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Sampling of the Wiener Process for Remote
Estimation Over a Channel With Random Delay
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Abstract—In this paper, we consider a problem of sampling a
Wiener process, with samples forwarded to a remote estimator
over a channel that is modeled as a queue. The estimator
reconstructs an estimate of the real-time signal value from
causally received samples. We study the optimal online sampling
strategy that minimizes the mean square estimation error subject
to a sampling rate constraint. We prove that the optimal sampling
strategy is a threshold policy, and find the optimal threshold.
This threshold is determined by how much the Wiener process
varies during the random service time and the maximum allowed
sampling rate. Further, if the sampling times are independent
of the observed Wiener process, the above sampling problem
for minimizing the estimation error is equivalent to a sampling
problem for minimizing the age of information. This reveals an
interesting connection between the age of information and remote
estimation error. Our comparisons show that the estimation error
achieved by the optimal sampling policy can be much smaller
than those of age-optimal sampling, zero-wait sampling, and
periodic sampling.

Index Terms— Sampling, remote estimation, age of informa-
tion, Wiener process, queuing system.

I. INTRODUCTION
N MANY real-time control and cyber-physical systems
(e.g., airplane/vehicular control, sensor networks, smart
grid, stock trading, robotics, etc.), timely updates about the
system status are critical for state estimation and decision
making. For example, real-time knowledge about the location,
orientation, speed, and acceleration of motor vehicles is imper-
ative for autonomous driving, and fresh information about
stock price, financial news, and interest-rate movements is of
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Fig. 1. Evolution of the age of information A(f) over time.

paramount importance for stock trading. In [2], [3], the age
of information was introduced to measure the timeliness of
status samples about a remote source. Suppose that the i-
th status sample is generated at the source at time §; (0 <
81 = 8§ = ...) and is delivered to the destination at time
D;. At time f, the freshest sample available at the destination
was generated at time U(f) = max{S; : D; < t}. The age of
information, or simply the age, is a function of time ¢ that is
defined as

A(t) =t —U(t) =t — max({S; : D; <1}, 1)

which is the time difference between the generation time U (f)
of the freshest received sample and the current time f. Hence,
a small age A(r) implies that there exists a fresh status sample
at the destination. As plotted in Fig. 1, the age increases
linearly over time and is reset to a smaller value once a new
sample is received. Hence, the age A(r) exhibits a sawtooth
pattern. Recently, the age of information concept has received
significant attention, because of the rapid growth of real-time
applications. A number of status update policies have been
developed to keep the age A(r) small, subject to constraints
on limited network resources, e.g., [3]-[17].

In practice, the state of many systems is in the form of
a time-varying signal W;, such as the location of a vehicle,
the wind speed of a hurricane, and the price chart of a stock.
These signals may change slowly at some time and vary more
dynamically later. Hence, the time difference between the
source and destination, described by the age A(f) =t —U(1),
cannot fully characterize the amount of change W; — Wy ;) in
the signal value. This motivated us to go beyond the age of
information concept and investigate fimely updates of signal
samples.

Let us consider a status update system with two terminals
(see Fig. 2): An observer taking samples from a continuous-
time signal W, which is modeled as a Wiener process, and an
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Fig. 2. System model.

estimator, whose goal is to provide the best-guess W, for the
real-time signal value W, at all time t.! The two terminals are
connected by a channel that transmits time-stamped samples
of the form (S;, Ws,) according to a first-in, first-out (FIFO)
order, where §; is the sampling time of the i-th sample and
Wy, is the value of the i-th sample. The samples are stored in a
queue while they wait to be served by the channel. We assume
that the samples experience i.i.d. random transmission times
over the channel, which may be caused by fading, interference,
collisions, retransmissions, and etc. As such, the channel is
modeled as a FIFO queue with i.i.d. service time Y; satisfying
]E[Y,-Z] < o0, where ¥; = 0 is the transmission time of
sample i. This queueing model is helpful to understand the
robustness of remote estimation and control systems under
occasionally slow service. For example, a UAV flying by
a WiFi access point may run into a communication outage
caused by interference from the access point. The resulting
delay in packet reception may affect the stability of UAV flight
control and navigation [19].

Let G; be the service starting time of sample i such that
§; < G;. The delivery time of sample i is D; = G; + Y;. The
initial value Wy = 0 is known by the estimator for free, which
is represented by Sp = Dp = 0. At any time 7, the estimator
forms an estimate W, using the samples received up to time 1.
Similar to [20], we assume that the estimator neglects the
implied knowledge when no sample was delivered. The quality
of remote estimation is evaluated via the time-average mean-
square error (MSE) between W; and W,:

1 . .
mse = limsup —E [ / (W; — W,)Zdr] ) )
T—oo I LJo
The sampler is subject to a sampling rate constraint
1 1
liminf —E[S,] > —, (3)
n—o0 M T

where fmax is the maximum allowed sampling rate. In practice,
the sampling rate constraint (3) is imposed when there is a
need to reduce the cost (e.g., energy consumption) for the
transmission, storage, and processing of the samples.

Our goal is to find an optimal online sampling strategy that
minimizes the MSE in (2) by choosing the sampling times
S; causally subject to the sampling rate constraint (3). The
contributions of this paper are summarized as follows:

« We formulate the optimal sampling problem as a con-
strained continuous-time Markov decision problem with

I'This paper focuses on a Wiener process signal model, which has some
nice properties that are used in our analysis. An important future direction is
to study more general signal models. A recent result along this direction was
reported in [18].
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a continuous state space, and solve it exactly. We prove
that the optimal online sampling strategy for the Wiener
process is a threshold policy,” and find the optimal
threshold. Let ¥ be a random variable with the same
distribution as Y;. The optimal threshold is determined by
Jmax and Wy, where Wy is a random variable that has
the same distribution as the amount of signal variation
(Wiry — W;) that occurs during the random service time
Y. The random variable Wy indicates a tight coupling, in
the optimal sampling policy, between the source process
W, and the service time Y.

s Our threshold-based optimal sampling policy has an
important difference from the previous threshold-based
sampling policies studied in, e.g., [21]-[38]: We have
proven that it is better to not take any new sample when
the server is busy. Consequently, the threshold should be
disabled when the server is busy and reactivated once the
server becomes available again. This is one of the reasons
that sampling policies that ignore the state of the server,
such as periodic sampling, can have a large estimation
erTor.

« We show, perhaps surprisingly, even in the absence of a
sampling rate constraint (i.e., fmax = ©00), the optimal
sampling strategy is nof zero-wait sampling in which a
new sample is generated once the previous sample is
delivered; rather, it is optimal to wait for a certain amount
of time after the previous sample is delivered, and then
take the next sample.

o Our study reveals a relationship between the age of
information and the estimation error of Wiener process:
If the sampling times §; are independent of the observed
Wiener process (i.e., the sampling times S; are cho-
sen without using any information about the Wiener
process), the MSE in (2) is exactly equal to the
time-average expectation of the age of information
lim supy_, oo %EE[ fuT A(t)dr]. Hence, the sampling prob-
lem for minimizing the MSE is equivalent to a sam-
pling problem for minimizing the age, where the second
problem was solved recently in [9]-[11]. If the sampling
times §; are chosen based on causal knowledge of the
Wiener process, the age-optimal sampling policy (i.e.,
the sampling policy that minimizes the time-average
expected age of information) no longer minimizes the
MSE: Specifically, in the age-optimal sampling policy,
a new sample is taken only when the age of informa-
tion A(t), or equivalently the expected estimation error
E[(W; — W,)z], is no smaller than a threshold; while in
the MSE-optimal sampling policy, a new sample is taken
only when the instantaneous estimation error |W; — W, | is
no smaller than a threshold. The asymptotics of the MSE-
optimal and age-optimal sampling policies at long/short
service time or low/high sampling rates are also studied.

s Our theoretical and numerical comparisons show that
the MSE of the optimal sampling policy can be much

2 A sampling policy is said to be a threshold policy if a new sample is taken
when a threshold condition is satisfied. Examples of threshold policies can be
found in Section III-B.
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smaller than those of age-optimal sampling, periodic sam-
pling, and the zero-wait sampling policy described in (9)
below. In particular, periodic sampling is far from optimal
when the sampling rate is sufficiently low or sufficiently
high; age-optimal sampling is far from optimal when the
sampling rate is sufficiently low; periodic sampling, age-
optimal sampling, and zero-wait sampling policies are all
far from optimal if the service time distribution is heavy-
tailed.

The rest of this paper is organized as follows. In Section II,
we discuss some related work. In Section III, we describe the
system model and the formulation of the optimal sampling
problem. In Section IV, we present the solution to this
problem and compare it with some other sampling policies.
In Section V, we describe the proof of this optimal solution.
Some simulation results are provided in Section VL

II. RELATED WORK

Lossy source coding and the rate-distortion function of the
Wiener process was studied in, e.g., [39], [40], where the rate-
distortion function represents the optimal tradeoff between
the source coding rate and the distortion (i.e., MSE) for
recovering of the Wiener process. The goal of these studies is
to reconstruct the realization of Wiener process during a past
time interval with a small distortion, which can be regarded
as an offfine signal reconstruction problem. This differs from
our online signal tracking problem, where the real-time value
of the Wiener process is estimated at the destination from
causally received samples.

This paper is related to recent studies on the age of
information, e.g., [3]-[{17]. As mentioned above in Section I,
a connection between the age of information and the estima-
tion error of Wiener process is characterized in this paper.
The estimation error of Wiener process was also mentioned
in [4], [5] as an illustration of the age of information, where
age-based sampling was not studied and the condition that the
sampling times are independent of the Wiener process was
used implicitly. Recently, a relationship between a nonlinear
function of the age of information and the estimation error of
the Ornstein-Uhlenbeck (OU) process was found in a follow-
up study of the current paper [18].

This paper can also be considered as a contribution to the
rich literature on remote estimation, e.g., [21]-[38], by includ-
ing a queueing model. In [21], Astrom and Bernhardsson
showed that a threshold-based sampling method, in which a
new sample is taken once the amount of signal variation since
the previous sample has reached a threshold, can achieve a
smaller estimation error than the traditional periodic sampling
method with the same sampling rate. Such a threshold-based
sampler and a Kalman-like estimator have been proven to be
jointly optimal for minimizing the remote estimation error
of several discrete-time signal processes in [22]-[27]. The
sampling and remote estimation of continuous-time signal
processes were considered in [28], [29], where it was shown
that a threshold-based sampling policy is optimal for mini-
mizing the estimation error of the Wiener process, and the
optimal threshold was found. In [22]-[29], it was assumed that
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the samples are transmitted from the sampler to the estimator
over a perfect channel that is error and noise free. There
are some recent studies that used explicit channel models.
In [30]-[32], Gao et. al. considered the optimal transmission
scheduling and remote estimation of an i.id. discrete-time
source process X, over an additive noise channel. Because
of the noise, the transmitter needs to encode its message
before transmission. In [30], [31], it was shown that, for
a class of symmetric probability distributions on the source
symbol X,, if the transmission scheduling policy is threshold-
based, i.e., a new coded packet is sent if |X,| is no smaller
than a threshold, then the optimal encoder and decoder are
piecewise affine. In [32], it was shown that if (i) the encoder
and decoder (i.e., estimator) are piecewise affine, and (ii) the
transmission scheduler satisfies some technical assumption,
the optimal transmission scheduling policy is threshold-based.
Some extensions of this research were reported in [33]-[35].
In [36]-[38], Chakravorty and Mahajan considered optimal
transmission scheduling and remote estimation over a few
channel models, where it was proved that a threshold-based
transmission policy and a Kalman-like estimator are jointly
optimal for minimizing the remote estimation error.

The closest study to this paper are [28], [29], where the
optimal sampler of the Wiener process was designed in the
absence of queueing and random service time (i.e., ¥; = 0).
As we will see later, the queueing model affects the structure
of the optimal sampler. Specifically, the sampler should disable
the threshold when there is a packet in service and reactivate
the threshold after all previous packets are delivered. A novel
proof procedure is developed in the current paper to find the
optimal sampler design.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. MMSE Estimation Policy

At time 1, the information available to the estimator contains
two part: (i) M; = {(S;, Ws,, D;) : D; < t}, which contains
the sampling time S§;, sample value Wg;, and delivery time
D; of the samples delivered by time ¢ and (ii) the facts that
no sample has been received after the latest sample delivery
time max{D; : D; < t}. Similar with [20], we assume that
the estimator neglects the implied knowledge when no sample
was delivered. In this case, the minimum mean-square error
(MMSE) estimation policy [41] is given by (see Appendix A
for its derivation)

W, =E[W,|M;]
=Ws,, ift € [D;, Diy1), i =0,1,2,...,

which is illustrated in Fig. 3(b).

(4)

B. Sampling Policies

Let I; € {0, 1} denote the idle/busy state of the server at
time 7. As shown in Fig. 2, the server state /; is known by the
sampler through acknowledgements (ACKs). We assume that
once a sample is delivered to the estimator, an ACK is fed
back to the sampler with zero delay. Hence, the information
that is available to the sampler at time f can be expressed as
(W, I :0<s <t}
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Fig. 3. Tlustration of the MMSE estimation policy (4).

In online sampling policies, each sampling time S;
is chosen causally using the information available at
the sampler. To characterize this statement precisely, we
define

M:J(WS,ISZOESEQ, M+=ns>r-"\';= (3)

where o (X1, X2, ..., X,) represents the o-field generated by
the random variables X, X», ..., X,. Then, {N'f,! = 0} is
a filtration (i.e., a non-decreasing and right-continuous family
of g-fields) of the information available at the sampler. Each
sampling time S; is a stopping fime with respect to the filtration
NGt >0}, ie.,

(Si <t} e N, Vit =0. (6)

Let # = (51,852,...) denote a sampling policy where
§1 < 8§ < --- form an increasing sequence of sampling
times. Let IT denote a set of online (also called causal)
sampling policies satisfying the following two conditions: (i)
Each sampling policy = < II satisfies (6) for all i = 0,1, ...
(ii) The inter-sampling times {T; = S;4+1 — S;,i = 0,1,...}
form a regenerative process [42, Section 6.1]: There exist
an increasing sequence 0 < k1 < ky < . of almost
surely finite random integers such that the post-k; process
{Tkj+,-,i = 0,1,...} has the same distribution as the post-k;
process {Tg,4;,i =0,1,...} and is independent of the pre-k;
process {T;,i = 0,1, ..., k; —1}; in addition, E[k; 1 —k;] <
0o, E[S7]1 < oo, and 0 < E[(S;,, — S;)*1 < oo for
Jj = 1,2,... By Condition (ii), we can obtain that, almost
surely,

lim §; = o0,
i—00

lim D; = oco. (7
1—00

We analyze the MSE in (2), but operationally a nicer criterion
is limsup,_. o, ]E[fop" (W, — W,)Zdt]ﬂE[Dn]. These two cri-
teria are associated to two definitions of “average cost per
unit time” used in the literature of infinite-horizon undis-
counted semi-Markov decision problems [43]-[47]. They are
equivalent, if {77, T>, ...} is a regenerative process, or more
generally, if {T7, T2, ...} has only one ergodic class [43]-[45].
If no condition is imposed, however, these two criteria are
different.
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(@) If [Ws,+v, —Ws,| > VB,
sample 7 + 1 is taken at time

(b) If |Ws,+v; — Ws,| < VB,
sample ¢ + 1 1s taken at time

S,;+1 = S'; + Y‘t. that satisfies ¢ 2 Sﬁ + Yi and
[We=Ws,| = VB
Fig. 4. TIllustration of the threshold-based sampling policy (12). where no

sample is taken during [S;, S; + ¥;).

Some examples of the sampling policies in II are:
1. Periodic sampling [48], [49]:
The inter-sampling times are constant, such that for some
B =0,
Sip1 =8+ B. (8)
2. Zero-wait sampling [3], [6], [9], [10]: A new sample is
generated once the previous sample is delivered, i.e.,
Sipi=8+Y. (&)
3. Threshold policy on expected estimation error [6], [9],
[10]: The sampling times are given by

Sip1 =inf{t > S; + Y : £ — §; > B (10)
=inf {t = S+ ¥i : Bl — W) = B}, (D)

where §; 4+ Y; = D; and, according to (4), ‘W, = Ws,.
4. Threshold policy on instantaneous estimation error: The
sampling times are given by

S =inf {t > S+ % W — W= VB),  (12)

where W, = Ws;. The sampling policy in (12) can
be understood as follows: As illustrated in Fig. 4,
if |Ws,oy, — Ws;| = /B, sample i + 1 is generated at
the time S;y1 = S; + Y; when sample i is delivered;
otherwise, if |Ws, 1y, — Ws;| < /B, sample i + 1 is
generated at the earliest time f such that f > §; + Y;
and |W, — Wg,| reaches the threshold /. It is worth-
while to emphasize that even if there exists time f
[Si, Si + Yi) such that [W; — Ws,| > /B, no sample
is taken at such time 7, as depicted in both cases of
Fig. 4. In other words, the threshold-based control is
disabled during [S;, S; + Y;) and is reactivated at time
Si+ Y.

A sampling policy # € II is said to be signal-ignorant
(signal-aware), if « is (not) independent of the Wiener process
{W;, t = 0}. The sampling policies (8), (9), and (11) are signal-
ignorant, and the sampling policy (12) is signal-aware.
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C. Optimal Sampling Problem

We assume that the source process {W;,f > 0} and the
service times (¥;,i = 1,2, ...} are mutually independent and
do not change according to the sampling policy. In addition,
we assume that the Y;’s are iid with ]E[Yiz] < oo. The
optimal sampling problem for minimizing the MSE subject
to a sampling rate constraint is formulated as

MSegp; = mf llmsup—E[ / (W, — Wy) dr] (13)
ell T 00
1

s.t. liminf E[S 1= f—,

n—0o0 max

(14)

where msegp denotes the optimal value of (13). Later on in
the paper, the unconstrained problem with fn.x = oo will also
be studied.

IV. OPTIMAL SAMPLING POLICIES
A. Signal-Aware Sampling

Problem (13) is a constrained continuous-time Markov
decision problem with a continuous state space. Such problems
are often lack of closed-form or analytical solutions, however
we were able to solve (13) exactly:

Theorem 1. If the service times Y;’s are i.i.d. with E[Yf] <
00, then there exists B = 0 such that the sampling policy (12)
is an optimal solution of (13), and the optimal B is determined
by sofvin33

1 E[max(8%, W})]
; , (15
Fr 2 L

where Y is a random variable with the same distribution as
Y;. The optimal value of (13) is then given by

E[max(82, W})]
6E[max (8, W2)]

Proof: See Section V. [
According to Theorem 1, in the optimal signal-aware sam-
pling policy, the (i + 1)-th sample is taken at the earliest time
t satisfying two conditions: (i) The i-th sample has already
been delivered by time f, ie., f = D; = §; + Y;, and (ii)
the instantaneous estimation error |W; — W,| at time ¢ is no
smaller than a threshold /B. In addition, the threshold /B
is determined by the maximum allowed sampling rate frpax
and Wy, where Wy is a random variable that has the same
distribution with the amount of signal variation (W, y — W)
during the random service time ¥ for all starting time f. This
indicates a tight coupling between the source process W; and
the service time Y, in the optimal sampling policy.

Equation (15) can be solved by using the bisection method
with a low computational complexity. Hence, Problem (13)
does not suffer from the curse of dimensionality encountered
in most Markov decision problems with continuous state
spaces. We note that the sampling policy in (12) and (15) is
quite general in the sense that it is optimal for any service time

E[max (S, W}% )]=max (

MSEop = + E[Y]. (16)

31F £ — 0, the last terms in (15) and (22) are determined by L'Hospital’s
rule.
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distribution satisfying E[Y?] < co. The optimal signal-aware
sampling policy in (12) and (15) is also called the “MSE-
optimal” sampling policy in the sequel.

B. Signal-Ignorant Sampling and the Age of Information

Let Ilggnal-ignorant C I1 denote the set of signal-ignorant
sampling policies, defined as

ignal-ignorant= {7 € II :  is independent of {W,,t > 0}}.
(17)

In these policies, the sampling decisions depend only on the
service time {Y;,i = 1,2,...} but not the source process
{Wi,t = 0}. For each # € Ilggnalignorant- the objective
function in (13) can be rewritten as (see Appendix B for the
proof)

lim sup — [E[ (W; — W;)Zdr:l

T—oo

=lim sup —IE [/ A(t)dt] .
T I LJo

where A(f) is the age of information defined in (1). In FIFO
queueing systems, D; < D; holds for all i. Hence, the age
A(t) can be equivalently expressed as

(18)

A@M)=1—=8, te[D;Diy), i'=0,1,2, .z (19)

If the set of feasible policies is restricted from Il to
ignal-ignorant. (13) reduces to the following sampling problem
for minimizing the time-average expectation of the age of

information [9]-[11]:
1 ;i
—E [/ A(r)dr] (20)
T 0

1
s.t. lim inf ]E[S 1= f—,

n—o0 max

mseage,opt inf lim sup

Nenmgna[ ignorant T —spo

where MSe€,gcopt denotes the optimal value of (20). Because
Hsignal—ignomnt c I,

MSE€opt < MSE€4ge-opt-

(21)

Note that problem (20) is simpler than (13) because the
sampler does not use knowledge of W; to make decisions.
To solve (13), stronger techniques than those in [9]-[11] are
developed in Section V.

Theorem 2. [11] If the service times Y;’s are ii.d. with
]E[Yiz] < 00, then there exists f = 0 such that the sampling
policy (11) is an optimal solution of (20), and the optimal p
is determined by solving

1 E e
, [max(8~, )]) @
f max Zﬂ

where Y is a random variable with the same distribution as
Y;. The optimal value of (20) is then given by

» E[max(g2, Y?)]
2E[max (8, Y)]

Theorem 2 was proven in [9], [10] under an extra condition
that the time difference S;4; — D; is upper bounded by a

E[max(f, ¥Y)]=max (

MS€agc-opt = + E[Y]. (23)
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constant M > 0. In [11], Theorem 2 was established without
requiring this extra condition.

One can obtain some interesting observations by comparing
Theorem 1 and Theorem 2: In the optimal signal-ignorant
sampling policy presented in Theorem 2, the (i 4+ 1)-th sample
is taken at the earliest time f satisfying two conditions:
(i) The i-th sample has already been delivered by time f,
ie, t = D; = §; + Y;, and (ii) the expected estimation
error E[(W; — W;)]z at time f, which, by (10) and (19),
is equal to the age A(f), is no smaller than a threshold p.
The first condition is the same with that in Theorem 1, but
the second condition is quite different: Because the sampler
has no knowledge about the Wiener process (except for its
distribution), it can only use expected estimation error to make
decisions. Further, the threshold # in Theorem 2 is determined
by the maximum allowed sampling rate fr.x and the random
service time Y, which is also different from the case in The-
orem 1. The optimal signal-ignorant sampling policy in (11)
and (22) is also referred to as the “age-optimal” sampling
policy.

In the following, the asymptotics of the MSE-optimal
and age-optimal sampling policies at low/high service
time or low/high sampling frequencies are studied.

C. Short Service Time or Low Sampling Rate
Let

Y; =aX; (24)
represent the scaling of the service time ¥; with a, where
a > 0 and the X;’s are i.i.d. positive random variables. If & —
0 or fmax — 0, we can obtain from (15) that (see Appendix C
for the proof)

1 1
ﬁ:—+o(—), (25)
fmax fmax
where f(x) = o(g(x)) as x — a means that lim,_.,
f(x)/g(x) = 0. In this case, the MSE-optimal sampling policy
in (12) and (15) becomes

1
Sipr=inf {1 > S : W, — Ws|= [—1,  (26)
fmax

and as shown in Appendix C, the optimal value of (13)
becomes

msegp = 27

1 1
7 ()
The sampling policy (26) was also obtained in [29] for the
case that ¥; = 0 for all i.

Similarly, if @ — 0 or fmax — 0, the age-optimal sampling
policy in (11) and (22) becomes periodic sampling (8) with
B = 1/ fmax + 0(1/fmax), and the optimal value of (20) is
mseage—opt = lit(zfmax) + 0(1 f(fmax) Themfore,

MSeopt mseopt 1 28)

m-—= m
a—0 MS€;ge-opt Smax—0 MSEage-opt 3
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D. Long Service Time or Unbounded Sampling Rate

If @ — 00 or fmax — o©0, as shown in Appendix D,
the MSE-optimal sampling policy for solving (13) is given
by (12) where g is determined by solving

2BE[max(8, Wi)] = E[max (8%, Wy)l. (29)

Similarly, if @ — 00 or fmax — 00, the age-optimal sampling
policy for solving (20) is given by (11) where f is determined
by solving

2BE[max(B, Y)] = E[max(82, Y2)]. (30)

In these limits, the ratio between MSeyp and MSEugeopt
depends on the distribution of Y.

When the sampling rate is unbounded, i.e., fmax = 00, One
logically reasonable policy is the zero-wait sampling policy
in (9) [3], [6]. [9], [10]. This zero-wait sampling policy
achieves the maximum throughput and the minimum queueing
delay. However, this zero-wait sampling policy almost never
minimizes the MSE in (13) and does not always minimize
the age of information in (20), as stated in the following two
theorems:

We note that the zero-wait sampling policy can be expressed
as (12) with f = 0. By checking when £ = 0 is satisfied
in (12) and (15), one can obtain

Theorem 3. Suppose that fmax = 00. Then, the zero-wait
sampling policy (9) is an optimal solution to (13) if and only
if the service time Y is equal to zero with probability one.

Proof: See Appendix E. O
Hence, as long as the service time ¥ has a small probability
to be positive, the zero-waiting sampling policy is not an
optimal solution to (13). Similarly, the optimality of zero-wait
sampling policy for solving (20) is characterized as

Theorem 4. [10] Suppose that fmax = oo. Then, the zero-
wait sampling policy (9) is an optimal solution fo (20) if and
only if

E[Y?] < 2 essinf Y E[Y], (31)

where essinf Y = sup{y € [0, 00) : Pr[Y < y] = 0} can be
considered as the minimum possible value of Y.

Proof: See Appendix E. O

V. PROOF OF THEOREM 1

We prove Theorem 1 in four steps: First, we show that
no sample should be generated when the server is busy,
which simplifies the optimal online sampling problem. Second,
we study the Lagrangian dual problem of the simplified
problem, and decompose the Lagrangian dual problem into a
series of mutually independent per-sample control problems.
Each of these per-sample control problems is a continuous-
time Markov decision problem. Further, we utilize optimal
stopping theory [50] to solve the per-sample control problems.
Finally, we show that the Lagrangian duality gap of our
Markov decision problem is zero. By this, Problem (13) is
solved. The details are as follows.
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A. Simplification of Problem (13)

The following lemma is useful for simplifying (13).

Lemma 1. Suppose that = is a feasible policy for Prob-
lem (13), in which at least one sample is taken when the
server is busy processing an earlier generated sample. Then,
there exists another feasible policy =1 for Problem (13) that
has a smaller estimation error than policy =. Hence, it is
suboptimal in Problem (13) to take a new sample before the
previous sample is delivered.

Proof: Lemma 1 is proven by using the strong Markov
property of the Wiener process and the orthogonality prin-
ciple of MMSE estimation. The details are provided in
Appendix F. O

By Lemma 1, we only need to consider a sub-class of
sampling policies Iy C II such that each sample is generated
and submitted to the server after the previous sample is
delivered, i.e.,

My ={x €ll:§; = D;_; for all i}. (32)
This completely eliminates the waiting time wasted in the
queue, and hence the queue is always kept empty. The
information that is available for determining S; includes the
history of signal values (W,,t e [0, S;]) and the service
times (Y1, ..., Yi_1) of previous samp]es.""' To characterize this
statement precisely, let us define the o-fields 7, = o(W; :
s € [0,t]) and F;" = N> Fs. Then, {F;7,t > 0} is the
filtration (i.e., a non-decreasing and right-continuous family of
o-fields) of the Wiener process W;. Given the service times
(Y1,...,Y;_1) of previous samples, S; is a stopping time with
respect to the filtration {_'»":,+ , I = 0} of the Wiener process W;,
that is

8= tlY,.... b aleEr, Yi =0, (33)

Then, the policy space II; can be alternatively expressed as

Oy ={Si : [{S; <t)V1,..., Yiql e FF, V=0,
S;i = D;_; forall i,
T; = S;41 — §; is a regenerative process}. (34)
Recall that any policy in II satisfies “T; = S;y1 — §; is a

regenerative process”.

Let Z; = §;+1 — D; = 0 represent the waiting time between
the delivery time D; of sample i and the generation time S; 44
ofsample:—l—] Then, S; —-Za—!—Z (Y +Z;)and D; =
ZJ_ (Z; + Yj1). if (Y1, Ys,...) is given, (So, S1,...) is
uniquely determined by (Zp, Z1, . ..). Hence, one can also use
7 = (Zo, Z1, .. .) to represent a sampling policy.

Because T; is a regenerative process, using the renewal
theory [51] and [42, Section 6.1], one can show that in

4Note that the generation times (S, ...,
included in this information.

Si_1) of previous samples are also
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Problem (13), %]E[S ] is a convergent sequence and

lim sup —]E [/ (W, — W,)zdr]
T—oo
[ S (W — Wy |

= lim

n—00 E[Dy]
SIS E[Sp (Wi — Ws)dt]
= lim —3
B 20 ELY: +Zi]

where in the last step we have used E[D,] = ]E[Z (Z -
Yii)l = [E[Z (Y + Z;)]. Hence, (13) can be rewntten as
the following Markov decision problem:

ZrE (18 o weya]
msegp = inf lim (35)
relly n—o00 z E[Y + Z:i1
n—1
1
s.t. llrgo—Z]E[Y +Zil> o (36)

where mse,, is the optimal value of (35).
In order to solve (35), let us consider the following Markov
decision problem with a parameter ¢ > 0:

Dit1 2
(c)—nlglghngrgo;ZE[/ (W, — Ws,) dr—c(YH—Z,-)]

37
n—1

s.t. lim —Z]E[Y +Z]>%

n—oo max

where p(c) is the optimum value of (37). Similar to Dinkel
bach’s method [52] for nonlinear fractional programming,
we can obtain the following lemma for our Markov decision
problem:

Lemma 2. The following assertions are true:

(a). msegp % c if and only if p(c) % 0.

(b). If p(c) =0, the solutions to (35) and (37) are identical.
Proof: See Appendix G. O

Hence, the solution to (35) can be obtained by solving (37)
and seeking a msegp; = 0 such that

p(msegp) =0 (38)

B. Lagrangian Dual Problem of (37) when ¢ = msegp

Although (37) is a continuous-time Markov decision prob-
lem with a continuous state space, rather than a convex
optimization problem, it is possible to use the Lagrangian dual
approach to solve (37) and show that it admits no duality gap.

When ¢ = msegy, define the following Lagrangian

L(z; 1)

1 n—1 Dit1
= lim — E[/ (W;—

LA
fmax,

WS.‘)Zdr i (mseupt + A)(Yz +Zf)]

(39)
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where A > 0 is the dual variable. Let

e(l) & inlij' L(x; 2). (40)
rell)

Then, the Lagrangian dual problem of (37) is defined by

Fay "
d'= I}lgl}}( e(4), (41)
where d is the optimum value of (41). Weak duality [53], [54]
implies that d < p(msegp). In Section V-D, we will establish
strong duality, i.e., d = p(msegy).

In the sequel, we solve (40). Using the stopping times and
martingale theory of the Wiener process, we can obtain the
following lemma:

Lemma 3. Lef t > 0 be a stopping time of the Wiener process
W; with E[r?] < oo, then

: 1
E [ / w2 dr] = —E[Wf]. 42)

0 6
Proof: See Appendix H. O
By using Lemma 3 and the sufficient statistics of (40), we

can show that for everyi = 1,2,...,

Diwy
E [ / (W — W, )zdr]
Dy

1
=E[(Wsr4z — Ws)*| +ELY + ZIEIY],  @3)

which is proven in Appendix L.

For any s > 0, define the o-fields ] = 6 (Wy4o — W, 10 €
[0, 1]) and F§+ = Ny~ F3, as well as the filtration {F;+,1 >
0} of the time-shifted Wiener process { W,y — W;, 1 € [0, 0c0)}.
Define 91, as the set of square-integrable stopping times of
(Wi — Wi, t €[0,00)}, ie.,

M ={r>0:{r <t} E.F,”,]E[rz] < o0}

By substituting (43) into (40) and using again the sufficient
statistics of (40), we can obtain

Theorem 5. An optimal solution (Zy, Z1, .. .) to (40) satisfies

1

2 (WSH— ¥i+r — WS; )4

TE

Z;=arg inf ]E[
+¥;

i

—B(Y; + 1)

Ws,iy, — Ws;, Yf] , (44)

where B is given by

B =3(mseg +4—E[Y]) = 0. (45)

Proof: See Appendix J. [

Note that because the Y;’s are i.i.d. and the strong Markov

property of the Wiener process, the Z;’s as solutions of (44)
are also Li.d.
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C. Per-Sample Optimal Stopping Solution to (44)

We use optimal stopping theory [50] to solve (44). Let
us first pose (44) in the language of optimal stopping. A
continuous-time two-dimensional Markov chain X, on a prob-
ability space (R?, F, P) is defined as follows: Given the initial
state Xg = x = (s, b), the state X, at time £ is

Xe=0G+t,b+ W), (46)

where {W;,f > 0} is a standard Wiener process. Define
P,(A) = P(A|Xo = x) and E,Z = E(Z|Xp = x),
respectively, as the conditional probability of event A and the
conditional expectation of random variable Z for given initial
state Xg = x. Define the o-fields .JE,X =o(X, : v €[0,]) and
.F;’H' = nwjfj‘, as well as the filtration {.’F,XJ*, t > 0} of the
Markov chain X;. A random variable 7 : RZ — [0, o0) is said
to be a stopping time of X, if {r <t} e .“FtXJr forall f > 0. Let
901 be the set of square-integrable stopping times of X, i.e.,

M={r>0:{r <t} effx“',]E[rz] < 00}.
Our goal is to solve the following optimal stopping problem:

sup E, g(X,), (47)
i

where Xg = x is the initial state of the Markov chain X,,
the function g : R? — R is defined as

g(s, b) = Bs — %b“ (48)

with parameter # > 0. Notice that (44) is a special case of (47)
where the initial state is x = (¥, Ws,ov, — Ws;), and W, is
replaced by the time-shifted Wiener process Wy, y,+; — Wg,.

Theorem 6. For all x = (s, b) € R? and B = 0, an optimal
stopping time for solving (47) is

r"‘sz{:zo:|b+wf|3\/§}.

In order to prove Theorem 6, let us define the function

(49)

u(x) =E,g(X+) (50)
and establish some properties of u(x).
Lemma 4. u(x) > g(x) for all x R?, and
1 p4 e 2 ;
s — 5b%, ifb*= B;
u(s,b) = A % J A (51)
Bs+ 3% — pb*, if b < p.
Proof: See Appendix K. o

A function f(x) is said to be excessive for the process X,
if [50]
E.f(X;) < f(x), forall t >0, x € R (52)

By using the It6-Tanaka-Meyer formula [55, Theorem 7.14 and
Corollary 7.35] in stochastic calculus, we can obtain

Lemma 5. The function u(x) is excessive for the process X;.

Proof: See Appendix L. O
Now, we are ready to prove Theorem 6. Proof: [Proof of
Theorem 6] In Lemma 4 and Lemma 5, we have shown that
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u(x) = E,g(X,+) is an excessive function and u(x) > g(x).
In addition, it is known that P, (z* < c0) = 1 for all x €
R2 [56, Theorem 8.5.3]. These conditions, together with the
Corollary to Theorem 1 in [50, Section 3.3.1], imply that z*
is an optimal stopping time of (47). This completes the proof.

A consequence of Theorem 6 is :
Corollary 1. An optimal solution to (44) is
Zi=inf {12 0:|Ws.ons — Ws | 2 VB}.  (53)
In addition, this solution satisfies
E[Y; + Zi] = E[max(8, Wy)], (54)
E[(Ws;+vi+z: — Ws))*1 = Elmax (82, Wy)l.  (55)

Proof: See Appendix M. O

D. Zero Duality Gap Between (37) and (41)
Strong duality is established in the following theorem:

Theorem 7. If ¢ = mseqy, the following assertions are true:

(a). The duality gap between (37) and (41) is zero, ie., d =
p(msegp).

(b). A common optimal solution to (13), (35), and (37) is
given by (12) and (15). The optimal value of (13) is
given by (16).

Proof: [Proof Sketch of Theorem 7] We use [53,
Prop. 6.2.5] to find a geomefric multiplier [53, Defini-
tion 6.1.1] for Problem (37). This tells us that the duality
gap between (37) and (41) must be zero, because otherwise
there is no geometric multiplier [53, Prop. 6.2.3(b)].> This
result holds not only for convex optimization problem, but
also for general non-convex optimization and Markov decision
problems like (37). See Appendix N for the details. O

Hence, Theorem 1 follows from Theorem 7.

VI. NUMERICAL RESULTS
In this section, we evaluate the estimation performance
achieved by the following four sampling policies:
1. Periodic sampling: The policy in (8) with f = fmax.
2. Zero-wait sampling [3], [6], [9], [10]: The sampling
policy in (9), which is feasible when frn. = 1/E[Y;].
3. Age-optimal sampling [9], [10]: The sampling policy
in (11) and (22), which is the optimal solution to (20).
4. MSE-optimal sampling: The sampling policy in (12)
and (15), which is the optimal solution to (13).
Let MS€periodic: MS€zero-wait: MSE€ageopt, and MSEqp;, be the
MSEs of periodic sampling, zero-wait sampling, age-optimal
sampling, MSE-optimal sampling, respectively. According
to (21), as well as the facts that periodic sampling is feasible
for (20) and zero-wait sampling is feasible for (20) when
fmax > 1/E[Y;], we can obtain

MSEopt = MSEage-opt = MSEperiodic,

1
mseopt = mseage—opt = MS€zero-wait, when fmax = m,
i

SNote that geometric multiplier is different from the traditional Lagrangian
multiplier.
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Fig. 5. MSE vs. fmay tradeoff for i.i.d. exponential service time and E[Y;] =
1, where zero-wait sampling is not feasible when fiax < 1/E[Y;] and hence
is not plotted in that regime.
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Fig. 6. MSE vs. the scale parameter ¢ of i.i.d. log-normal service time for
fmax = 0.8 and E[¥;] = 1, where zero-wait sampling is not feasible because

Smax < 1/E[¥;].

which fit with our numerical results below.

Figure 5 depicts the tradeoff between MSE and frax for
i.L.d. exponential service time with mean E[Y;] = 1/u = 1.
Hence, the maximum throughput of the queue is ¢ = 1.
In this setting, MS€periodic 18 characterized by eq. (25) of [3],
which was obtained using a D/M/1 queueing model [57]. For
small values of fnax, age-optimal sampling is similar with
periodic sampling, and hence MS€ugcopt aNd MSEperiodic are
of similar values. However, as fmax approaches the maximum
throughput 1, MS€periodic blows up to infinity. This is because
the queue length in periodic sampling is large at high sampling
frequencies, and the samples become stale during their long
waiting times in the queue. On the other hand, mse,p, and
MSE,gc opt decrease with respect to fipax. The reason is that
the set of feasible policies satisfying the constraint in (13)
and (20) becomes larger as frax grows, and hence the optimal
values of (13) and (20) are decreasing in fmax. Moreover,
the gap between mseyp and MSE€;gc o is large for small
values of frax. The ratio mseqn/MS€ygeope tends to 1/3
as fmax — 0, which is in accordance with (28). As we
expected, MS€ero-wait 1S larger than msegy and MS€,ge opt
when frnax = 1. In summary, periodic sampling is far from
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Fig. 7. MSE vs. the scale parameter ¢ of ii.d. log-normal service time for
fmax = 1.5 and E[¥;] = 1. where MS€periogic = 00 due to queueing.

optimal if the sampling rate is too low or sufficiently high;
age-optimal sampling is far from optimal if the sampling rate
is too low.

Figure 6 and Figure 7 illustrate the MSE of iid. log-
normal service time for fpax = 0.8 and frax = 1.5,
respectively, where ¥; = e’ Xi f]E[e"X"], o > 0 is the scale
parameter of log-normal distribution, and (X, X2,...) are
i.i.d. Gaussian random variables with zero mean and unit
variance. Because E[Y;] = 1, the maximum throughput of the
queue is 1. In Fig. 6, since fnax < 1, zero-wait sampling is
not feasible and hence is not plotted. As the scale parameter o
grows, the tail of the log-normal distribution becomes heavier
and heavier. We observe that MSe€periodic grows quickly with
respect to o, much faster than Mmsegp and MSE€uge opt- In
addition, the gap between msey,; and MS€,ge opt inCreases as
o grows. In Fig. 7, because fmax > 1, MS€periodic i8 infinite
and hence is not plotted. We can find that MSe€,erp-wait Zrows
quickly with respect to ¢ and is much larger than msegy
and MS€,gc opt- In summary, periodic sampling, age-optimal
sampling, and zero-wait sampling policies are all far from
optimal if the service times follow a heavy-tail distribution.

VII. CONCLUSION

In this paper, we have investigated optimal sampling of
the Wiener process for remote estimation over a queue. The
optimal sampling policy for minimizing the mean square
estimation error subject to an average sampling rate constraint
has been obtained in a semi-closed form. We prove that a
threshold-based sampler is optimal and the optimal threshold is
found exactly. Analytical and numerical comparisons with sev-
eral important sampling policies, including age-optimal sam-
pling, zero-wait sampling, and traditional periodic sampling,
have been provided. The results in this paper generalize recent
research on age of information by adding a signal-based con-
trol model, and generalize existing studies on remote estima-
tion by adding a queueing model with random service times.

APPENDIX A
PROOF OF (4)

We use the calculus of variations to prove (4). Define x Ay =
min{x, y}. Let us consider a functional & of the estimate W;,
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which is defined as

4 DipiaAT
h(W,) =E | / (W, — Wo)2dt
D;nT

(Sj, Ws;, Dj)jgi]
(56)

for any T > 0. By using Lemma 4 in [10], it is not hard to
show that i1(W;) is a convex functional of the estimate W;.
In the sequent, we will find the optimal estimate that solves

min (W;). (57)

Wi
Let f; and g; be two estimates, which are functions of the
information available at the estimator {S;, Ws;,, D; : D; <
t}. Similar to the one-sided sub-gradient in finite dimensional
space, the one-sided Géteaux derivative of the functional £ in
the direction of g at a point f is given by

oh(f; g)
i M eg) —h()
e—0t €
1 Dip AT n 5
= im 2B [ ik e — w02 - (= Wl
e—0tT € D;AT

(Sj,WS-,Dj)jsi]-

DipnT
= lim E[/ 2(f; — Wi)g: + egldt
e—~0F D;AT

(Sj,WS-,Dj)jsi]

D AT
_E [ / 2fi — Wi)gdt

D;nT

(S, Ws;, Dj)_fgi]

Dip AT
=Eu) . 2(fi —E[WiI(Sj, Ws;, D)) j<i]) gdt
{TA"

(58)

(Sj,Ws-,Dj)jgila

where the last step follows from the iterated law of expec-
tations. According to [61, p. 710], f; is an optimal solution
to (57) if and only if

oh(f:8)=0, Vg.
By oh(f; g) = —oh(f; —g), we get
Since g; is arbitrary, by (58) and (59), the optimal solution
to (57) is
ft =E[W:|(Sj, Ws;, Dj)j<il,
=Ws; + E[W; — Ws,|(Sj, Ws;, Dj)j<il
te[D;AT,Dipy1 AT).

(39)

(60)

Notice that under any online sampling policy =, {S;, Ws., D;,
j < i} are determined by the source (W, e [0, S;]) and
the service times (¥i,...,Y;). According to (i) the strong
Markov property of the Wiener process [55, Theorem 2.16 and
Remark 2.17] and (ii) the fact that the ¥;’s are independent of
the Wiener process W;, we obtain that for any given realization
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of (§;, WSJ., Dj)j<i. {\W; — Wg;, t = §;} is a Wiener process.

Hence,
E[W; — W5, |(Sj, Ws;, D})j<il =0
for all t = S;. Therefore, the optimal solution to (57) is
Ji=Wg, fte[DeAT, Dy AT),i=1,2,...

(61)

(62)
Finally, we note that

L DipnT =
lim > E [ f (W; — W,)Zdr]
= DiAT

DpnT .

= lim EU (W, — W,)Zdr]
0

@E[ lim

n—=00
Dp T "
/ (W, — W,)Zdr]
n—oo 0

T
Oy [ ] (W, — W,)Zdr]
0

where in Step (a) we have used the monotonic convergence
theorem, and Step (a) is due to lim, ., D, = oo almost
surely, which was obtained in (7). Hence, the MMSE esti-
mation problem can be formulated as

(63)

mmhmsup—]EI/ (W; — W,) dzl

W; Teo
Dip AT A 5
=minlimsup lim — ]Elf (W, —W)dr].
W, T—»oop“_" Z Din : .
(64)

Recall that (62) is the solution of (56) for any T > 0. Let
T — oo in (62), we obtain that (4) is the MMSE estimator
for solving (64). This completes the proof.

APPENDIX B
PROOF OF (18)
If = is independent of {W,,t < [0, c0)}, the §;’s and D;’s
are independent of {W;, t € [0, c0)}. Define x Ay = min{x, y}.
For any T > 0, let us consider the term

Dit1iAT %
E U (W, — W,)Zdr]
D;AT

in the following two cases:
Case 1: If D; AT = §;, we can obtain

Dipi AT s
E / (W, — W,)Zdr]
DiaT
DiiaT .
=F / (W, — ng.)zdr]
D;AT
(@) DipnT
=E{E [/ (W, — Ws,)2dt|S;, D;, Ds+1”
D;;’\T
D AT
OR / EE{(W,—Wsi.)2|S,',D,-,D,-+1}drl
D;AT
(© Dip AT
=E / (r— Sj)df]
D;!\T
DipnT
Dy / A(r)dr] , (65)
D; AT
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where Step (a) is due to the law of iterated expectations, Step
(b) is due to Fubini’'s theorem, Step (c) is due to the strong
Markov property of the Wiener process [55, Theorem 2.16]
and the fact that §;, D;, D; are independent of the Wiener
process, and Step (d) is due to (19).

Case 2: If D; AT < §;, then the fact D; > S; implies that
T <S8 <D; <Djy1.Hence, D; AT =D; 4y AT =T and

Dip AT s D AT
E U (W, — W,)de] =E U A(t)dt] =
D;!\T D,‘AT

Therefore, (65) holds in both cases.
By using an argument similar to (63), we can obtain

T
[EI[ UO A(r)dr]. (66)

Combining (63)-(66), (18) is proven.

Di+1.f\T
lim

ﬂ—)CD

A(!)dr] =E

D;AT

APPENDIX C
PROOFS OF (25) AND (27)

If fmax — 0, (15) tells us that

E[max(8, W2)] = fl " (67)
which implies
ﬁf%sﬂnL]E[W%]:ﬁ”rE[Y]. (68)
Hence,
L—E[Y]«;%L (69)
fma_x fma.x

If fmax — 0, (25) follows.

Because Y is independent of the Wiener process, using the
law of iterated expectations and the Gaussian distribution of
the Wiener process, we can obtain ]E[W“] = 3E[Y?2] and
E[W] = 3E[Y]. Hence,

B < Elmax(B8, W)l < B +E[W}] = B + E[Y],

B < Elmax(8?, Wy)] < p* + E[Wyl = * + 3E[Y?].
Therefore,
B2 E[max (82, Wy)] ,32 +3E[Y?Y]
< T ; (70)
B +EIY] ~ E[max(8, W2)] B
By combining (16), (25), and (70), (27) follows in the case of
Jfmax — 0.

If a — 0, then ¥ — 0 and Wy — 0 with probability one.
Hence, E[max(g, Wf,)] — p and ]E[max(ﬂz, W}‘)] — ,82.
Substituting these into (15) and (70), yields

. | Etmax(s?, W{‘E)l
lim —_— . —
a 6E[max (8, wg)]

1 1
I fp = o ]} 6 fax

By this, (25) and (27) are proven in the case of a — 0. This
completes the proof.
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APPENDIX D
PROOF OF (29)

If fmax — o0, the sampling rate constraint in (13) can be
removed. By (15), the optimal £ is determined by (29).
If @ — o0, let us consider the equation

E[max (82, Wy)]
28 '

If Y grows by a times, then 4 and E[max(g, W2)] in (71)
both should grow by a times, and E[max(82, Wy)] in (71)
should grow by a? times. Hence, if @ — oo, it holds in (15)
that

E[max(8, Wi)]= (71)

o E[max(82, Wy)]

and the solution to (15) is given by (29). This completes the
proof.

(72)

APPENDIX E
PROOFS OF THEOREMS 3 AND 4

Proof: [Proof of Theorem 3] The zero-wait policy can be
expressed as (12) with # = 0. Because Y is independent of the
Wiener process, using the law of iterated expectations and the
Gaussian distribution of the Wiener process, we can obtain
E[Wy] = 3E[Y2]. According to (29), # = O if and only if
E[Wy] = 3E[Y?] = 0 which is equivalent to ¥ = 0 with
probability one. This completes the proof. O

Proof: [Proof of Theorem 4] In the one direction, the zero-
wait policy can be expressed as (11) with f < essinf Y.
If the zero-wait policy is optimal, then the solution to (30)
must satisfy £ < essinf ¥, which further implies f# < Y with
probability one. From this, we can get

2essinf YE[Y] > 28E[Y] = E[Y?], (73)
By this, (31) follows.

In the other direction, if (31) holds, we will show that the
zero-wait policy is age-optimal by considering the following
two cases.

Case 1: E[Y] > 0. By choosing

E[r?%)
= i 74
B BT (74)
we can get f < essinf ¥ from (31) and hence
p=Y (75)

with probability one. According to (74) and (75), such a g
is the solution to (30). Hence, the zero-wait policy expressed
by (11) with £ <essinf Y is the age-optimal policy.

Case 2: E[Y] = 0 and hence ¥ = 0 with probability one.
In this case, # = 0 is the solution to (30). Hence, the zero-
wait policy expressed by (11) with f = 0 is the age-optimal
policy.

Combining these two cases, the proof is completed. O
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APPENDIX F
PROOF OF LEMMA 1

Recall that §; and G; are the sampling time and the service
starting time of sample i, respectively. Suppose that in the
sampling policy =, sample { is generated when the server
is busy sending another sample, and hence sample i needs
to wait for some time before being submitted to the server,
ie., §; < G;. Let us consider a virfual sampling policy
' = {So,---,8i_1,Gi, Sit1,--.} such that the generation
time of sample i is postponed from §; to G;. We call policy
x' a virtual policy because it may happen that G; > Sji1.
However, this will not affect our proof below. We will show
that the MSE of the sampling policy =’ is smaller than that
of the sampling policy = = {So, ..., Si—1, 8, Siy1, ...}

Note that the Wiener process {W; : f e [0,00)} does
not change according to the sampling policy, and the sample
delivery times {Dg, Dy, D>, ...} remain the same in policy «
and policy z’. Hence, the only difference between policies &
and z’ is that the generation time of sample i is postponed
from S; fo G;. The MMSE estimator under policy « is given
by (4) and the MMSE estimator under policy z’ is given by

W, =E[W;|(S}, Ws;, D;j)j<i1, (Gi, Wa;, D;)]
0, t [0, Dy);
=1{ Wg;,, telDi, Din1);
Wsj, te[Dj,Djy1), j#i,j=1.

Next, we consider a third virtual sampling policy #” in
which the samples (Wg;, G;) and (Ws,, S;) are both delivered
to the estimator at time D;. Clearly, the estimator under policy
7" has more information than those under policies = and =’'.
By following the arguments in Appendix A, one can show that
the MMSE estimator under policy =" is

(76)

W, =EIW,|(S;, Ws;, D) <i» (Gi, Wg;, Di)]
0, t [0, Dy);
=1 Wg,, telDi,Din);
Wsj» te€lDj,Djy1), j#i,j=1.

Notice that, because of the strong Markov property of Wiener
process, the estimator under policy =" uses the fresher sample
Wg,;, instead of the stale sample Wg,, to construct W: during
[D;, D;y1). Because the estimator under policy 7" has more
information than that under policy m, one can imagine that
policy =" has a smaller estimation error than policy =, i.e.,

an

forany T > 0
D,'+|AT
E U (W, — WS,.)Zdr]
D;AT
DipnT
>E [ / (W, — Wg, )Zdr] : (78)
D;aT

To prove (78), we invoke the orthogonality principle of the
MMSE estimator [41, Prop. V.C.2] under policy =" and obtain

D‘:+ AT
E |/ : 2(Wy — Wg)(Wg; — ng-)drl =0, (79)
D,'AT

where we have used the fact that W, and Wy, are available
by the MMSE estimator under policy z”. Next, from (79),
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we can get

o] [

DH—IAT
_E [

Di AT
+E I [ 20w = We) (W, - Ws.-)drl
inT

— Ws,)?dt l

(W — We,)? + (Wg, — Ws;)? dr]
D; AT

D AT
=E I / (W; — Wg,)2 + (Wg, — Ws,)? dr]
D; A

Di+1f’\T
>E I (W, — Wc,,-)zdt] : (80)
D; AT
In other words, the estimation error of policy z” is no

greater than that of policy = . Furthermore, by comparing (76)
and (77), we can see that the MMSE estimators under policies
" and 7’ are exactly the same. Therefore, the estimation error
of policy z’ is no greater than that of policy =.
By repeating the above arguments for all samples i sat-
isfying §; < G;, one can show that the sampling policy

1 = {S,G1,...,Gi_1,Gi, Giy1,...} is better than the
sampling policy # = {So, S1,..., Si—1, 8, Sit1,...}. This
completes the proof.

APPENDIX G

PROOF OF LEMMA 2

Part (a) is proven in two steps:

Step 1: We will prove that mse,,, < c if and only if p(c) <
0.

If mse,,y < ¢, then there exists a policy # =
(Zo, Z1,...) € I that is feasible for both (35) and (37),
which satisfies

AR

lim =
z;=g E [¥Y; +Z;]

H— DO

S (81)

Hence,

LI B[ fpr (W — Ws)dt —c(¥i + Z)]
1> EYi+Zi]

=

(82)

Because the inter-sampling times T; = Y;+Z; are regenerative,
Elkji1 — kjl < oo and 0 < E[(Sg,, — S)*1 < oo
for all j, the renewal theory [51] tells us that the limit
lim,,_ oo X Z; 1]EI[Y +Z;] exists and is positive. By this,
we get

n—1
lim —
n—oo p

=0

Diy
E [/ I(W: — Ws;)2dt —c(Y; + Z:’)] <0
D;
(83)

Therefore, p(c) < 0.

On the reverse direction, if p(c) < 0, then there exists
a policy # = (Zo,Z1,...) € II; that is feasible for
both (35) and (37) which satisfies (83). Because the limit
lim,,_s oo & z IR [Yi+Z;] exists and is positive, from (83),

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

we can derive (82) and (81). Hence, msegy < c. By this,
we have proven that msegy < c if and only if p(c) < 0.

Step 2: We needs to prove that msey, < c if and only
if p(c) < 0. This statement can be proven by using the
arguments in Step 1, in which “<” should be replaced by *“<”
Finally, from the statement of Step I, it immediately follows
that msegy > c if and only if p(c) > 0. This completes the
proof of part (a).

Part (b): We first show that each optimal solution to (35)
is an optimal solution to (37). By the claim of part (a),
p(c) = 0 is equivalent to mseqp = c. Suppose that policy
r = (Zy, Zy,...) € II; is an optimal solution to (35). Then,
mse, = MSe€y, = ¢. Applying this in the arguments of (81)-
(83), we can show that policy x satisfies

n—1 Dit1
lim — E[/ (W, — Ws;)2dt — c(Y; +z;)] =0
n—00 y 4 D:
i=0 "
This and p(c) = 0 imply that policy = is an optimal solution
to (37).

Similarly, we can prove that each optimal solution to (37)
is an optimal solution to (35). By this, part (b) is proven.

APPENDIX H
PROOF OF LEMMA 3

According to Theorem 2.51 of [55], W/ —6 [y W2 ds is an
martingale of the Wiener process {W,;,f € [0, c0)}. Because
the minimum of two stopping times is a stopping time and
constant times are stopping times [56], it follows that t A 7 is
a bounded stopping time for every f € [0, cc), where x Ay =
min{x, y}. Then, it follows from Theorem 8.5.1 of [56] that
for every t € [0, c0)

[/ w2 ds]——]E[ Woal:

Notice that [;"* W2 ds is positive and increasing with respect
to . By applying the monotone convergence theorem [56,
Theorem 1.5.5], we can obtain

AT T
limE[/ W}ds]:EU wfds].
t—00 0

Hence, the limit lim,_,o E[W}, ] exists. The remaining task
is to show that

(84)

(85)

Jim E[wS, ] = ]E[Wf] . (86)

Towards this goal, let us consider
E [Wf]
=E {[Wine — (We = Wiro)T*]
—E[Wi, | +4E [}, (. — Wino)]
+6E [ W2, (W, = Wino)?
+AE [Wine W = Wine*| + E[(We — Wine)?]
=E W}, | +4E[ W}, |EIW: — Wird]
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+6E [WEM] E [(W, - sz)z]
4 4E[W;r ] E [(Wr - W,,\f)3]+IE [(Wr —~ Wm)“],

where in the last step we have used the strong Markov property
of the Wiener process [55, Theorem 2.16]. By Wald’s lemma
for Wiener process [55, Theorem 2.44 and Theorem 2.48],
E[W.]=0and E [Wf] = [ [z] for any stopping time 7 with
E[z] < oo. Hence,

E [Wz - WH\r] = 0:
E[Wir:1=0,

(87)
(88)

which implies
E [w;‘] —E [W;‘M] +6E [W,%\,] E [(Wz —~ Wm)z]
+E| (W — Win)' ]

>E [W:‘M] , (89)

and hence
4 . 4
s[w]= e oo
On the other hand, by Fatou’s lemma [56, Theorem 1.5.4],

E [W;‘] _E [ntnggf W;‘M] < lim E [W;‘M] . oD
Combining (90) and (91), yields (86). This completes the
proof.

APPENDIX I
PROOF OF (43)

The following lemma is needed in the proof of (43):

Lemma 6. For any 4 = 0, there exists an optimal solution
(Zo, Z1,...) to (40) in which Z; is independent of (W, t €
[0, Si]) foralli =1,2,...

Proof: Because the Y;’s are i.i.d., Z; is independent of
Yit1,Yiyo, ..., and the strong Markov property of the Wiener
process [55, Theorem 2.16], in the Lagrangian L(x; 4) the
term related to Z; is

Si+Yi+Zi4+Yi
E [ / (W, — Ws,)?dt — (MSeop + )(Y; + zi)],
Si+Yi
(92)

which is determined by the control decision Z; and the recent
information of the system 7; = (Y;, (Ws,or — Ws;, t = 0)).
According to [47, p. 252] and [62, Chapter 6], Z; is a sufficient
statistics for determining Z; in (40). Therefore, there exists an
optimal policy (Zog, Z1, ...) in which Z; is determined based
on only 7;, which is independent of (W; : t € [0, S;]). This
completes the proof. O

Proof: [Proof of (43)] By using (34) and Lemma 6,
we obtain that for given ¥; and ¥; 4, ¥; and ¥; + Z; +Y; 1 are
stopping times of the time-shifted Wiener process {Wg;4; —
Ws,, t = 0}. Hence,

Diyy
=E I / (W, — Ws,)2dt
D;

1131
Yi+Zi+Yip
=E If (WS;+t - WS;)zdr]
Y;
(a) Yi+Zi+Yis1 )
O |E | / (Wsie — Ws)dt| Vi, Vi ”
¥;

1
— 6IEI []E I(Ws,-+y.- - WS;)4’Y£, Yip1 "

@l
6

®)1
6

IE I(WS.-+Y,-+Z,-+Y.-+1 —Ws)*

[(WS;+Y;'+Z;'+Y;+1 - WS.')4] - éE [(WS;—I—Y; - WS;)4]=
93)

where Step (a) and Step (c) are due to the law of iterated
expectations, and Step (b) is due to Lemma 3. Because S; 1 =
Si+ Y + Z;, we have

E [(WS.-+Y,-+Z,-+Y.-+1 - WS.-)4]

=E {[(WS,-+Y.-+Z.- = Ws)+ (Ws, 4,y — WS,-+.)]4}

=E [(WS.-+Y,-+Z,- - Wg, )4]
+4E [(WS.-+Y,-+Z,- — W) (Ws,, 4%y — Ws,-+.)]
+ 6E [(WS.-+Y,-+Z,- — Ws,)> (W, 141 — WS:'+|)2]
+4E [(WS.-+Y,-+Z,- — W) (Wsip1 +Yi1 — Ws,-+|)3]
+E | Wsiy 450 — Wsi)']

=E [(WS.-+Y,-+Z,- - Wg, )4]
+4E [(WS.-+Y,-+Z,- - WS.—)?’] E[(Ws; 14 — Wsiy)]
+ 6E [(WS.-+Y,-+Z,- - WS;)Z] E [(WS,-+|+Y.-+1 = Wsip )2]
+4E [(Ws, 4142, — Ws)|E| Ws, 70 — Ws)?
+E| W40 — W) (94)

where in the last equation we have used the fact that Y;
is independent of ¥; and Z;, and the strong Markov property
of the Wiener process [55, Theorem 2.16]. By Wald’s lemma
for Wiener process [55, Theorem 2.44 and Theorem 2.48],
E[W,] =0 and E[WZ] = E[r] for any stopping time 7 with
E[z] < oo. Hence,

]E[(WS;'+|+Y;+1 - WS;‘+|)] =0, (93)
E[(Ws;4vi4z: — Ws)] =0, (96)
E [(WS;+Y;'+Z;' - WS;)E] E [(W3£+|+Y;+1 — Ws.. )2]
= E[Y; + ZE[Yi41]. 97)
Therefore, we have
E [(WS.-+Y,-+Z,-+Y.-+1 - WSI)4]
=K [(WS;+Y£+Z£ — Ws, )4] +6E[Y; +Z;]E [Yr’+] ]
+E [ (Wsipr 10 — Wsi)?] 98)

Authonzed licensed use limited to: Aubum University. Downloaded on May 26,2020 at 03:27:22 UTC from IEEE Xplore. Restrictions apply.



1132

Finally, because (Ws, 4 — Ws;) and (W, 41—
Wiener processes, and the Y;’s are i.i.d.,

E [(WS|'+Y,' =] WS; )4] =K [(WS;+1+Y,'+| - WS;+1)4] . (99)
Combining (93)-(99), yields (43). O

Ws,,,) are both

APPENDIX J
PROOF OF THEOREM 5

By (43), (92) can be rewritten as

r o rSi+YitZi+Yin
El [ W, —
\Y

Ws;)2dt — (mseop + A)(Y; + z,v)]
i+Yi

1
=K E(WS;+Y;'+Z;' — Ws;)* —(msegp + 2 — E[Y])(Y£+Zf)]

1
E(WS"”"*Z" = WS;)4—§(Y£+Z£)]

1
=E _E[(WS.-Jrn =
B o v
_E(Yt‘l'zr)]

Ws.)+(Ws vz, — WS;+Y£)]4

(100)

Because the Y;’s are i.i.d. and the strong Markov property
of the Wiener process [55, Theorem 2.16], the expectation
in (100) is determined by the control decision Z; and the
information I; = (Ws;oy, — Ws,, Vi, (Wsiyyor — Wsiny,,
t > 0)). According to [47, p. 252] and [62, Chapter 6], Ilf isa
sufficient statistics for determining the waiting time Z; in (40).
Therefore, there exists an optimal policy (Zp, Zi, . ..) in which
Z; is determined based on only 7. By this, (40) is decom-
posed into a sequence of per-sample control problems (44).
Combining (35), (43), and Lemma 2, yields mseq, > E[Y].
Hence, g = 0.

We note that, because the ¥;’s are iid. and the strong
Markov property of the Wiener process, the Z;’s in this

optimal policy are iid. Similarly, the (Ws, 1 y;1z, — Ws;)'s

in this optimal policy are i.i.d.

APPENDIX K
PROOF OF LEMMA 4
Case 1: If b> > f, then (49) tells us that
*=0 (101)
and
1

u(x) =E[g(Xo)| Xo =x]=gx) = Bs — §b4' (102)
Case 2: If b> < 8, then z* > 0 and (b+ W,+)? = B. Invoking

Theorem 8.5.5 in [56], yields
*=—(/B—b)(—E—b)=p—b" (103)

Using this, we can obtain

u(x) = Exg(Xe+)
1
= B(s + Exr) - SEs [(b + w,*)“]
=B+ B~ 1)~ 3

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

1
:ﬂs+£ﬁz—b2

Hence, in Case 2,

15 2 1 4 2
u(x) —gx)==p"-0> —b"= (b
() —gC) =358 A+ 7t

By combining these two cases, Lemma 4 is proven.

B. (104)

L — gy = 0. (105)

APPENDIX L
PROOF OF LEMMA 5

The function u(s, b) is continuous differentiable in (s, b).
In addition, g—bu(s. b) is continuous everywhere but at
b = +./B. By the Itd-Tanaka-Meyer formula [55, Theo-
rem 7.14 and Corollary 7.35], we obtain that almost surely

u(s +t,b+ W) —u(s, b)

t
é
:/0 Eu(s—i—r,b—i— W, )dW,
I
—|—/ —u(s—l—r b+ W,)dr

/ L“(r)abzu(s +r,b+a)da, (106)

where L?(t) is the local time that the Wiener process spends
at the level a, i.e.,

g
L) =i fﬂ LWs—al<e)ds, (107)

and 14 is the indicator function of event A. By the property
of local times of the Wiener process [55, Theorem 6.18],
we obtain that almost surely

u(s +t,b+W,)—u(s,b)

_/ —u(s—l—r b+ W.)dw,

—i—/ —u(s +r.b+ W, )dr
0

1. fF &
+5[0 abzu(s—l—r b+ W, )dr. (108)
Because
) —263, if b? > B;
—H(S, — 5 2 (109)
ob —28b, ifb° < p,

we can obtain that for all # = 0 and all x = (s, b) R2

2
E, [jt I:iu(s—f—r,b—l—w,.):l dr] < 00. (110)
o Lob

This and Theorem 7.11 of [55] imply that fat %u(s +r, b+
W, )dW, is a martingale and

‘g
Ex[f au(H,,ber,)dw,]:o, Vi>0. (111)
0

By combining (46), (108), and (111), we get

1 &2
E. [w(X))]—u(x) = E If [— K)+ 5 ou(X, )]dr]
(112)
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It is easy to compute that if b* > b,
3

%u(x,b)—l—%%u(s,b):ﬂ—3b250; (113)
and if b% < B,
2
a%u(s,b)Jr é;?u(s,b):ﬁ—ﬁzo. (114)
Hence,
d 1 8%
55405, 0) + 5 55u(s, ) < 0 (115)

for all (s, b) € R? except for b = +.,/B. Since the Lebesgue
measure of those r for which b+ W, = +.,/F is zero, we get
from (112) and (115) that E, [#(X,)] < u(x) for all x € R?
and f > 0. This completes the proof.

APPENDIX M
PROOF OF COROLLARY 1

Because (49) is the optimal solution to (47), by choosing
s =Y, b= Ws,y, — Ws;, and using Wg, 1y, — Ws, to
replace W,, it is immediate that (53) is the optimal solution
to (44).

The remaining task is to prove (54) and (55). According
to (53) with g = 0, we have

Wsiiyviaz, — Ws;
Wsiyy; — Ws;, if |Wsiqy, — Ws;| = V/B;

| /B, if [Ws;4y, — Ws;| < VB. L
Hence,
E[(Wstv,+2; — Ws,)*1 = Elmax(8%, (Ws,1y, — Ws;)")1.
(117)

In addition, from (101) and (103) we know that if [Wg, 1y, —
Ws;| = /B, then (101) implies
E[Z;|Y;1=0; (118)

otherwise, if |Ws, 1y, — Ws;| < +/B, then (103) implies

E[Zi|Yi]1= B — (Wsi1y; — Ws,)™. (119)
By combining these two cases, we get
E[Z;Y;] = max[$ — (Ws1y, — W), 0]. (120)

Using the law of iterated expectations, the strong Markov
property of the Wiener process, and Wald’s identity
E[(Ws;+v; — Ws;)?1 = E[Y;], yields
ElZ; + Yi]

=E[E[Z;|Yi] + Yi]

=Elmax(f — (Ws.4y; — Ws;)”,0) + Y]

=E[max(8 — (Ws,+v; — Ws,)%,0) + (Ws;4y, — Ws,)’]

=E[max(8, (Ws+v, — Ws,)")1. (121)
Finally, because W; and Wg,; — Wy, are of the same distribu-

tion, (54) and (55) follow from (121) and (117), respectively.
This completes the proof.
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APPENDIX N
PROOF OF THEOREM 7

According to [53, Prop. 6.2.5], if we can find #* =
(Zo, Z1,...) and A* satisfying the following conditions:

n—1

x* e I, lim le[Y,-Jrz,-]—Lzo, (122)
n—00 ] 4 fmax
=0
A* =0, (123)
L(z*: A*) = inf L(x; %), (124)
xelly
Sl 1
2y lim - S ElY; +Z;]1—-—14 =0, 125
{nﬁ‘éong [¥; +Zi] fmn] (125)

then z™* is an optimal solution to the primal problem (37) and
A* is a geometric multiplier [53] for the primal problem (37).
Further, if we can find such #* and A*, then the duality
gap between (37) and (41) must be zero, because otherwise
there is no geometric multiplier [53, Prop. 6.2.3(b)]. We note
that (122)-(125) are different from the Karush-Kuhn-Tucker
(KKT) conditions because of (124).

The remaining task is to find #* and A* that satisfies (122)-
(125). According to Theorem 5 and Corollary 1, the solution
7™ to (124) is given by (53) where f = 3(msegp +A"—E[Y]).
In addition, as shown in the proof of Theorem 5, the Z;’s in
policy =™ are i.i.d. Using (122), (123), and (125), the value
of A* can be obtained by considering two cases: If A* > 0,
because the Z;’s are i.i.d., we have

n—1

. 1
,,‘L,“;OQEE[K +Z=E[Y; + Zi] = ramlL
If A* =0, then
1
lim —ZE[Y;+Z,-]:IE[Y,-+Z;]2—. (127)
n—00 1l — fmax

Next, we use (126), (127), and f = 3(msegp +A*—E[Y])
to determine A*. To compute Msey;, we substitute policy z*
and (43) into (35), which yields

Msegpt
> B [(Wsiawirzi—Ws)*+ (Y + Z)EIY]]
6" E[Y;+Zi]
_]E [(WS,'-I-Y;+Z; == WS; )4]
6E[Y;+Z;]

where in the last equation we have used that the Z;’s are i.i.d.
and the (Ws. 1y, 4z, — Ws,)’s are i.i.d., which were shown in
the proof of Theorem 5. Hence, the value of f = 3(mseqy +
A* —E[Y]) can be obtained by considering the following two

cases:
Case I: If A* > 0, then (128) and (126) imply that

= lim
n—0oo

+E[Y], (128)

E[Y£+Z£]:—l )

max

(129)

E[(Ws;4v+2z — Ws,)Y]

B > 3(msegy — E[Y]) = JE 1 Z1]

(130)
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Case 2: If A* =0, then (128) and (127) imply that

ElYi + Zil1 = L,

max

(131)

E[(Ws+vi+z: — W)
2E[Y;+Z;] '
Combining (129)-(132), yields that £ is the root of

1 ElWsi+yiez, = Ws.—)“l) —_—
f max ’ Zﬁ -
Substituting (54) and (55) into (133), we obtain that g is the
root of (15). Further, (53) can be rewritten as (12). Hence,
if we choose =™ as the sampling policy in (12) and choose
AY = B/3 — msegy + E[Y] where f is the root of (15),
then z* and A* satisfies (122)-(125). By using the properties
of geometric multiplier mentioned above, (12) and (15) is an
optimal solution to the primal problem (37).

Because the problems (13), (35), and (37) are equiva-
lent, (12) and (15) is also an optimal solution to (13) and (35).

The optimal objective value msegy is given by (128).
Substituting (54) and (55) into (128), (16) follows. This
completes the proof.

B =3(mseop —E[Y]) = (132)

E[Y; + Z;]=max (
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