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Sampling of the Wiener Process for Remote
Estimation Over a Channel With Random Delay
Yin Sun ,Member, IEEE, Yury Polyanskiy,Senior Member, IEEE, and Elif Uysal,Senior Member, IEEE

Abstract— In this paper, we consider a problem of sampling a
Wiener process, with samples forwarded to a remote estimator
over a channel that is modeled as a queue. The estimator
reconstructs an estimate of thereal-timesignal value from
causally received samples. We study the optimalonlinesampling
strategy that minimizes the mean square estimation error subject
to a sampling rate constraint. We prove that the optimal sampling
strategy is a threshold policy, and find the optimal threshold.
This threshold is determined by how much the Wiener process
varies during the random service time and the maximum allowed
sampling rate. Further, if the sampling times are independent
of the observed Wiener process, the above sampling problem
for minimizing the estimation error is equivalent to a sampling
problem for minimizing the age of information. This reveals an
interesting connection between the age of information and remote
estimation error. Our comparisons show that the estimation error
achieved by the optimal sampling policy can be much smaller
than those of age-optimal sampling, zero-wait sampling, and
periodic sampling.

Index Terms— Sampling, remote estimation, age of informa-
tion, Wiener process, queuing system.

I. INTRODUCTION

IN MANY real-time control and cyber-physical systems
(e.g., airplane/vehicular control, sensor networks, smart

grid, stock trading, robotics, etc.), timely updates about the
system status are critical for state estimation and decision
making. For example, real-time knowledge about the location,
orientation, speed, and acceleration of motor vehicles is imper-
ative for autonomous driving, and fresh information about
stock price, financial news, and interest-rate movements is of
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Fig. 1. Evolution of the age of information (t)over time.

paramount importance for stock trading. In [2], [3], the age
of information was introduced to measure the timeliness of
status samples about a remote source. Suppose that thei-
th status sample is generated at the source at timeSi(0≤
S1 ≤ S2 ≤ ...) and is delivered to the destination at time
Di. At timet, the freshest sample available at the destination
was generated at timeU(t)=max{Si:Di≤t}.Theage of
information, or simply theage, is a function of timetthat is
defined as

(t)=t−U(t)=t−max{Si:Di≤t}, (1)

which is the time difference between the generation timeU(t)
of the freshest received sample and the current timet. Hence,
asmallage (t)implies that there exists a fresh status sample
at the destination. As plotted in Fig. 1, the age increases
linearly over time and is reset to a smaller value once a new
sample is received. Hence, the age (t)exhibits a sawtooth
pattern. Recently, the age of information concept has received
significant attention, because ofthe rapid growth of real-time
applications. A number of status update policies have been
developed to keep the age (t)small, subject to constraints
on limited network resources, e.g., [3]–[17].

In practice, the state of many systems is in the form of
a time-varying signalWt, such as the location of a vehicle,
the wind speed of a hurricane, and the price chart of a stock.
These signals may change slowly at some time and vary more
dynamically later. Hence, the time difference between the
source and destination, described by the age (t)=t−U(t),
cannot fully characterize the amount of changeWt−WU(t)in
the signal value. This motivated us to go beyond the age of
information concept and investigatetimely updates of signal
samples.

Let us consider a status update system with two terminals
(see Fig. 2): An observer taking samples from a continuous-
time signalWtwhich is modeled as a Wiener process, and an
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Fig. 2. System model.

estimator, whose goal is to provide the best-guessŴtfor the
real-time signal valueWtat all timet.1The two terminals are
connected by a channel that transmits time-stamped samples
of the form(Si,WSi)according to a first-in, first-out (FIFO)
order, whereSiis the sampling time of thei-th sample and
WSiis the value of thei-th sample. The samples are stored in a
queue while they wait to be served by the channel. We assume
that the samples experiencei.i.d.random transmission times
over the channel, which may be caused by fading, interference,
collisions, retransmissions, and etc. As such, the channel is
modeled as a FIFO queue withi.i.d.service timeYisatisfying
E[Y2

i]< ∞, whereYi ≥ 0 is the transmission time of
samplei. This queueing model is helpful to understand the
robustness of remote estimation and control systems under
occasionally slow service. For example, a UAV flying by
a WiFi access point may run into a communication outage
caused by interference from the access point. The resulting
delay in packet reception may affect the stability of UAV flight
control and navigation [19].

LetGibe the service starting time of sampleisuch that
Si≤Gi. The delivery time of sampleiisDi=Gi+Yi.The
initial valueW0=0 is known by the estimator for free, which
is represented byS0= D0=0. At any timet, the estimator
forms an estimateŴtusing the samples received up to timet.
Similar to [20], we assume that the estimator neglects the
implied knowledge when no sample was delivered. The quality
of remote estimation is evaluated via the time-average mean-
square error (MSE) betweenWtandŴt:

mse=lim sup
T→∞

1

T
E

T

0
(Wt−Ŵt)

2dt . (2)

The sampler is subject to a sampling rate constraint

lim inf
n→∞

1

n
E[Sn]≥

1

fmax
, (3)

where fmax is the maximum allowed sampling rate. In practice,
the sampling rate constraint(3) is imposed when there is a
need to reduce the cost (e.g., energy consumption) for the
transmission, storage, and processing of the samples.

Our goal is to find an optimalonlinesampling strategy that
minimizes the MSE in (2) by choosing the sampling times
Sicausallysubject to the sampling rate constraint (3). The
contributions of this paper are summarized as follows:

• We formulate the optimal sampling problem as a con-
strained continuous-time Markov decision problem with

1This paper focuses on a Wiener process signal model, which has some
nice properties that are used in our analysis. An important future direction is
to study more general signal models. A recent result along this direction was
reported in [18].

a continuous state space, and solve it exactly. We prove
that the optimal online sampling strategy for the Wiener
process is a threshold policy,2 and find the optimal
threshold. LetY be a random variable with the same
distribution asYi. The optimal threshold is determined by
fmax andWY,whereWY is a random variable that has
the same distribution as the amount of signal variation
(Wt+Y−Wt)that occurs during the random service time
Y. The random variableWYindicates a tightcoupling,in
the optimal sampling policy, between the source process
Wtand the service timeY.

• Our threshold-based optimal sampling policy has an
important difference from the previous threshold-based
sampling policies studied in, e.g., [21]–[38]:We have
proven that it is better to not take any new sample when
the server is busy. Consequently, the threshold should be
disabledwhen the server is busy andreactivatedonce the
server becomes available again.This is one of the reasons
that sampling policies that ignore the state of the server,
such as periodic sampling, can have a large estimation
error.

• We show, perhaps surprisingly, even in the absence of a
sampling rate constraint (i.e.,fmax = ∞), the optimal
sampling strategy isnotzero-wait sampling in which a
new sample is generated once the previous sample is
delivered;rather, it is optimal to wait for a certain amount
of time after the previous sample is delivered, and then
take the next sample.

• Our study reveals a relationship between the age of
information and the estimation error of Wiener process:
If the sampling timesSiare independent of the observed
Wiener process (i.e., the sampling times Si are cho-
sen without using any information about the Wiener
process), the MSE in (2) is exactly equal to the
time-average expectation of the age of information
lim supT→∞

1
TE[

T
0 (t)dt]. Hence, the sampling prob-

lem for minimizing the MSE is equivalent to a sam-
pling problem for minimizing the age, where the second
problem was solved recently in [9]–[11]. If the sampling
timesSiare chosen based on causal knowledge of the
Wiener process, the age-optimal sampling policy (i.e.,
the sampling policy that minimizes the time-average
expected age of information) no longer minimizes the
MSE: Specifically, in the age-optimal sampling policy,
a new sample is taken only when theage of informa-
tion (t), or equivalently theexpected estimation error
E[(Wt−Ŵt)

2], is no smaller than a threshold; while in
the MSE-optimal sampling policy, a new sample is taken
only whenthe instantaneous estimation error|Wt−Ŵt|is
no smaller than a threshold. The asymptotics of the MSE-
optimal and age-optimal sampling policies at long/short
service time or low/high sampling rates are also studied.

• Our theoretical and numerical comparisons show that
the MSE of the optimal sampling policy can be much

2A sampling policy is said to be athresholdpolicy if a new sample is taken
when a threshold condition is satisfied. Examples of threshold policies can be
found in Section III-B.
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smaller than those of age-optimal sampling, periodic sam-
pling, and the zero-wait sampling policy described in (9)
below. In particular, periodic sampling is far from optimal
when the sampling rate is sufficiently low or sufficiently
high; age-optimal sampling is far from optimal when the
sampling rate is sufficiently low; periodic sampling, age-
optimal sampling, and zero-wait sampling policies are all
far from optimal if the service time distribution is heavy-
tailed.

The rest of this paper is organized as follows. In Section II,
we discuss some related work. In Section III, we describe the
system model and the formulation of the optimal sampling
problem. In Section IV, we present the solution to this
problem and compare it with some other sampling policies.
In Section V, we describe the proof of this optimal solution.
Some simulation results are provided in Section VI.

II. RELATEDWORK

Lossy source coding and the rate-distortion function of the
Wiener process was studied in, e.g., [39], [40], where the rate-
distortion function represents the optimal tradeoff between
the source coding rate and the distortion (i.e., MSE) for
recovering of the Wiener process. The goal of these studies is
to reconstruct the realization of Wiener process during a past
time interval with a small distortion, which can be regarded
as anofflinesignal reconstruction problem. This differs from
ouronlinesignal tracking problem, where the real-time value
of the Wiener process is estimated at the destination from
causally received samples.

This paper is related to recent studies on the age of
information, e.g., [3]–[17]. As mentioned above in Section I,
a connection between the age of information and the estima-
tion error of Wiener process is characterized in this paper.
The estimation error of Wiener process was also mentioned
in [4], [5] as an illustration of the age of information, where
age-based sampling was not studied and the condition that the
sampling times are independent of the Wiener process was
used implicitly. Recently, a relationship between a nonlinear
function of the age of information and the estimation error of
the Ornstein-Uhlenbeck (OU) process was found in a follow-
up study of the current paper [18].

This paper can also be considered as a contribution to the
rich literature on remote estimation, e.g., [21]–[38], by includ-
ing a queueing model. In [21], Åström and Bernhardsson
showed that a threshold-based sampling method, in which a
new sample is taken once the amount of signal variation since
the previous sample has reached a threshold, can achieve a
smaller estimation error than the traditional periodic sampling
method with the same sampling rate. Such a threshold-based
sampler and a Kalman-like estimator have been proven to be
jointly optimal for minimizing the remote estimation error
of several discrete-time signal processes in [22]–[27]. The
sampling and remote estimation of continuous-time signal
processes were considered in [28], [29], where it was shown
that a threshold-based sampling policy is optimal for mini-
mizing the estimation error of the Wiener process, and the
optimal threshold was found. In [22]–[29], it was assumed that

the samples are transmitted from the sampler to the estimator
over a perfect channel that is error and noise free. There
are some recent studies that used explicit channel models.
In [30]–[32], Gao et. al. considered the optimal transmission
scheduling and remote estimation of ani.i.d.discrete-time
source processXtover an additive noise channel. Because
of the noise, the transmitter needs to encode its message
before transmission. In [30], [31], it was shown that, for
a class of symmetric probability distributions on the source
symbolXt, if the transmission scheduling policy is threshold-
based, i.e., a new coded packet is sent if|Xt|is no smaller
than a threshold, then the optimal encoder and decoder are
piecewise affine. In [32], it was shown that if (i) the encoder
and decoder (i.e., estimator) are piecewise affine, and (ii) the
transmission scheduler satisfies some technical assumption,
the optimal transmission scheduling policy is threshold-based.
Some extensions of this research were reported in [33]–[35].
In [36]–[38], Chakravorty and Mahajan considered optimal
transmission scheduling and remote estimation over a few
channel models, where it was proved that a threshold-based
transmission policy and a Kalman-like estimator are jointly
optimal for minimizing the remote estimation error.

The closest study to this paper are [28], [29], where the
optimal sampler of the Wiener process was designed in the
absence of queueing and random service time (i.e.,Yi=0).
As we will see later, the queueing model affects the structure
of the optimal sampler. Specifically, the sampler should disable
the threshold when there is a packet in service and reactivate
the threshold after all previous packets are delivered. A novel
proof procedure is developed in the current paper to find the
optimal sampler design.

III. SYSTEMMODEL ANDPROBLEMFORMULATION

A. MMSE Estimation Policy

At timet, the information available to the estimator contains
two part: (i)Mt={(Si,WSi,Di):Di≤t}, which contains
the sampling timeSi, sample valueWSi, and delivery time
Diof the samples delivered by timetand (ii) the facts that
no sample has been received after the latest sample delivery
time max{Di:Di≤ t}. Similar with [20], we assume that
the estimator neglects the implied knowledge when no sample
was delivered. In this case, the minimum mean-square error
(MMSE) estimation policy [41] is given by (see Appendix A
for its derivation)

Ŵt=E[Wt|Mt]

=WSi,ift∈[Di,Di+1),i=0,1,2,..., (4)

which is illustrated in Fig. 3(b).

B. Sampling Policies

LetIt∈{0,1}denote the idle/busy state of the server at
timet. As shown in Fig. 2, the server stateItis known by the
sampler through acknowledgements (ACKs). We assume that
once a sample is delivered to the estimator, an ACK is fed
back to the sampler with zero delay. Hence, the information
that is available to the sampler at timetcan be expressed as
{Ws,Is:0≤s≤t}.
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Fig. 3. Illustration of the MMSE estimation policy (4).

In online sampling policies, each sampling timeSi

is chosen causally using the information available at
the sampler. To characterize this statement precisely, we
define

Nt=σ(Ws,Is:0≤s≤t),N+
t =∩s>tNs, (5)

whereσ(X1,X2,...,Xn)represents theσ-field generated by
the random variablesX1,X2,...,Xn. Then,{N+

t,t≥0}is
afiltration(i.e., a non-decreasing and right-continuous family
ofσ-fields) of the information available at the sampler. Each
sampling timeSiis astopping timewith respect to the filtration
{N+

t,t≥0}, i.e.,

{Si≤t}∈N+
t,∀t≥0. (6)

Let π = (S1,S2,...)denote a sampling policy where
S1 ≤ S2 ≤ ··· form an increasing sequence of sampling
times. Let denote a set ofonline(also calledcausal)
sampling policies satisfying the following two conditions:(i)
Each sampling policyπ∈ satisfies (6) for alli=0,1,...
(ii)The inter-sampling times{Ti= Si+1−Si,i= 0,1,...}
form aregenerative process[42, Section 6.1]: There exist
an increasing sequence 0 ≤ k1 < k2 < ... of almost
surely finite random integers such that the post-kjprocess
{Tkj+i,i=0,1,...}has the same distribution as the post-k1

process{Tk1+i,i=0,1,...}and is independent of the pre-kj

process{Ti,i=0,1,...,kj−1}; in addition,E[kj+1−kj]<
∞,E[S2

k1
]< ∞,and0< E[(Skj+1 − Skj)

2]< ∞ for
j= 1,2,...By Condition (ii), we can obtain that, almost
surely,

lim
i→∞

Si= ∞, lim
i→∞

Di= ∞. (7)

We analyze the MSE in (2), but operationally a nicer criterion
is lim supn→∞ E[

Dn
0 (Wt−Ŵt)

2dt]/E[Dn].Thesetwocri-
teria are associated to two definitions of “average cost per
unit time” used in the literature of infinite-horizon undis-
counted semi-Markov decision problems [43]–[47]. They are
equivalent, if{T1,T2,...}is a regenerative process, or more
generally, if{T1,T2,...}has only one ergodic class [43]–[45].
If no condition is imposed, however, these two criteria are
different.

Fig. 4. Illustration of the threshold-based sampling policy (12), where no
sample is taken during[Si,Si+Yi).

Some examples of the sampling policies in are:

1.Periodic sampling[48], [49]:
The inter-sampling times are constant, such that for some
β≥0,

Si+1=Si+β. (8)

2.Zero-wait sampling[3], [6], [9], [10]: A new sample is
generated once the previous sample is delivered, i.e.,

Si+1=Si+Yi. (9)

3.Threshold policy on expected estimation error[6], [9],
[10]: The sampling times are given by

Si+1=inf{t≥Si+Yi:t−Si≥β} (10)

=inft≥Si+Yi:E[(Wt−Ŵt)
2]≥β , (11)

whereSi+Yi=Diand, according to (4),Ŵt=WSi.
4.Threshold policy on instantaneous estimation error:The

sampling times are given by

Si+1=inft≥Si+Yi:|Wt−Ŵt|≥ β , (12)

where Ŵt = WSi. The sampling policy in (12) can
be understood as follows: As illustrated in Fig. 4,
if|WSi+Yi−WSi| ≥

√
β,samplei+1 is generated at

the timeSi+1 = Si+Yiwhen sample iis delivered;
otherwise, if|WSi+Yi−WSi|<

√
β,samplei+1is

generated at the earliest timetsuch thatt≥ Si+Yi

and|Wt−WSi|reaches the threshold
√

β.It is worth-
while to emphasize that even if there exists time t∈
[Si,Si+Yi)such that|Wt−WSi| ≥

√
β,nosample

is taken at such timet, as depicted in both cases of
Fig. 4. In other words, the threshold-based control is
disabledduring[Si,Si+Yi)and isreactivatedat time
Si+Yi.

A sampling policy π ∈ is said to besignal-ignorant
(signal-aware), ifπis (not) independent of the Wiener process
{Wt,t≥0}. The sampling policies (8), (9), and (11) are signal-
ignorant, and the sampling policy (12) is signal-aware.
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C. Optimal Sampling Problem

We assume that the source process {Wt,t≥ 0}and the
service times{Yi,i=1,2,...}aremutually independentand
do not change according to the sampling policy. In addition,
we assume that the Yi’s arei.i.d.with E[Y2

i]< ∞.The
optimal sampling problem for minimizing the MSE subject
to a sampling rate constraint is formulated as

mseopt inf
π∈

lim sup
T→∞

1

T
E

T

0
(Wt−Ŵt)

2dt (13)

s.t. lim inf
n→∞

1

n
E[Sn]≥

1

fmax
, (14)

wheremseoptdenotes the optimal value of (13). Later on in
the paper, the unconstrained problem withfmax = ∞will also
be studied.

IV. OPTIMALSAMPLINGPOLICIES

A. Signal-Aware Sampling

Problem (13) is a constrained continuous-time Markov
decision problem with a continuous state space. Such problems
are often lack of closed-form oranalytical solutions, however
we were able to solve (13) exactly:

Theorem 1. If the service times Yi’s are i.i.d. withE[Y2
i]<

∞, then there existsβ≥0such that the sampling policy(12)
is an optimal solution of(13), and the optimalβis determined
by solving3

E[max(β,W2
Y)]=max

1

fmax
,

E[max(β2,W4
Y)]

2β
, (15)

where Y is a random variable with the same distribution as
Yi. The optimal value of(13)is then given by

mseopt=
E[max(β2,W4

Y)]

6E[max(β,W2
Y)]

+E[Y]. (16)

Proof: See Section V.
According to Theorem 1, in the optimal signal-aware sam-

pling policy, the(i+1)-th sample is taken at the earliest time
tsatisfying two conditions:(i)Thei-th sample has already
been delivered by timet,i.e.,t≥ Di= Si+Yi,and(ii)
the instantaneous estimation error|Wt−Ŵt|at timetis no
smaller than a threshold

√
β. In addition, the threshold

√
β

is determined by the maximum allowed sampling ratefmax

andWY,whereWY is a random variable that has the same
distribution with the amount of signal variation(Wt+Y−Wt)
during the random service timeYfor all starting timet.This
indicates a tightcouplingbetween the source processWtand
the service timeY, in the optimal sampling policy.

Equation (15) can be solved by using the bisection method
with a low computational complexity. Hence, Problem (13)
does not suffer from the curse of dimensionality encountered
in most Markov decision problems with continuous state
spaces. We note that the sampling policy in (12) and (15) is
quite general in the sense that it is optimal for any service time

3Ifβ→ 0, the last terms in (15) and (22) are determined by L’Hospital’s
rule.

distribution satisfyingE[Y2]<∞. The optimal signal-aware
sampling policy in (12) and (15) is also called the “MSE-
optimal” sampling policy in the sequel.

B. Signal-Ignorant Sampling and the Age of Information

Let signal-ignorant⊂ denote the set of signal-ignorant
sampling policies, defined as

signal-ignorant={π∈ :πis independent of{Wt,t≥0}}.
(17)

In these policies, the sampling decisions depend only on the
service time{Yi,i= 1,2,...}but not the source process
{Wt,t≥ 0}. For eachπ ∈ signal-ignorant, the objective
function in (13) can be rewritten as (see Appendix B for the
proof)

lim sup
T→∞

1

T
E

T

0
(Wt−Ŵt)

2dt

=lim sup
T→∞

1

T
E

T

0
(t)dt , (18)

where (t)is theage of informationdefined in (1). In FIFO
queueing systems,Di≤Di+1holds for alli. Hence, the age

(t)can be equivalently expressed as

(t)=t−Si,t∈[Di,Di+1),i=0,1,2,... (19)

If the set of feasible policies is restricted from to

signal-ignorant, (13) reduces to the following sampling problem
for minimizing the time-average expectation of the age of
information [9]–[11]:

mseage-opt inf
π∈ signal-ignorant

lim sup
T→∞

1

T
E

T

0
(t)dt (20)

s.t. lim inf
n→∞

1

n
E[Sn]≥

1

fmax
,

wheremseage-optdenotes the optimal value of (20). Because

signal-ignorant⊂ ,

mseopt≤mseage-opt. (21)

Note that problem (20) is simpler than (13) because the
sampler does not use knowledge ofWtto make decisions.
To solve (13), stronger techniques than those in [9]–[11] are
developed in Section V.

Theorem 2. [11] If the service times Yi’s are i.i.d. with
E[Y2

i]<∞, then there existsβ≥0such that the sampling
policy(11)is an optimal solution of(20), and the optimalβ
is determined by solving

E[max(β,Y)]=max
1

fmax
,

E[max(β2,Y2)]

2β
, (22)

where Y is a random variable with the same distribution as
Yi. The optimal value of(20)is then given by

mseage-opt
E[max(β2,Y2)]

2E[max(β,Y)]
+E[Y]. (23)

Theorem 2 was proven in [9], [10] under an extra condition
that the time differenceSi+1− Diis upper bounded by a
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constantM >0. In [11], Theorem 2 was established without
requiring this extra condition.

One can obtain some interesting observations by comparing
Theorem 1 and Theorem 2: In the optimal signal-ignorant
sampling policy presented in Theorem 2, the(i+1)-th sample
is taken at the earliest timetsatisfying two conditions:
(i)Thei-th sample has already been delivered by timet,
i.e.,t≥ Di = Si+Yi,and(ii)the expected estimation
errorE[(Wt− Ŵt)]

2 at timet, which, by (10) and (19),
is equal to the age (t), is no smaller than a thresholdβ.
The first condition is the same with that in Theorem 1, but
the second condition is quite different: Because the sampler
has no knowledge about the Wiener process (except for its
distribution), it can only use expected estimation error to make
decisions. Further, the thresholdβin Theorem 2 is determined
by the maximum allowed sampling ratefmax and the random
service timeY, which is also different from the case in The-
orem 1. The optimal signal-ignorant sampling policy in (11)
and (22) is also referred to as the “age-optimal” sampling
policy.

In the following, the asymptotics of the MSE-optimal
and age-optimal sampling policies at low/high service
time or low/high sampling frequencies are studied.

C. Short Service Time or Low Sampling Rate

Let

Yi=αXi (24)

represent the scaling of the service timeYiwith α, where
α≥0andtheXi’s arei.i.d.positive random variables. Ifα→
0orfmax → 0, we can obtain from (15) that (see Appendix C
for the proof)

β=
1

fmax
+o

1

fmax
, (25)

where f(x)= o(g(x))asx → ameans that limx→a

f(x)/g(x)=0. In this case, the MSE-optimal sampling policy
in (12) and (15) becomes

Si+1=inf t≥Si:|Wt−WSi|≥
1

fmax
, (26)

and as shown in Appendix C, the optimal value of (13)
becomes

mseopt=
1

6fmax
+o

1

fmax
. (27)

The sampling policy (26) was also obtained in [29] for the
case thatYi=0foralli.

Similarly, ifα→ 0orfmax → 0, the age-optimal sampling
policy in (11) and (22) becomes periodic sampling (8) with
β= 1/fmax +o(1/fmax), and the optimal value of (20) is
mseage-opt=1/(2fmax)+o(1/fmax). Therefore,

lim
α→0

mseopt

mseage-opt
= lim

fmax→0

mseopt

mseage-opt
=

1

3
. (28)

D. Long Service Time or Unbounded Sampling Rate

Ifα → ∞ or fmax → ∞, as shown in Appendix D,
the MSE-optimal sampling policy for solving (13) is given
by (12) whereβis determined by solving

2βE[max(β,W2
Y)]=E[max(β2,W4

Y)]. (29)

Similarly, ifα→ ∞ orfmax → ∞, the age-optimal sampling
policy for solving (20) is given by (11) whereβis determined
by solving

2βE[max(β,Y)]=E[max(β2,Y2)]. (30)

In these limits, the ratio betweenmseopt andmseage-opt

depends on the distribution ofY.
When the sampling rate is unbounded, i.e., fmax = ∞, one

logically reasonable policy is the zero-wait sampling policy
in (9) [3], [6], [9], [10]. This zero-wait sampling policy
achieves the maximum throughput and the minimum queueing
delay. However, this zero-wait sampling policyalmost never
minimizes the MSE in (13) and does not alwaysminimize
the age of information in (20), as stated in the following two
theorems:

We note that the zero-wait sampling policy can be expressed
as (12) withβ= 0. By checking whenβ= 0 is satisfied
in (12) and (15), one can obtain

Theorem 3. Suppose that fmax = ∞. Then, the zero-wait
sampling policy(9)is an optimal solution to(13)if and only
if the service time Y is equal to zero with probability one.

Proof: See Appendix E.
Hence, as long as the service timeYhas a small probability

to be positive, the zero-waiting sampling policy is not an
optimal solution to (13). Similarly, the optimality of zero-wait
sampling policy for solving (20) is characterized as

Theorem 4. [10] Suppose that fmax = ∞. Then, the zero-
wait sampling policy(9)is an optimal solution to(20)if and
only if

E[Y2]≤2essinfYE[Y], (31)

whereess infY=sup{y∈[0,∞):Pr[Y< y]=0}can be
considered as the minimum possible value of Y .

Proof: See Appendix E.

V. PROOF OFTHEOREM1

We prove Theorem 1 in four steps: First, we show that
no sample should be generated when the server is busy,
which simplifies the optimal online sampling problem. Second,
we study the Lagrangian dual problem of the simplified
problem, and decompose the Lagrangian dual problem into a
series ofmutually independentper-sample control problems.
Each of these per-sample control problems is a continuous-
time Markov decision problem. Further, we utilize optimal
stopping theory [50] to solve the per-sample control problems.
Finally, we show that the Lagrangian duality gap of our
Markov decision problem is zero. By this, Problem (13) is
solved. The details are as follows.
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A. Simplification of Problem(13)

The following lemma is useful for simplifying (13).

Lemma 1. Suppose thatπ is a feasible policy for Prob-
lem(13), in which at least one sample is taken when the
server is busy processing an earlier generated sample. Then,
there exists another feasible policyπ1for Problem(13)that
has a smaller estimation error than policyπ. Hence, it is
suboptimal in Problem(13)to take a new sample before the
previous sample is delivered.

Proof: Lemma 1 is proven by using the strong Markov
property of the Wiener process and the orthogonality prin-
ciple of MMSE estimation. The details are provided in
Appendix F.

By Lemma 1, we only need to consider a sub-class of
sampling policies 1⊂ such that each sample is generated
and submitted to the server after the previous sample is
delivered, i.e.,

1={π∈ :Si≥Di−1for alli}. (32)

This completely eliminates the waiting time wasted in the
queue, and hence the queue is always kept empty. The
informationthat is available for determiningSiincludes the
history of signal values(Wt,t∈[0,Si])and the service
times(Y1,...,Yi−1)of previous samples.4To characterize this
statement precisely, let us define theσ-fieldsFt= σ(Ws:
s∈[0,t])andF+

t = ∩s>tFs. Then,{F+
t,t≥ 0}is the

filtration (i.e., a non-decreasing and right-continuous family of
σ-fields) of the Wiener processWt. Given the service times
(Y1,...,Yi−1)of previous samples,Siis astopping timewith
respect to the filtration{F+

t,t≥0}of the Wiener processWt,
that is

[{Si≤t}|Y1,...,Yi−1]∈F+
t,∀t≥0. (33)

Then, the policy space 1can be alternatively expressed as

1={Si:[{Si≤t}|Y1,...,Yi−1]∈F+
t,∀t≥0,

Si≥Di−1for alli,

Ti=Si+1−Siis a regenerative process}. (34)

Recall that any policy in satisfies “Ti= Si+1−Siis a
regenerative process”.

LetZi=Si+1−Di≥0representthewaiting timebetween
the delivery timeDiof sampleiand the generation timeSi+1

of samplei+1. Then,Si=Z0+ i−1
j=1(Yj+Zj)andDi=

i−1
j=0(Zj+Yj+1).If(Y1,Y2,...)is given,(S0,S1,...)is

uniquely determined by(Z0,Z1,...). Hence, one can also use
π=(Z0,Z1,...)to represent a sampling policy.

Because Tiis a regenerative process, using the renewal
theory [51] and [42, Section 6.1], one can show that in

4Note that the generation times(S1,...,Si−1)of previous samples are also
included in this information.

Problem (13),1
nE[Sn]is a convergent sequence and

lim sup
T→∞

1

T
E

T

0
(Wt−Ŵt)

2dt

= lim
n→∞

E
Dn

0 (Wt−Ŵt)
2dt

E[Dn]

= lim
n→∞

n−1
i=0E

Di+1
Di

(Wt−WSi)
2dt

n−1
i=0E[Yi+Zi]

,

where in the last step we have usedE[Dn]=E[ n−1
i=0(Zi+

Yi+1)]=E[ n−1
i=0(Yi+Zi)]. Hence, (13) can be rewritten as

the following Markov decision problem:

mseopt inf
π∈ 1

lim
n→∞

n−1
i=0E

Di+1
Di

(Wt−WSi)
2dt

n−1
i=0E[Yi+Zi]

(35)

s.t. lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]≥
1

fmax
, (36)

wheremseoptis the optimal value of (35).
In order to solve (35), let us consider the following Markov

decision problem with a parameterc≥0:

p(c) inf
π∈ 1

lim
n→∞

1

n

n−1

i=0

E
Di+1

Di

(Wt−WSi)
2dt−c(Yi+Zi)

(37)

s.t. lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]≥
1

fmax
,

where p(c)is the optimum value of (37). Similar to Dinkel
bach’s method [52] for nonlinear fractional programming,
we can obtain the following lemma for our Markov decision
problem:

Lemma 2. The following assertions are true:

(a).mseopt c if and only if p(c) 0.

(b).If p(c)=0, the solutions to(35)and(37)are identical.

Proof: See Appendix G.
Hence, the solution to (35) can be obtained by solving (37)
and seeking amseopt≥0 such that

p(mseopt)=0. (38)

B. Lagrangian Dual Problem of(37)when c=mseopt

Although (37) is a continuous-time Markov decision prob-
lem with a continuous state space, rather than a convex
optimization problem, it is possible to use the Lagrangian dual
approach to solve (37) and show that it admits no duality gap.

When c=mseopt, define the following Lagrangian

L(π;λ)

= lim
n→∞

1

n

n−1

i=0

E
Di+1

Di

(Wt−WSi)
2dt−(mseopt+λ)(Yi+Zi)

+
λ

fmax
, (39)
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whereλ≥0 is the dual variable. Let

e(λ) inf
π∈ 1

L(π;λ). (40)

Then, the Lagrangian dual problem of (37) is defined by

d max
λ≥0

e(λ), (41)

wheredis the optimum value of (41). Weak duality [53], [54]
implies thatd≤ p(mseopt). In Section V-D, we will establish
strong duality, i.e.,d= p(mseopt).

In the sequel, we solve (40). Using the stopping times and
martingale theory of the Wiener process, we can obtain the
following lemma:

Lemma 3.Letτ≥0be a stopping time of the Wiener process
WtwithE[τ2]<∞,then

E
τ

0
W2

t dt =
1

6
E W4

τ . (42)

Proof: See Appendix H.
By using Lemma 3 and the sufficient statistics of (40), we

can show that for everyi=1,2,...,

E
Di+1

Di

(Wt−WSi)
2dt

=
1

6
E (WSi+Yi+Zi−WSi)

4 +E[Yi+Zi]E[Yi], (43)

which is proven in Appendix I.
For anys≥0, define theσ-fieldsFs

t=σ(Ws+v−Ws:v∈
[0,t])andFs+

t =∩v>tF
s
v, as well as the filtration{Fs+

t ,t≥
0}of the time-shifted Wiener process{Ws+t−Ws,t∈[0,∞)}.
DefineMsas the set of square-integrable stopping times of
{Ws+t−Ws,t∈[0,∞)}, i.e.,

Ms={τ≥0:{τ≤t}∈Fs+
t ,E τ2 <∞}.

By substituting (43) into (40) and using again the sufficient
statistics of (40), we can obtain

Theorem 5.An optimal solution(Z0,Z1,...)to(40)satisfies

Zi=arg inf
τ∈MSi+Yi

E
1

2
(WSi+Yi+τ−WSi)

4

−β(Yi+τ)WSi+Yi−WSi,Yi , (44)

whereβis given by

β=3(mseopt+λ−E[Y])≥0. (45)

Proof: See Appendix J.
Note that because theYi’s arei.i.d.and the strong Markov

property of the Wiener process, theZi’s as solutions of (44)
are alsoi.i.d.

C. Per-Sample Optimal Stopping Solution to(44)

We use optimal stopping theory [50] to solve (44). Let
us first pose (44) in the language of optimal stopping. A
continuous-time two-dimensional Markov chainXton a prob-
ability space(R2,F,P)is defined as follows: Given the initial
stateX0=x=(s,b),thestateXtat timetis

Xt=(s+t,b+Wt), (46)

where {Wt,t≥ 0}is a standard Wiener process. Define
Px(A) = P(A|X0 = x)andExZ = E(Z|X0 = x),
respectively, as the conditional probability of eventAand the
conditional expectation of random variableZfor given initial
stateX0=x.Definetheσ-fieldsFX

t =σ(Xv:v∈[0,t])and
FX+

t =∩v>tF
X
v, as well as the filtration{FX+

t ,t≥0}of the
Markov chain Xt. A random variableτ:R2→[0,∞)is said
to be astopping timeofXtif{τ≤t}∈FX+

t for allt≥0. Let
M be the set of square-integrable stopping times ofXt, i.e.,

M ={τ≥0:{τ≤t}∈FX+
t ,E τ2 <∞}.

Our goal is to solve the following optimal stopping problem:

sup
τ∈M

Exg(Xτ), (47)

where X0 = xis the initial state of the Markov chainXt,
the functiong:R2→ Ris defined as

g(s,b)=βs−
1

2
b4 (48)

with parameterβ≥0. Notice that (44) is a special case of (47)
where the initial state is x=(Yi,WSi+Yi−WSi),andWtis
replaced by the time-shifted Wiener processWSi+Yi+t−WSi.

Theorem 6. Fo r a l l x=(s,b)∈R2andβ≥0, an optimal
stopping time for solving(47)is

τ∗=inft≥0:|b+Wt|≥ β . (49)

In order to prove Theorem 6, let us define the function

u(x)=Exg(Xτ∗) (50)

and establish some properties ofu(x).

Lemma 4. u(x)≥g(x)for all x∈R2, and

u(s,b)=
βs− 1

2b4, if b2≥β;

βs+ 1
2β2−βb2, if b2<β.

(51)

Proof: See Appendix K.
A function f(x)is said to beexcessivefor the processXt

if [50]

Exf(Xt)≤ f(x),for allt≥0,x∈R2. (52)

By using the Itô-Tanaka-Meyer formula [55, Theorem 7.14 and
Corollary 7.35] in stochastic calculus, we can obtain

Lemma 5.The function u(x)is excessive for the process Xt.

Proof: See Appendix L.
Now, we are ready to prove Theorem 6. Proof:[Proof of

Theorem 6] In Lemma 4 and Lemma 5, we have shown that
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u(x)=Exg(Xτ∗)is an excessive function andu(x)≥g(x).
In addition, it is known thatPx(τ∗< ∞)= 1forallx∈
R2[56, Theorem 8.5.3]. These conditions, together with the
Corollary to Theorem 1 in [50, Section 3.3.1], imply thatτ∗

is an optimal stopping time of (47). This completes the proof.

A consequence of Theorem 6 is

Corollary 1. An optimal solution to(44)is

Zi=inft≥0:WSi+Yi+t−WSi ≥ β . (53)

In addition, this solution satisfies

E[Yi+Zi]=E[max(β,W2
Y)], (54)

E[(WSi+Yi+Zi−WSi)
4]=E[max(β2,W4

Y)]. (55)

Proof: See Appendix M.

D. Zero Duality Gap Between(37)and(41)

Strong duality is established in the following theorem:

Theorem 7.If c=mseopt, the following assertions are true:

(a).The duality gap between(37)and(41)is zero, i.e., d=
p(mseopt).

(b).A common optimal solution to(13),(35), and(37)is
given by(12)and(15). The optimal value of(13)is
given by(16).

Proof: [Proof Sketch of Theorem 7] We use [53,
Prop. 6.2.5] to find a geometric multiplier [53, Defini-
tion 6.1.1] for Problem (37). This tells us that the duality
gap between (37) and (41) must be zero, because otherwise
there is no geometric multiplier [53, Prop. 6.2.3(b)].5This
result holds not only for convex optimization problem, but
also for general non-convex optimization and Markov decision
problems like (37). See Appendix N for the details.

Hence, Theorem 1 follows from Theorem 7.

VI. NUMERICALRESULTS

In this section, we evaluate the estimation performance
achieved by the following four sampling policies:

1.Periodic sampling:The policy in (8) withβ= fmax.
2.Zero-wait sampling [3], [6], [9], [10]:The sampling

policy in (9), which is feasible whenfmax ≥1/E[Yi].
3.Age-optimal sampling [9], [10]: The sampling policy

in (11) and (22), which is the optimal solution to (20).
4.MSE-optimal sampling: The sampling policy in (12)

and (15), which is the optimal solution to (13).

Letmseperiodic,msezero-wait,mseage-opt,andmseopt,bethe
MSEs of periodic sampling, zero-wait sampling, age-optimal
sampling, MSE-optimal sampling, respectively. According
to (21), as well as the facts that periodic sampling is feasible
for (20) and zero-wait sampling is feasible for (20) when
fmax ≥1/E[Yi], we can obtain

mseopt≤mseage-opt≤mseperiodic,

mseopt≤mseage-opt≤msezero-wait,when fmax ≥
1

E[Yi]
,

5Note that geometric multiplier is different from the traditional Lagrangian
multiplier.

Fig. 5. MSE vs.fmax tradeoff fori.i.d.exponential service time andE[Yi]=
1, where zero-wait sampling is not feasible whenfmax <1/E[Yi]and hence
is not plotted in that regime.

Fig. 6. MSE vs. the scale parameterσofi.i.d.log-normal service time for
fmax =0.8andE[Yi]=1, where zero-wait sampling is not feasible because
fmax <1/E[Yi].

which fit with our numerical results below.
Figure 5 depicts the tradeoff between MSE and fmax for

i.i.d.exponential service time with meanE[Yi] =1/µ= 1.
Hence, the maximum throughput of the queue is µ = 1.
In this setting,mseperiodicis characterized by eq. (25) of [3],
which was obtained using a D/M/1 queueing model [57]. For
small values offmax, age-optimal sampling is similar with
periodic sampling, and hencemseage-optandmseperiodicare
of similar values. However, asfmax approaches the maximum
throughput 1,mseperiodicblows up to infinity. This is because
the queue length in periodic sampling is large at high sampling
frequencies, and the samples become stale during their long
waiting times in the queue. On the other hand,mseoptand
mseage-optdecrease with respect tofmax. The reason is that
the set of feasible policies satisfying the constraint in (13)
and (20) becomes larger asfmax grows, and hence the optimal
values of (13) and (20) are decreasing in fmax. Moreover,
the gap betweenmseopt andmseage-opt is large for small
values of fmax. The ratiomseopt/mseage-opt tends to 1/3
as fmax → 0, which is in accordance with (28). As we
expected,msezero-waitis larger thanmseoptandmseage-opt

when fmax ≥ 1. In summary, periodic sampling is far from
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Fig. 7. MSE vs. the scale parameterσofi.i.d.log-normal service time for
fmax =1.5andE[Yi]=1, wheremseperiodic= ∞due to queueing.

optimal if the sampling rate is too low or sufficiently high;
age-optimal sampling is far from optimal if the sampling rate
is too low.

Figure 6 and Figure 7 illustrate the MSE ofi.i.d.log-
normal service time for fmax = 0.8and fmax = 1.5,
respectively, whereYi= eσXi/E[eσXi],σ >0 is the scale
parameter of log-normal distribution, and(X1,X2,...)are
i.i.d.Gaussian random variables with zero mean and unit
variance. BecauseE[Yi]=1, the maximum throughput of the
queue is 1. In Fig. 6, sincefmax <1, zero-wait sampling is
not feasible and hence is not plotted. As the scale parameterσ
grows, the tail of the log-normal distribution becomes heavier
and heavier. We observe thatmseperiodicgrows quickly with
respect toσ, much faster thanmseopt andmseage-opt.In
addition, the gap betweenmseoptandmseage-optincreases as
σgrows. In Fig. 7, becausefmax >1,mseperiodicis infinite
and hence is not plotted. We can find thatmsezero-waitgrows
quickly with respect toσ and is much larger thanmseopt

andmseage-opt. In summary, periodic sampling, age-optimal
sampling, and zero-wait sampling policies are all far from
optimal if the service times follow a heavy-tail distribution.

VII. CONCLUSION

In this paper, we have investigated optimal sampling of
the Wiener process for remote estimation over a queue. The
optimal sampling policy for minimizing the mean square
estimation error subject to an average sampling rate constraint
has been obtained in a semi-closed form. We prove that a
threshold-based sampler is optimal and the optimal threshold is
found exactly. Analytical and numerical comparisons with sev-
eral important sampling policies, including age-optimal sam-
pling, zero-wait sampling, and traditional periodic sampling,
have been provided. The resultsin this paper generalize recent
research on age of information by adding a signal-based con-
trol model, and generalize existing studies on remote estima-
tion by adding a queueing model with random service times.

APPENDIXA
PROOF OF(4)

We use the calculus of variations to prove (4). Define x∧y=
min{x,y}. Let us consider a functionalhof the estimateŴt,

whichisdefinedas

h(̂Wt)=E
Di+1∧T

Di∧T
(̂Wt−Wt)

2dt(Sj,WSj,Dj)j≤i

(56)

for anyT>0. By using Lemma 4 in [10], it is not hard to
show thath(̂Wt)is a convex functional of the estimateŴt.
In the sequent, we will find the optimal estimate that solves

min
Ŵt

h(̂Wt). (57)

Let ftandgtbe two estimates, which are functions of the
information available at the estimator{Si,WSi,Di:Di≤
t}. Similar to the one-sided sub-gradient in finite dimensional
space, the one-sided Gâteaux derivative of the functionalhin
the direction ofgat a pointfis given by

δh(f;g)

= lim
→0+

h(ft+ gt)−h(ft)

= lim
→0+

1
E

Di+1∧T

Di∧T
(ft+ gt−Wt)

2−(ft−Wt)
2dt

(Sj,WSj,Dj)j≤i .

= lim
→0+

E
Di+1∧T

Di∧T
2(ft−Wt)gt+ g2

tdt

(Sj,WSj,Dj)j≤i

=E
Di+1∧T

Di∧T
2(ft−Wt)gtdt (Sj,WSj,Dj)j≤i

=E
Di+1∧T

Di∧T
2 ft−E Wt|(Sj,WSj,Dj)j≤i gtdt

(Sj,WSj,Dj)j≤i , (58)

where the last step follows from the iterated law of expec-
tations. According to [61, p. 710],ftis an optimal solution
to (57) if and only if

δh(f;g)≥0, ∀g.

Byδh(f;g)=−δh(f;−g),weget

δh(f;g)=0, ∀g. (59)

Sincegtis arbitrary, by (58) and (59), the optimal solution
to (57) is

ft=E[Wt|(Sj,WSj,Dj)j≤i],

=WSi+E[Wt−WSi|(Sj,WSj,Dj)j≤i]

t∈[Di∧T,Di+1∧T). (60)

Notice that under any online sampling policyπ,{Sj,WSj,Dj,
j≤ i}are determined by the source(Wt,t∈[0,Si])and
the service times(Y1,...,Yi). According to (i) the strong
Markov property of the Wiener process [55, Theorem 2.16 and
Remark 2.17] and (ii) the fact that theYi’s are independent of
the Wiener processWt, we obtain that for any given realization
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of(Sj,WSj,Dj)j≤i,{Wt−WSi,t≥Si}is a Wiener process.
Hence,

E[Wt−WSi|(Sj,WSj,Dj)j≤i]=0 (61)

for allt≥Si. Therefore, the optimal solution to (57) is

ft=WSi,ift∈[Di∧T,Di+1∧T),i=1,2,... (62)

Finally, we note that

lim
n→∞

n

i=0

E
Di+1∧T

Di∧T
(Wt−Ŵt)

2dt

= lim
n→∞

E
Dn∧T

0
(Wt−Ŵt)

2dt

(a)
=E lim

n→∞

Dn∧T

0
(Wt−Ŵt)

2dt

(b)
=E

T

0
(Wt−Ŵt)

2dt (63)

where in Step (a) we have used the monotonic convergence
theorem, and Step (a) is due to limn→∞ Dn = ∞ almost
surely, which was obtained in (7). Hence, the MMSE esti-
mation problem can be formulated as

min
Ŵt

lim sup
T→∞

1

T
E

T

0
(Wt−Ŵt)

2dt

=min
Ŵt

lim sup
T→∞

lim
n→∞

1

T

n

i=0

E
Di+1∧T

Di∧T
(Wt−Ŵt)

2dt .

(64)

Recall that (62) is the solution of (56) for anyT> 0. Let
T→ ∞ in (62), we obtain that (4) is the MMSE estimator
for solving (64). This completes the proof.

APPENDIXB
PROOF OF(18)

Ifπis independent of{Wt,t∈[0,∞)},theSi’s andDi’s
are independent of{Wt,t∈[0,∞)}.Definex∧y=min{x,y}.
For anyT>0, let us consider the term

E
Di+1∧T

Di∧T
(Wt−Ŵt)

2dt

in the following two cases:
Case 1:IfDi∧T≥Si, we can obtain

E
Di+1∧T

Di∧T
(Wt−Ŵt)

2dt

=E
Di+1∧T

Di∧T
(Wt−ŴSi)

2dt

(a)
=E E

Di+1∧T

Di∧T
(Wt−WSi)

2dtSi,Di,Di+1

(b)
=E

Di+1∧T

Di∧T
E (Wt−WSi)

2|Si,Di,Di+1 dt

(c)
=E

Di+1∧T

Di∧T
(t−Si)dt

(d)
=E

Di+1∧T

Di∧T
(t)dt , (65)

where Step (a) is due to the law of iterated expectations, Step
(b) is due to Fubini’s theorem, Step (c) is due to the strong
Markov property of the Wiener process [55, Theorem 2.16]
and the fact thatSi,Di,Di+1are independent of the Wiener
process, and Step (d) is due to (19).

Case 2:IfDi∧T<Si, then the factDi≥Siimplies that
T<Si≤Di≤Di+1. Hence,Di∧T=Di+1∧T=Tand

E
Di+1∧T

Di∧T
(Wt−Ŵt)

2dt =E
Di+1∧T

Di∧T
(t)dt =0.

Therefore, (65) holds in both cases.
By using an argument similar to (63), we can obtain

lim
n→∞

n

i=0

E
Di+1∧T

Di∧T
(t)dt =E

T

0
(t)dt . (66)

Combining (63)-(66), (18) is proven.

APPENDIXC
PROOFS OF(25)AND(27)

Iffmax → 0, (15) tells us that

E[max(β,W2
Y)]=

1

fmax
, (67)

which implies

β≤
1

fmax
≤β+E[W2

Y]=β+E[Y]. (68)

Hence,

1

fmax
−E[Y]≤β≤

1

fmax
. (69)

Iffmax → 0, (25) follows.
BecauseYis independent of the Wiener process, using the

law of iterated expectations and the Gaussian distribution of
the Wiener process, we can obtainE[W4

Y] =3E[Y2]and
E[W2

Y]=3E[Y]. Hence,

β≤E[max(β,W2
Y)]≤β+E[W2

Y]=β+E[Y],

β2≤E[max(β2,W4
Y)]≤β2+E[W4

Y]=β2+3E[Y2].

Therefore,

β2

β+E[Y]
≤

E[max(β2,W4
Y)]

E[max(β,W2
Y)]

≤
β2+3E[Y2]

β
. (70)

By combining (16), (25), and (70), (27) follows in the case of
fmax → 0.

Ifα→ 0, thenY→ 0andWY→ 0 with probability one.
Hence, E[max(β,W2

Y)] →βandE[max(β2,W4
Y)] →β2.

Substituting these into (15) and (70), yields

lim
α→0

β=
1

fmax
, lim

α→0

E[max(β2,W4
Y)]

6E[max(β,W2
Y)]

+E[Y] =
1

6fmax
.

By this, (25) and (27) are proven in the case ofα→ 0. This
completes the proof.
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APPENDIXD
PROOF OF(29)

Iffmax → ∞, the sampling rate constraint in (13) can be
removed. By (15), the optimalβis determined by (29).

Ifα→ ∞, let us consider the equation

E[max(β,W2
Y)]=

E[max(β2,W4
Y)]

2β
. (71)

IfYgrows byαtimes, thenβandE[max(β,W2
Y)]in (71)

both should grow byαtimes, andE[max(β2,W4
Y)]in (71)

should grow byα2times. Hence, ifα→ ∞, it holds in (15)
that

1

fmax
≤

E[max(β2,W4
Y)]

2β
(72)

and the solution to (15) is given by (29). This completes the
proof.

APPENDIXE
PROOFS OFTHEOREMS3AND4

Proof:[Proof of Theorem 3] The zero-wait policy can be
expressed as (12) withβ=0. BecauseYis independent of the
Wiener process, using the law of iterated expectations and the
Gaussian distribution of the Wiener process, we can obtain
E[W4

Y] =3E[Y2]. According to (29),β= 0 if and only if
E[W4

Y] =3E[Y2] =0 which is equivalent toY = 0 with
probability one. This completes the proof.

Proof:[Proof of Theorem 4] In the one direction, the zero-
wait policy can be expressed as (11) with β ≤ ess infY.
If the zero-wait policy is optimal, then the solution to (30)
must satisfyβ≤ess infY, which further impliesβ≤Ywith
probability one. From this, we can get

2ess infYE[Y]≥2βE[Y]=E[Y2], (73)

By this, (31) follows.
In the other direction, if (31) holds, we will show that the

zero-wait policy is age-optimal by considering the following
two cases.

Case 1:E[Y]>0. By choosing

β=
E[Y2]

2E[Y]
, (74)

we can getβ≤ess infYfrom (31) and hence

β≤Y (75)

with probability one. According to (74) and (75), such a β
is the solution to (30). Hence, the zero-wait policy expressed
by (11) withβ≤ess infYis the age-optimal policy.

Case 2:E[Y]=0 and henceY=0 with probability one.
In this case,β=0 is the solution to (30). Hence, the zero-
wait policy expressed by (11) withβ=0 is the age-optimal
policy.

Combining these two cases, the proof is completed.

APPENDIXF
PROOF OFLEMMA1

Recall thatSiandGiare the sampling time and the service
starting time of samplei, respectively. Suppose that in the
sampling policyπ,sampleiis generated when the server
is busy sending another sample, and hence sampleineeds
to wait for some time before being submitted to the server,
i.e.,Si < Gi. Let us consider avirtualsampling policy
π ={S0,...,Si−1,Gi,Si+1,...}such that the generation
time of sampleiis postponed fromSitoGi. We call policy
π a virtual policy because it may happen thatGi> Si+1.
However, this will not affect our proof below. We will show
that the MSE of the sampling policyπ is smaller than that
of the sampling policyπ={S0,...,Si−1,Si,Si+1,...}.

Note that the Wiener process {Wt :t∈[0,∞)}does
not change according to the sampling policy, and the sample
delivery times{D0,D1,D2,...}remain the same in policyπ
and policyπ. Hence, the only difference between policiesπ
andπ is thatthe generation time of sample i is postponed
from Sito Gi. The MMSE estimator under policyπis given
by (4) and the MMSE estimator under policyπ is given by

Ŵt=E[Wt|(Sj,WSj,Dj)j≤i−1,(Gi,WGi,Di)]

=

⎧
⎨

⎩

0, t∈[0,D1);
WGi, t∈[Di,Di+1);
WSj, t∈[Dj,Dj+1),j=i,j≥1.

(76)

Next, we consider a third virtual sampling policy π in
which the samples(WGi,Gi)and(WSi,Si)are both delivered
to the estimator at timeDi. Clearly, the estimator under policy
π has more information than those under policiesπandπ.
By following the arguments in Appendix A, one can show that
the MMSE estimator under policyπ is

Ŵt=E[Wt|(Sj,WSj,Dj)j≤i,(Gi,WGi,Di)]

=

⎧
⎨

⎩

0, t∈[0,D1);
WGi, t∈[Di,Di+1);
WSj, t∈[Dj,Dj+1),j=i,j≥1.

(77)

Notice that, because of the strong Markov property of Wiener
process, the estimator under policyπ uses the fresher sample
WGi, instead of the stale sampleWSi, to constructŴtduring
[Di,Di+1). Because the estimator under policyπ has more
information than that under policyπ, one can imagine that
policyπ has a smaller estimation error than policyπ,i.e.,
for anyT>0

E
Di+1∧T

Di∧T
(Wt−WSi)

2dt

≥E
Di+1∧T

Di∧T
(Wt−WGi)

2dt . (78)

To prove (78), we invoke the orthogonality principle of the
MMSE estimator [41, Prop. V.C.2] under policyπ and obtain

E
Di+1∧T

Di∧T
2(Wt−WGi)(WGi−WSi)dt =0, (79)

where we have used the fact thatWGiandWSiare available
by the MMSE estimator under policyπ . Next, from (79),
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we can get

E
Di+1∧T

Di∧T
(Wt−WSi)

2dt

=E
Di+1∧T

Di∧T
(Wt−WGi)

2+(WGi−WSi)
2dt

+E
Di+1∧T

Di∧T
2(Wt−WGi)(WGi−WSi)dt

=E
Di+1∧T

Di∧T
(Wt−WGi)

2+(WGi−WSi)
2dt

≥E
Di+1∧T

Di∧T
(Wt−WGi)

2dt . (80)

In other words, the estimation error of policyπ is no
greater than that of policyπ. Furthermore, by comparing (76)
and (77), we can see that the MMSE estimators under policies
π andπ are exactly the same. Therefore, the estimation error
of policyπ is no greater than that of policyπ.

By repeating the above arguments for all samplesisat-
isfyingSi < Gi, one can show that the sampling policy
π1 ={S0,G1,...,Gi−1,Gi,Gi+1,...}is better than the
sampling policyπ ={S0,S1,...,Si−1,Si,Si+1,...}.This
completes the proof.

APPENDIXG
PROOF OFLEMMA2

Part (a) is proven in two steps:
Step 1:We will prove that mseopt≤cif and only ifp(c)≤

0.
Ifmseopt ≤ c, then there exists a policyπ =

(Z0,Z1,...)∈ 1 that is feasible for both (35) and (37),
which satisfies

lim
n→∞

n−1
i=0E

Di+1
Di

(Wt−WSi)
2dt

n−1
i=0E[Yi+Zi]

≤c. (81)

Hence,

lim
n→∞

1
n

n−1
i=0E

Di+1
Di

(Wt−WSi)
2dt−c(Yi+Zi)

1
n

n−1
i=0E[Yi+Zi]

≤0.

(82)

Because the inter-sampling timesTi=Yi+Ziare regenerative,
E[kj+1− kj]< ∞ and 0 < E[(Skj+1 − Skj)

2]< ∞
for allj, the renewal theory [51] tells us that the limit
limn→∞

1
n

n−1
i=0E[Yi+Zi] exists and is positive. By this,

we get

lim
n→∞

1

n

n−1

i=0

E
Di+1

Di

(Wt−WSi)
2dt−c(Yi+Zi) ≤0.

(83)

Therefore,p(c)≤0.
On the reverse direction, if p(c)≤ 0, then there exists

a policyπ = (Z0,Z1,...) ∈ 1 that is feasible for
both (35) and (37), which satisfies (83). Because the limit
limn→∞

1
n

n−1
i=0E[Yi+Zi] exists and is positive, from (83),

we can derive (82) and (81). Hence, mseopt ≤ c.Bythis,
we have proven thatmseopt≤cif and only ifp(c)≤0.

Step 2:We needs to prove that mseopt< cif and only
ifp(c) <0. This statement can be proven by using the
arguments inStep 1,inwhich“≤” should be replaced by “<”.
Finally, from the statement ofStep 1, it immediately follows
thatmseopt>cif and only ifp(c)>0. This completes the
proof of part (a).

Part (b): We first show that each optimal solution to (35)
is an optimal solution to (37). By the claim of part (a),
p(c)= 0 is equivalent tomseopt= c. Suppose that policy
π=(Z0,Z1,...)∈ 1is an optimal solution to (35). Then,
mseπ=mseopt=c. Applying this in the arguments of (81)-
(83), we can show that policyπsatisfies

lim
n→∞

1

n

n−1

i=0

E
Di+1

Di

(Wt−WSi)
2dt−c(Yi+Zi) =0.

This andp(c)=0 imply that policyπis an optimal solution
to (37).

Similarly, we can prove thateach optimal solution to (37)
is an optimal solution to (35). By this, part (b) is proven.

APPENDIXH
PROOF OFLEMMA3

According to Theorem 2.51 of [55],W4
t−6

t
0W2

sdsis an
martingale of the Wiener process {Wt,t∈[0,∞)}. Because
the minimum of two stopping times is a stopping time and
constant times are stopping times [56], it follows thatt∧τis
a bounded stopping time for everyt∈[0,∞),wherex∧y=
min{x,y}. Then, it follows from Theorem 8.5.1 of [56] that
for everyt∈[0,∞)

E
t∧τ

0
W2

s ds =
1

6
E W4

t∧τ . (84)

Notice that
t∧τ
0 W2

sdsis positive and increasing with respect
tot. By applying the monotone convergence theorem [56,
Theorem 1.5.5], we can obtain

lim
t→∞

E
t∧τ

0
W2

s ds =E
τ

0
W2

sds . (85)

Hence, the limit limt→∞ E W4
t∧τ exists. The remaining task

is to show that

lim
t→∞

E W4
t∧τ =E W4

τ . (86)

Towards this goal, let us consider

E W4
τ

=E [Wt∧τ−(Wτ−Wt∧τ)]4

=E W4
t∧τ +4E W3

t∧τ(Wτ−Wt∧τ)

+6E W2
t∧τ(Wτ−Wt∧τ)2

+4E Wt∧τ(Wτ−Wt∧τ)3 +E (Wτ−Wt∧τ)4

=E W4
t∧τ +4E W3

t∧τ E[Wτ−Wt∧τ]

Authorized licensed use limited to: Auburn University. Downloaded on May 26,2020 at 03:27:22 UTC from IEEE Xplore.  Restrictions apply. 



SUNet al.: SAMPLING OF THE WIENER PROCESS FOR REMOTE ESTIMATION OVER A CHANNEL WITH RANDOM DELAY 1131

+6E W2
t∧τ E (Wτ−Wt∧τ)2

+4E[Wt∧τ]E (Wτ−Wt∧τ)3 +E (Wτ−Wt∧τ)4 ,

where in the last step we have used the strong Markov property
of the Wiener process [55, Theorem 2.16]. By Wald’s lemma
for Wiener process [55, Theorem 2.44 and Theorem 2.48],
E[Wτ]=0andE W2

τ =E[τ] for any stopping timeτwith
E[τ]<∞. Hence,

E[Wτ−Wt∧τ]=0, (87)

E[Wt∧τ]=0, (88)

which implies

E W4
τ =E W4

t∧τ +6E W2
t∧τ E (Wτ−Wt∧τ)2

+E (Wτ−Wt∧τ)4

≥E W4
t∧τ , (89)

and hence

E W4
τ ≥ lim

t→∞
E W4

t∧τ . (90)

On the other hand, by Fatou’s lemma [56, Theorem 1.5.4],

E W4
τ =E lim inf

t→∞
W4

t∧τ ≤ lim
t→∞

E W4
t∧τ . (91)

Combining (90) and (91), yields (86). This completes the
proof.

APPENDIXI
PROOF OF(43)

The following lemma is needed in the proof of (43):

Lemma 6. For anyλ≥ 0, there exists an optimal solution
(Z0,Z1,...)to(40)in which Ziis independent of(Wt,t∈
[0,Si])for all i=1,2,...

Proof: Because theYi’s arei.i.d.,Ziis independent of
Yi+1,Yi+2,..., and the strong Markov property of the Wiener
process [55, Theorem 2.16], in the LagrangianL(π;λ)the
term related toZiis

E
Si+Yi+Zi+Yi+1

Si+Yi

(Wt−WSi)
2dt−(mseopt+λ)(Yi+Zi),

(92)

which is determined by the control decisionZiand the recent
information of the systemIi= (Yi,(WSi+t−WSi,t≥0)).
According to [47, p. 252] and [62, Chapter 6],Iiis asufficient
statisticsfor determiningZiin (40). Therefore, there exists an
optimal policy(Z0,Z1,...)in whichZiis determined based
on onlyIi, which is independent of(Wt:t∈[0,Si]).This
completes the proof.

Proof: [Proof of (43)] By using (34) and Lemma 6,
we obtain that for givenYiandYi+1,YiandYi+Zi+Yi+1are
stopping times of the time-shifted Wiener process{WSi+t−
WSi,t≥0}. Hence,

=E
Di+1

Di

(Wt−WSi)
2dt

=E
Yi+Zi+Yi+1

Yi

(WSi+t−WSi)
2dt

(a)
=E E

Yi+Zi+Yi+1

Yi

(WSi+t−WSi)
2dtYi,Yi+1

(b)
=

1

6
E E (WSi+Yi+Zi+Yi+1−WSi)

4Yi,Yi+1

−
1

6
E E (WSi+Yi−WSi)

4Yi,Yi+1

(c)
=

1

6
E (WSi+Yi+Zi+Yi+1−WSi)

4 −
1

6
E (WSi+Yi−WSi)

4,

(93)

where Step (a) and Step (c) are due to the law of iterated
expectations, and Step (b) is due to Lemma 3. BecauseSi+1=
Si+Yi+Zi,wehave

E (WSi+Yi+Zi+Yi+1−WSi)
4

=E [(WSi+Yi+Zi−WSi)+(WSi+1+Yi+1−WSi+1)]
4

=E (WSi+Yi+Zi−WSi)
4

+4E (WSi+Yi+Zi−WSi)
3(WSi+1+Yi+1−WSi+1)

+6E (WSi+Yi+Zi−WSi)
2(WSi+1+Yi+1−WSi+1)

2

+4E (WSi+Yi+Zi−WSi)(WSi+1+Yi+1−WSi+1)
3

+E (WSi+1+Yi+1−WSi+1)
4

=E (WSi+Yi+Zi−WSi)
4

+4E (WSi+Yi+Zi−WSi)
3 E (WSi+1+Yi+1−WSi+1)

+6E (WSi+Yi+Zi−WSi)
2 E (WSi+1+Yi+1−WSi+1)

2

+4E (WSi+Yi+Zi−WSi)E (WSi+1+Yi+1−WSi+1)
3

+E (WSi+1+Yi+1−WSi+1)
4 , (94)

where in the last equation we have used the fact that Yi+1

is independent ofYiandZi, and the strong Markov property
of the Wiener process [55, Theorem 2.16]. By Wald’s lemma
for Wiener process [55, Theorem 2.44 and Theorem 2.48],
E[Wτ]=0andE W2

τ =E[τ] for any stopping timeτwith
E[τ]<∞. Hence,

E (WSi+1+Yi+1−WSi+1)=0, (95)

E (WSi+Yi+Zi−WSi)=0, (96)

E (WSi+Yi+Zi−WSi)
2 E (WSi+1+Yi+1−WSi+1)

2

=E[Yi+Zi]E[Yi+1]. (97)

Therefore, we have

E (WSi+Yi+Zi+Yi+1−WSi)
4

=E (WSi+Yi+Zi−WSi)
4 +6E[Yi+Zi]E Yi+1

+E (WSi+1+Yi+1−WSi+1)
4. (98)
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Finally, because(WSi+t−WSi)and(WSi+1+t−WSi+1)are both
Wiener processes, and the Yi’s arei.i.d.,

E (WSi+Yi−WSi)
4 =E (WSi+1+Yi+1−WSi+1)

4 . (99)

Combining (93)-(99), yields (43).

APPENDIXJ
PROOF OFTHEOREM5

By (43), (92) can be rewritten as

E
Si+Yi+Zi+Yi+1

Si+Yi

(Wt−WSi)
2dt−(mseopt+λ)(Yi+Zi)

=E
1

6
(WSi+Yi+Zi−WSi)

4−(mseopt+λ−E[Y])(Yi+Zi)

=E
1

6
(WSi+Yi+Zi−WSi)

4−
β

3
(Yi+Zi)

=E
1

6
[(WSi+Yi−WSi)+(WSi+Yi+Zi−WSi+Yi)]

4

−
β

3
(Yi+Zi). (100)

Because theYi’s arei.i.d.and the strong Markov property
of the Wiener process [55, Theorem 2.16], the expectation
in (100) is determined by the control decisionZiand the
informationIi = (WSi+Yi− WSi,Yi,(WSi+Yi+t− WSi+Yi,
t≥0)). According to [47, p. 252] and [62, Chapter 6],Iiis a
sufficient statisticsfor determining the waiting timeZiin (40).
Therefore, there exists an optimal policy(Z0,Z1,...)in which
Ziis determined based on onlyIi. By this, (40) is decom-
posed into a sequence of per-sample control problems (44).
Combining (35), (43), and Lemma 2, yieldsmseopt≥E[Y].
Hence,β≥0.

We note that, because the Yi’s arei.i.d.and the strong
Markov property of the Wiener process, the Zi’s in this
optimal policy arei.i.d.Similarly, the(WSi+Yi+Zi−WSi)’s
in this optimal policy arei.i.d.

APPENDIXK
PROOF OFLEMMA4

Case 1: Ifb2≥β, then (49) tells us that

τ∗=0 (101)

and

u(x)=E[g(X0)|X0=x]=g(x)=βs−
1

2
b4. (102)

Case 2: Ifb2<β,thenτ∗>0and(b+Wτ∗)2=β. Invoking
Theorem 8.5.5 in [56], yields

Exτ∗=−( β−b)(− β−b)=β−b2. (103)

Using this, we can obtain

u(x)=Exg(Xτ∗)

=β(s+Exτ∗)−
1

2
Ex (b+Wτ∗)4

=β(s+β−b2)−
1

2
β2

=βs+
1

2
β2−b2β. (104)

Hence, in Case 2,

u(x)−g(x)=
1

2
β2−b2β+

1

2
b4=

1

2
(b2−β)2≥0.(105)

By combining these two cases, Lemma 4 is proven.

APPENDIXL
PROOF OFLEMMA5

The functionu(s,b)is continuous differentiable in(s,b).

In addition, ∂2

∂2b
u(s,b)is continuous everywhere but at

b = ±
√

β. By the Itô-Tanaka-Meyer formula [55, Theo-
rem 7.14 and Corollary 7.35], we obtain that almost surely

u(s+t,b+Wt)−u(s,b)

=
t

0

∂

∂b
u(s+r,b+Wr)dWr

+
t

0

∂

∂s
u(s+r,b+Wr)dr

+
1

2

∞

−∞
La(t)

∂2

∂b2
u(s+r,b+a)da, (106)

whereLa(t)is the local time that the Wiener process spends
at the levela, i.e.,

La(t)=lim
↓0

1

2

t

0
1{|Ws−a|≤}ds, (107)

and 1A is the indicator function of eventA. By the property
of local times of the Wiener process [55, Theorem 6.18],
we obtain that almost surely

u(s+t,b+Wt)−u(s,b)

=
t

0

∂

∂b
u(s+r,b+Wr)dWr

+
t

0

∂

∂s
u(s+r,b+Wr)dr

+
1

2

t

0

∂2

∂b2
u(s+r,b+Wr)dr. (108)

Because

∂

∂b
u(s,b)=

−2b3, ifb2≥β;

−2βb, ifb2<β,
(109)

we can obtain that for allt≥0andallx=(s,b)∈R2

Ex

t

0

∂

∂b
u(s+r,b+Wr)

2

dr <∞. (110)

This and Theorem 7.11 of [55] imply that
t
0

∂
∂bu(s+r,b+

Wr)dWris a martingale and

Ex

t

0

∂

∂b
u(s+r,b+Wr)dWr =0,∀t≥0. (111)

By combining (46), (108), and (111), we get

Ex[u(Xt)]−u(x)=Ex

t

0

∂

∂s
u(Xr)+

1

2

∂2

∂b2
u(Xr)dr .

(112)
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It is easy to compute that ifb2>β,

∂

∂s
u(s,b)+

1

2

∂2

∂b2
u(s,b)=β−3b2≤0; (113)

and ifb2<β,

∂

∂s
u(s,b)+

1

2

∂2

∂b2
u(s,b)=β−β=0. (114)

Hence,

∂

∂s
u(s,b)+

1

2

∂2

∂b2
u(s,b)≤0 (115)

for all(s,b)∈R2except forb=±
√

β. Since the Lebesgue
measure of thoserfor whichb+Wr=±

√
βis zero, we get

from (112) and (115) thatEx[u(Xt)]≤u(x)for allx∈R2

andt≥0. This completes the proof.

APPENDIXM
PROOF OFCOROLLARY1

Because (49) is the optimal solution to (47), by choosing
s= Yi,b= WSi+Yi−WSi, and usingWSi+Yi+t−WSi to
replaceWt, it is immediate that (53) is the optimal solution
to (44).

The remaining task is to prove (54) and (55). According
to (53) withβ≥0, we have

WSi+Yi+Zi−WSi

=
WSi+Yi−WSi, if|WSi+Yi−WSi|≥

√
β;√

β, if|WSi+Yi−WSi|<
√

β.
(116)

Hence,

E[(WSi+Yi+Zi−WSi)
4]=E[max(β2,(WSi+Yi−WSi)

4)].
(117)

In addition, from (101) and (103) we know that if|WSi+Yi−
WSi|≥

√
β, then (101) implies

E[Zi|Yi]=0; (118)

otherwise, if |WSi+Yi−WSi|<
√

β, then (103) implies

E[Zi|Yi]=β−(WSi+Yi−WSi)
2. (119)

By combining these two cases, we get

E[Zi|Yi]=max[β−(WSi+Yi−WSi)
2,0]. (120)

Using the law of iterated expectations, the strong Markov
property of the Wiener process, and Wald’s identity
E[(WSi+Yi−WSi)

2]=E[Yi], yields

E[Zi+Yi]

=E[E[Zi|Yi]+Yi]

=E[max(β−(WSi+Yi−WSi)
2,0)+Yi]

=E[max(β−(WSi+Yi−WSi)
2,0)+(WSi+Yi−WSi)

2]

=E[max(β, (WSi+Yi−WSi)
2)]. (121)

Finally, becauseWtandWSi+t−WSiare of the same distribu-
tion, (54) and (55) follow from (121) and (117), respectively.
This completes the proof.

APPENDIXN
PROOF OFTHEOREM7

According to [53, Prop. 6.2.5], if we can find π =
(Z0,Z1,...)andλ satisfying the following conditions:

π ∈ 1,lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]−
1

fmax
≥0, (122)

λ ≥0, (123)

L(π;λ)= inf
π∈ 1

L(π;λ), (124)

λ lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]−
1

fmax
=0, (125)

thenπ is an optimal solution to the primal problem (37) and
λ is a geometric multiplier [53] for the primal problem (37).
Further, if we can find suchπ andλ, then the duality
gap between (37) and (41) must be zero, because otherwise
there is no geometric multiplier [53, Prop. 6.2.3(b)]. We note
that (122)-(125) are different from the Karush-Kuhn-Tucker
(KKT) conditions because of (124).

The remaining task is to findπ andλ that satisfies (122)-
(125). According to Theorem 5 and Corollary 1, the solution
π to (124) is given by (53) whereβ=3(mseopt+λ−E[Y]).
In addition, as shown in the proof of Theorem 5, theZi’s in
policyπ arei.i.d.Using (122), (123), and (125), the value
ofλ can be obtained by considering two cases: Ifλ > 0,
because theZi’s arei.i.d.,wehave

lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]=E[Yi+Zi]=
1

fmax
. (126)

Ifλ =0, then

lim
n→∞

1

n

n−1

i=0

E[Yi+Zi]=E[Yi+Zi]≥
1

fmax
. (127)

Next, we use (126), (127), andβ=3(mseopt+λ−E[Y])
to determineλ. To computemseopt, we substitute policyπ
and (43) into (35), which yields

mseopt

= lim
n→∞

n−1
i=0E (WSi+Yi+Zi−WSi)

4+(Yi+Zi)E[Y]

6 n−1
i=0E[Yi+Zi]

=
E (WSi+Yi+Zi−WSi)

4

6E[Yi+Zi]
+E[Y], (128)

where in the last equation we have used that theZi’s arei.i.d.
and the(WSi+Yi+Zi−WSi)’s arei.i.d.,whichwereshownin
the proof of Theorem 5. Hence, the value ofβ=3(mseopt+
λ−E[Y])can be obtained by considering the following two
cases:

Case 1:Ifλ >0, then (128) and (126) imply that

E[Yi+Zi]=
1

fmax
, (129)

β>3(mseopt−E[Y])=
E (WSi+Yi+Zi−WSi)

4

2E[Yi+Zi]
. (130)
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Case 2:Ifλ =0, then (128) and (127) imply that

E[Yi+Zi]≥
1

fmax
, (131)

β=3(mseopt−E[Y])=
E (WSi+Yi+Zi−WSi)

4

2E[Yi+Zi]
. (132)

Combining (129)-(132), yields thatβis the root of

E[Yi+Zi]=max
1

fmax
,

E[(WSi+Yi+Zi−WSi)
4]

2β
.(133)

Substituting (54) and (55) into (133), we obtain thatβis the
root of (15). Further, (53) can be rewritten as (12). Hence,
if we chooseπ as the sampling policy in (12) and choose
λ = β/3−mseopt+E[Y] whereβis the root of (15),
thenπ andλ satisfies (122)-(125). By using the properties
of geometric multiplier mentioned above, (12) and (15) is an
optimal solution to the primal problem (37).

Because the problems (13), (35), and (37) are equiva-
lent, (12) and (15) is also an optimal solution to (13) and (35).

The optimal objective value mseopt is given by (128).
Substituting (54) and (55) into (128), (16) follows. This
completes the proof.
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