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PENALIZED CONIC RELAXATIONS FOR
QUADRATICALLY-CONSTRAINED QUADRATIC PROGRAMMING *

RAMTIN MADANI, MOHSEN KHEIRANDISHFARD, JAVAD LAVAEI, AND ALPER ATAMTURK

Abstract. In this paper, we give a new penalized conic programming relaxation for non-convex quadratically-
constrained quadratic programs (QCQPs). Incorporating the penalty terms into the objective of convex relaxations
enables the retrieval of feasible and near-optimal solutions for non-convex QCQPs. We introduce a generalized linear
independence constraint qualification (GLICQ) criterion and prove that any GLICQ regular point that is sufficiently
close to the feasible set can be used to construct an appropriate penalty term and recover a feasible solution. As a
consequence, we describe a simple sequential penalized conic optimization procedure that preserves feasibility and
aims to improve the objective of the solutions at each iteration. Numerical experiments on large-scale system iden-
tification problems as well as benchmark instances from the QPLIB library of quadratic programming demonstrate
the ability of the proposed penalized conic relaxations in finding near-optimal solutions for non-convex QCQPs.

Key words. Semidefinite programming, nonconvex optimization, nonlinear programming, penalty methods
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1. Introduction. Semi-definite programming (SDP) [39] has been critically important
for constructing strong convex relaxations of non-convex optimization problems. In particu-
lar, forming hierarchies of SDP relaxations [11,19,25-28,35,40,42] has been shown to yield
the convex hull of non-convex problems. Geomans and Williamson [15] show that the SDP
relaxation objective is within 14% of the optimal value for the MAXCUT problem. SDP
relaxations have played a central role in developing numerous approximation algorithms for
non-convex optimization problems [16, 17,29, 38,47-50]. They are also used within branch-
and-bound algorithms [8, 10] for non-convex optimization. One of the primary challenges
for the application of SDP hierarchies beyond small-scale instances is the rapid growth of
dimensionality. In response, some studies have exploited sparsity and structural patterns to
boost efficiency [5, 22, 23,36, 37]. Another direction, pursued in [1,2, 7,31, 34,41], is to
use lower-complexity relaxations as alternatives to computationally demanding semidefinite
programming relaxations. A relaxation is said to be exact if it has the same optimal objective
value as the original problem. The exactness of the SDP relaxation has been verified for a
variety of problems [9,22,24,44,45].

1.1. Contributions. This paper is concerned with non-convex quadratically-constrained
quadratic programs (QCQPs) for which SDP or its low order conic relaxations are inexact.
In order to recover feasible points to QCQP, we incorporate a linear penalty term into the
objective of the conic relaxations and show that feasible and near-globally optimal points can
be obtained for the original QCQP by solving the resulting penalized conic relaxation prob-
lem. The penalty term is based on an arbitrary initial point for the original QCQP. Our first
result states that if the initial point is feasible and satisfies the linear independence constraint
qualification (LICQ) condition, then the penalized conic relaxation has a unique solution that
is feasible for the original QCQP and its objective value is not worse than that of the initial
point. Our second result states that if the initial point is infeasible, but instead is sufficiently
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2 R. MADANI, M. KHEIRANDISHFARD, J. LAVAEI, AND A. ATAMTURK

close to the feasible set and satisfies a generalized LICQ condition, then the unique optimal
solution to the penalized relaxation is feasible for the QCQP. Lastly, motivated by these re-
sults on constructing a feasible solution, we propose a sequential procedure for QCQP and
demonstrate its performance on benchmark instances from the QPLIB library as well as on
large-scale system identification problems.

The success of sequential frameworks and penalized cone programming relaxations in
solving bilinear matrix inequalities (BMIs) is demonstrated in [18,20,21]. In [4], it is shown
that penalized SDP relaxation is able to find the roots of overdetermined systems of poly-
nomial equations. Moreover, the incorporation of penalty terms into the objective of conic
relaxations is proven to be effective for solving non-convex optimization problems in power
systems [30, 33,51, 52]. These papers show that penalizing certain physical quantities in
power network optimization problems such as reactive power loss and thermal loss facilitates
the recovery of feasible points from convex relaxations. In [18], a sequential framework is
introduced for solving BMIs without theoretical guarantees. Papers [20,21] investigate this
approach further and offer theoretical results through the notion of generalized Mangasarian-
Fromovitz regularity condition. However, these conditions are not valid in the presence of
equality constraints and for general QCQPs. Motivated by the success of penalized relax-
ations, this paper offers a theoretical framework for penalized conic relaxation of general
QCQP and, by extension, polynomial optimization problems.

1.2. Notations. Throughout the paper, scalars, vectors, and matrices are respectively
shown by italic letters, lower-case italic bold letters, and upper-case italic bold letters. The
symbols R, R™, and R™*"™ denote the sets of real scalars, real vectors of size n, and real
matrices of size n x m, respectively. The set of n X n real symmetric matrices is shown
by S,,. For a given vector @ and a matrix A, the symbols a; and A;; respectively indicate
the i*" element of a and the (i, j)'" element of A. The symbols (-,-) and || - || denote the
Frobenius inner product and norm of matrices, respectively. The notation |- | represents either
the absolute value operator or cardinality of a set, depending on the context. The notation ||- |2
denotes the {5 norm of vectors, matrices, and matrix pencils. The n x n identity matrix is
denoted by I,,. The origin of R™ is denoted by 0,,. The superscript (-) " and the symbol tr{-}
represent the transpose and trace operators, respectively. Given a matrix A € R™*", the
notation o,i, (A) represents the minimum singular value of A. The notation A > 0 means
that A is symmetric positive-semidefinite. For a pair of n x n symmetric matrices (A, B) and
proper cone C C S,,, the notation A = B means that A — B € C, whereas A > B means
that A — B belongs to the interior of C. Given an integer r > 1, define C,. as the cone of n xn
symmetric matrices whose r X r principal submatrices are all positive semidefinite. Similarly,
define C; as the dual cone of C,, i.e., the cone of n x n symmetric matrices with factor-width
bounded by r. Given a matrix A € R™*™ and two sets of positive integers S; and Ss, define
A{S1, S} as the submatrix of A obtained by removing all rows of A whose indices do not
belong to Sp, and all columns of A whose indices do not belong to S;. Moreover, define
A{S;} as the submatrix of A obtained by removing all rows of A that do not belong to S .
Given a vector @ € R™ and a set F C R", define dz(a) as the minimum distance between a
and members of F. Given a pair of integers (n, '), the binomial coefficient “n choose ” is
denoted by C. The notations V. f(a) and V2 f(a), respectively, represent the gradient and
Hessian of the function f, with respect to the vector x, at a point a.

1.3. Outline. The remainder of the paper is organized as follows. In section 2, we re-
view the basic lifted and RLT formulations as well as the standard conic relaxations. Section 3
presents the main results of the paper: the penalized conic relaxation, its theoretical analysis
on producing a feasible solution along with a generalized linear independence constraint qual-
ification, and finally the sequential penalization procedure. In Section 4 we present numerical
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PENALIZED CONIC RELAXATIONS FOR QCQPS 3

experiments to test the effectiveness of the sequential penalization approach for non-convex
QCQPs from the library of quadratic programming instances (QPLIB) as well as large-scale
system identification problems. Finally, we conclude in section 5 with a few final remarks.

2. Preliminaries. In this section, we review the lifting and reformulation-linearization
as well as the standard convex relaxations of QCQP that are necessary for the development of
the main results on penalized conic relaxations in Section 3. Consider a general quadratically-
constrained quadratic program (QCQP):

(2.1a) minimize ¢o(x)

weR’n
(2.1b) st. qu(x) <0, kel
(2.1¢) gr(x) =0, k€€,

where Z and £ index the sets of inequality and equality constraints, respectively. For every
k€ {0}UZTUE, g : R® — R is a quadratic function of the form qy(x) = =" Ayx +
2b,;r:1: + ¢, where Ay, € S,,, b, € R™, and ¢, € R. Denote F as the feasible set of the
QCQP (2.1a)—(2.1c). To derive the optimality conditions for a given point, it is useful to
define the Jacobian matrix of the constraint functions.

DEFINITION 2.1 (Jacobian Matrix). For every & € R™, the Jacobian matrix J (&) for
the constraint functions {qy }rezue is

(2.22) T(&) 2 Va1 (®), .. -, Vaqzoe (&)]

For every Q C T UE, define Jo(&) as the submatrix of J (&) resulting from the rows that
belong to Q.

Given a feasible point for the QCQP (2.1a)—(2.1c), the well-known linear independence
constraint qualification (LICQ) condition can be used as a regularity criterion.

DEFINITION 2.2 (LICQ Condition). A feasible point & € F is LICQ regular if the rows
of Js(&) are linearly independent, where B = {k € T UE | qi(&) = 0} denotes the set of
binding constraints at &.

Finding a feasible point for the QCQP (2.1a)—(2.1c), however, is NP-hard as the Boolean
Satisfiability Problem (SAT) is a special case. Therefore, in Section 3, we introduce a notion
of generalized LICQ as a regularity condition for both feasible and infeasible points.

2.1. Lifting and reformulation-linearization. A common approach for tackling the
non-convex QCQP (2.1a)—(2.1c) introduces an auxiliary variable X € §,, accounting for
xx . Then, the objective function (2.1a) and constraints (2.1b)—(2.1c) can be written as
linear functions of « and X. For every k € {0} UZ U &, define @i, : R™ x S,, — R as

(2.3) Gz, X) 2 (A, X) +2b)  + 4.

Moreover, in the presence of affine constraints, the reformulation-linearization technique
(RLT) of Sherali and Adams [43] can be used to produce additional inequalities with re-
spect to  and X to strengthen convex relaxations. Define £ as the set of affine constrains in
the QCQP (2.1a)—(2.1¢),ie., L2 {k € ZUE | A}, = 0,,}. Define also
(2.4a) H=2[B{LnT}",B{Ln&,-B{LNn&ET,
(2.4b) h2[c{LnT}', e{£né&T,— e{ené&}T )T,
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where B £ [by,...,bizng|] " and ¢ £ [c1,. .., ¢jzng|] |- Every @ € F satisfies

(2.5) Hzx+ h <0,

and, as a result, all elements of the matrix

(2.6) Hxa'H' +hz'H' + Hzh' + hh'

are nonnegative if x is feasible. Hence, the inequality

(2.7) e/ V(z,xx )e; >0

holds true for every & € F and (i, j) € H x H, where V : R" x §,, — Sy is defined as
(2.8) Ve, X)2HXH" +hae'H" + Hzh' + hh',

H2{1,2,...,|[CNZ|+2|LNE|}, and ey, ..., ez denote the standard bases in R/*I.
2.2. Convex relaxation. Consider the following relaxation of QCQP (2.1a)—(2.1c¢):

(2.9a) minimize §o(x, X)

xER™, X €S,
(2.9b) st. ge(x, X) <0, kel
(2.9¢) gr(xz, X) =0, ke&
(2.9d) X —zx' =c 0
(2.9¢) e;rV(w,X)ej >0, (i,j) €V

where )V C ‘H x H is a selection of RLT inequalities, the additional conic constraint (2.9d) is
a convex relaxation of the equation X = xx " and

(2.10) CE{Y | Y{K,K}=0, VKC{1,....n}A|K|=7}.

If V # ), we refer to the convex problem (2.92)—(2.9¢) as the rth-order conic programming
relaxation of the QCQP (2.1a)—(2.1c) with RLT inequalities from V. The choices r = n
and r = 2 yield the well-known semidefinite programming (SDP) and second-order conic
programming (SOCP) relaxations, respectively.

If the relaxed problem (2.9a)—(2.9¢) has an optimal solution (z, X ) that satisfies X =
x|, then the relaxation is said to be exact and @ is a globally optimal solution for the QCQP
(2.12)—(2.1c). The next section offers a penalization method for addressing the case where
the relaxation is not exact.

3. Penalized conic relaxation. If the conic relaxation problem (2.9a)—(2.9¢) is not ex-
act, the resulting solution is not necessarily feasible for the original QCQP (2.1a)—(2.1c). In
this case, we use an initial point & € R™ (either feasible or infeasible) to revise the objective
function, resulting in a penalized conic programming relaxation of the form:

(3.1a) minimize Go(x, X) +n(tr{X} — 23"z + &' 2)
xz€R™, X €S,

(3.1b) st ez, X) <0, kel

(3.1¢) u(z, X) =0, keé&

(3.1d) X —zx' = 0

(3.1e) e, V(z,X)e; >0,  (i,j) €V,

where 77 > 0 is a fixed penalty parameter. Note that the penalty term tr{ X} — 22"z + &' &
equals zero for X = @&'. The penalization is said to be tight if problem (3.1a)—(3.1e)
has a unique optimal solution (, X ) that satisfies X = z&". In the next section, we give
conditions under which the penalized conic programming relaxation is tight.

This manuscript is for review purposes only.



PENALIZED CONIC RELAXATIONS FOR QCQPS 5

3.1. Theoretical analysis. The following theorem guarantees that if & is feasible and
satisfies the LICQ regularity condition (in Section 2), then the solution of (3.1a)—(3.1e) is
guaranteed to be feasible for the QCQP (2.1a)—(2.1c) for an appropriate choice of 7.

THEOREM 3.1. Let & be a feasible point for the QCQP (2.1a)—(2.1b) that satisfies the
LICQ condition. For sujﬁczently large n > 0 the convex problem (3.1a)—(3.1e) has a unique
optimal solution (x, X) such that X = &3 " . Moreover, x is feasible for (2.1a)—(2.1c) and
satisfies qo(x) < qo(&).

If & is not feasible, but satisfies a generalized LICQ regularity condition, introduced
below, and is close enough to the feasible set F, then the penalization is still tight for large

enough 1 > 0. This result is described formally in Theorem 3.4. First, we define a distance
measure from an arbitrary point in R™ to the feasible set of the problem.

DEFINITION 3.2 (Feasibility Distance). The feasibility distance function dr : R™ — R
is defined as
(3.2) dr(&) £ min{llz — &2 |z € F}-

DEFINITION 3.3 (Generalized LICQ Condition). For every & € R", the set of quasi-
binding constraints is defined as

0@l 4y 01> o,

The point & is said to satisfy the GLICQ condition if the rows of Jz(&) are linearly indepen-
dent. Moreover, the singularity function s : R™ — R is defined as

(3.4) s(&)2 {Umm(j3< &)) if z satisfies GLICQ

0 otherwise,

(3.3) Béeu{kez (@) + [V (@) |adr (&) +

where owin(Jg(2)) denotes the smallest singular value of Jz(2).
Observe that if & is feasible, then dx(&) = 0, and GLICQ condition reduces to the LICQ
condition. Moreover, GLICQ is satisfied if and only if s(&) > 0.

THEOREM 3.4. Let & € R"™ satisfy the GLICQ condition for the QCQP (2.1a)-(2.1b),
and assume that
2(1+ Cr1,-1) |Pll2
If n is sufficiently large then the convex problem (3.12)—(3.1e) has a unique optimal solution
(x, X) such that X = &% " and & is feasible for (2.1a)—(2.1c¢).

The rest of this section is devoted to proving Theorems 3.1 and 3.4. The next definition
introduces the notion of matrix pencil corresponding to the QCQP (2.1a)—(2.1c), which will
be used as a sensitivity measure.

DEFINITION 3.5 (Pencil Norm). For the QCQP (2.12)-(2.1c), define the corresponding
matrix pencil P : R x RI€l 'S, as follows:

(3.6) P(y,u) £ ) mAi+ ) i As.

kel ke&

3.5) dr (&) <

Moreover, define the pencil norm || P||5 as

€X)) 1Pz £ max {||P(v, w)llz | 1713 + [lull3 = 1},

which is upperbounded by />, .7 ¢ || Axl|3 -
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In order to prove Theorems 3.1 and 3.4, it is convenient to consider the following opti-
mization problem:

(3.82) minimize qo(x) + ||z — |3
xreR?

(3.8b) st gqr(x) <0, kel

(3.8¢) qr(x) =0, kek.

Consider an a > 0 for which the inequality

(3.9) lgo ()| < aflx — 2[5 + a,

is satisfied for every € R". If n > «, then the objective function (3.8a) is lower bounded

by —« and its optimal value is attainable within any closed and nonempty subset of R™.
LEMMA 3.6. Given an arbitrary & € R™ and € > 0, for sufficiently large 1 > 0, every

optimal solution T of the problem (3.82)-(3.8¢) satisfies

(3.10) 0< & — s — dr(@) < e.

Proof. Consider an optimal solution &. Due to Definition 3.2, the distance between &
and every member of F is not less than dx (&), which concludes the left side of (3.10). Let
x4 be an arbitrary member of the set {x € F | || — &||2 = d#(&)}. Due to the optimality
of &, we have

(.11) Q@) + 1)z — |3 < go(za) + nljza — 2|3

According to the inequalities (3.11) and (3.9), one can write

(3.12a) (m—a)|z—2|3—a < (n+a)|led— 2|3+ o
.. . 2a .
(3.12b) > 2= &l3 < lza =&l + o= (1 + llza — 213)
. . . 2 .
(3.120) = |l -3 Sdf<w>2+n_‘“a<1+df<w>2>,

which concludes the right side of (3.10), provided that n > a + 2a(1 + dr(2)?)[e? +
2edr(2)]-L. 0

LEMMA 3.7. Assume that & € R" satisfies the GLICQ condition for the problem (3.8a)—
(3.8¢). Given an arbitrary € > 0, for sufficiently large 1) > 0, every optimal solution x of the
problem satisfies

(3.13) s(&) — s(&) < 2d7(2)|| P2 + &

Proof. Let B and B denote the sets of quasi-binding constraints for & and binding con-
straints for &, respectively (based on Definition 3.3). Due to Lemma 3.6, for every k € 7\ B
and every arbitrary £; > 0, we have

() —qu(2) = 2(Arz+by) (& — &)+ (z — &) Ap(z — &)
< Ve (@)|2)l — 22 + [ Axll2 B
(3.14) < ||V (@) ||2d7 (&) + || Ak l2dr(2)* + 1 < —qu (),

* o
r—T
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if n is sufficiently large, which yields B CB Letv e RIB! be the left singular vector of
jB(cE), corresponding to the smallest singular value. Hence

(3153) S(Q) = O—min{jB"(fé)} > O—min{jg(:i)}: ||jl§(%)—r’/”2

(3.15b) > | T5(@) vlls — 1T5(@) — T(@)] vz

(3.15¢) > omin{J3(2)

(3.15d) > (&) = 2[|Pl2[|& — x|

(3.15¢) > s(&) — 2dr(z)| P2 — e,

if n is large, which concludes the inequality (3.13). a
LEMMA 3.8. Let T be an optimal solution of the problem (3.82)—(3.8¢), and assume that

x is LICQ regular. There exists a pair of dual vectors (¥, 1) € Rm x RI€l that satisfies the
following Karush-Kuhn-Tucker (KKT) conditions:

(3.16a) 2(nI+Ag)(x—2)+2(Apx + bo)+ T () AT, ' ]'= 0,
(3.16b) (@) =0,  Vkel.

Proof. Due to the LICQ condition, there exists a pair of dual vectors (¥, 1) € R‘ I %
RI€!, which satisfies the KKT stationarity and complementary slackness conditions. Due to
stationarity, we have

= (@ — &)+ (Aoz+bo)+ Py, 1) + Y Wwbr+y _ jinbs

kez keE
(3.17) = (nI+Ao)(&—&)+ (Ao +bo)+J (&) [, 1] /2.
Moreover, (3.16b) is concluded from the complementary slackness. 0

LEMMA 3.9. Consider an arbitrary € > 0 and suppose & € R" satisfies the inequality
(3.18) s(@) > 2dF(2)[| Pll2.

If n is sufficiently large, for every optimal solution T of the problem (3.8a)—(3.8¢), there exists

a pair of dual vectors (7, 1) € R‘ | % RIEI that satisfies the inequality

. 2dr (@)
R ST e T

(3.19) 1
7

as well as the equations (3.16a) and (3.16b).

Proof. Due to Lemma 3.8, there exists (7, 1) € Rm RI€I that satisfies the equations

(3.16a) and (3.16b). Let 7 = [¥7,a7]T and let B be the set of binding constraints for .
Due to equations (3.16a) and (3.16b), one can write

(3.20) 2001 + Ao)(& — &) + 2(Ao + bo) + T5(&) 7{B} = 0.
Let ¢ £ 5(&) — 2d7()|| P||2 and define

e—=2n"to (|| Aoz +bo |2 + dr ()| Aol )
e+2+2n" 1 Aoz + 207 1dr(2)

(3.21) €12 ¢ x

This manuscript is for review purposes only.
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If 7 is sufficiently large, €; is positive and based on Lemmas 3.6 and 3.7, we have

Irll> _ IT{B} 2 < 20T + Ag)(® — &) + (Ao + bo)|2

n n h namin{jg(i')}
2n[|z — &||2 + 2[| Aol|2[|& — &[|2 + 2[[ Ao + bol|2
- ns(a)
< 20dr@)+e1)+2n" " [|| Aolla(dr (&) +€1) +[| Ao@+bo] o]
B s(@) —2d7(2)[| P2 — &1
2dF ()
(3.22) = — = +e,
s(2) = 2dF ()| P2
where the last equality is a result of the equation (3.21). 0
LEMMA 3.10. Consider an optimal solution & of the problem (3.8a)—(3.8¢), and a pair
of dual vectors (¥, 1) € R‘fl x RI€! that satisfies the conditions (3.16a) and (3.16b). If the

matrix inequality

holds true, then the pair (x,xx ")

relaxation problem (3.12)—(3.1e).

is the unique primal solution to the penalized convex

Proof. With no loss of generality, it suffices to prove the lemma for the case V = @ only.
Let A € S, denotes the dual variable associated with the conic constraint (3.1d). Then, the
KKT conditions for the problem (3.1a)-(3.1e) can be written as follows:

kez ke&
(3.24b) Vx E(iB,X,")/,[JqA) =nl+ Ap+ P(v,n) — A =0,
(3.24¢) Yiqr(x) = 0, Vkel
(3.24d) (A, zx" —X) =0,
where £ : R" x S, x RIZI x RI€l xS,, — R is the Lagrangian function, equations (3.24a) and

(3.24b) account for stationarity with respect to & and X, respectively, and equations (3.24c)
and (3.24d) are the complementary slackness conditions for the constraints (3.1b) and (3.1d),
respectively. Define

(3.25) A2+ Ag+ PR, o).

Due to Lemma (3.8), if 77 is sufficiently large, & and (7, ft) satisfy the equations (3.16a) and
(3.16b), which yield the optimality conditions (3.24a)-(3.24d), if x = &, X =z, ~v =4,
p = fi,and A = A. Therefore, the pair (z,zx")
convex relaxation problem (3.1a)-(3.1e).

Since the KKT conditions hold for every pair of primal and dual solutions, we have

(3.26) &=A"" (nfc —bo— > Akbe—) ﬁkbk>

kez ke&

is a primal optimal points for the penalized

and X = xx ", according to the equations (3.24a) and (3.24d), respectively, which implies
the uniqueness of the solution. a
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LEMMA 3.11. Consider an optimal solution & of the problem (3.8a)-(3.8c), and a pair

of dual vectors (¥, 1) € R‘fl x RIE! that satisfies the conditions (3.16a) and (3.16b). If the
inequality,

1 /[ - 1 [[Aoll2
(3.27) — 2+ 2< —
VIR = 6 Pl Pl
holds true, then the pair (&,xx ") is the unique primal solution to the penalized convex

relaxation problem (3.12)—(3.1e).

Proof. Based on Lemma 3.10, it suffices to prove the conic inequality (3.23). Define
(3.28) K2 Ag+ P(3,j1).

It follows that

(3.292) IKl2 < || Aol + Y Akl Akllz + > full Axlla,
keT kee

(3.29b) < [[Aoll2 + [[Pll24/ 17113 + I l13 -

Let R be the set of all r-member subsets of {1,2,...,n}. Hence,

(3.30) nl+ K =Y I{K}" Re I{K},
KeR

where
-1

(3.31) Ry = (’;:D I{K,K} + K{K,K}].

Due to the inequalities (3.27) and (3.29), we have Ry > 0 for every K € R, which proves
that nI + K >-p,_ 0. d

Proof of Theorem 3.4. Let x be an optimal solution of the problem (3.8a)—(3.8c). Ac-
cording to the assumption (3.5), the inequality (3.18) holds true, and due to Lemma 3.9, if n
is sufficiently large, there exists a corresponding pair of dual vectors (<, f1) that satisfies the
inequality (3.19). Now, according to the inequality (3.5), we have

2dr () 1

(3.32) — <
s(2) = 2dx(2)[|Pll2 ~ Ch—1,0-1|P]2

and therefore (3.19) concludes (3.27). Hence, according to Lemma 3.11, the pair (&, zx ")
is the unique primal solution to the penalized convex relaxation problem (3.1a)—(3.1e). a

Proof of Theorem 3.1. If & is feasible, then dx(&) = 0. Therefore, the tightness of the
penalization for Theorem 3.1 is a direct consequence of Theorem 3.4. Denote the unique op-
timal solution of the penalized relaxation as (&, & ' ). Then it is straightforward to verify the
inequality go(2) < qo(&) by evaluating the objective function (3.1a) at the point (&, & ' ).0

3.2. Sequential penalization procedure. In practice, the penalized conic programming
relaxation (3.1a)—(3.1e) can be initialized by a point that may not satisfy the conditions of
Theorem 3.1 or Theorem 3.4 as these conditions are only sufficient, but not necessary. If the
chosen initial point & does not result in a tight penalization, the penalized convex relaxation

This manuscript is for review purposes only.
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Algorithm 3.1 Sequential Penalized Conic Relaxation.

initiate {qx }refoyuzue, 7 > 2, € R™, and the fixed parameter 17 > 0

while stopping criterion is not met do
solve the penalized problem (3.1a)—(3.1¢) with the initial point & to obtain (&, X )
set & <

end while

return T

(3.12)—(3.1e) can be solved sequentially by updating the initial point until a feasible and near-
optimal point is obtained. This procedure is described in Algorithm 3.1.

According to Theorem (3.4), once & is close enough to the feasible set F, the relaxation
becomes tight, i.e., a feasible solution & is recovered as the unique optima solution to (3.1a)—
(3.1e). Afterwards, in the subsequent iterations, according to Theorem (3.1), feasibility is
preserved and the objective value does not increase. The following example illustrates the
application of Algorithm 3.1 for a polynomial optimization problem.

Example 3.12. Consider the following three-dimensional polynomial optimization:

(3.33a) minimize a
a,b,ceR
(3.33b) st. a® —b*—c* + 243 + 2a%b — 2ab® + 6abec — 2 =0

To derive a QCQP reformulation of the problem (3.33a)-(3.33b), we consider a variable
z € R8, whose elements account for the monomials a, b, ¢, a?, b2, ¢2, ab, and a3, respectively.
This leads to the following QCQP:

(3.34a) minimize z;
xRS,
(3.34b) s.t. xyrg — x% — x% + 2z 124 + 22924 — 22125 + 6327 —2 =0
(3.34c) x4 — 27 =0
(3.34d) 5 —25=0
(3.34e) T — x5 =0
(3.34f) T7 — 122 =0
(3.34g) g — 2124 =0

The transformation of the polynomial optimization to QCQP is standard and it is described in
Appendix A for completeness. The global optimal objective value of the above QCQP equals
—2.0198 and the lower-bound, offered by the standard SDP relaxation equals —89.8901. In
order to solve the above QCQP, we run Algorithm 3.1, equipped with the SDP relaxation
(no additional valid inequalities) and penalty term 1 = 0.025. The trajectory with three
different initializations ' = [0,0,0,0,0,0,0]", 2 = [~3,0,2,9,0,4,0,27]", and &° =
[0,4,0,0, 16,0,0,0]T are given in Table 1 and shown in Fig. 1. In all three cases, the
algorithm achieves feasibility in 1-8 rounds. Moreover, a feasible solution with less than
%0.2 gap from global optimality is attained within 10 rounds in all three cases. The example
illustrates that Appendix A is not sensitive to the initial point.

This manuscript is for review purposes only.



407
408
409
410

411
412
413

414
415
416
417

418

8

PENALIZED CONIC RELAXATIONS FOR QCQPS

L]
o

AN
AN

11

175 2. 2.25 2.5 275 175 2. 2.25 2.5 2.75

Fig. 1: Trajectory of Algorithm 3.1 for three different initializations. The yellow surface represents the
feasible set and the blue, red and green points correspond to &', &2 and &3, respectively.

Table 1: Trajectory of Algorithm 3.1 for three different initializations.

T ~2

3

Round ‘ = ad ‘ - z - i -
| a (obj.) b c t{X —a'} | a(obj.) b c (X —@x'} | a(obj) b c t{X — @@ }

0 0.0000  0.0000  0.0000 - -3.0000  0.0000  2.0000 - 0.0000  4.0000  0.0000 -

1 -1.2739  0.6601 -0.4697 2.1884 225377 1.2831 -0.7380  138.9796 | -1.5721 2.6848 -0.9492  39.2455
2 -1.5173  1.1445 -1.0128 < 107'' | -2.4389 20715 -1.3946  51.1170 | -1.5749 2.7588 -1.3854 13.5140
3 -1.6882  1.3773 -1.2015 < 107'' | -2.2889 22685 -1.7098  23.0050 | -1.6678 2.6583 -1.5228 0.9995
4 -1.8021  1.5739 -1.3561 < 107'' | -2.1878 23416 -1.8442 114963 | -1.8322 2.6083 -1.5587 < 10~!'%
5 -1.8824  1.7447 -1.4873 < 107" | -2.1194 23621 -1.9007 5.9206 -1.9460 2.5261 -1.6624 < 107!
6 -1.9386 1.8930 -1.5992 <1071 -2.0733 23611 -1.9250 2.9082 -2.0002 24391 -1.7847 <1071
7 -1.9760 2.0180 -1.6923 <1071 -2.0423 23526 -1.9352 1.1594 -2.0156 2.3824 -1.8598 <1071
8 -1.9985 2.1175 -1.7656 <1071 -2.0214 23426 -1.9393 0.0938 -2.0189 2.3532 -1.8938 <1071t
9 -2.0104 2.1907 -1.8193 <107 | -2.0197 23352 -19302 <107'' | -2.0196 23387 -1.9079 <107
10 | 20160 22408 -1.8559 <107 | -2.0198 23304 -19240 < 107'' | -2.0197 23313 -19135 <10°!!

4. Numerical experiments. In this section we describe numerical experiments to test
the effectiveness of the sequential penalization method for non-convex QCQPs from the li-
brary of quadratic programming instances (QPLIB) [13] as well as large-scale system identi-
fication problems [12].

4.1. QPLIB problems. The experiments are performed on a desktop computer with a
12-core 3.0GHz CPU and 256GB RAM. MOSEK v8.1 [3] is used through MATLAB 2017a
to solve the resulting convex relaxations.

4.1.1. Sequential penalization. Tables 2, 3, 4, and 5 report the results of Algorithm 3.1
for SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations, respectively. The following valid
inequalities are imposed on all of the convex relaxations:

(4.1a)
(4.1b)
(4.1¢)

X — (2 + 2fP)zp + 2P 2P <0, vk e {1,...
Xip — (2P + i)z + 2fPaiP > 0, VEe{l,...
Xip — (2 + 2P)ay, + 2P 2P >0, VEe{l,...

This manuscript is for review purposes only.
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where I, u € R™ are given lower and upper bounds on @. Problem (2.92)—(2.9¢) is solved
with the following four settings:

e SOCP relaxation: r = 2 and valid inequalities (4.1a) — (4.1c).

e SOCP+RLT relaxation: ¥V = H x Hand r = 2.

e SDP relaxation: r = n and valid inequalities (4.1a) — (4.1c¢).

® SDP+RLT relaxation: V = H x H and r = n.
Let (x, X) denote the optimal solution of the convex relaxation (2.9a)-(2.9¢). We use the
point & = & as the initial point of the algorithm. For each benchmark QCQP and convex
relaxation, the optimal cost of convex relaxation is reported as LB £ ¢q (&, X ).

The penalty parameter 7 is chosen via bisection as the smallest number of the form

o x 107, which results in a tight relaxation during the first six rounds, where a € {1,2,5}
and [ is an integer. In all of the experiments, the value of 7 has remained static throughout
Algorithm 3.1. Denote the sequence of penalized relaxation solutions obtained by Algorithm
3.1as

(w(l)’)((l))7 (w(Q)’X(Q)% ($(3)’X(3))’
The smallest 7 such that
(4.2) tr{ X — 2@ (2T} <1077

is denoted by '@, i.e., it is the number of rounds that Algorithm 3.1 needs to attain a tight

penalization. Moreover, the smallest ¢ such that

go(x~Y) — go(x?)
|q0(())]

-stop

is denoted by P, and UB £ ¢o(z(""™)). The following formula is used to calculate the
final percentage gaps from the optimal costs reported by the QPLIB library:

<5x107*

(4.3)

stop QPLIB
_ 9 qo(x )
(4.4) GAP(%) = 100 x pRESEna]

Moreover, t(s) denotes the cumulative solver time in seconds for the 7°*°P rounds. Our re-
sults are compared with BARON [46] and COUENNE [6] by fixing the maximum solver
times equal to the accumulative solver times spent by Algorithm 3.1. We ran BARON and
COUENNE through GAMS v25.1.2 [14]. The resulting lower bounds, upper bounds and
GAPs (from the equation (4.4)) are reported in Tables 2, 3, 4, and 5.

As demonstrated in the tables, penalized SOCP+RLT, SDP, and SDP+RLT relaxations
have successfully obtained feasible points within 4% gaps from QPLIB solutions. Sequential
SDP requires a smaller number of rounds compared sequential SOCP to meet the stopping
criterion (4.3). Using any of the relaxations, the infeasible initial points can be rounded to a
feasible point with only two round of Algorithm 3.1 and all relaxations arrive at satisfactory
gaps percentages.

Figures 2, shows the convergence of Algorithm 3.1 for cases 1507. The choice of 7 for
all curves are taken from the corresponding rows of the Tables 2, 3, 4, and 5.

4.1.2. Choice of the penalty parameter 7. In this experiment the sensitivity of different
convex relaxations to the choice of the penalty parameter 7 is tested. To this end, one round
of the penalized relaxation problem (3.1a)-(3.1e) is solved for a wide range of n values. The
benchmark case 1143 is used for this experiment. If 7 is small, none of the proposed penalized
relaxations are tight for the case 1143. As the value of 7 increases, the feasibility violation

This manuscript is for review purposes only.
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Table 2: Sequential penalized SOCP relaxation.
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Inst \ Sequential SOCP relaxation BARON COUENNE
> i op f(s) LB UB__ GAP(%)| LB UB__ GAP(%)| LB UB  GAP(%)

0343|5e+2 1 100 75.27 -223.281 -5.882 7.89 -95.372 -6.386 0.00 [-7668.005 -6.386 0.00
0911|le+1 1 29 2291 -76432 -30.675 4.58 |-172.777  0.000 100 |-172.777 -31.026 3.49
0975|5e+0 6 18 4636 -78.263 -36.434 3.75 -47.428 -37.801 0.14 -171.113  -37.213 1.69
1055|1e+1 1 22 1439 -94.532 -32.620 1.26 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143|2e+1 1 44 25.68 -178.842 -55417 320 | -69.522 -57.247  0.00 -384.45 -56.237 1.76
1157|2e+0 2 9 9.01 -18.715 -10938 0.10 -11.414  -10.948 0.00 -80.51 -10.948 0.00
1353|5e+0 1 48 8490 -22310 -7.700  0.19 -7.925  -7.714 0.00 -73.28  -7.714 0.00
1423 |5e+0 1 29 17.44 -31.719 -14.684 1.90 -16.313  -14.968 0.00 -76.13  -14.871 0.65
1437|5e+0 1 36 54.57 -26473 -7.785 0.06 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451|2e+1 4 21 20.86 -226.152 -85.598 2.26 |-135.140 -87.577  0.00 -468.04  -86.860 0.82
1493 |2e+1 1 18 1449 -137.428 -41910 2.90 -47.239  -43.160 0.00 -395.69  -43.160 0.00
1507|2e+0 1 15 898 -16.635 -8.289 0.15 -49.709  -8.301 0.00 -44.37 -8.301 0.00
1535|5e+0 1 26 28.16 -40.236 -10.948 5.51 -13.407  -11.397 1.63 -107.86  -11.398 1.63
1619|5e+0 1 39 3234 -31.294 -9.210 0.08 -10.302  -9.217 0.00 -74.55 -9.217 0.00
1661|5e+0 1 32 87.50 -44.147 -15.666 1.81 | -19.667 -15.955  0.00 -139.25  -15.955 0.00
1675|2e+1 1 21 3638 -197.509 -75.485 0.24 | -96.864 -75.669  0.00 -435.48  -75.669 0.00
1703 |5e+1 2 30 31.82 -408.812 -130.902 1.43 |-180.935 -132.802 0.00 -929.92  -132.802 0.00
1745|2e+1 1 26 2215 -133.719 -71.704 093 | -77.465 -72.377  0.00 -317.99  -72.377 0.00
1773|5e+0 1 56 148.79 -48.971 -14.154 3.34 -21.581 -14.642 0.00 -118.65 -14.642 0.00
1886|2e+1 1 34 26.82 -163.362 -78.604 0.09 |-135.615 -78.672  0.00 -324.87 -78.672 0.00
1913| le+1 1 28 2191 -82.384 -51.889 042 | -68.555 -52.109  0.00 -164.26  -51.478 1.21
1922 1e+1 1 23 11.16 -62.466 -35.437 143 |-121.872 -35.951 0.00 -123.2  -35.951 0.00
1931 le+1 1 13 8.78 -102.943 -53.684 3.64 | -85.196 -55.709  0.00 -204.08  -54.290 2.55
1967|5e+1 1 32 27.23 -306.859 -105.570 1.87 |-136.098 0.000 100 -622.57 -107.581 0.00
Avg 339 14 312 36.68 2.04 8.41 0.58
Max| 500 6 100 148.79 7.89 100 3.34

— SOCP 1

— SOCP+RLT| |

— SDP

— SDP+RLT

6 7 8 9 10
Rounds (k)

Fig. 2: Convergence of sequential SOCP, SOCP+RLT, SDP, and SDP+RLT relaxations for inst. 1507.

tr{)*( — 2} abruptly vanishes once crossing n = 1.9, 7 = 7.7, and = 19.6, for the
penalized SOCP, SDP and SDP+RLT relaxations, respectively. Remarkably, if 25PP+RET
is used as the initial point and 1 ~ 2, then the penalized SDP+RLT relaxation (3.1a)-(3.1e)
produces a feasible point for the benchmark case 1143 whose objective value is within %0.2
of the reported optimal cost g (x@F1B).

4.2. Large-scale system identification problems. Following [12], this case study is
concerned with the problem of identifying the parameters of a linear dynamical system given
limited observation and non-uniform snapshots of the state vector. Consider a discrete-time
linear system described by the system of equations:

(4.52)

z[t + 1] = Az[7] + Bu|r] + w][7]

This manuscript is for review purposes only.
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Table 3: Sequential penalized SOCP+RLT relaxation.

Inst \ Sequential SOCP+RLT relaxation \ BARON \ COUENNE
] @ is) LB UB_ GAP(%)| LB UB_ GAP(%)| LB UB _ GAP(%)
0343[Tev2 4 24 2523 7269 -5.945 691 |-95372 -6.386 0.00 |-7668.005 -6386  0.00
0911|le+l 1 33 27.69 -73.061 -30.923 381 |-172.777 -32.148 000 |-172777 -31.026  3.49
0975(5¢40 6 15 410 -74.194 -36300 13.17 |-47428 -37.794 016 |-171.113 -36812 275
1055/ le+1 1 24 1678 -90.430 -32.666 1.12 |-37.841 -33.037 000 |-199.457 -33.037  0.00
1143|2e+1 1 30 3266 -109.302 -55.507 3.04 |-69.522 -57.247 000 | -38445 -56237 176
1157|240 1 0 114 -10.948 -10.948 000 |-11414 -10.948 000 | -80.51 -10948  0.00
1353|1e+0 3 11 1941 -10256 -7.711 005 | -7.925 -7.714 000 | 7328 -7.714  0.00
1423|240 3 14 1641 -22462 -14730 159 |-16313 -14968 000 | -76.13 -14871  0.65
1437|5e-1 4 8 2162 -9268 -7.788 002 | -9.601 -7.789 000 | -87.58 -7.789  0.00
1451|2e+1 2 36 10050 -185.434 -87.502 0.09 |-135.140 -87.577 000 | -468.04 -87.283  0.34
1493|Te+1 3 13 13.69 -61.053 -41.804 3.4 |-47239 -43.160 000 | -39569 -43.160  0.00
1507|1e+0 6 13 1031 -11.862 -8.295 0.08 |-49709 -8301 000 | -4437  -8301 0.0
1535(2e+0 3 23 8347 -21.065 -11.241 298 |-13.407 -11.586 000 | -107.86 ~-11398  1.62
1619|2e+0 3 20 3562 -17.163 9213 005 |-10302 -9217 000 | -7455 -9217  0.00
1661|1e+0 3 8 3585 -19.439 -15.666 1.81 |-19.667 -15955 000 | -13925 -15955  0.00
1675|1e+1 3 11 4130 -121.753 -75.537 0.7 |-96.864 -75.669 000 | -43548 -75.669  0.00
1703|2e+1 5 22 62.63 -250.703 -131330 111 |-180.935 -132.802 0.0 | -920.92 -132.802  0.00
1745\5¢+0 4 19 4044 92924 72351 004 |-77465 -72377 000 | -317.99 72377  0.00
1773|540 1 56 120.65 -20.962 -14.176 3.19 | -21.581 -14.642 000 | -118.65 -14642  0.00
1886|2e+1 1 35 28.19 -155.747 -78.620 0.07 |-135.615 -78.672 000 | -324.87 -78.672  0.00
1913|5e+0 4 18 1510 -75555 -51.879 044 |-68.555 -52109 000 | -16426 -51.348 146
1922 1e+l 1 26 1322 -57.575 -35451 139 |-121.872 -35951 000 | -1232 -35951  0.00
1931|le+l 1 13 859 -97.100 -53.709 3.59 |-85.196 -55709 0.0 | -20408 -54.290  2.55
1967|5e+1 1 38 33.01 -207.981 -105.616 1.83 |-136.098 0.000 100 | -622.57 -107.581  0.00
Avg|134 27 213 3365 2.07 417 0.61
Max| 100 6 56 120.65 13.17 100 3.49

477 where

478 o {z[r] € R*}I_, are the state vectors that are known at times 7 € {71,...,7,},

479 e {u[r] € R™}I_, are the known control command vectors.

480 e A c R"™and B € R"™™ are fixed unknown matrices, and

481 e {w[r] € R"}I_, account for the unknown disturbance vectors.

482 Our goal is to estimate the pair of ground truth matrices (A, B), given a sample trajec-
483 tory of the control commands {[r] € R"}1_, and the incomplete state vectors {z[r] €
484 R"}TE{T“”)TO}. To this end, we employ the minimum least absolute value estimator which
485 amounts to the following QCQP:

T—1
486 (4.6a) minimize Z 1, y[7]
{ylr]er™} 72} r=1
{z[rleR"}7_,
AeR™X™
BeR™*™
487 (4.6b) subjectto  y[7] > +z[r + 1] — Az[r] — Bu[r] 1e€{1,2,...,T -1},
488 (4.6¢) y[r] > —z[r + 1]+ Az[r] + Ba|r] r1e€{1,2,...,T -1},
483 (4.6d) z[7] = zl7] Te{m, ..., T}

491 Forevery 7 € {1,2,...,T — 1}, the auxiliary variable y[7] € R™ accounts for |z[T 4+ 1] —
492 Az[r] — Bur]|. This relation is imposed through the pair of constraints (4.6b) and (4.6c¢).
493 The problem (4.6a)—(4.6d), can be cast in the form of (2.1a)-(2.1c), with respect to the
494 vector

485 (4.7) x2[z[1]", ..., 2[T])",vec{A} ,ay[1]", ..., ay[T — 1], avec{B} "],
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Table 4: Sequential penalized SDP relaxation.

Inst \ v Sequential SDP relaxation \ BARON \ COUENNE
* e i(s) LB UB__ GAP(%)| LB UB__ GAP(%) LB UB  GAP(%)

0343 | le+2 1 53 2924 -99.082 -6.379 0.12 95372  -6.386 0.00 -7668.005 -6.386 0.00
0911 [2e+0 1 9 519 -36.068 -31.811 1.05 -172.777  0.000 100 -172.777  -31.026 349
0975 |2e+0 2 13 8.18 -41.989 -37.845 0.02 -47.428 -37.794 0.16 -171.113  -36.812 2.75
1055 | 5e+0 1 8 436 -36.760 -32.528 1.54 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 | 5e+0 4 15 7.89 -68.328 -55.606 2.87 -69.522  -57.247 0.00 -384.45  -53.367 6.78
1157 | 1e+0 1 5 3.15 -12.392 -10.945 0.03 -11.414  -10.948 0.00 -80.51 -10.948 0.00
1353 [1e+0 1 10 6.12  -9.047 -7.712 0.03 -7.925 -1.714 0.00 -73.28 -7.714 0.00
1423 | 1e+0 1 5 328 -15933 -14.676 1.95 -16.313  -14.968 0.00 -76.13 -14.078 5.94
1437 | 1e+0 1 7 430 -10.185 -7.787 0.03 -9.601 -7.789 0.00 -87.58 -7.789 0.00
14517 5e+0 2 6 5.09 -109.318 -85972 1.83 -135.140 - - -468.04 - -

1493 | 5e+0 1 6 410 -52396 -43.160 0.00 -47.239  -43.160 0.00 -395.69  -43.160 0.00
1507 | 5e-1 3 6 3.28 -9433 -8.291 0.12 -49.709  -8.301 0.00 -44.37 -8.301 0.00
1535|1e+0 1 16 13.05 -13916 -11.363 193 -13.407 -11.397 1.63 -107.86  -11.398 1.63
1619 | 1e+0 1 7 464 -10376 -9.213 0.05 -10.302  -9.217 0.00 -74.55 -9.217 0.00
1661 | le+0 1 12 7.57 -18.440 -15.955 0.00 -19.667 -15.955 0.00 -139.25  -15.955 0.00
1675 |5e+0 1 5 375 -93.125 -75.550 0.16 -96.864 -75.669 0.00 -435.48  -75.669 0.00
1703 | le+l 1 10 696 -152.774 -132.539 0.20 -180.935 -131.466 1.01 -929.92 - -

17457 5e+0 1 8 475 -81.668 -71.828 0.76 -77.465 -72.377 0.00 -317.99  -72.377 0.00
1773 [1e+0 1 8 544 -17.307 -14.633  0.06 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 | 5e+0 2 9 584 -87.184 -78.659 0.02 |-135.615 -49.684 36.84 -324.87 -78.672 0.00
1913 | 5e+0 1 20 1248 -57.441 -51.866 0.47 -68.555 -52.109 0.00 -164.26  -51.348 1.46
1922 | 5e+0 1 7 434 -39969 -35452 139 |-121.872 -35916 0.10 -123.2 -35.951 0.00
1931 | 5e+0 1 10 5.87 -60.460 -54.894 1.46 -85.196  -55.709 0.00 -204.08  -54.290 2.55
1967 |le+1 1 6 549 -121.990 -104.752 2.63 -136.098  0.000 100 -622.57 -107.581 0.00
Avg | 7.6 1.3 11.1 692 0.76 10.85 1.12
Max | 100 4 53 29.24 2.87 100 6.78

 Rows 1751 and 1745 are excluded from average and maximum computations due to missing entries.

where « is a preconditioning constant. To solve the resulting problem, we use the sequential
Algorithm 3.1 equipped with the SOCP relaxation and the initial point & = 0.
We consider system identification problems with n = 25, m = 20, T' = 500 and
o = 400. In every experiment, {71, ...,7,} is a uniformly selected subset of {1,2,...,T}.
The resulting QCQP variable z is 23605-dimensional and the problem is 16100-dimensional
if we exclude the known state vectors {Z[7] € R"} c(,, . -,1. Due to sparsity of the QCQP
(4.6a)-(4.6d) each round of the penalized SOCP relaxation is solved within 30 minutes, by
omitting the elements of the lifted variable X that do not appear in the objective and con-
straints. All of the convex relaxations are solved using MOSEK v8.1 [3] through MATLAB
2017a and on a desktop computer with a 12-core 3.0GHz CPU and 256GB RAM.
The ground truth values are chosen as follows:
e The elements of A € R25%2% have zero-mean Gaussian distribution and the matrix
is scaled in such a way that the largest singular value is equal to 0.5.
e Every element of B € R**20 {q[r] € R?°}T_, and z[1] € R?® have standard
normal distribution.
e The elements of {w[7] € R?}Z_] have independent zero-mean Gaussian distribu-
tion with the standard deviation o € {0.01,0.02,0.05,0.10}.
For each experiment, we ran Algorithm 3.1 for 10 rounds. The preconditioning and penalty
terms are set to @ = 1073 and 1 = 40, respectively. For each o € {0.01,0.02,0.05,0.10},
we have run 10 random experiments resulting in the average recovery errors 0.0005, 0.0010,
0.0026, and 0.0062, respectively, for ||A—A(10) || 7 /n, and the average errors 0.0014, 0.0028,
0.0070, and 0.0141, respectively, for || B— B - /\/mn. In all of the trials, a feasible point
is obtained in the first round of Algorithm 3.1. Figure 3 illustrates the convergence behavior
of the objective functions for one of the trials for each disturbance level.
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Table 5: Sequential penalized SDP+RLT relaxation.

Inst ‘ __Sequential SDP+RLT relaxation ‘ BARON ‘ COUENNE
* T o {(s) LB UB__ GAP(%)| LB UB__ GAP(%) LB UB  GAP(%)
0343 |0e+0 O 0 142 -6386 -6.386 0.00 95372  -6.386 0.00 -7668.005 -6.386 0.00
0911 | 2e-1 4 5 13.08 -32.982 -32.147 0.00 [-172.777 0.000 100 -172.777  -31.026 349
0975 | 2e-1 3 5 1275 -38.633 -37.852 0.00 -47.428 -37.794 0.16 -171.113  -36.812 2.75
1055 | 1le+0 5 8 9.56 -33.909 -32.874 0.49 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 | 5e-1 4 5 727 -58908 -57.241 0.01 -69.522  -57.247 0.00 -384.45  -53.367 6.78
1157 | 0e+0 O 0 0.88 -10.948 -10.948 0.00 -11.414  -10.948 0.00 -80.51 -10.948 0.00
1353 [0e+0 O 0 045 -7.714 -7.714 0.00 -7.925 -1.714 0.00 -73.28 -7.714 0.00
1423 | 2e-1 1 2 2.82 -15.154 -14.929 0.25 -16.313  -14.968 0.00 -76.13 -14.078 5.94
1437 | 1le-2 1 2 7.02 -7.795 -7.789 0.00 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 |2e+0 2 5 2445 -94346 -87.573 0.01 -135.140 -87.577 0.00 -468.04  -86.860 0.82
1493 | 5e-1 1 2 276 -43.883 -43.160 0.00 -47.239  -43.160 0.00 -395.69  -43.160 0.00
1507 {0e+0 0O 0 0.61 -8.301 -8.301 0.00 -49.709  -8.301 0.00 -44.37 -8.301 0.00
1535 | Se-1 1 10 38.01 -12.203 -11.536 0.43 -13.407 -11.397 1.63 -107.86  -11.398 1.62
1619 | 0e+0 O 0 238 9217 -9.217 0.00 -10.302  -9.217 0.00 -74.55 -9.217 0.00
1661 | le-1 1 2 1288 -16.028 -15.955 0.00 -19.667 -15.955 0.00 -139.25  -15.955 0.00
1675 | 5e-1 4 0 422 -76342 -75.669 0.00 -96.864 -75.669 0.00 -435.48  -75.669 0.00
1703 |2e+0 1 3 13.50 -137.543 -132.626 0.13 -180.935 -132.381 0.32 -929.92  -132.802 0.00
1745t 1e+0 6 0 2.53  -73.773 -72.376  0.00 -77.465 - - -317.99  -72.377 0.00
1773 | 2e-1 3 4 18.01 -15490 -14.626 0.11 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 |2e+0 2 4 9.05 -81.846 -78.643 0.04 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 | 1le+0 2 6 1149 -53290 -52.108 0.00 -68.555 -52.109 0.00 -164.26  -51.348 1.46
1922 |2e+0 1 5 3.35 -38.075 -35.556 1.10 |-121.872 -35.741 0.58 -123.2 -35.951 0.00
1931 | 1le+0 1 2 299 -56.165 -55.674 0.06 -85.196  -53.760 3.50 -204.08  -54.290 2.55
1967 | 5e+0 1 8 16.11 -113.802 -107.052 0.49 |-136.098 0.000 100 -622.57 -107.581 0.00
Avg | 0.8 1.7 339 935 0.14 8.96 1.11
Max | 5 5 10 38 1.1 100 6.78

T Row 1745 is excluded from average and maximum computations due to missing entries.

104
1.22 0 T
= L18| |
P~ %= 0 = 0.01
E 1.14 | &0 =002}
1
N

Rounds (k)

Fig. 3: Convergence of the sequential penalized SOCP relaxation for large-scale system identification
with different disturbance levels.

5. Conclusions. This paper introduces a penalized conic relaxation approach for con-
structing feasible and near-optimal solutions to nonconvex quadratically-constrained quadraticl
programming (QCQP) problems. Given an arbitrary initial point (feasible or infeasible) for
the original QCQP, a penalized relaxation is formulated by adding a linear term to the ob-
jective. A generalized linear independence constraint qualification (LICQ) condition is intro-
duced as a regularity criterion for the initial points, and it is shown that the solution of the
penalized relaxation is feasible for QCQP if the initial point is regular and close to the feasi-
ble set. We show that the proposed penalized conic programming relaxations can be solved
sequentially in order to improve the objective of the feasible solution. Numerical experiments
on QPLIB benchmark cases demonstrate that the proposed sequential approach compares fa-
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vorably with nonconvex optimizers BARON and COUENNE. Moreover, the scalability of
the proposed method is demonstrated on large-scale system identification problems.
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651 Appendix A. Application to polynomial optimization. In this section, we show that
652  the proposed penalized conic relaxation approach can be used for polynomial optimization as
653 well. A polynomial optimization problem is formulated as

654 (A.la) minimize ug(x)

xR
655 (A.1b) s.t. ug(x) <0, kel
36 (A.lc) ug(x) =0, keg,

658 forevery k € {0} UZ U &, where each function u;, : R™ — R is a polynomial of arbitrary
659 degree. Problem (A.la)—(A.lc) can be reformulated as a QCQP of the form:

660 (A.2a) minimize wo(x,y)
xzER™,yeR’
661  (A.2b) st. wi(x,y) <0, kel
662 (A.2¢) wi(x,y) =0, keé&
864 (A.2d) Ui(ili, y) =0, i€ 0,
665 where y € RICl is an auxiliary variable, and vy, . . . ;Vjo| and wo, w1, - . ., Wi{ojuzuE| are
666 quadratic functions with the following properties:
667 e For every x € R", the function v(zx, -) : RICl — RI®! is invertible,
668 o Ifv(x,y) =0,, then wi(x,y) = ui(x) forevery k € {0} UZUE.

669 Based on the above properties, there is a one-to-one correspondence between the feasible
670 sets of (A.la)—=(A.Ic) and (A.2a)—(A.2d). Moreover, a feasible point (x,%) is an optimal
671 solution to the QCQP (A.2a)—(A.2d) if and only if & is an optimal solution to the polynomial
672 optimization problem (A.la)—(A.lc).

673 THEOREM A.1 ([32]). Suppose that {uy.}rec(oyuzue are polynomials of degree at most
674 d, consisting of m monomials in total. There exists a QCQP reformulation of the polynomial
675  optimization (A.1a)—(A.1c) in the form of (A.2a)—(A.2d), where |O] < mn (|logy(d)] + 1).

676 The next proposition shows that the LICQ regularity of a point & € R" is inherited by
677 the corresponding point (&, §) € R™ x R of the QCQP reformulation (A.2a)-(A.2d).

678 PROPOSITION A.2. Consider a pair of vectors & € R"™ and §j € R satisfying v(z, §) :I
679  0,. The following two statements are equivalent:
680 1. & is feasible and satisfies the LICQ condition for the polynomial optimization prob-
681 lem (A.la)—(A.1Db).
682 2. (&, 9y) is feasible and satisfies the LICQ condition for the QCQOP (A.2a)—(A.2d).
683 Proof. From u(&) = w(&, y) and the invertiblity assumption for v(&, -), we have
. T

684 Ju®) _ [Ow@,@) aw(ﬁ:,@)} [ I (av(@,m)*l av(fc,@)}

ox ox oy oy ox
&5 (A3) _ow(@,g) dw(@.g) (avw:, @))1 (@, §)
686 Oz 8y ay ox
687 Therefore, Jpo (&) = 8'57(;’) is equal to the Schur complement of

ow(@,y) Ow(@,y)
3 SN ox o

088 (A4) Jqcap(@,9) = | oumg)  ov(ad) ] )
689 T Yy

690  which is the Jacobian matrix of the QCQP (A.2a)—(A.2d) at the point (&, §). As a result, the
691 matrix Jpo (&) is singular if and only if Jqcqre (€, ¥) is singular. a
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