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Using thin-film samarium nickel oxide, we show that the well-known relationship between temperature and 
thermal radiation can be decoupled in a fully passive and reversible way. Our sample features temperature-
independent thermally emitted power in the long-wave infrared from 90 to 120 °C, making it promising for 
camouflage applications. 
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The emission of light by hot objects such as lava and incandescent light bulbs is well described by Planck’s law and 
an emissivity term [1]. For objects at human-scale temperatures (e.g., 0 – 200 °C), thermal emission predominately 
occurs at mid-infrared wavelengths, roughly from 2 to 20 𝜇𝑚. In particular, the 3 – 5 𝜇m and 8 െ 14 𝜇m windows 
are significant, since these are regions of atmospheric transparency [2]. Integrating Planck’s law over all wavelength 
and angles within a half sphere yields thermal irradiance as described by the Stefan-Boltzmann law (𝐼௧௢௧ ൌ  𝜀௧௢௧𝜎𝑇ସ, 
where σ is the Stefan-Boltzmann constant, and 𝜀௧௢௧ is an integrated emissivity). For typical objects, the emissivity is 
approximately constant, thus temperature is directly related to radiated power. This common relationship enables, e.g., 
infrared imaging or non-contact thermometry [3]. However, this well-established notion that hotter objects radiate 
more thermal power can be broken by introducing a spectral emissivity that has a significant temperature dependence 
[4]. Furthermore, the complete decoupling of temperature and thermal radiation requires a structure with an accurately 
designed temperature-dependent spectral emissivity such that—as the temperature increases—it completely 
compensates blackbody radiation. This decoupling can, among other things, be used to conceal information from 
infrared imaging systems.  

 
Figure 1: (a) For a typical emitter, for example comprising a semiconductor or insulator (cartoon band diagram in (b), top), any change 
in emission from a temperature-dependent change in materials properties is dwarfed by the 𝑇ସ dependence in the Stefan-Boltzmann 
law. Conversely, a ZDTE decouples temperature and thermal radiation over some temperature range, and thus can only be made 
from a material with a very strong temperature dependence. (b) Measured wavelength- and temperature-dependent emissivity of our 
ZDTE, comprising a ~220-nm film of SmNiO3 on a sapphire substrate (c) visible images of samples hanging from one corner to the 
heat stage (d, e) Long-wave infrared images of two samples with temperature gradients from hot to cold: a sapphire wafer that has a 
constant emissivity (d) and our and SmNiO3 coating on sapphire that shows uniform thermal radiation (e). 

We designed and implemented a structure featuring zero-differential thermal radiation with respect to temperature 
within the 8 െ 14 𝜇m atmospheric-transparency window. Our design principle was to passively cancel out the highly 
temperature-dependent behavior of thermal radiation (as shown by the Stefan-Boltzmann law over all wavelengths) 
using a temperature-dependent and hysteresis-free spectral emissivity [5]. To achieve this, we used a thin-film 
structure that incorporates samarium nickel oxide (SmNiO3), a strongly thermochromic material that undergoes a 
hysteresis-free insulator-to-metal transition (IMT) resulting in a significant change in optical properties from ~40 to 
140 ºC [6]. Based on measured complex refractive indices of SmNiO3 and using the transfer-matrix method, we 



designed a structure that minimized the slope of total thermal radiation versus temperature within the 8 െ 14 𝜇m 
atmospheric transparent window in the temperature range of 90 to 120 °C. The final structure that we fabricated is 
comprised of 220-nm-thick SmNiO3 sputtered film on a c-plane sapphire substrate. In contrast to many other materials 
with IMTs (e.g., vanadium dioxide) that have a significant hysteresis, our sample has a completely reversible IMT 
with essentially no hysteresis. The unique hysteresis-free behavior of our SmNiO3 films was confirmed via electrical 
resistance measurements and spatially-resolved X-ray absorption spectroscopy (XAS) [5]. This reversible and 
hysteresis-free behavior is crucial to enable the zero-differential behavior; any hysteresis prevents the cancelation of 
the blackbody temperature dependence for either heating or cooling or both. To obtain the temperature-dependent 
spectral emissivity of our sample, we measured its near-normal-incidence reflection spectrum, 𝑅ேሺ𝜆,𝑇ሻ, using Fourier 
transform spectroscopy (FTS). Since the substrate of our sample is opaque in the 8 െ 14 𝜇m range, Kirchhoff’s law 
[7] can be used to calculate the near-normal-incidence emissivity 𝜀ேሺ𝜆,𝑇ሻ from the reflection measurements: 
𝜀ேሺ𝜆,𝑇ሻ ൌ 1 െ 𝑅ேሺ𝜆,𝑇ሻ [Fig. 1(b)]. This result is confirmed by directly measuring the thermal emission of the sample 
and normalizing that to a laboratory blackbody consisting of a vertically-oriented 0.1-mm-tall carbon nanotube forest 
[5],[8]. By integrating the measured emissivity multiplied by the spectral radiance of a blackbody at the same 
corresponding temperature, we calculated emitted radiance of our sample which has a similar behavior to zero 
differential thermal emitter, shown in Fig. 1(a).  

To demonstrate the ability of our structure to mask a gradient thermal profile, we captured infrared images of two 
samples [Fig. 1(b)] using a commercial long-wave infrared camera: the first sample has a typical T4 dependence 
(sapphire, Fig. 1(c)) and the second sample is our zero-differential thermal emitter (SmNiO3 on sapphire, Fig. 1(d)). 
Both samples were mounted to the edge of a heat stage to induce a temperature gradient across the sample. For the 
sapphire sample, a clear apparent temperature gradient was observed (orange to purple), which correlates to the 
integrated power detected by the infrared camera. But for our SmNiO3-based sample, the detected temperature appears 
to be uniform (orange), masking the true thermal gradient of the sample.  

 
Figure 2: (a) temperature- and spectral behavior of zero differential thermal emitter (ZDTE) (b) Broad-band ZDTE. 
In summary, we showed that it is possible to decouple temperature and thermal radiance by utilizing a hysteresis-free 
phase-transition material [Fig. 2 (a)]. Our ongoing efforts are aimed at achieving this effect over broader ranges of 
wavelengths [Fig. 2 (b)] and change the temperature range of decoupling. 
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