs: Part I*, in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, IEEE, 2013,
632 pp. 1043–1050.

633 [45] S. SOJOURDI AND J. LAVAEI, *On the exactness of semidefinite relaxation for nonlinear optimization over*
634 *graphs: Part II*, in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, IEEE, 2013,
635 pp. 1043–1050.

636 [46] M. TAWARMALANI AND N. V. SAHINIDIS, *A polyhedral branch-and-cut approach to global optimization*,
637 Mathematical Programming, 103 (2005), pp. 225–249.

638 [47] Y. YE, *Approximating global quadratic optimization with convex quadratic constraints*, Journal of Global
639 Optimization, 15 (1999), pp. 1–17.

640 [48] Y. YE, *Approximating quadratic programming with bound and quadratic constraints*, Mathematical Program-
641 *ming*, 84 (1999), pp. 219–226.

642 [49] S. ZHANG, *Quadratic maximization and semidefinite relaxation*, Mathematical Programming, 87 (2000),
643 pp. 453–465.

644 [50] S. ZHANG AND Y. HUANG, *Complex quadratic optimization and semidefinite programming*, SIAM Journal
645 *on Optimization*, 87 (2006), pp. 871–890.

646 [51] F. ZOHRIZADEH, M. KHEIRANDISHFARD, A. NASIR, AND R. MADANI, *Sequential relaxation of unit com-*
647 *mitment with AC transmission constraints*, in IEEE 57th Annual Conference on Decision and Control
648 (CDC), 2018.

649 [52] F. ZOHRIZADEH, M. KHEIRANDISHFARD, E. QUARM, AND R. MADANI, *Penalized parabolic relaxation*
650 *for optimal power flow problem*, in IEEE 57th Annual Conference on Decision and Control (CDC), 2018.

651 **Appendix A. Application to polynomial optimization.** In this section, we show that
 652 the proposed penalized conic relaxation approach can be used for polynomial optimization as
 653 well. A polynomial optimization problem is formulated as

$$\begin{aligned} 654 \quad (A.1a) \quad & \underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \quad u_0(\mathbf{x}) \\ 655 \quad (A.1b) \quad & \text{s.t.} \quad u_k(\mathbf{x}) \leq 0, \quad k \in \mathcal{I} \\ 656 \quad (A.1c) \quad & \quad u_k(\mathbf{x}) = 0, \quad k \in \mathcal{E}, \end{aligned}$$

658 for every $k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}$, where each function $u_k : \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial of arbitrary
 659 degree. Problem (A.1a)–(A.1c) can be reformulated as a QCQP of the form:

$$\begin{aligned} 660 \quad (A.2a) \quad & \underset{\mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^o}{\text{minimize}} \quad w_0(\mathbf{x}, \mathbf{y}) \\ 661 \quad (A.2b) \quad & \text{s.t.} \quad w_k(\mathbf{x}, \mathbf{y}) \leq 0, \quad k \in \mathcal{I} \\ 662 \quad (A.2c) \quad & \quad w_k(\mathbf{x}, \mathbf{y}) = 0, \quad k \in \mathcal{E} \\ 663 \quad (A.2d) \quad & \quad v_i(\mathbf{x}, \mathbf{y}) = 0, \quad i \in \mathcal{O}, \end{aligned}$$

665 where $\mathbf{y} \in \mathbb{R}^{|\mathcal{O}|}$ is an auxiliary variable, and $v_1, \dots, v_{|\mathcal{O}|}$ and $w_0, w_1, \dots, w_{|\{0\} \cup \mathcal{I} \cup \mathcal{E}|}$ are
 666 quadratic functions with the following properties:

- For every $\mathbf{x} \in \mathbb{R}^n$, the function $\mathbf{v}(\mathbf{x}, \cdot) : \mathbb{R}^{|\mathcal{O}|} \rightarrow \mathbb{R}^{|\mathcal{O}|}$ is invertible,
- If $\mathbf{v}(\mathbf{x}, \mathbf{y}) = \mathbf{0}_n$, then $w_k(\mathbf{x}, \mathbf{y}) = u_k(\mathbf{x})$ for every $k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}$.

669 Based on the above properties, there is a one-to-one correspondence between the feasible
 670 sets of (A.1a)–(A.1c) and (A.2a)–(A.2d). Moreover, a feasible point $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is an optimal
 671 solution to the QCQP (A.2a)–(A.2d) if and only if $\hat{\mathbf{x}}$ is an optimal solution to the polynomial
 672 optimization problem (A.1a)–(A.1c).

673 **THEOREM A.1** ([32]). *Suppose that $\{u_k\}_{k \in \{0\} \cup \mathcal{I} \cup \mathcal{E}}$ are polynomials of degree at most
 674 d , consisting of m monomials in total. There exists a QCQP reformulation of the polynomial
 675 optimization (A.1a)–(A.1c) in the form of (A.2a)–(A.2d), where $|\mathcal{O}| \leq mn (\lfloor \log_2(d) \rfloor + 1)$.*

676 The next proposition shows that the LICQ regularity of a point $\hat{\mathbf{x}} \in \mathbb{R}^n$ is inherited by
 677 the corresponding point $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \mathbb{R}^n \times \mathbb{R}^o$ of the QCQP reformulation (A.2a)–(A.2d).

678 **PROPOSITION A.2.** *Consider a pair of vectors $\hat{\mathbf{x}} \in \mathbb{R}^n$ and $\hat{\mathbf{y}} \in \mathbb{R}^{|\mathcal{O}|}$ satisfying $\mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \mathbf{0}_n$. The following two statements are equivalent:*

1. $\hat{\mathbf{x}}$ is feasible and satisfies the LICQ condition for the polynomial optimization problem (A.1a)–(A.1b).
2. $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is feasible and satisfies the LICQ condition for the QCQP (A.2a)–(A.2d).

683 *Proof.* From $\mathbf{u}(\hat{\mathbf{x}}) = \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ and the invertibility assumption for $\mathbf{v}(\hat{\mathbf{x}}, \cdot)$, we have

$$\begin{aligned} 684 \quad \frac{\partial \mathbf{u}(\hat{\mathbf{x}})}{\partial \mathbf{x}} &= \left[\begin{array}{cc} \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}} & \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \end{array} \right] \left[\begin{array}{cc} \mathbf{I} & -\left(\frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \right)^{-1} \frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}} \end{array} \right]^\top \\ 685 \quad (A.3) \quad &= \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}} - \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \left(\frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \right)^{-1} \frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}}. \end{aligned}$$

687 Therefore, $\mathcal{J}_{\text{PO}}(\hat{\mathbf{x}}) = \frac{\partial \mathbf{u}(\hat{\mathbf{x}})}{\partial \mathbf{x}}$ is equal to the Schur complement of

$$688 \quad (A.4) \quad \mathcal{J}_{\text{QCQP}}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \begin{bmatrix} \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}} & \frac{\partial \mathbf{w}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}(\hat{\mathbf{x}}, \hat{\mathbf{y}})}{\partial \mathbf{y}} \end{bmatrix},$$

690 which is the Jacobian matrix of the QCQP (A.2a)–(A.2d) at the point $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$. As a result, the
 691 matrix $\mathcal{J}_{\text{PO}}(\hat{\mathbf{x}})$ is singular if and only if $\mathcal{J}_{\text{QCQP}}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is singular. \square