
Noname manuscript No.
(will be inserted by the editor)

Sparse Semidefinite Programs with Guaranteed
Near-Linear Time Complexity via Dualized Clique Tree
Conversion

Richard Y. Zhang · Javad Lavaei

Abstract Clique tree conversion solves large-scale semidefinite programs by
splitting an n× n matrix variable into up to n smaller matrix variables, each
representing a principal submatrix. Its fundamental weakness is the need to
introduce overlap constraints that enforce agreement between different matrix
variables, because these can result in dense coupling. In this paper, we show
that by dualizing the clique tree conversion, the coupling due to the overlap
constraints is guaranteed to be sparse over dense blocks, with a block spar-
sity pattern that coincides with the adjacency matrix of a tree. In two classes
of semidefinite programs with favorable sparsity patterns that encompass the
MAXCUT and MAX k-CUT relaxations, the Lovasz Theta problem, and the
AC optimal power flow relaxation, we prove that the per-iteration cost of
an interior-point method is linear O(n) time and memory, so an ε-accurate
and ε-feasible iterate is obtained after O(

√
n log(1/ε)) iterations in near-linear

O(n1.5 log(1/ε)) time. We confirm our theoretical insights with numerical re-
sults on semidefinite programs as large as n = 13659.

This work was supported by the ONR YIP Award, DARPA YFA Award, AFOSR YIP
Award, NSF Awards, and ONR Award.

R. Y. Zhang
Dept. of Industrial Engineering and Operations Research
University of California, Berkeley
Berkeley, CA 94720, USA
Present address: Dept. of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
306 N Wright St, Urbana, IL 61801
E-mail: ryz@illinois.edu

J. Lavaei
Dept. of Industrial Engineering and Operations Research
University of California, Berkeley
Berkeley, CA 94720, USA
E-mail: lavaei@berkeley.edu

2 Richard Y. Zhang, Javad Lavaei

1 Introduction

Given n×n real symmetric matrices C,A1, . . . , Am and real scalars b1, . . . , bm,
we consider the standard form semidefinite program

minimize C •X (SDP)
subject to Ai •X = bi for all i ∈ {1, . . . ,m}

X � 0.

over the n×n real symmetric matrix variableX. Here, Ai•X = trAiX refers to
the usual matrix inner product, and X � 0 restricts to be symmetric positive
semidefinite. Instances of (SDP) arise as some of the best convex relaxations
to nonconvex problems like graph optimization [1,2], integer programming [3,
4,5,6], and polynomial optimization [7,8].

Interior-point methods are the most reliable approach for solving small- and
medium-scale instances of (SDP), but become prohibitively time- and memory-
intensive for large-scale instances. A fundamental difficulty is the constraint
X � 0, which densely couples all O(n2) elements within the matrix variable
X to each other. The linear system solved at each iteration, known as the
normal equation or the Schur complement equation, is always fully-dense, ir-
respective of sparsity in the data matrices C,A1, . . . , Am. The per-iteration
cost of an interior-point method is roughly the same for highly sparse semidef-
inite programs as it is for fully-dense ones of the same dimensions: at least
cubic (n +m)3 time and quadratic (n +m)2 memory. (See e.g. Nesterov [9,
Section 4.3.3] for a derivation.)

Much larger instances of (SDP) can be solved using the clique tree conver-
sion technique of Fukuda et al. [10]. The main idea is to use an interior-point
method to solve a reformulation whose matrix variables X1, . . . , Xn � 0 rep-
resent principal submatrices of the original matrix variable X � 0, as in1

Xj ≡ X[Jj , Jj] � 0 for all j ∈ {1, . . . , n}, (1)

and to use its solution to recover a solution to the original problem in closed-
form. Here, different Xi and Xj interact only through the linear constraints

Ai •X = Ai,1 •X1 + · · ·+Ai,n •Xn = bi for all i ∈ {1, . . . ,m}, (2)

and the need for their overlapping elements to agree,

Xi[α, β] = Xj [α
′, β′] for all Ji(α) = Jj(α

′), Ji(β) = Jj(β
′). (3)

As a consequence, the normal equation associated with the reformulation is
often block sparse—sparse over fully-dense blocks. When the maximum order
of the submatrices

ω = max{|J1|, |J2|, . . . , |Jn|} (4)

1 Throughout this paper, we denote the (i, j)-th element of the matrix X as X[i, j], and
the submatrix of X formed by the rows in I and columns in J as X[I, J].

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 3

is significantly smaller than n, the per-iteration cost of an interior-point method
scales as low as linearly with respect to n +m. This is a remarkable speed-
up over a direct interior-point solution of (SDP), particularly in view of the
fact that the original matrix variable X � 0 already contains more than n2/2
degrees of freedom on its own.

In practice, clique tree conversion has successfully solved large-scale in-
stances of (SDP) with n as large as tens of thousands [11,12,13,14]. Where
applicable, the empirical time complexity is often as low as linear O(n +m).
However, this speed-up is not guaranteed, not even on highly sparse instances
of (SDP). We give an example in Section 4 whose data matrices A1, . . . , Am
each contains just a single nonzero element, and show that it nevertheless re-
quires at least (n+m)3 time and (n+m)2 memory to solve using clique tree
conversion.

The core issue, and indeed the main weakness of clique tree conversion, is
the overlap constraints (3), which are imposed in addition to the constraints
(2) already present in the original problem [15, Section 14.2]. These overlap
constraints can significantly increase the size of the normal equation solved
at each interior-point interation, thereby offsetting the benefits of increased
sparsity [16]. In fact, they may contribute more nonzeros to the normal matrix
of the converted problem than contained in the fully-dense normal matrix of
the original problem. In [17], omitting some of the overlap constraints made
the converted problem easier to solve, but at the cost of also making the
reformulation from (SDP) inexact.

1.1 Contributions

In this paper, we show that the density of the overlap constraints can be
fully addressed using the dualization technique of Löfberg [18]. By dualizing
the reformulation generated by clique tree conversion, the overlap constraints
are guaranteed to contribute Θ(ω4n) nonzero elements to the normal matrix.
Moreover, these nonzero elements appear with a block sparsity pattern that
coincides with the adjacency matrix of a tree. Under suitable assumptions on
the original constraints (2), this favorable block sparsity pattern allows us to
guarantee an interior-point method per-iteration cost of O(n) time and mem-
ory, by using a specific fill-reducing permutation in computing the Cholesky
factor of the normal matrix. After O(

√
n log(1/ε)) iterations, we arrive at an

ε-accurate solution of (SDP) in near-linear O(n1.5 log(1/ε)) time.
Our first main result guarantees the near-linear time figure for a class of

semidefinite programs that we call partially separable semidefinite programs.
Our notion is an extension of the partially separable cones introduced by
Sun, Andersen, and Vandenberghe [16], based in turn on the notion of partial
separability due to Griewank and Toint [19]. We show that if an instance of
(SDP) is partially separable, then an optimally sparse clique tree conversion
reformulation can be constructed in O(ω3n) time, and then solved using an
interior-point method to ε-accuracy in O(ω6.5n1.5 log(1/ε)) time. Afterwards,

4 Richard Y. Zhang, Javad Lavaei

a corresponding ε-accurate solution to (SDP) is recovered in O(ω3n) time, for
a complete end-to-end cost of O(ω6.5n1.5 log(1/ε)) time.

Semidefinite programs that are not partially separable can be systemati-
cally “separated” by introducing auxillary variables, at the cost of increasing
the number of variables that must be optimized. For a class of semidefinite pro-
grams that we call network flow semidefinite programs, the number of auxillary
variables can be bounded in closed-form. This insight allows us to prove our
second main result, which guarantees the near-linear time figure for network
flow semidefinite programs on graphs with small degrees and treewidth.

1.2 Comparisons to prior work

At the time of writing, clique tree conversion is primarily used as a preprocessor
for an off-the-shelf interior-point method, like SeDuMi and MOSEK. It is often
implemented using a parser like CVX [20] and YALMIP [21] that converts
mathematical expressions into a compatible data format for the solver, but this
process is very slow, and usually destroys the inherent structure in the problem.
Solver-specific implementations of clique tree conversion like SparseColo [22,
23] and OPFSDR [24] are much faster while also preserving the structure
of the problem for the solver. Nevertheless, the off-the-shelf solver is itself
structure-agnotistic, so an improved complexity figure cannot be guaranteed.

In the existing literature, solvers designed specifically for clique tree con-
version are generally first-order methods [16,25,26]. While their per-iteration
cost is often linear time and memory, they require up to O(1/ε) iterations to
achieve ε-accuracy, which is exponentially worse than the O(log(1/ε)) figure of
interior-point methods. Several authors have suggested incorporating a first-
order method within an outer interior-point iteration [27,28,29], but this does
not improve upon the O(1/ε) iteration bound, because the first-order method
solves an increasingly ill-conditioned subproblem, with condition number that
scales O(1/ε2) for ε-accuracy.

Andersen, Dahl, and Vandenberghe [30] describe an interior-point method
that exploits the same chordal sparsity structure that underlies clique tree
conversion, with a per-iteration cost of O(ω3nm+ωm2n+m3) time. The algo-
rithm solves instances of (SDP) with a small number of constraints m = O(1)
in near-linear O(ω3n1.5 log(1/ε)) time. However, substituting m ≤ ωn yields a
general time complexity figure of O(ω3n3.5 log(1/ε)), which is comparable to
the cubic time complexity of a direct interior-point solution of (SDP).

In this paper, we show that off-the-shelf interior-point methods can be
modified to exploit the structure of clique tree conversion, by forcing a specific
choice of fill-reducing permutation. For partially separable semidefinite pro-
grams, the resulting modified solver achieves a guaranteed per-iteration cost
of O(ω6n) time and O(ω4n) memory on the dualized version of the clique tree
conversion.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 5

2 Main results

2.1 Assumptions

To guarantee an exact reformulation, clique tree conversion chooses the index
sets J1, . . . , J` in (1) as the bags of a tree decomposition for the sparsity graph of
the data matrices C,A1, . . . , Am. Accordingly, the parameter ω in (4) can only
be small if the sparsity graph has a small treewidth. Below, we define a graph
G by its vertex set V (G) ⊆ {1, 2, 3, . . .} and its edge set E(G) ⊆ V (G)×V (G).

Definition 1 (Sparsity graph) The n×n matrix M (resp. the set of n×n
matrices {M1, . . . ,Mm}) is said to have sparsity graph G if G is an undi-
rected simple graph on n vertices V (G) = {1, . . . , n} and that (i, j) ∈ E(G) if
M [i, j] 6= 0 (resp. if there exists M ∈ {M1, . . . ,Mm} such that M [i, j] 6= 0).

Definition 2 (Tree decomposition) A tree decomposition T of a graph G
is a pair (J , T), where each bag of vertices Jj ∈ J is a subset of V (G), and T
is a tree on |J | ≤ n vertices, such that:

1. (Vertex cover) For every v ∈ V (G), there exists Jk ∈ J such that v ∈ Jk;
2. (Edge cover) For every (u, v) ∈ E(G), there exists Jk ∈ J such that u ∈ Jk

and v ∈ Jk; and
3. (Running intersection) If v ∈ Ji and v ∈ Jj , then we also have v ∈ Jk for

every k that lies on the path from i to j in the tree T .

The width wid(T) of the tree decomposition T = (J , T) is the size of its
largest bag minus one, as in max{|Jk| : Jk ∈ J } − 1. The treewidth tw(G) of
the graph G is the minimum width amongst all tree decompositions T .

Throughout this paper, we make the implicit assumption that a tree decom-
position with small width is known a priori for the sparsity graph. In practice,
such a tree decomposition can usually be found using fill-reducing heuristics
for sparse linear algebra; see Section 3.

We also make two explicit assumptions, which are standard in the literature
on interior-point methods.

Assumption 1 (Linear independence) We have
∑m
i=1 yiAi = 0 if and

only if y = 0.

The assumption is without loss of generality, because it can either be en-
forced by eliminating Ai •X = bi for select i, or else these constraints are not
consistent for all i. Under Assumption 1, the total number of constraints is
bounded m ≤ ωn (due to the fact that |E(G)| ≤ n · tw(G) [31]).

Assumption 2 (Primal-dual Slater’s condition) There exist X � 0, y,
and S � 0 satisfying Ai•X = bi for all i ∈ {1, . . . ,m} and

∑m
i=1 yiAi+S = C.

In fact, our proofs solve the homogeneous self-dual embedding [32], so our
conclusions can be extended with few modifications to a much larger array
of problems that mostly do not satisfy Assumption 2; see de Klerk et al. [33]

6 Richard Y. Zhang, Javad Lavaei

and Permenter et al. [34]. Nevertheless, we adopt Assumption 2 to simplify
our discussions, by focusing our attention towards the computational aspects
of the interior-point method, and away from the theoretical intricacies of the
self-dual embedding.

2.2 Partially separable

We define the class of partially separable semidefinite program based on the
partially separable cones introduced by Sun, Andersen, and Vandenberghe [16].
The general concept of partial separability is due to Griewank and Toint [19].
Definition 3 (Partially separable) Let T = (J , T) be a tree decompo-
sition for the sparsity graph of C,A1, . . . , Am. The matrix Ai is said to be
partially separable on T if there exist Jj ∈ J and some choice of Ai,j such
that

Ai •X = Ai,j •X[Jj , Jj]

for all n×n matrices X. We say that (SDP) is partially separable on T if every
constraint matrix A1, . . . , Am is partially separable on T .
Due to the edge cover property of the tree decomposition, any Ai that indexes
a single element of X (can be written as Ai •X = X[j, k] for suitable j, k) is
automatically partially separable on any valid tree decomposition T . In this
way, many of the classic semidefinite relaxations for NP-hard combinatorial
optimization problems can be shown as partially separable.
Example 1 (MAXCUT and MAX k-CUT) Let C be the (weighted) Laplacian
matrix for a graph G with n vertices. Frieze and Jerrum [35] proposed a
randomized algorithm to solve MAX k-CUT with an approximation ratio of
1− 1/k based on solving

maximize
k − 1

2k
C •X (MkC)

subject to X[i, i] = 1 for all i ∈ {1, . . . , n}

X[i, j] ≥ −1
k − 1

for all (i, j) ∈ E(G)

X � 0.

The classic Goemans–Williamson 0.878 algorithm [2] for MAXCUT is recov-
ered by setting k = 2 and removing the redundant constraint X[i, j] ≥ −1.
In both the MAXCUT relaxation and the MAX k-CUT relaxation, observe
that each constraint affects a single matrix element in X, so the problem is
partially separable on any tree decomposition. ut
Example 2 (Lovasz Theta) The Lovasz number ϑ(G) of a graph G [1] is the
optimal value to the following dual semidefinite program

minimize λ (LT)

subject to 11T −
∑

(i,j)∈E

yi,j(eie
T
j + eje

T
i) � λI

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 7

over λ ∈ R and yi,j ∈ R for (i, j) ∈ E(G). Here, ej is the j-th column of the
n × n identity matrix and 1 is the length-n vector-of-ones. Problem (LT) is
not partially separable. However, given that ϑ(G) ≥ 1 holds for all graphs G,
we may divide the linear matrix inequality through by λ, redefine y ← y/λ,
apply the Schur complement lemma, and take the Lagrangian dual to yield a
sparse formulation

minimize
[
I 1
1T 0

]
•X (LT′)

subject to X[i, j] = 0 for all (i, j) ∈ E
X[n+ 1, n+ 1] = 1

X � 0.

Each constraint affects a single matrix element in X, so (LT′) is again partially
separable on any tree decomposition. ut

We remark that instances of the MAXCUT, MAX k-CUT, and Lovasz Theta
problems consititute a significant part of the DIMACS [36] and the SDPLIB [37]
test libraries. In Section 5, we prove that partially separable semidefinite pro-
grams like these admit a clique tree conversion reformulation that can be
dualized and then solved using an interior-point method in O(n1.5 log(1/ε))
time. Moreover, we prove in Section 6 that this reformulation can be found in
O(n) time, using an algorithm based on the running intersection property of
the tree decomposition. Combining these results with the low-rank recovery
algorithm of Jiang [38, Algorithm 3.1] yields the following.

Theorem 1 Let T = ({J1, . . . , J`}, T) be a tree decomposition for the sparsity
graph of C,A1, . . . , Am. If (SDP) is partially separable on T , then under As-
sumptions 1 & 2, there exists an algorithm that computes U ∈ Rn×ω, y ∈ Rm,
and S � 0 satisfying√√√√ m∑

i=1

|Ai • UUT − bi|2 ≤ ε,

∥∥∥∥∥
m∑
i=1

yiAi + S − C

∥∥∥∥∥
F

≤ ε, UUT • S
n

≤ ε

in O(ω6.5n1.5 log(1/ε)) time and O(ω4n) space, where ω = maxj |Jj | = 1 +

wid(T) and ‖M‖F =
√
M •M denotes the Frobenius norm.

The proof of Theorem 1 is given at the end of Section 6.

2.3 Network flow

Problems that are not partially separable can be systematically separated
by introducing auxillary variables. The complexity of solving the resulting
problem then becomes parameterized by the number of additional auxillary
variables. In a class of graph-based semidefinite programs that we call network
flow semidefinite programs, the number of auxillary variables can be bounded
using properties of the tree decomposition.

8 Richard Y. Zhang, Javad Lavaei

Definition 4 (Network flow) Given a graph G = (V,E) on n vertices V =
{1, . . . , n}, we say that the linear constraint A • X = b is a network flow
constraint (at vertex k) if the n× n constraint matrix A can be rewritten

A = αkeke
T
k +

1

2

∑
(j,k)∈E

αj(eje
T
k + eke

T
j),

in which ek is the k-th column of the identity matrix and {αj} are scalars.
We say that an instance of (SDP) is a network flow semidefinite program if
every constraint matrix A1, . . . , Am is a network flow constraint, and G is the
sparsity graph for the objective matrix C.

Such problems frequently arise on physical networks subject to Kirchoff’s con-
servation laws, such as electrical circuits and hydraulic networks.

Example 3 (Optimal power flow) The AC optimal power flow (ACOPF) prob-
lem is a nonlinear, nonconvex optimization that plays a vital role in the op-
erations of an electric power system. Let G be a graph representation of the
power system. Then, ACOPF has a well-known semidefinite relaxation

minimize
∑
i∈W

(fi,iX[i, i] +
∑

(i,j)∈E(G)

Re{fi,jX[i, j]}) (OPF)

over a Hermitian matrix variable X, subject to

ai,iX[i, i] +
∑

(i,j)∈E(G)

Re{ai,jX[i, j]} ≤ bi for all i ∈ V (G)

Re{ci,jX[i, j]} ≤ di,j for all (i, j) ∈ E(G)

X � 0.

Here, each ai,j and ci,j is a complex vector, each bi and di,j is a real vector,
and W ⊆ V (G) is a subset of vertices. If a rank-1 solution X? is found,
then the relaxation (OPF) is exact, and a globally-optimal solution to the
original NP-hard problem can be extracted. Clearly, each constraint in (OPF)
is a network flow constraint, so the overall problem is also a network flow
semidefinite program. ut

In Section 7, we prove that network flow semidefinite programs can be re-
formulated in closed-form, dualized, and then solved using an interior-point
method in O(n1.5 log(1/ε)) time.

Theorem 2 Let (SDP) be a network flow semidefinite program on a graph
G on n vertices, and let T = ({J1, . . . , J`}, T) be a tree decomposition for
G. Then, under Assumptions 1 & 2, there exists an algorithm that computes
U ∈ Rn×ω, y ∈ Rm, and S � 0 satisfying√√√√ m∑

i=1

|Ai • UUT − bi|2 ≤ ε,

∥∥∥∥∥
m∑
i=1

yiAi + S − C

∥∥∥∥∥
F

≤ ε, UUT • S
n

≤ ε

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 9

in

O((ω + dmaxmk)
3.5 · ω3.5 · n1.5L) time and O((ω + dmaxmk)

2 · ω2 · n) memory

where:

– ω = maxj |Jj | = 1 + wid(T),
– dmax is the maximum degree of the tree T ,
– mk is the maximum number of network flow constraints at any vertex k ∈
V (G).

The proof of Theorem 1 is given at the end of Section 7.

3 Preliminaries

3.1 Notation

The sets Rn and Rm×n are the length-n real vectors and m× n real matrices.
We use “MATLAB notation” in concatenating vectors and matrices:

[a, b] =
[
a b
]
, [a; b] =

[
a
b

]
, diag(a, b) =

[
a 0
0 b

]
,

and the following short-hand to construct them:

[xi]
n
i=1 =

x1...
xn

 , [xi,j]
m,n
i,j=1 =

x1,1 · · · x1,n...
. . .

...
xm,1 · · · xm,n

 .
The notation X[i, j] refers to the element of X in the i-th row and j-th
column, and X[I, J] refers to the submatrix of X formed from the rows in
I ⊆ {1, . . . ,m} and columns in J ⊆ {1, . . . , n}. The Frobenius inner product
is X • Y = tr (XTY), and the Frobenius norm is ‖X‖F =

√
X •X. We use

nnz (X) to denote the number of nonzero elements in X.
The sets Sn ⊆ Rn×n, Sn+ ⊂ Sn, and Sn++ ⊂ Sn+ are the n×n real symmetric

matrices, positive semidefinite matrices, and positive definite matrices, respec-
tive. We write X � Y to mean X−Y ∈ Sn+ and X � Y to mean X−Y ∈ Sn++.
The (symmetric) vectorization svec (X) = [X[1, 1];

√
2X[2, 1]; . . . ;

√
2X[m, 1];X[2, 2], . . .]

outputs the lower-triangular part of a symmetric matrix as a vector, with fac-
tors of

√
2 added so that svec (X)T svec (Y) = X • Y .

A graph G is defined by its vertex set V (G) ⊆ {1, 2, 3, . . .} and its edge
set E(G) ⊆ V (G) × V (G). The graph T is a tree if it is connected and does
not contain any cycles; we refer to its vertices V (T) as its nodes. Designating
a special node r ∈ V (T) as the root of the tree allows us to define the parent
p(v) of each node v 6= r as the first node encountered on the path from v to
r, and p(r) = r for consistency. The set of children is defined ch(v) = {u ∈
V (T)\v : p(u) = v}. Note that the edges E(T) are fully determined by the
parent pointer p as {v, p(v)} for all v 6= r.

10 Richard Y. Zhang, Javad Lavaei

The set SnG ⊆ Sn is the set of n× n real symmetric matrices with sparsity
graph G. We denote PG(X) = minY ∈SnG ‖X−Y ‖F as the Euclidean projection
of X ∈ Sn onto SnG.

3.2 Tree decomposition via the elimination tree

The standard procedure for solving Sx = b with S � 0 comprises a factoriza-
tion step, where S is decomposed into the unique Cholesky factor L satisfying

LLT = S, L is lower-triangular, Li,i > 0 for all i, (5)

and a substitution step, where the two triangular systems Lu = r and LTx = u
are back-substituted to yield x.

In the case that S is sparse, the location of nonzero elements in L encodes
a tree decomposition for the sparsity graph of S known as the elimination
tree [39]. Specifically, define the index sets J1, . . . , Jn ⊆ {1, . . . , n} as in

Jj = {i ∈ {1, . . . , n} : L[i, j] 6= 0}, (6)

and the tree T via the parent pointers

p(j) =

{
mini{i > j : L[i, j] 6= 0} |Jj | > 1,

j |Jj | = 1.
(7)

Then, ignoring perfect numerical cancellation, T = ({J1, . . . , Jn}, T) is a tree
decomposition for the sparsity graph of S.

Elimination trees with reduced widths can be obtained by reordering the
rows and columns of S using a fill-reducing permutation Π, because the spar-
sity graph of ΠSΠT is just the sparsity graph of S with its vertices reordered.
The minimum width of an elimination tree over all permutations Π is pre-
cisely the treewidth of the sparsity graph of S; see Bodlaender et al. [40] and
the references therein. The general problem is well-known to be NP-complete
in general [31], but polynomial-time approximation algorithms exist to solve
the problem to a logarithmic factor [41,42,40]. In practice, heuristics like the
minimum degree [43] and nested dissection [44] are considerably faster while
still producing high-quality choices of Π.

Note that the sparsity pattern of L is completely determined by the sparsity
pattern of S, and not by its numerical value. The former can be computed
from the latter using a symbolic Cholesky factorization algorithm, a standard
routine in most sparse linear algebra libraries, in time linear to the number of
nonzeros in L.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 11

3.3 Clique tree conversion

Let T = ({J1, . . . , J`}, T) be a tree decomposition with small width for the
sparsity graph G of the data matrices C,A1, . . . , Am. We define the graph
F ⊇ G by taking each index set Jj of T and interconnecting all pairs of
vertices u, v ∈ Jj , as in

V (F) = V (G), E(F) =
⋃̀
j=1

{(u, v) : u, v ∈ Jj}. (8)

The following fundamental result was first established by Grone et al. [45].
Constructive proofs allow us to recover all elements in X � 0 from only the
elements in PF (X) using a closed-form formula.

Theorem 3 (Grone et al. [45]) Given Z ∈ SnF , there exists an X � 0
satisfying PF (X) = Z if and only if Z[Jj , Jj] � 0 for all j ∈ {1, 2, . . . , `}.

We can use Theorem 3 to reformulate (SDP) into a reduced-complexity form.
The key is to view (SDP) as an optimization over PF (X), since

C •X =
n∑

i,j=1

Ci,jXi,j =
∑

(i,j)∈F

Ci,jXi,j = C • PF (X),

and similarly Ai •X = Ai •PF (X). Theorem 3 allows us to account for X � 0
implicitly, by optimizing over Z = PF (X) in the following

minimize C • Z (9)
subject to Ai • Z = bi for all i ∈ {1, . . . ,m},

Z[Jj , Jj] � 0 for all j ∈ {1, . . . , `}.

Next, we split the principal submatrices into distinct matrix variables, coupled
by the need for their overlapping elements to agree. Define the overlap operator
Ni,j(·) to output the overlapping elements of two principal submatrices given
the latter as input:

Ni,j(X[Jj , Jj]) = X[Ji ∩ Jj , Ji ∩ Jj] = Nj,i(X[Ji, Ji]).

The running intersection property of the tree decomposition allows us to en-
force this agreement using `− 1 pairwise block comparisons.

Theorem 4 (Fukuda et al. [10]) Given X1, X2, . . . , X` for Xj ∈ S|Jj |,
there exists Z satisfying Z[Jj , Jj] = Xj for all j ∈ {1, 2, . . . , `} if and only if
Ni,j(Xj) = Nj,i(Xi) for all (i, j) ∈ E(T).

Splitting the objective C and constraint matrices A1, . . . , Am into C1, . . . , C`
and A1,1, . . . , Am,` to satisfy

C1 •X[J1, J1] + C2 •X[J2, J2] + · · ·+ C` •X[J`, J`] = C •X, (10)
Ai,1 •X[J1, J1] +Ai,2 •X[J2, J2] + · · ·+Ai,` •X[J`, J`] = Ai •X,

12 Richard Y. Zhang, Javad Lavaei

and applying Theorem 4 yields the following

minimize
∑̀
j=1

Cj •Xj (CTC)

subject to
∑̀
j=1

Ai,j •Xj = bi for all i ∈ {1, . . . ,m},

Ni,j(Xj) = Nj,i(Xi) for all (i, j) ∈ E(T),

Xj � 0 for all j ∈ {1, . . . , `},
which vectorizes into a linear conic program in standard form

minimize cTx, maximize
[
b
0

]T
y, (11)

subject to
[
A
N

]
x =

[
b
0

]
, subject to

[
A
N

]T
y + s = c,

x ∈ K, s ∈ K∗
over the Cartesian product of ` ≤ n smaller semidefinite cones

K = K∗ = S|J1|+ × S|J2|+ × · · · × S|J`|+ . (12)

Here, A = [svec (Ai,j)
T]m,`i,j=1 and c = [svec (Cj)]

`
j=1 correspond to (10), and

the overlap constraints matrix N = [Ni,j]
`,`
i,j=1 is implicitly defined by the

relation

Ni,jsvec (Xj) =


+svec (Np(i),i(Xi)) j = i,

−svec (Ni,p(i)(Xp(i))) j = p(i),

0 otherwise,
(13)

for every non-root node i on T . (To avoid all-zero rows in N, we define
Ni,j svec (Xj) as the empty length-zero vector R0 if i is the root node.)

The converted problem (CTC) inherits the standard regularity assumptions
from (SDP). Accordingly, an interior-point method is well-behaved in solving
(11). (Proofs for the following statements are deferred to Appendix A.)
Lemma 1 (Linear independence) There exists [u; v] 6= 0 such that ATu+
NT v = 0 if and only if there exists y 6= 0 such that

∑
i yiAi = 0.

Lemma 2 (Primal Slater) There exists x ∈ Int(K) satisfying Ax = b and
Nx = 0 if and only if there exists an X � 0 satisfying Ai • X = bi for all
i ∈ {1, . . . ,m}.
Lemma 3 (Dual Slater) There exists u, v satisfying c − ATu − NT v ∈
Int(K∗) if and only if there exists y satisfying C −

∑
i yiAi � 0.

After an ε-accurate solution X?
1 , . . . , X

?
` to (CTC) is found, we recover a corre-

sponding ε-accurate solution X? to (SDP) in closed-form. In particular, the al-
gorithm of Jiang [38, Algorithm 3.1] recovers a low-rank completion X = UUT

where U has at most ω = maxj |Jj | columns, in O(ω3n) time and O(ω2n)
space; see also Dancis [46], Madani et al. [47] and Laurent and Varvitsiotis [48].

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 13

4 Cost of an interior-point iteration on (CTC)

When the vectorized version (11) of the converted problem (CTC) is solved
using an interior-point method, the cost of each iteration is dominated by the
cost of forming and solving the normal equation (also known as the Schur
complement equation)[

A
N

]
Ds

[
A
N

]T
∆y =

[
ADsA

T ADsN
T

NDsA
T NDsN

T

] [
∆y1
∆y2

]
=

[
r1
r2

]
, (14)

where the scaling matrix Ds is block-diagonal with fully-dense blocks

Ds = diag(Ds,1, . . . ,Ds,`), Ds,j � 0 for all j ∈ {1, . . . , `}. (15)

Typically, each dense block in Ds is the Hessian of a log-det penalty, as in
Ds,j = ∇2[log det(Xj)]. The submatrix ADsA

T is often sparse [16], with a
sparsity pattern that coincides with the correlative sparsity [49] of the problem.

Unfortunately, NDsN
T can be fully-dense, even when ADsA

T is sparse or
even diagonal. To explain, observe from (13) that the block sparsity pattern of
N = [Ni,j]

`,`
i,j=1 coincides with the incidence matrix of the tree decomposition

tree T . Specifically, for every i with parent p(i), the block Ni,j is nonzero if
and only if j ∈ {i, p(i)}. As an immediate corollary, the block sparsity pattern
of NDsN

T coincides with the adjacency matrix of the line graph of T :

∑̀
k=1

Ni,kDs,kN
T
j,k 6= 0 ⇐⇒ j ∈ {i, p(i)} or p(j) ∈ {i, p(i)}. (16)

The line graph of a tree is not necessarily sparse. If T were the star graph on
n vertices, then its associated line graph L(T) would be the complete graph
on n− 1 vertices. Indeed, consider the following example.

Example 4 (Star graph) Given b ∈ Rn, embed max{bT y : ‖y‖ ≤ 1} into the
order-(n+ 1) semidefinite program:

minimize tr (X)

subject to X[i, (n+ 1)] = bi for all i ∈ {1, . . . , n}
X � 0

The associated sparsity graph G is the star graph on n + 1 nodes, and its
elimination tree T = ({J1, . . . , Jn}, T) has index sets Jj = {j, n + 1} and
parent pointer p(j) = n. Applying clique tree conversion and vectorizing yields
an instance of (11) with

A =

e
T
2 0
. . .

0 eT2

 , N =

e
T
3 0 −eT3
. . .

...
0 eT3 −eT3

 ,

14 Richard Y. Zhang, Javad Lavaei

where ej is the j-th column of the 3× 3 identity matrix. It is straightforward
to verify that ADsA

T is n × n diagonal but NDsN
T is (n − 1) × (n − 1)

fully dense for the Ds in (15). The cost of solving the corresponding normal
equation (14) must include the cost of factoring this fully dense submatrix,
which is at least (n− 1)3/3 operations and (n− 1)2/2 units of memory. ut

On the other hand, observe that the block sparsity graph of NTN coincides
with the tree graph T

∑̀
k=1

NT
k,iNk,j 6= 0 ⇐⇒ i = j or (i, j) ∈ E(T). (17)

Such a matrix is guaranteed to be block sparse: sparse over dense blocks. More
importantly, after a topological block permutation Π, the matrix Π(NTN)ΠT

factors into LLT with no block fill.

Definition 5 (Topological ordering) An ordering π : {1, 2, . . . , n} → V (T)
on the tree graph T with n nodes is said to be topological [15, p. 10] if, by
designating π(n) as the root of T , each node is indexed before its parent:

π−1(v) < π−1(p(v)) for all v 6= r,

where π−1(v) denotes the index associated with the node v.

Lemma 4 (No block fill) Let J1, . . . , Jn satisfy
⋃n
j=1 Jj = {1, . . . , d} and

Ji ∩ Jj = ∅ for all i 6= j, and let H � 0 be a d× d matrix satisfying

H[Ji, Jj] 6= 0 =⇒ (i, j) ∈ E(T)

for a tree graph T on n nodes. If π is a topological ordering on T and Π is a
permutation matrix satisfying

(ΠHΠ)[Ji, Jj] = H[Jπ(i), Jπ(j)] for all i, j ∈ {1, . . . , n},

then ΠHΠT factors into LLT where the Cholesky factor L satisfies

L[Ji, Jj] 6= 0 =⇒ (ΠHΠ)[Ji, Jj] 6= 0 for all i > j.

Therefore, sparse Cholesky factorization solves Hx = b for x by: (i) fac-
toring ΠHΠT into LLT in O(β3n) operations and O(β2n) memory where
β = maxj |Jj |, and (ii) solving Ly = Πb and LT z = y and x = ΠT z in
O(β2n) operations and memory.

This is a simple block-wise extension of the tree elimination result originally
due to Parter [50]; see also George and Liu [51, Lemma 6.3.1]. In practice, a
topological ordering can be found by assigning indices n, n − 1, n − 2, . . . in
decreasing ordering during a depth-first search traversal of the tree. In fact, the
minimum degree heuristic is guaranteed to generate a topological ordering [43].

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 15

One way of exploiting the favorable block sparsity of NTN is to view the
normal equation (14) as the Schur complement equation to an augmented
system with ε = 0: D−1s AT NT

A −εI 0
N 0 −εI

∆x∆y1
∆y2

 =

 0
r1
r2

 . (18)

Instead, we can solve the dual Schur complement equation for ε > 0(
D−1s +

1

ε
ATA+

1

ε
NTN

)
∆x =

1

ε
AT r1 +

1

ε
AT r2 (19)

and recover an approximate solution. Under suitable sparsity assumptions on
ATA, the block sparsity graph of the matrix in (19) coincides with that of
NTN, which is itself the tree graph T . Using sparse Cholesky factorization
with a topological block permutation, we solve (19) in linear time and back
substitute to obtain a solution to (18) in linear time. In principle, a sufficiently
small ε > 0 will approximate the exact case at ε = 0 to arbitrary accuracy,
and this is all we need for the outer interior-point method to converge in
polynomial time.

A more subtle way to exploit the block sparsity of NTN is to reformulate
(CTC) into a form whose normal equation is exactly (19). As we show in the
next section, this is achieved by a simple technique known as dualization.

5 Dualized clique tree conversion

The dualization technique of Löfberg [18] swaps the roles played by the pri-
mal and the dual problems in a linear conic program, by rewriting a primal
standard form problem into dual standard form, and vice versa. Applying
dualization to (11) yields the following

minimize
[
b
0

]T
x1 maximize −cT y (20)

subject to
[
A
N

]T
x1 − x2 = −c, subject to

[
A
N

]
y + s1 =

[
b
0

]
,

x1 ∈ Rf , x2 ∈ K. −y + s2 = 0,

s1 ∈ {0}f , s2 ∈ K.

where we use f to denote the number of equality constraints in (CTC). Observe
that the dual problem in (20) is identical to the primal problem in (11), so
that a dual solution y? to (20) immediately serves as a primal solution to (11),
and hence also (CTC).

16 Richard Y. Zhang, Javad Lavaei

Modern interior-point methods solve (20) by embeding the free variable
x1 ∈ Rf and fixed variable s1 ∈ {0}f into a second-order cone (see Sturm [52]
and Andersen [53]):

minimize
[
b
0

]T
x1 maximize −cT y (21)

subject to
[
A
N

]T
x1 − x2 = −c, subject to

[
A
N

]
y + s1 =

[
b
0

]
,

‖x1‖ ≤ x0, x2 ∈ K. −y + s2 = 0,

s0 = 0,

‖s1‖ ≤ s0, s2 ∈ K.

When (21) is solved using an interior-point method, the normal equation solved
at each iteration takes the form(

Ds +

[
A
N

]T
Df

[
A
N

])
∆y = r (22)

where Ds is comparable as before in (15), and

Df = σI + wwT , σ > 0 (23)

is the rank-1 perturbation of a scaled identity matrix. The standard procedure,
as implemented in SeDuMi [52,54] and MOSEK [55], is to form the sparse
matrix H and dense vector q, defined

H = Ds + σATA+ σNTN, q =
[
AT NT

]
w. (24)

and then solve (22) using a rank-1 update2

∆y = (H+ qqT)−1r =

(
I − (H−1q)qT

1 + qT (H−1q)

)
H−1r, (25)

at a cost comparable to the solution of Hu = r for two right-hand sides.
The matrix H is exactly the dual Schur complement derived in (19) with

σ = 1/ε. If the ATA shares its block sparsity pattern with NTN, then the
block sparsity graph of H coincides with the tree graph T , and Hu = r can
be solved in linear time. The cost of making the rank-1 update is also linear
time, so the cost of solving the normal equation is linear time.

Lemma 5 (Linear-time normal equation) Let there exist vi ∈ V (T) for
each i ∈ {1, . . . ,m} such that

Ai,j 6= 0 =⇒ j = vi or j = p(vi). (26)

Define H and q according to (24). Then, under Assumption 1:
2 To keep our derivations simple, we perform the rank-1 update using the Sher-

man–Morrison—Woodbury (SMW) formula. In practice, the product-form Cholesky Fac-
tor (PFCF) formula of Goldfarb and Scheinberg [56] is more numerically stable and more
widely used [52,54]. Our complexity results remain valid in either cases because the PFCF
is a constant factor of approximately two times slower than the SWM [56].

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 17

1. (Forming) It costs O(ω6n) time and O(ω4n) space to form H and q, where
ω = maxj |Jj | = 1 + wid(T).

2. (Factoring) Let π be a topological ordering on T , and define the associated
block topological permutation Π as in Lemma 4. Then, it costs O(ω6n)
time and O(ω4n) space factor ΠHΠT into LLT .

3. (Solving) Given r, q, Π, and the Cholesky factor L satisfying LLT =
ΠHΠT , it costs O(ω4n) time and space to solve (H+ qqT)u = r for u.

Proof Write d = 1
2

∑`
j=1 |Jj |(|Jj |+1) = O(ω2n) as the number of columns inA

and N. Under Assumption 1, the matrix [A;N] has full row-rank (Lemma 1),
and must therefore have less rows than columns. Write ξTi as the i-th row of
the matrix [A;N], and observe that nnz (ξi) ≤ 2ω2 by the definition of N (13)
and the hypothesis on A via (26).

(i) We form H by setting H ← Ds for nnz (Ds) ≤ nnz (Wj)
2 · n = ω4n

time and space, and then adding H ← H + σξiξ
T
i one at a time, for a total

of nnz (ξi)2 · ω2n = O(ω6n) time and nnz (H) = O(ω4n) space. We form q =
[AT ,NT]w1 using a sparse matrix-vector product in nnz ([A;N]) = O(ω4n)
time and space.

(ii) We partition H into [Hi,j]
`
i,j=1 to reveal a block sparsity pattern that

coincides with the adjacency matrix of T :

Hi,j =


Ds,i + σ

∑`
k=1 N

T
k,iNk,i + σ

∑m
q=1 aq,ia

T
q,i i = j

σ
∑`
k=1 N

T
k,iNk,j + σ

∑m
q=1 aq,ia

T
q,j (i, j) ∈ E(T)

0 otherwise

where aq,i = svec (Aq,i). According to Lemma 4, the permuted matrix ΠHΠT

factors into LLT with no block fill in O(ω6n) time and O(ω4n) space, because
each block Hi,j is at most order 1

2ω(ω + 1).
(iii)Using the rank-1 update formula (25), the cost of solving (H+qqT)u =

r is the same as the cost of solving Hu = r for two right-hand sides, plus
algebraic manipulations in O(d) = O(ω2n) time. Applying Lemma 4 shows
that the cost of solving Hu = r for each right-hand side is O(ω4n) time and
space. ut

Incorporating the block topological permutation of Lemma 5 within any off-
the-self interior-point method yields a fast interior-point method with overall
time complexity of O(n1.5 log(1/ε)).

Theorem 5 (Near-linear time) Let T = ({J1, . . . , J`}, T) be a tree decom-
position for the sparsity graph of C,A1, . . . , Am ∈ Sn. In the corresponding
instance of (CTC), let each constraint be written

∑̀
j=1

Ai,j •Xj = Ai,j •Xj +Ai,k •Xk = bi (j, k) ∈ E(T). (27)

18 Richard Y. Zhang, Javad Lavaei

Algorithm 1 Dualized clique tree conversion
Input. Data vector b ∈ Rm, data matrices C,A1, . . . , Am, and tree decomposition T =
({J1, . . . , J`}, T) for the sparsity graph of the data matrices.
Output. An ε-accurate solution of (SDP) in factored form X? = UUT , where U ∈ Rn×ω
and ω = maxj |Jj |.
Algorithm.

1. (Conversion) Reformulate (SDP) into (CTC).
2. (Dualization) Vectorize (CTC) into (11) and dualize into (21).
3. (Solution) Solve (21) as an order-ν conic linear program in standard form, using an

interior-point method with O(
√
ν log(1/ε)) iteration complexity. At each iteration of the

interior-point method, solve the normal equation using sparse Cholesky factorization and
the fill-reducing permutation Π in Lemma 5. Obtain ε-accurate solutions X?

1 , . . . , X
?
` .

4. (Recovery) Recover X? = UUT satisfying X?[Ji, Ji] = X?
i using the low-rank matrix

completion algorithm of Jiang [38, Algorithm 3.1].

Under Assumptions 1 & 2, there exists an algorithm that computes an iterate
(x, y, s) ∈ K × Rp ×K∗ satisfying

∥∥∥∥[AN
]
x−

[
b
0

]∥∥∥∥ ≤ ε,
∥∥∥∥∥
[
A
N

]T
y − s+ c

∥∥∥∥∥ ≤ ε, xT s∑`
j=1 |Jj |

≤ ε (28)

in O(ω6.5n1.5 log(1/ε)) time and O(ω4n) space, where ω = maxj |Jj | = 1 +
wid(T).

For completeness, we give a proof of Theorem 5 in Appendix B, based on
the primal-dual interior-point method found in SeDuMi [52,54]. Our proof
amounts to replacing the fill-reducing permutation—usually a minimum degree
ordering—by the block topological permutation of of Lemma 5. In practice,
the minimum degree ordering is often approximately block topological, and
as such, Theorem 5 is often attained by off-the-shelf implementations without
modification.

The complete end-to-end procedure for solving (SDP) using dualized clique
tree conversion is summarized as Algorithm 1. Before we can use Algorithm 1
to prove our main results, however, we must first address the cost of the pre-
processing involved in Step 1. Indeed, naively converting (SDP) into (CTC)
by comparing each nonzero element of Ai against each index set Jj would
result in `m = O(n2) comparisons, and this would cause Step 1 to become the
overall bottleneck of the algorithm.

In the next section, we show that if (SDP) is partially separated, then the
cost of Step 1 is no more than O(ω3n) time and memory. This is the final piece
in the proof of Theorem 1.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 19

6 Optimal constraint splitting

A key step in clique tree conversion is the splitting of a given M ∈ SnF into
M1, . . . ,M` that satisfy

M1•X[J1, J1]+M2•X[J2, J2]+· · ·+M`•X[J`, J`] =M •X for all X ∈ Sn.
(29)

The choice is not unique, but has a significant impact on the complexity of an
interior-point solution. The problem of choosing the sparsest choice with the
fewest nonzero Mj matrices can be written

S? = minimize
S⊆{1,...,`}

|S| subject to
⋃
j∈S

(Jj × Jj) ⊇M, (30)

where M = {(i, j) : M [i, j] 6= 0} are the nonzero matrix elements to be
covered. Problem (30) is an instance of SET COVER, one of Karp’s 21 NP-
complete problems, but becomes solvable in polynomial time given a tree de-
composition (with small width) for the covering sets [57].

In this section, we describe an algorithm that computes the sparsest split-
ting for each M in O(nnz (M)) time and space, after a precomputation set
taking O(ωn) time and memory. Using this algorithm, we convert a partially
separable instance of (SDP) into (CTC) in O(ω3n) time and memory. Then,
give a complete proof to Theorem 1 by using this algorithm to convert (SDP)
into (CTC) in Step 1 of Algorithm 1.

Our algorithm is adapted from the leaf-pruning algorithm of Guo and Nie-
dermeier [57], but appears to be new within the context of clique tree con-
version. Observe that the covering sets inherit the edge cover and running
intersection properties of T :

⋃̀
j=1

(Jj × Jj) ⊇M for all possible choices ofM, (31)

(Ji × Ji) ∩ (Jj × Jj) ⊆ (Jk × Jk) for all k on the path from i to j. (32)

For every leaf node j with parent node p(j) on T , property (32) implies that the
subset (Jj×Jj)\(Jp(j)×Jp(j)) contains elements unique to Jj×Jj , because p(j)
lies on the path from j to all other nodes in T . IfM contains an element from
this subset, then j must be included in the cover set, so we set j ← j ∪ S and
M ←M\(Jj × Jj); otherwise, we do nothing. Pruning the leaf node reveals
new leaf nodes, and we repeat this process until the tree T is exhausted of
nodes. Then, property (31) guarantees thatM will eventually be covered.

Algorithm 2 is an adaptation of the leaf-pruning algorithm described above,
with three important simplifications. First, it uses a topological traversal (Def-
inition 5) to simulate the process of leaf pruning without explicitly deleting
nodes from the tree. Second, it notes that the unique subset (Jj×Jj)\(Jp(j)×
Jp(j)) can be written in terms of another unique set Uj :

(Jj × Jj)\(Jp(j) × Jp(j)) = (Uj × Jj) ∪ (Jj × Uj) where Uj ≡ Jj\Jp(j).

20 Richard Y. Zhang, Javad Lavaei

Algorithm 2 Optimal algorithm for splitting constraints
Input. Data matrices M1, . . . ,Mm. Tree decomposition T = ({J1, . . . , J`}, T) for the spar-
sity graph of the data matrices.
Output. Split matricesMi,j satisfyingMi•X =

∑`
j=1Mi,j •X[Jj , Jj] for all i ∈ {1, . . . ,m}

in which the number of nonzero split matrices {j :Mi,j 6= 0} is minimized.
Algorithm.

1. (Precomputation) Arbitrarily root T , and iterate over j ∈ {1, . . . , `} in any order. For
each j with parent k, define Uj ≡ Jj\Jk. For the root j, define Uj = Jj . For each k ∈ Uj ,
set u(k) = j.

2. (Overestimation) Iterate over i ∈ {1, . . . ,m} in any order. For each i, compute the
overestimate Si =

⋃
(i,j)∈M u(j) whereM = {(j, k) : Mi[j, k] 6= 0} are the nonzeros to

be covered.
3. (Leaf pruning on the overestimation) Iterate over j ∈ Si in topological order on T

(children before parents). If Mi[Jj , Uj] 6= 0 then add j to the set cover, and remove the
covered elements

Mi,j ←Mi[Jj , Jj], Mi[Jj , Jj]← 0.

If Mi = 0, break. Return to Step 2 for a new value of i.

Third, it notes that the unique set Uj defined above is a partitioning of
{1, . . . , n}, and has a well-defined inverse map. The following is taken from [58,
59], where Uj is denoted new(Jj) and referred to as the “new set” of Jj ; see
also [60].

Lemma 6 (Unique partition) Define Uj = Jj\Jp(j) for all nodes j with
parent p(j), and Ur = Jr for the root node r. Then: (i)

⋃`
j=1 Uj = {1, . . . , n};

and (ii) Ui ∩ Uj = ∅ for all i 6= j.

In the case that M contains just O(1) items to be covered, we may use the
inverse map associated with Uj to directly identify covering sets whose unique
sets contain elements fromM, without exhaustively iterating through all O(n)
covering sets. This final simplification reduces the cost of processing each Mi

from linear O(n) time to O(nnz (Mi)) time, after setting up the inverse map
in O(ωn) time and space.

Theorem 6 Algorithm 2 has complexity

O(ωn+ nnz (M1) + nnz (M2) + · · ·+ nnz (Mm)) time and memory,

where ω ≡ 1 + wid(T).

For partially separable instances of (SDP), the sparsest instance of (CTC)
contains exactly one nonzero split matrix Ai,j 6= 0 for each i, and Algorithm 2
is guaranteed to find it. Using Algorithm 2 to convert (SDP) into (CTC) in
Step 1 of Algorithm 1 yields the complexity figures quoted in Theorem 1.

Proof (Theorem 1) By hypothesis, T = {J1, . . . , J`} is a tree decomposition
for the sparsity graph of the data matrices C,A1, . . . , Am, and (SDP) is par-
tially separable on T . We proceed to solve (SDP) using Algorithm 1, while
performing the splitting into Cj and Ai,j using Algorithm 2. Below, we show

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 21

that each step of the algorithm costs no more than O(ω6.5n1.5 log(1/ε)) time
and O(ω4n) memory:

Step 1 (Matrix A and vector c). We have dim(SnG) = |V (G)|+ |E(G)| ≤
n + n · wid(T) ≤ ωn, and hence nnz (C) ≤ ωn. Under partial separability
(Definition 3), we also have nnz (Ai) ≤ ω2. Assuming linear independence
(Assumption 1) yields m ≤ dim(SnG) ≤ ωn, and this implies that nnz (C) +∑
i nnz (Ai) = O(ω3n), so the cost of forming A and c using Algorithm 1 is

O(ω3n) time and memory via Theorem 6.
Step 1 (Matrix N). For N = [Ni,j]

`
i,j=1, we note that each block Ni,j is

diagonal, and hence nnz (Ni,j) ≤ ω2. The overallN contains ` block-rows, with
2 nonzero blocks per block-row, for a total of 2` nonzero blocks. Therefore,
the cost of forming N is nnz (N) = O(ω2n) time and memory.

Step 2. We dualize by forming the matrix M = [0,−AT ,NT ,+I] and
vectors cT = [0, bT , 0, 0] and vectors b = −c in O(nnz (A)+nnz (N)) = O(ω3n)
time and memory.

Step 3. The resulting instance of (CTC) satisfies the assumptions of The-
orem 5 and therefore costs O(ω6.5n1.5 log(1/ε)) time and O(ω4n) memory to
solve.

Step 4. The algorithm of Jiang [38, Algorithm 3.1] makes ` ≤ n iterations,
where each iteration performs O(1) matrix-matrix operations over ω×ω dense
matrices. Its cost is therefore O(ω3n) time and O(ω2n) memory. ut

7 Dualized Clique Tree Conversion with Auxillary Variables

Theorem 5 bounds the cost of solving instances of (CTC) that satisfy the
sparsity assumption (27) as near-linear time and linear memory. Instances of
(CTC) that do not satisfy the sparsity assumption can be systematically trans-
formed into ones that do by introducing auxillary variables. Let us illustrate
this idea with an example.

Example 5 (Path graph) Given (n+1)×(n+1) symmetric tridiagonal matrices
A � 0 and C with A[i, j] = C[i, j] = 0 for all |i− j| > 1, consider the Rayleigh
quotient problem

minimize C •X subject to A •X = 1, X � 0. (33)

The associated sparsity graph is the path graph on n+ 1 nodes, and its elimi-
nation tree decomposition T = ({J1, . . . , Jn}, T) has index sets Jj = {j, j+1}
and parent pointer p(j) = j + 1. Applying clique tree conversion and vector-
izing yields an instance of (11) with

A =
[
aT1 · · · aTn

]
, N =

e
T
3 −eT1

.
eT3 −eT1


where ej is the j-th column of the 3× 3 identity matrix, and a1, . . . , an ∈ R3

are appropriately chosen vectors. The dualized Schur complement H = Ds +

22 Richard Y. Zhang, Javad Lavaei

σATA+σNTN is fully dense, so dualized clique tree conversion (Algorithm 1)
would have a complexity of at least cubic n3 time and quadratic n2 memory.
Instead, introducing n−1 auxillary variables u1, . . . , un−1 yields the following
problem

minimize
n∑
j=1

cTj xj (34)

subject to aT1 x1 −
[
0 1
] [x2
u2

]
= b

[
aTi 1

] [xi
ui

]
−
[
0 1
] [xi+1

ui+1

]
= 0 for all i ∈ {2, . . . n− 1}

x1 ∈ svec (S2+),
[
xj
uj

]
∈ svec (S2+)× R for all j ∈ {2, . . . n}

which does indeed satisfy the sparsity assumption (27) of Theorem 5. In turn,
solving (34) using Steps 2-3 of Algorithm 1 recovers an ε-accurate solution in
O(n1.5 log ε−1) time and O(n) memory. ut

For an arbitrary constraint Ai •X = bi in (SDP), we assume without loss of
generality3 that the corresponding constraint in (CTC) is split over a connected
subtree of T induced by a subset of vertices W ⊆ V (T), as in

∑
j∈W

Ai,j •X[Jj , Jj] = bi, TW ≡ (W, E(T)) is connected. (35)

Then, the coupled constraint (35) can be decoupled into |W | constraints, by
introducing |W | − 1 auxillary variables, one for each edge of the connected
subtree TW :

Ai,j •X[Jj , Jj] +
∑

k∈ch(j)

uk =

{
bi k is root of TW ,
uj otherwise,

for all j ∈W. (36)

It is easy to see that (35) and (36) are equivalent by applying Gaussian elim-
ination on the auxillary variables.

Lemma 7 The matrix X satisfies (35) if and only if there exists {uj} such
that X satisfies (36).

3 Since T is connected, we can always find a connected subset W ′ satisfying W ⊆ W ′ ⊆
V (T) and replace W by W ′.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 23

Repeating the splitting procedure for every constraint in (CTC) yields a prob-
lem of the form

minimize cTx, (37)

subject to
∑
j∈Wi

(Ai,jxj +Bi,jui,j) = fi for all i ∈ {1, . . . ,m}

∑̀
j=1

Ni,jxj = 0 for all i ∈ {1, . . . , `}[
xj

[ui,j]
m
i=1

]
∈ svec (S|Jj |+)×Rγj for all j ∈ {1, . . . , `}

whereWi is induces the connected subtree associated with i-th constraint, and
γj is the total number of auxillary variables added to each j-th variable block.
When (21) is dualized and solved using an interior-point method, the matrix
H = [Hi,j]

`
i,j=1 satisfies Hi,j = 0 for every (i, j) /∈ E(T), so by repeating the

proof of Lemma 5, the cost of solving the normal equation is again linear time.
Incorporating this within any off-the-self interior-point method again yields a
fast interior-point method with overall time complexity of O(n1.5 log(1/ε)).

Lemma 8 Let T = ({J1, . . . , J`}, T) be a tree decomposition for the sparsity
graph of C,A1, . . . , Am ∈ Sn, and convert the corresponding instance of (CTC)
into (34). Under Assumptions 1 & 2, there exists an algorithm that computes
an iterate (x, y, s) ∈ K × Rp ×K∗ satisfying (28) in

O((ω2 + γmax)
3ω0.5n1.5 log ε−1) time and O((ω2 + γmax)

2n) memory,

where ω = 1+wid(T) and γmax = maxj γj is the maximum number of auxillary
variables added to a single variable block.

Proof We repeat the proof of Theorem 5, but slightly modify the linear time
normal equation result in Lemma 5. Specifically, we repeat the proof of Lemma 5,
but note that each block Hi,j of H is now order 1

2ω(ω + 1) + γmax, so that
factoring in (ii) now costs O((ω2+γmax)

3n) time and O((ω2+γmax)
2n) mem-

ory, and substituting in (iii) costs O((ω2 + γmax)
2n) time and memory. After

O(
√
ωn log ε−1) interior-point iterations, we again arrive at an ε-accurate and

ε-feasible solution to (CTC). ut

The complete end-to-end procedure for solving (SDP) using the auxillary
variables method is summarized as Algorithm 3. In the case of network flow
semidefinite programs, the separating in Step 2 can be performed in closed-
form using the induced subtree property of the tree decomposition [61].

Definition 6 (Induced subtrees) Let T = ({J1, . . . , J`}, T) be a tree de-
composition. We define Tk as the connected subtree of T induced by the nodes
that contain the element k, as in

V (Tk) = {j ∈ {1, . . . , `} : k ∈ Jj}, E(Tk) = E(T).

24 Richard Y. Zhang, Javad Lavaei

Algorithm 3 Dualized clique tree conversion with auxillary variables
Input. Data vector b ∈ Rm, data matrices C,A1, . . . , Am, and tree decomposition T =
({J1, . . . , J`}, T) for the sparsity graph of the data matrices.
Output. An ε-accurate solution of (SDP) in factored form X? = UUT , where U ∈ Rn×ω
and ω = maxj |Jj |.
Algorithm.

1. (Conversion) Reformulate (SDP) into (CTC).
2. (Auxillary variables) Vectorize (CTC) into (11), and separate into (37) by rewriting

each (35) as (36).
3. (Dualization) Dualize (37) into (21).
4. (Solution) Solve (21) as an order-ν conic linear program in standard form, using an

interior-point method with O(
√
ν log(1/ε)) iteration complexity. At each iteration of the

interior-point method, solve the normal equation using sparse Cholesky factorization and
the fill-reducing permutation Π in Lemma 5. Obtain ε-accurate solutions X?

1 , . . . , X
?
` .

5. (Recovery) Recover X? = UUT satisfying X?[Ji, Ji] = X?
i using the low-rank matrix

completion algorithm of Jiang [38, Algorithm 3.1].

Lemma 9 Let T = ({J1, . . . , J`}, T) be a tree decomposition for the graph G.
For every i ∈ V (G) and

A = αieie
T
i +

∑
(i,j)∈E(G)

αj(eie
T
j + eje

T
i),

there exists Aj for j ∈ V (Ti) such that

A •X =
∑

j∈V (Ti)

Aj •X[Jj , Jj] for all X ∈ Sn.

Proof We give an explicit construction. Iterate j over the neighbors nei(i) =
{j : (i, j) ∈ E(G)} of i. By the edge cover property of the tree decomposition,
there exists k ∈ {1, . . . , `} satisfying i, j ∈ Jk. Moreover, k ∈ V (Ti) because
i ∈ Jk. Define Ak to satisfy

Ak •X[Jk, Jk] = (αi/degi)X[i, i] + αj(X[i, j] +X[j, i]),

where degi = |nei(i)|. ut

If each network flow constraint is split using according to Lemma 9, then
the number of auxillary variables needed to decouple the problem can be
bounded. This results in a proof of Theorem 2.

Proof (Theorem 2) By hypothesis, T = {J1, . . . , J`} is a tree decomposition
for the sparsity graph of the data matrices C,A1, . . . , Am, and each Ai can
be split according to Lemma 9 onto a connected subtree of T . We proceed to
solve (SDP) using Algorithm 3. We perform Step 1 in closed-form, by splitting
each Ai in according to Lemma 9. The cost of Steps 2 and 3 are then bound
as nnz (A) + nnz (N) = O(ω3n) time and memory. The cost of step 5 is also
O(ω3n) time and O(ω2n) memory, using the same reasoning as the proof of
Theorem 1.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 25

To quantify the cost of Step 4, we must show that under the conditions
stated in the theorem, the maximum number of auxillary variables added to
each variable block is bound γj ≤ mk · ω · dmax. We do this via the following
line of reasoning:
– A single network flow constraint at vertex k contributes |ch(j)| ≤ dmax

auxillary variables to every j-th index set Jj satisfying j ∈ V (Tk).
– Having one network flow constraint at every k ∈ {1, . . . , `} contributes at

most ω ·dmax auxillary variables to every j-th clique Jj . This is because the
set of V (Tk) for which j ∈ V (Tk) is exactly Jj = {{1, . . . , `} : j ∈ V (Tk)},
and |Jj | ≤ ω by definition.

– Having mk network flow constraints at each k ∈ {1, . . . , `} contributes at
most mk · ω · dmax auxillary variables to every j-th clique Jj .

Finally, applying γj ≤ mk ·ω · dmax to Lemma 8 yields the desired complexity
figure, which dominates the cost of the entire algorithm. ut

8 Numerical Experiments

Using the techniques described in this paper, we solve sparse semidefinite pro-
grams posed on the 40 power system test cases in the MATPOWER suite [62],
each with number of constraintsm comparable to n. The largest two cases have
n = 9241 and n = 13659, and are designed to accurately represent the size and
complexity of the European high voltage electricity transmission network [63].
In all of our trials below, the accuracy of a primal-dual iterate (X, y, S) is mea-
sured using the DIMACS feasibility and duality gap metrics [64] and stated
as the number of accurate decimal digits:

pinf = − log10 [‖A(X)− b‖2/(1 + ‖b‖2)] ,
dinf = − log10

[
λmax(AT (y)− C)/(1 + ‖C‖2)

]
,

gap = − log10
[
(C •X − bT y)/(1 + |C •X|+ |bT y|)

]
,

whereA(X) = [Ai•X]mi=1 andAT (y) =
∑m
i=1 yiAi. We will frequently measure

the overall number of accurate digits as L = min{gap,pinf,dinf}.
In our trials, we implement Algorithm 1 and Algorithm 3 in MATLAB

using a version of SeDuMi v1.32 [52] that is modified to force a specific fill-
reducing permutation during symbolic factorization. The actual block topo-
logical ordering that we force SeDuMi to use is a simple postordering of the
elimination tree. For comparison, we also implement both algorithms using
the standard off-the-shelf version of MOSEK v8.0.0.53 [65], without forcing a
specific fill-reducing permutation. The experiments are performed on a Xeon
3.3 GHz quad-core CPU with 16 GB of RAM.

8.1 Elimination trees with small widths

We begin by computing tree decompositions using MATLAB’s internal ap-
proximate minimum degree heuristic (due to Amestoy, Davis and Duff [66]).

26 Richard Y. Zhang, Javad Lavaei

E = C | A1 | A2 | A3 | A4;
p = amd(E); % fill -reducing ordering
[~,~,parT ,~,R] = symbfact(E(p,p), 'sym', 'lower ');
R(p,:) = R; % Reverse the ordering
for i = 1:n, J{i} = find(R(:,i)); end

Fig. 1: MATLAB code for computing the tree decomposition of a given sparsity
graph. The code terminates with tree decomposition T = (J , T) in which the
index sets J = {J1, . . . , Jn} are stored as the cell array J, and the tree T is
stored in terms of its parent pointer parT.

Table 1: Tree decompositions for the 40 test power systems under study: |V (G)|
- number of vertices; |E(G)| - number of edges; ω = 1 + wid(T) - computed
clique number; “Time” - total computation time in seconds.

Name |V (G)| |E(G)| ω Time # Name |V (G)| |E(G)| ω Time
1 case4gs 4 4 3 0.171 21 case1354pegase 1354 1991 13 0.155
2 case5 5 6 3 0.030 22 case1888rte 1888 2531 13 0.213
3 case6ww 6 11 4 0.014 23 case1951rte 1951 2596 14 0.219
4 case9 9 9 3 0.027 24 case2383wp 2383 2896 25 0.278
5 case9Q 9 9 3 0.011 25 case2736sp 2736 3504 25 0.310
6 case9target 9 9 3 0.002 26 case2737sop 2737 3506 24 0.317
7 case14 14 20 3 0.006 27 case2746wop 2746 3514 26 0.314
8 case24_ieee_rts 24 38 5 0.017 28 case2746wp 2746 3514 24 0.312
9 case30 30 41 4 0.005 29 case2848rte 2848 3776 18 0.334
10 case30Q 30 41 4 0.004 30 case2868rte 2868 3808 17 0.323
11 case30pwl 30 41 4 0.004 31 case2869pegase 2869 4582 15 0.317
12 case_ieee30 30 41 4 0.004 32 case3012wp 3012 3572 28 0.344
13 case33bw 33 37 2 0.005 33 case3120sp 3120 3693 27 0.353
14 case39 39 46 4 0.005 34 case3375wp 3374 4161 30 0.378
15 case57 57 80 6 0.010 35 case6468rte 6468 9000 30 0.725
16 case89pegase 89 210 12 0.011 36 case6470rte 6470 9005 30 0.716
17 case145 145 453 5 0.018 37 case6495rte 6495 9019 31 0.713
18 case118 118 186 11 0.020 38 case6515rte 6515 9037 31 0.716
19 case_illinois200 200 245 9 0.024 39 case9241pegase 9241 16049 35 1.009
20 case300 300 411 7 0.035 40 case13659pegase 13659 20467 35 1.520

A simplified version of our code is shown as the snippet in Figure 1. (Our ac-
tual code uses Algorithm 4.1 in [15] to reduce the computed elimination tree to
the supernodal elimination tree, for a slight reduction in the number of index
sets `.) Table 1 gives the details and timings for the 40 power system graphs
from the MATPOWER suite [62]. As shown, we compute tree decompositions
with wid(T) ≤ 34 in less than 2 seconds. In practice, the bottleneck of the
preprocessing step is not the tree decomposition, but the constraint splitting
step in Algorithm 2.

8.2 MAX 3-CUT and Lovasz Theta

We begin by considering the MAX 3-CUT and Lovasz Theta problems, which
are partially separable by default, and hence have solution complexities of
O(n1.5) time and O(n) memory. For each of the 40 test cases, we use the MAT-
POWER function makeYbus to generate the bus admittance matrix Ybus =
[Yi,j]

n
i,j=1, and symmetricize to yield Yabs = 1

2 [|Yi,j |+ |Yj,i|]
n
i,j=1. We view this

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 27

10
0

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
2
 = 0.9636

(a)

10
0

10
1

10
2

10
3

10
4

10
5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
2
 = 0.5432

(b)

Fig. 2: SeDuMi Timings for MAX 3-CUT (◦) and Lovasz Theta (×) problems:
(a) Time per iteration, with regression T/k = 10−3n; (b) Iterations per decimal
digit of accuracy, with (solid) regression k/L = 0.929n0.123 and (dashed) bound
k/L =

√
n.

10
0

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
2
 = 0.4111

(a)

10
0

10
1

10
2

10
3

10
4

10
5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
2
 = 0.5918

(b)

Fig. 3: MOSEK Timings for MAX 3-CUT (◦) and Lovasz Theta (×) problems:
(a) Time per iteration, with regression T/k = 1.488 × 10−4n; (b) Iterations
per decimal digit of accuracy, with (solid) regression k/L = 0.697n0.123 and
(dashed) bound k/L =

√
n.

matrix as the weighted adjacency matrix for the system graph. For MAX 3-
CUT, we define the weighted Laplacian matrix C = diag(Yabs1) − Yabs, and
set up problem (MkC). For Lovasz Theta, we extract the location of the graph
edges from Yabs and set up (LT′).

First, we use Algorithm 1 with the modified version of SeDuMi to solve
the 80 instances of (SDP). Of the 80 instances considered, 79 solved to L ≥ 5
digits in k ≤ 23 iterations and T ≤ 306 seconds; the largest instance solved
to L = 4.48. Table 2 shows the accuracy and timing details for the 20 largest
problems solved. Figure 2a plots T/k, the mean time taken per-iteration. As

28 Richard Y. Zhang, Javad Lavaei

10
0

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
2
 = 0.7954

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

R
2
 = 0.9485

(b)

Fig. 4: OPF problems solved using clique tree conversion (×), dualized clique
tree conversion (◦) and dualized clique tree conversion with auxillary variables
(4): (a) Time per iteration, with regression T/k = 2.931×10−4n; (b) Iterations
per decimal digit of accuracy, with (solid) regression k/L = 0.807n0.271 and
(dashed) bound k/L =

√
n.

we guaranteed in Lemma 1, the per-iteration time is linear with respect to n.
A log-log regression yields T/k = 10−3n, with R2 = 0.9636. Figure 2b plots
k/L, the number of iterations to a factor-of-ten error reduction. We see that
SeDuMi’s guaranteed iteration complexity k = O(

√
n log ε−1) = O(

√
nL) is a

significant over-estimate; a log-log regression yields k/L = 0.929n0.123 ≈ n1/8,
with R2 = 0.5432. Combined, the data suggests an actual time complexity of
T ≈ 10−3n1.1L.

Next, we use Algorithm 1 alongside the off-the-shelf version of MOSEK to
solve the 80 same instances. It turns out that MOSEK is both more accurate
than SeDuMi, as well as a factor of 5-10 faster. It manages to solve all 80 in-
stances to L ≥ 6 digits in k ≤ 21 iterations and T ≤ 24 seconds. Table 3 shows
the accuracy and timing details for the 20 largest problems solved. Figure 3a
plots T/k, the mean time taken per-iteration. Despite not forcing the use of
a block topological ordering, MOSEK nevertheless attains an approximately
linear per-iteration cost. Figure 3b plots k/L, the number of iterations to a
factor-of-ten error reduction. Again, we see that MOSEK’s guaranteed itera-
tion complexity k = O(

√
n log ε−1) = O(

√
nL) is a significant over-estimate.

A log-log regression yields an empirical time complexity of T ≈ 10−4n1.12L,
which is very close to being linear-time.

8.3 Optimal power flow

We now solve instances of the OPF posed on the same 40 power systems
as mentioned above. Here, we use the MATPOWER function makeYbus to
generate the bus admittance matrix Ybus, and then manually generate each

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 29

Table 2: Accuracy (in decimal digits) and timing (in seconds) for 20 largest
MAX 3-CUT problems: n - order of matrix variable;m - number of constraints;
“Pre-proc” - post-processing time; “gap” - duality gap; “pinf” - primal infea-
sibility; “dinf” - dual infeasibility; k - number of interior-point iterations; T -
total interior-point time; “Post-proc” - post-processing time.

Pre- MOSEK SeDuMi Post-
n m proc gap pinf dinf k T gap pinf dinf k T proc.
21 1354 3064 1.1 9.6 8.9 9.1 14 0.6 11.6 7.5 9.7 12 17.0 0.1
22 1888 4196 1.5 8.9 8.2 8.4 14 0.8 8.2 7.1 9.4 13 24.9 0.2
23 1951 4326 1.6 8.9 8.3 8.4 14 0.8 8.9 7.3 10.1 14 46.2 0.2
24 2383 5269 2.1 9.0 8.3 8.4 14 2.2 7.8 7.3 8.5 13 37.1 0.4
25 2736 5999 2.4 8.8 8.2 8.3 12 2.0 12.0 7.5 10.6 16 99.6 0.4
26 2737 6000 2.4 9.0 8.5 8.5 12 1.9 11.4 6.8 9.7 14 47.7 0.4
27 2746 6045 2.4 11.3 10.4 10.8 13 2.4 11.3 6.4 9.5 15 69.3 0.4
28 2746 6019 2.4 10.9 10.3 10.3 14 2.2 11.9 7.1 10.3 17 117.3 0.4
29 2848 6290 2.5 8.9 8.3 8.4 14 1.2 8.1 6.9 9.4 13 46.7 0.4
30 2868 6339 2.6 10.4 9.8 9.9 13 1.2 8.2 6.9 9.5 13 49.5 0.4
31 2869 6837 2.7 8.7 8.1 8.2 20 2.0 9.6 5.2 8.2 17 84.7 0.5
32 3012 6578 2.7 9.8 9.1 9.3 12 2.5 7.8 7.3 10.1 18 157.1 0.5
33 3120 6804 2.8 9.3 8.5 8.7 12 2.6 11.7 7.7 10.4 20 166.4 0.5
34 3374 7442 3.2 9.1 8.3 8.5 15 3.6 10.0 5.8 8.5 16 124.7 0.6
35 6468 14533 7.6 9.2 8.5 8.7 16 5.6 9.4 4.9 7.5 16 210.9 1.6
36 6470 14536 7.6 9.7 8.8 9.2 16 5.6 9.4 5.0 7.5 16 218.2 1.6
37 6495 14579 7.7 9.0 8.3 8.5 16 5.6 9.4 4.7 7.6 16 193.8 1.6
38 6515 14619 7.7 9.0 8.3 8.5 16 5.6 9.8 5.3 8.2 17 257.8 1.6
39 9241 23448 14.0 9.2 8.2 8.7 22 17.6 5.1 4.1 6.6 15 187.5 3.5
40 13659 32284 23.5 9.2 8.4 8.7 20 16.3 4.5 3.8 6.0 14 216.9 6.0

Table 3: Accuracy and Timing for 20 largest Lovasz Theta problems.

Pre- MOSEK SeDuMi Post-
n m proc gap pinf dinf k T gap pinf dinf k T proc.
21 1355 1711 0.8 11.6 8.3 8.8 17 1.0 6.4 5.4 6.2 16 11.7 0.2
22 1889 2309 1.2 11.4 7.9 8.4 17 1.3 5.9 5.1 6.7 17 27.0 0.3
23 1952 2376 1.2 11.2 7.6 8.1 16 1.2 6.3 5.5 6.9 16 31.6 0.3
24 2384 2887 1.6 12.2 8.6 9.1 14 3.3 5.8 5.1 6.6 19 33.9 0.4
25 2737 3264 1.8 11.4 7.9 8.4 13 3.4 6.6 5.6 6.8 19 36.9 0.5
26 2738 3264 1.8 10.9 7.3 7.8 14 3.5 7.4 5.8 6.3 19 35.3 0.5
27 2747 3300 1.8 13.2 9.1 9.8 15 4.3 5.2 4.7 6.7 20 57.6 0.6
28 2747 3274 1.9 11.4 7.8 8.4 14 3.5 7.5 5.3 5.7 18 30.5 0.5
29 2849 3443 1.9 11.1 7.4 7.8 17 2.0 8.5 5.1 5.6 17 33.3 0.5
30 2869 3472 1.9 11.4 7.7 8.2 16 1.9 5.8 4.9 6.5 17 41.4 0.5
31 2870 3969 2.0 11.1 7.5 7.9 18 3.0 6.1 5.2 6.1 22 74.0 0.6
32 3013 3567 2.1 11.4 7.8 8.3 15 4.1 9.1 5.9 5.9 22 65.5 0.6
33 3121 3685 2.2 14.6 8.9 10.5 17 5.1 8.8 5.6 5.7 21 44.5 0.7
34 3375 4069 2.4 12.6 8.5 9.7 17 6.5 9.2 5.8 6.1 21 73.1 0.8
35 6469 8066 5.5 13.7 8.8 9.4 14 7.2 5.1 4.8 6.9 20 137.0 2.1
36 6471 8067 5.5 12.2 8.2 8.7 16 7.5 5.7 4.9 5.6 20 125.9 2.1
37 6496 8085 5.6 12.9 9.0 9.4 17 7.9 5.7 4.9 5.6 20 131.4 2.0
38 6516 8105 5.6 13.2 8.8 9.3 16 7.1 5.7 4.9 5.6 20 133.9 2.1
39 9242 14208 10.0 10.4 6.2 6.7 20 20.3 6.2 4.7 5.4 23 237.2 4.6
40 13660 18626 16.4 10.8 6.3 6.7 21 23.3 5.7 4.5 5.4 23 305.9 8.0

constraint matrix Ai from Ybus using the recipes described in [67]. Specifically,
we formulate each OPF problem given the power flow case as follows:

– Minimize the cost of generation. This is the sum of real-power injection at
each generator times $1 per MW.

– Constrain all bus voltages to be from 95% to 105% of their nominal values.

30 Richard Y. Zhang, Javad Lavaei

Table 4: Accuracy (in decimal digits) and timing (in seconds) for 20 largest
OPF problems: n - order of matrix variable; m - number of constraints; “Pre-
proc” - post-processing time; L = min{gap,pinf,dinf} - accurate decimal dig-
its; k - number of interior-point iterations; T - total interior-point time; “Post-
proc” - post-processing time.

Pre- CTC Dual CTC Dual CTC w/ aux Post-
n m proc L k T L k T L k T proc.
21 1354 4060 3.0 7.3 45 6.9 7.2 42 4.2 7.1 41 4.5 0.2
22 1888 5662 4.1 7.2 64 11.0 6.9 48 6.3 6.8 48 6.2 0.3
23 1951 5851 4.2 7.8 61 10.9 7.1 46 6.0 7.0 50 6.7 0.3
24 2383 7147 5.9 7.2 43 30.4 6.9 38 16.6 6.9 37 16.2 0.4
25 2736 8206 7.0 7.2 60 46.2 6.8 53 23.8 6.5 48 22.3 0.5
26 2737 8209 6.8 7.1 66 45.7 6.7 57 24.5 6.9 53 23.1 0.5
27 2746 8236 7.0 6.9 50 45.1 6.6 50 24.7 6.3 47 23.9 0.5
28 2746 8236 6.9 7.1 60 44.2 6.7 56 25.2 6.9 60 26.7 0.6
29 2848 8542 6.8 7.1 56 18.9 6.4 49 10.1 6.4 48 10.2 0.5
30 2868 8602 6.8 7.4 56 18.8 6.6 51 10.6 6.7 52 10.8 0.5
31 2869 8605 7.4 7.7 47 19.6 7.1 46 12.7 7.4 50 14.1 0.6
32 3012 9034 7.9 7.0 55 54.5 6.1 54 31.6 6.9 45 28.5 0.6
33 3120 9358 8.1 7.2 64 70.7 6.3 58 38.5 6.7 59 38.2 0.7
34 3374 10120 8.9 7.1 62 69.3 6.6 56 39.8 6.6 52 39.0 0.7
35 6468 19402 17.9 7.6 64 99.9 7.0 54 53.7 6.9 53 56.7 2.0
36 6470 19408 18.0 7.4 68 106.1 6.8 57 56.3 6.9 56 57.2 2.0
37 6495 19483 17.7 7.5 66 102.8 7.3 54 53.2 7.0 60 62.3 2.0
38 6515 19543 17.7 7.2 70 103.4 6.8 54 54.7 6.8 59 58.1 2.0
39 9241 27721 31.3 7.5 64 230.1 7.0 57 165.0 7.6 55 169.7 4.3
40 13659 40975 47.9 6.8 49 177.4 7.9 48 154.6 7.9 54 157.4 7.7

– Constrain all load bus real-power and reactive-power values to be from 95%
to 105% of their nominal values.

– Constrain all generator bus real-power and reactive-power values within
their power curve. The actual minimum and maximum real and reactive
power limits are obtained from the case description.

We use three different algorithms based to solve the resulting semidefinite pro-
gram: 1) The original clique tree conversion of Fukuda and Nakata et al. [10,68]
in Section 3.3; 2) Dualized clique tree conversion in Algorithm 1; 3) Dualized
clique tree conversion with auxillary variables in Algorithm 3. We solved all
40 problems using the three algorithms and MOSEK as the internal interior-
point solver. Table 4 shows the accuracy and timing details for the 20 largest
problems solved. All three algorithms achieved near-linear time performance,
solving each problem instances to 7 digits of accuracy within 6 minutes. Upon
closer examination, we see that the two dualized algorithms are both about a
factor-of-two faster than the basic CTC method. Figure 4 plots T/k, the mean
time taken per-iteration, and k/L, the number of iterations for a factor-of-ten
error reduction, and their respective log-log regressions. The data suggests an
empirical time complexity of T ≈ 2.3× 10−4n1.3L over the three algorithms.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 31

9 Conclusion

Clique tree conversion splits a large semidefinite variable X � 0 into many
smaller semidefinite variables Xj � 0, coupled by a large number of overlap
constraints. These overlap constraints are a fundamental weakness of clique
tree conversion, and can cause highly sparse semidefinite program to be solved
in as much as cubic time and quadratic memory.

In this paper, we apply dualization to clique tree decomposition. Under
a partially separable sparsity assumption, we show that the resulting normal
equations have a block-sparsity pattern that coincides with the adjacency ma-
trix of a tree graph, so the per-iteration complexity of an interior-point method
is guaranteed to be linear time and linear memory. Problems that do not sat-
isfy the separable assumption can be systematically separated by introducing
auxillary variables. In the case of network flow semidefinite programs, the
number of auxillary variables can be bounded, so an interior-point method
again has a per-iteration complexity of linear time and memory.

Using these insights, we prove that the MAXCUT and MAX k-CUT relax-
ations, the Lovasz Theta problem, and the AC optimal power flow relaxation
can all be solved in guaranteed near-linear time and linear memory, assuming
that a tree decomposition with small width for the sparsity graph is known.
Our numerical results confirm an empirical complexity of linear time on the
MAX 3-CUT and Lovasz Theta relaxations.

Acknowledgments

The authors are grateful to Daniel Bienstock, Salar Fattahi, Cédric Josz, and
Yi Ouyang for insightful discussions and helpful comments on earlier versions
of this manuscript. We thank Frank Permenter for clarifications on various
aspects of the homogeneous self-dual embedding for SDPs.

A Linear independence and Slater’s conditions

In this section, we prove that (CTC) inherits the assumptions of linear independence and
Slater’s conditions from (SDP). We begin with two important technical lemmas.

Lemma 10 The matrix N in (13) has full row rank, that is det(NNT) 6= 0.

Proof We make N = [Ni,j]
`
i,j=1 upper-triangular by ordering its blocks topologically on

T : each nonempty block row Nj contains a nonzero block at Nj,j and a nonzero block at
Nj,p(j) where the parent node p(j) > j is ordered after j. Then, the claim follows because
each diagonal block Nj,j implements a surjection and must therefore have full row-rank. ut

Lemma 11 (Orthogonal complement) Let d = 1
2

∑`
j=1 |Jj |(|Jj |+ 1). Implicitly define

the d× 1
2
n(n+ 1) matrix P to satisfy

P svec (X) = [svec (X[J1, J1]); . . . ; svec (X[J`, J`])] ∀X ∈ Sn.

Then, (i) NP = 0; (ii) every x ∈ Rd can be decomposed as x = NTu+Pv.

32 Richard Y. Zhang, Javad Lavaei

Proof For each x = [svec (Xj)]
`
j=1 ∈ Rd, Theorem 4 says that there exists a Z satisfying

P svec (Z) = x if and only if Nx = 0. Equivalently, x ∈ span(P) if and only if x ⊥ span(NT).
The “only if” part implies (i), while the “if” part implies (ii).

Define the m × 1
2
n(n + 1) matrix M as the vectorization of the linear constraints in

(SDP), as in

M svec (X) =

 svec (A1)T

...
svec (Am)T

 svec (X) =

 svec (A1)T svec (X)
...

svec (Am)T svec (X)

 =

A1 •X
...

Am •X

 .
In reformulating (SDP) into (CTC), the splitting conditions (10) can be rewritten as the
following

cTP = svec (C)T , AP = M, (38)

where c = [svec (Cj)]
`
j=1 and A = [svec (Ai,j)

T]m,`i,j=1 are the data for the vectorized verison
of (CTC).

Proof (Lemma 1) We will prove that

exists [u; v] 6= 0, ATu+NT v = 0 ⇐⇒ exists y 6= 0,

m∑
i=1

yiAi = 0.

(=⇒) Wemust have u 6= 0, becauseN has full row rank by Lemma 10, and soAT 0+NT v =
0 if and only if v = 0. Multiplying byP yieldsPT (ATu+NT v) = MTu+0 = 0 and so setting
y = u 6= 0 yields MT y = 0. (⇐=) We use Lemma 11 to decompose AT y = Pz + NT v.
If svec (

∑
i yiAi) = MT y = PTAT y = 0, then PTPz = PTAT y − PTNT v = 0 and so

Pz = 0. Setting u = −y 6= 0 yields ATu+NT v = 0. ut

Proof (Lemma 2) We will prove that

exists x ∈ Int(K),
[
A
N

]
x =

[
b
0

]
⇐⇒ exists X � 0, M svec (X) = b.

Define the chordal completion F as in (8). Observe that M svec (X) = M svec (Z) holds for
all pairs of PF (X) = Z, because each Ai ∈ SnF satisfies Ai •X = Ai • PF (X). Additionally,
the positive definite version of Theorem 3 is written

exists X � 0, PF (X) = Z ⇐⇒ P svec (Z) ∈ Int(K). (39)

This result was first established by Grone et al. [45]; a succinct proof can be found in [15,
Theorem 10.1]. (=⇒) For every x satisfyingNx = 0, there exists Z such thatP svec (Z) = x
due to Lemma 11. If additionally x ∈ Int(K), then there exists X � 0 satisfying Z = PF (X)
due to (39). We can verify that M svec (X) = M svec (Z) = AP svec (Z) = Ax = b. (⇐=)
For every X � 0, there exists Z satisfying Z = PF (X) and P svec (Z) ∈ Int(K) due to (39).
Set u = P svec (Z) and observe that u ∈ Int(K) and Nu = NP svec (Z) = 0. If additionally
M svec (X) = b, then Au = AP svec (Z) = M svec (Z) = b. ut

Proof (Lemma 2) We will prove that

exists u, v, c−ATu−NT v ∈ Int(K∗) ⇐⇒ exists y, C −
∑
i

yiAi � 0.

Define the chordal completion F as in (8). Theorem 3 in (39) has a dual theorem

exists S � 0, S ∈ SnF ⇐⇒ exists h ∈ Int(K∗), svec (S) = PT h. (40)

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 33

This result readily follows from the positive semidefinite version proved by Alger et al. [69];
see also [15, Theorem 9.2]. (=⇒) For each h = c−ATu−NT v, define S = C −

∑
i uiAi

and observe that

PT h = PT (c−ATu−NT v) = svec (C)−MTu− 0 = svec (S).

If additionally h ∈ K∗, then S � 0 due to (40). (⇐=) For each S = C −
∑
i yiAi � 0,

there exists an h ∈ Int(K∗) satisfying svec (S) = PT h due to (40). We use Lemma 11 to
decompose h = Pu+NT v. Given that svec (S) = PT h = PTPu+0, we must actually have
Pu = c−AT y since PT (c−AT y) = svec (C)−MT y = svec (S). Hence h = c−AT y+NT v
and h ∈ Int(K∗). ut

B Interior-point method complexity analysis

We solve the dualized problem (21) by solving its extended homogeneous self-dual embedding

min. (ν + 1)θ (41a)

s.t.


0 +MT −c −rd
−M 0 +b −rp
+cT −bT 0 −rc
rTd rTp rc 0



x
y
τ
θ

+


s
0
κ
0

 =


0
0
0

ν + 1

 (41b)

x, s ∈ C κ, τ ≥ 0, (41c)

where the data is given in standard form

M =
[
0 −

[
AT NT

]
+I
]
, cT =

[
0
[
bT 0

]
0
]
, b = −c, (41d)

C = {(x0, x1} ∈ Rp+1 : ‖x1‖ ≤ x0} × K, (41e)

and the residual vectors are defined

rd = 1C − c, rp = −M1C + b, rc = 1 + cT 1C . (41f)

Here, ν is the order of the cone C, and 1C is its identity element

ν = 1 + |J1|+ · · ·+ |J`|, 1C = [1; 0; . . . ; 0; svec (I|J1|); . . . ; svec (I|J`|)]. (42)

Problem (41) has optimal value θ? = 0. Under the primal-dual Slater’s conditions (As-
sumption 2), an interior-point method is guaranteed to converge to an ε-accurate solution
with τ > 0, and this yields an ε-feasible and ε-accurate solution to the dualized problem
(21) by rescaling x/τ and y = y/τ and s = s/τ . The following result is adapted from [33,
Lemma 5.7.2] and [70, Theorem 22.7].

Lemma 12 (ε-accurate and ε-feasible) If (x, y, s, τ, θ, κ) satisfies (41b) and (41c) and

µ =
xT s+ τκ

ν + 1
≤ ε, τκ ≥γµ

for constants ε, γ > 0, then the rescaled point (x/τ, y/τ, s/τ) satisfies

‖M(x/τ)− b‖ ≤ Kε, ‖MT (y/τ) + (s/τ)− c‖ ≤ Kε,
(x/τ)T (s/τ)

ν + 1
≤ Kε

where K is a constant.

34 Richard Y. Zhang, Javad Lavaei

Proof Note that (41b) implies µ = θ and

‖M(x/τ)− b‖ =
‖rp‖µ
τ

, ‖MT (y/τ) + (s/τ)− c‖ =
‖rd‖µ
τ

,
(x/τ)T (s/τ)

ν + 1
=

µ

τ2
.

Hence, we obtain our desired result by upper-bounding 1/τ . Let (x?, y?, s?, τ?, θ?, κ?) be a
solution of (41), and note that for every (x, y, s, τ, θ, κ) satisfying (41b) and (41c), we have
the following via the skew-symmetry of (41b)

(x− x?)T (s− s?) + (τ − τ?)(κ− κ?) = 0.

Rearranging yields

(ν + 1)µ = xT s+ τκ = (x?)T s+ xT (s?) + τκ? + τ?κ ≥ τ?κ

and hence
κτ? ≤ µ(ν + 1), τκ ≥ γµ =⇒ τ ≥

γ

ν + 1
τ?.

If (SDP) satisfies the primal-dual Slater’s condition, then (CTC) also satisfies the primal-
dual Slater’s condition (Lemmas 2 & 3). Therefore, the vectorized version (11) of (CTC)
attains a solution (x̂, ŷ, ŝ) with x̂T ŝ = 0, and the following

x? = τ?

‖ŷ‖ŷ
ŝ

 , y? = τ?x̂, s? = τ?

00
x̂

 , τ? =
ν + 1

‖ŷ‖+ 1TKŝ+ 1TKx̂+ 1
,

with θ? = κ? = 0 is a solution to (41). This proves the following upper-bound

1

τ
≤ Kτ =

1

γ
· min
x̂,ŷ,ŝ
{‖ŷ‖+ 1TKŝ+ 1TKx̂+ 1 : (x̂, ŷ, ŝ) solves (11) with x̂T ŝ = 0}.

Setting K = max{‖rp‖Kτ , ‖rd‖Kτ ,K2
τ} yields our desired result. ut

We solve the homogeneous self-dual embedding (41) using the short-step method of
Nesterov and Todd [71, Algorithm 6.1] (and also Sturm and S. Zhang [72, Section 5.1]),
noting that SeDuMi reduces to it in the worst case; see [54] and [73]. Beginning at the
following strictly feasible, perfectly centered point

θ(0) = τ (0) = κ(0) = 1, y(0) = 0, x(0) = s(0) = 1C , (43)

with barrier parameter µ = 1, we take the following steps

µ+ =

(
1−

1

15
√
ν + 1

)
·
xT s+ τκ

ν + 1
, (44a)

(x+, y+, s+, τ+, θ+, κ+) = (x, y, s, τ, θ, κ) + (∆x,∆y,∆s,∆τ,∆θ,∆κ).

along the search direction defined by the linear system [74, Eqn. 9]
0 +MT −c −rp
−M 0 +b −rd
+cT −bT 0 −rc
+rTp +rTd +rc 0



∆x
∆y
∆τ
∆θ

+


∆s
0
∆κ
0

 = 0, (45a)

s+∆s+∇2F (w)∆x+ µ+∇F (x) = 0, (45b)

κ+∆κ+ (κ/τ)∆τ − µ+τ−1 = 0. (45c)

Here, F is the usual self-concordant barrier function on C

F ([x0;x1; svec (X1); . . . ; svec (X`)]) =− log

(
1

2
x20 −

1

2
xT1 x1

)
−
∑̀
j=1

log det(Xj) (46)

and w ∈ Int(C) is the unique scaling point satisfying ∇2F (w)x = s, which can be computed
from x and s in closed-form. The following iteration bound is an immediate consequence
of [71, Theorem 6.4]; see also [72, Theorem 5.1].

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 35

Lemma 13 (Short-Step Method) The sequence in (44) arrives at an iterate (x, y, s, τ, θ, κ)
satisfying the conditions of Lemma 12 with γ = 9/10 in at most O(

√
ν log(1/ε)) iterations.

The cost of each interior-point iteration is dominated by the cost of computing the search
direction in (45). Using elementary but tedious linear algebra, we can show that if

(MD−1MT)
[
v1 v2 v3

]
=
[
0 −b rp

]
−MD−1

[
d c rd

]
(47a)

where D = ∇2F (w) and d = −s− µ+∇F (x), and[
u1 u2 u3

]
= D−1(

[
d c rd

]
+MT

[
v1 v2 v3

]
), (47b)

then ([
−D0 −rc
rc 0

]
−
[

c rd
−b rp

]T [
u2 u3
v2 v3

])[
∆τ
∆θ

]
=

[
−d0
0

]
−
[

c rd
−b rp

]T [
u1
v1

]
, (47c)[

∆x
∆y

]
=

[
u1
v1

]
−
[
u1 u2
v1 v2

] [
∆τ
∆θ

]
, (47d)

∆s = d−D∆x, (47e)
∆κ = d0 −D0∆τ, (47f)

where D0 = κ/τ and d0 = −κ+ µ+τ−1. Hence, the cost of computing the search direction
is dominated by the cost of solving the normal equation for three different right-hand sides.
Here, the normal matrix is written

MD−1MT = diag(W1 ⊗sW1, . . . ,W` ⊗sW`) +

[
A
N

]T
(w1w

T
1 + σI)

[
A
N

]
,

where σ = 1
2
(w2

0 − wT1 w1) > 0 and ⊗s denotes the symmetric Kronecker product [75]
implicitly defined to satisfy

(A⊗s B)svec (X) =
1

2
svec (AXBT +BXAT) for all X = XT .

Under the hypothesis on A stated in Theorem 5, the normal matrix satisfies the assumptions
of Lemma 5, and can therefore be solved in linear O(n) time and memory.

Proof (Theorem 5) Combining Lemma 12 and Lemma 13 shows that the desired ε-accurate,
ε-feasible iterate is obtained after O(

√
ν log(1/ε)) interior-point iterations. At each iteration

we perform the following steps: 1) compute the scaling point w; 2) solve the normal equation
(47a) for three right-hand sides; 3) back-substitute (47b)-(47f) for the search direction and
take the step in (44). Note from the proof of Lemma 5 that the matrix [A;N] has at most
O(ω2n) rows under Assumption 1, and therefore nnz (M) = O(ω4n) under the hypothesis
of Theorem 5. Below, we show that the cost of each step is bounded by O(ω6n) time and
O(ω4n) memory.

Scaling point. We partition x = [x0;x1; svec (X1); . . . ; svec (X`)] and similarly for s.
Then, the scaling point w is given in closed-form [54, Section 5][
u0
u1

]
= 2−3/4

[
1 1

−s1/‖s1‖ s1/‖s1‖

] [
(s0 − ‖s1‖)1/2
(s0 + ‖s1‖)1/2

]
,

[
v0
v1

]
=

[
u0 uT1
u1

1
2
(u20 − uT1 u1)I

] [
x0
x1

]
,[

w0

w1

]
= 2−1/4

[
u0 uT1
u1

1
2
(u20 − uT1 u1)I

] [
1 1

−v1/‖v1‖ v1/‖v1‖

] [
(v0 − ‖v1‖)−1/2

(v0 + ‖v1‖)−1/2

]
,

Wj = S
1/2
j (S

1/2
j XjS

1/2
j)−1/2S

1/2
j for all j ∈ {1, . . . , `}.

36 Richard Y. Zhang, Javad Lavaei

Noting that nnz (w1) ≤ O(ω2n), ` ≤ n and each Wj is at most ω × ω, the cost of forming
w = [w0;w1; svec (W1); . . . ; svec (W`)] is at most O(ω3n) time and O(ω2n) memory. Also,
since

D = ∇2F (w) = diag

([
w0 wT1
w1

1
2
(w2

0 − wT1 w1)I

]
,W1 ⊗sW1, . . . ,W` ⊗sW`

)−1

,

the cost of each matrix-vector product with D and D−1 is also O(ω3n) time and O(ω2n)
memory.

Normal equation. The cost of matrix-vector products with M and MT is nnz (M) =
O(ω4n) time and memory. Using Lemma 5, we form the right-hand sides and solve the three
normal equations in (47a) in O(ω6n) time and O(ω4n) memory.

Back-substitution. The cost of back substituting (47b)-(47f) and making the step (44)
is dominated by matrix-vector products with D, D−1, M, and MT at O(ω4n) time and
memory. ut

References

1. L. Lovász, “On the Shannon capacity of a graph,” IEEE Transactions on Information
Theory 25(1), pp. 1–7, 1979.

2. M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming,” Journal of the
ACM 42(6), pp. 1115–1145, 1995.

3. H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems,” SIAM Journal
on Discrete Mathematics 3(3), pp. 411–430, 1990.

4. L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0–1 optimization,”
SIAM Journal on Optimization 1(2), pp. 166–190, 1991.

5. J. B. Lasserre, “An explicit exact SDP relaxation for nonlinear 0-1 programs,” in Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pp. 293–
303, Springer, 2001.

6. M. Laurent, “A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relax-
ations for 0–1 programming,” Mathematics of Operations Research 28(3), pp. 470–496,
2003.

7. J. B. Lasserre, “Global optimization with polynomials and the problem of moments,”
SIAM Journal on Optimization 11(3), pp. 796–817, 2001.

8. P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

9. Y. Nesterov, Introductory lectures on convex optimization: A basic course, vol. 87,
Springer Science & Business Media, 2013.

10. M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity in semidef-
inite programming via matrix completion I: General framework,” SIAM Journal on
Optimization 11(3), pp. 647–674, 2001.

11. D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco, “Implementation
of a large-scale optimal power flow solver based on semidefinite programming,” IEEE
Transactions on Power Systems 28(4), pp. 3987–3998, 2013.

12. R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal power flow prob-
lem: Mesh networks,” IEEE Transactions on Power Systems 30(1), pp. 199–211, 2015.

13. R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation for contingency-
constrained optimal power flow problem,” IEEE Transactions on Power Systems 31(2),
pp. 1297–1307, 2016.

14. A. Eltved, J. Dahl, and M. S. Andersen, “On the robustness and scalability of semidefi-
nite relaxation for optimal power flow problems,” Optimization and Engineering , Mar
2019.

15. L. Vandenberghe, M. S. Andersen, et al., “Chordal graphs and semidefinite optimiza-
tion,” Foundations and Trends in Optimization 1(4), pp. 241–433, 2015.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 37

16. Y. Sun, M. S. Andersen, and L. Vandenberghe, “Decomposition in conic optimization
with partially separable structure,” SIAM Journal on Optimization 24(2), pp. 873–897,
2014.

17. M. S. Andersen, A. Hansson, and L. Vandenberghe, “Reduced-complexity semidefi-
nite relaxations of optimal power flow problems,” IEEE Transactions on Power Sys-
tems 29(4), pp. 1855–1863, 2014.

18. J. Löfberg, “Dualize it: software for automatic primal and dual conversions of conic
programs,” Optimization Methods and Software 24(3), pp. 313–325, 2009.

19. A. Griewank and P. L. Toint, “Partitioned variable metric updates for large structured
optimization problems,” Numerische Mathematik 39(1), pp. 119–137, 1982.

20. M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A Python package for convex
optimization,” abel.ee.ucla.edu/cvxopt , 2013.

21. J. Löfberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in Proceedings
of the CACSD Conference, 3, Taipei, Taiwan, 2004.

22. K. Fujisawa, S. Kim, M. Kojima, Y. Okamoto, and M. Yamashita, “User’s manual for
SparseCoLO: Conversion methods for sparse conic-form linear optimization problems,”
tech. rep., Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2009. Research Report B-453.

23. S. Kim, M. Kojima, M. Mevissen, and M. Yamashita, “Exploiting sparsity in linear and
nonlinear matrix inequalities via positive semidefinite matrix completion,” Mathematical
Programming 129(1), pp. 33–68, 2011.

24. M. S. Andersen, “Opfsdr v0.2.3,” 2018.
25. R. Madani, A. Kalbat, and J. Lavaei, “ADMM for sparse semidefinite programming

with applications to optimal power flow problem,” in IEEE 54th Annual Conference on
Decision and Control (CDC), pp. 5932–5939, IEEE, 2015.

26. Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn, “Chordal de-
composition in operator-splitting methods for sparse semidefinite programs,” Mathe-
matical Programming , pp. 1–44, 2019.

27. S. Khoshfetrat Pakazad, A. Hansson, M. S. Andersen, and I. Nielsen, “Distributed
primal–dual interior-point methods for solving tree-structured coupled convex prob-
lems using message-passing,” Optimization Methods and Software 32(3), pp. 401–435,
2017.

28. S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer, “Distributed semidefinite
programming with application to large-scale system analysis,” IEEE Transactions on
Automatic Control 63(4), pp. 1045–1058, 2017.

29. R. Y. Zhang and J. K. White, “Gmres-accelerated admm for quadratic objectives,”
SIAM Journal on Optimization 28(4), pp. 3025–3056, 2018.

30. M. S. Andersen, J. Dahl, and L. Vandenberghe, “Implementation of nonsymmetric
interior-point methods for linear optimization over sparse matrix cones,” Mathemat-
ical Programming Computation 2(3), pp. 167–201, 2010.

31. S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of finding embeddings in
a k-tree,” SIAM Journal on Algebraic Discrete Methods 8(2), pp. 277–284, 1987.

32. Y. Ye, M. J. Todd, and S. Mizuno, “An O(
√
nL)-iteration homogeneous and self-dual

linear programming algorithm,” Mathematics of Operations Research 19(1), pp. 53–67,
1994.

33. E. de Klerk, T. Terlaky, and K. Roos, “Self-dual embeddings,” in Handbook of Semidef-
inite Programming, pp. 111–138, Springer, 2000.

34. F. Permenter, H. A. Friberg, and E. D. Andersen, “Solving conic optimization problems
via self-dual embedding and facial reduction: a unified approach,” SIAM Journal on
Optimization 27(3), pp. 1257–1282, 2017.

35. A. Frieze and M. Jerrum, “Improved approximation algorithms for MAX k-CUT and
MAX BISECTION,” Algorithmica 18(1), pp. 67–81, 1997.

36. G. Pataki and S. Schmieta, “The dimacs library of semidefinite-quadratic-linear pro-
grams,” 2002.

37. B. Borchers, “Sdplib 1.2, a library of semidefinite programming test problems,” Opti-
mization Methods and Software 11(1-4), pp. 683–690, 1999.

38. X. Jiang, Minimum Rank Positive Semidefinite Matrix Completion with Chordal Spar-
sity Pattern. PhD thesis, UCLA, 2017.

38 Richard Y. Zhang, Javad Lavaei

39. J. W. Liu, “The role of elimination trees in sparse factorization,” SIAM Journal on
Matrix Analysis and Applications 11(1), pp. 134–172, 1990.

40. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, “Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree,” Journal of Algo-
rithms 18(2), pp. 238–255, 1995.

41. T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms,” in Proceed-
ings of the 29th Annual Symposium on Foundations of Computer Science, pp. 422–431,
IEEE, 1988.

42. P. Klein, C. Stein, and E. Tardos, “Leighton-rao might be practical: faster approximation
algorithms for concurrent flow with uniform capacities,” in Proceedings of the twenty-
second annual ACM symposium on Theory of computing, pp. 310–321, ACM, 1990.

43. A. George and J. W. Liu, “The evolution of the minimum degree ordering algorithm,”
SIAM Review 31(1), pp. 1–19, 1989.

44. R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested dissection,” SIAM
journal on numerical analysis 16(2), pp. 346–358, 1979.

45. R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive definite completions
of partial Hermitian matrices,” Linear Algebra and Its Applications 58, pp. 109–124,
1984.

46. J. Dancis, “Positive semidefinite completions of partial hermitian matrices,” Linear al-
gebra and its applications 175, pp. 97–114, 1992.

47. R. Madani, S. Sojoudi, G. Fazelnia, and J. Lavaei, “Finding low-rank solutions of
sparse linear matrix inequalities using convex optimization,” SIAM Journal on Op-
timization 27(2), pp. 725–758, 2017.

48. M. Laurent and A. Varvitsiotis, “A new graph parameter related to bounded rank pos-
itive semidefinite matrix completions,” Mathematical Programming 145(1-2), pp. 291–
325, 2014.

49. K. Kobayashi, S. Kim, and M. Kojima, “Correlative sparsity in primal-dual interior-
point methods for LP, SDP, and SOCP,” Applied Mathematics and Optimization 58(1),
pp. 69–88, 2008.

50. S. Parter, “The use of linear graphs in gauss elimination,” SIAM review 3(2), pp. 119–
130, 1961.

51. A. George and J. W. Liu, Computer solution of large sparse positive definite systems,
Prentice Hall, Englewood Cliffs, NJ, 1981.

52. J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones,” Optimization Methods and Software 11(1-4), pp. 625–653, 1999.

53. E. D. Andersen, “Handling free variables in primal-dual interior-point methods using
a quadratic cone,” in Proceedings of the SIAM Conference on Optimization, Toronto,
2002.

54. J. F. Sturm, “Implementation of interior point methods for mixed semidefinite and
second order cone optimization problems,” Optimization Methods and Software 17(6),
pp. 1105–1154, 2002.

55. E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-dual interior-point
method for conic quadratic optimization,” Mathematical Programming 95(2), pp. 249–
277, 2003.

56. D. Goldfarb and K. Scheinberg, “Product-form Cholesky factorization in interior point
methods for second-order cone programming,” Mathematical Programming 103(1),
pp. 153–179, 2005.

57. J. Guo and R. Niedermeier, “Exact algorithms and applications for Tree-like Weighted
Set Cover,” Journal of Discrete Algorithms 4(4), pp. 608–622, 2006.

58. J. G. Lewis, B. W. Peyton, and A. Pothen, “A fast algorithm for reordering sparse
matrices for parallel factorization,” SIAM Journal on Scientific and Statistical Com-
puting 10(6), pp. 1146–1173, 1989.

59. A. Pothen and C. Sun, “Compact clique tree data structures in sparse matrix factoriza-
tions,” Large-Scale Numerical Optimization , pp. 180–204, 1990.

60. M. S. Andersen, J. Dahl, and L. Vandenberghe, “Logarithmic barriers for sparse matrix
cones,” Optimization Methods and Software 28(3), pp. 396–423, 2013.

61. J. R. Blair and B. Peyton, “An introduction to chordal graphs and clique trees,” in
Graph theory and sparse matrix computation, pp. 1–29, Springer, 1993.

Sparse SDPs with Guaranteed Near-Linear Time Complexity via Dualized CTC 39

62. R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-
state operations, planning, and analysis tools for power systems research and education,”
IEEE Transactions on Power Systems 26(1), pp. 12–19, 2011.

63. C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “AC power flow data in MAT-
POWER and QCQP format: iTesla, RTE snapshots, and PEGASE,” arXiv preprint
arXiv:1603.01533 , 2016.

64. H. D. Mittelmann, “An independent benchmarking of SDP and SOCP solvers,” Mathe-
matical Programming 95(2), pp. 407–430, 2003.

65. E. D. Andersen and K. D. Andersen, “The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm,” in High Performance
Optimization, pp. 197–232, Springer, 2000.

66. P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an approximate
minimum degree ordering algorithm,” ACM Transactions on Mathematical Software
(TOMS) 30(3), pp. 381–388, 2004.

67. J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,” IEEE
Transactions on Power Systems 27(1), p. 92, 2012.

68. K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, “Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numerical
results,” Mathematical Programming 95(2), pp. 303–327, 2003.

69. J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidefinite matrices
with a given sparsity pattern,” Linear algebra and its applications 107, pp. 101–149,
1988.

70. R. J. Vanderbei, Linear programming: Foundations and Extensions, Springer, 2015.
71. Y. E. Nesterov and M. J. Todd, “Primal-dual interior-point methods for self-scaled

cones,” SIAM Journal on optimization 8(2), pp. 324–364, 1998.
72. J. F. Sturm and S. Zhang, “Symmetric primal-dual path-following algorithms for

semidefinite programming,” Applied Numerical Mathematics 29(3), pp. 301–315, 1999.
73. J. F. Sturm and S. Zhang, “On a wide region of centers and primal-dual interior point al-

gorithms for linear programming,” Mathematics of Operations Research 22(2), pp. 408–
431, 1997.

74. M. J. Todd, K.-C. Toh, and R. H. Tütüncü, “On the nesterov–todd direction in semidef-
inite programming,” SIAM Journal on Optimization 8(3), pp. 769–796, 1998.

75. F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Primal-dual interior-point methods
for semidefinite programming: convergence rates, stability and numerical results,” SIAM
Journal on Optimization 8(3), pp. 746–768, 1998.

