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ABSTRACT

In this paper, we consider the problem of minimizing the age of
information in a multi-source system, where samples are taken from
multiple sources and sent to a destination via a channel with ran-
dom delay. Due to interference, only one source can be scheduled at
a time. We consider the problem of finding a decision policy that de-
termines the sampling times and transmission order of the sources
for minimizing the total average peak age (TaPA) and the total
average age (TaA) of the sources. Our investigation of this problem
results in an important separation principle: The optimal scheduling
strategy and the optimal sampling strategy are independent of each
other. In particular, we prove that, for any given sampling strategy,
the Maximum Age First (MAF) scheduling strategy provides the
best age performance among all scheduling strategies. This trans-
forms our overall optimization problem into an optimal sampling
problem, given that the decision policy follows the MAF schedul-
ing strategy. While the zero-wait sampling strategy (in which a
sample is generated once the channel becomes idle) is shown to be
optimal for minimizing the TaPA, it does not always minimize the
TaA. We use Dynamic Programming (DP) to investigate the optimal
sampling problem for minimizing the TaA. Finally, we provide an
approximate analysis of Bellman’s equation to approximate the
TaA-optimal sampling strategy by a water-filling solution which is
shown to be very close to optimal through numerical evaluations.
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1 INTRODUCTION

In recent years, significant attention has been paid to the age of
information as a metric for data freshness. This is because there are
a growing number of applications that require timely status updates
in a variety of networked monitoring and control systems. Examples
include sensor and environment monitoring networks, surrounding
monitoring autonomous vehicles, smart grid systems, etc. The age
of information, or simply age, was introduced in [1, 10, 12, 22],
and defined as the time elapsed since the most recently received
update was generated. Unlike traditional packet-based metrics, such
as throughput and delay, age is a destination-based metric that
captures the information lag at the destination, and is hence more
suitable in achieving the goal of timely updates.

Early studies characterized the age in many interesting variants
of queueing models [11, 16, 21-23, 25, 29, 42], in which the update
packets arrive at the queue randomly as a Poisson process. Besides
these queueing theoretic studies, the work in [4-7] showed that Last
Generated First Served (LGFS)-type policies are (nearly) optimal
for minimizing any non-decreasing functional of the age process in
single flow multi-server and multi-hop networks. These results hold
for general system settings that include arbitrary packet generation
at the source and arbitrary packet arrival times at the transmitter
queue. A generalization of these results was later considered in [34]
for multi-flow multi-server queueing systems, under the condition
that the packet generation and arrival times are synchronized across
the flows.

Another line of research has considered the “generate-at-will"
model [2, 31, 32, 35, 41], in which the generation times (sampling
times) of the update packets are controllable. The work in [31, 32,
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35] motivated the usage of nonlinear age functions from various
real-time applications and designed sampling policies for optimiz-
ing nonlinear age functions in single source systems. Our study
here extends the work in [31, 32, 35] by considering a multi-source
information update system, as shown in Fig. 1, where sources send
their update packets to the destination through a channel. Due to
the resource limitation (only one source can send a packet through
the channel at a time), a decision maker not only controls the packet
generation times, but also schedules the source transmission order.
Thus, the multi-source case is more challenging.

The scheduling problem for multi-source networks with different
scenarios was considered in [13-15, 17-19, 24, 36-39, 43]. In [13],
the authors found that the scheduling problem for minimizing the
age in wireless networks under physical interference constraints is
NP-hard. Optimal scheduling for age minimization in a broadcast
network was studied in [14, 15, 17-19], where a single source can be
scheduled at a time. In contrast to our study, the generation of the
update packets in [13-15, 17-19, 24] is uncontrollable and they ar-
rive randomly at the transmitter. Age analysis of the status updates
over a multiaccess channel was considered in [43]. The studies in
[36-39] considered the age optimization problem in wireless net-
work with general interference constraints and channel uncertainty.
The considered sources in [36-39, 43] are active such that they can
generate a new packet for each transmission (active sources are
equivalent to zero-wait sampling strategy in our model, where a
packet is generated from a source once this source is scheduled).
Moreover, all the aforementioned studies for multi-source schedul-
ing considered a time-slotted system, where a packet is transmitted
in one time slot (i.e., a deterministic transmission time). Our inves-
tigation in this paper reveals that the zero-wait sampling strategy
does not always minimize the age (the TaA in particular) in multi-
source networks with random transmission times (which could be
more than one time slot). Thus, our work here complements the
studies in [13-15, 17-19, 36-39, 43] by answering the following
important question: What is the optimal policy that controls the
packet generation times and the source scheduling to minimize
the age in a multi-source information update system with random
transmission times? To that end, the main contributions of this
paper are outlined as follows:

e We formulate the problem of finding the optimal policy that
controls the sampling and scheduling strategies to minimize
two age of information metrics, namely the total average
peak age (TaPA) and the total average age (TaA). We show
that our optimization problem has an important separation
principle: The optimal sampling strategy and the optimal
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scheduling strategy can be designed independently of each
other. In particular, we use the stochastic ordering technique
to show that, for any given sampling strategy, the Maximum
Age First (MAF) scheduling strategy provides a better age
performance compared to any other scheduling strategy
(Proposition 3.2). This separation principle helps us shrink
our decision policy space and transform our complicated
optimization problem into an optimal sampling problem
for minimizing the TaPA and TaA by fixing the scheduling
strategy to the MAF strategy.

We formulate the optimal sampling problem for minimizing
the TaPA. We show that the zero-wait sampling strategy is
the optimal one in this case (Proposition 3.3). Hence, the
MAF scheduling strategy and zero-wait sampling strategy
are jointly optimal for minimizing the TaPA (Theorem 3.4).
However, interestingly, we find that the zero-wait sampling
strategy does not always minimize the TaA.

We map the optimal sampling problem for minimizing the
TaA into an equivalent optimization problem which then
enables us to use Dynamic Programming (DP) to obtain the
optimal sampling strategy. We show that there exists a sta-
tionary deterministic sampling strategy that can achieve
optimality (Proposition 3.6). Moreover, we show that the
optimal sampling strategy has a threshold property (Proposi-
tion 3.7) that helps in reducing the complexity of the relative
value iteration (RVI) algorithm (by reducing the computa-
tions required along the system state space). This results in
the threshold-based sampling strategy in Algorithm 1. There-
fore, the MAF scheduling strategy and the threshold-based
sampling strategy are jointly optimal for minimizing the TaA
(Theorem 3.8).

Finally, in Section 4, we provide an approximate analysis of
Bellman’s equation whose solution is the threshold-based
sampling strategy. We figure out that the water-filling solu-
tion can approximate this optimal sampling strategy. More-
over, the numerical result in Fig. 5 shows that the perfor-
mance of the water-filling solution is almost the same as that
of the threshold-based sampling strategy.

Our optimal scheduling and sampling strategies can minimize the
age for any random discrete transmission times which possibly
can be more than one time slot. Because of the randomness of the
transmission times, our model belongs to the class of semi-Markov
decision problems (SMDPs). Prior studies, such as [13-15, 17-19, 36—
39, 43], considered time-slotted system. Therefore, their models be-
long to the class of Markov decision problems (MDPs), which cannot
handle our model. Moreover, although the optimality of the MAF
scheduler was shown in [15, 18, 19, 24, 34], these studies either con-
sidered a time-slotted system [15, 18, 19, 24], or stochastic arrivals
with exponential and New-Better-than-Used (NBU) transmission
times [34]. In contrast, our results are obtained by generalizing the
transmission times and controlling the packet generation times. To
the best of our knowledge, this is the first study that considers the
joint optimization of the sampling and scheduling strategies to min-
imize the age in multi-source networks with random transmission
times.



2 MODEL AND FORMULATION

2.1 Notations

For any random variable Z and an event A, let E[Z|A] denote the
conditional expectation of Z for given A. We use N to represent the
set of non-negative integers, R is the set of non-negative real num-
bers, R is the set of real numbers, and R” is the set of n-dimensional
real Euclidean space. We use ¢~ to denote the time instant just before
t. Let x = (x1,x2,...,xp) and y = (y1,y2,...,Yn) be two vectors
in R”, then we denote x < yif x; < y; fori = 1,2,...,n. Also,
we use x[;] to denote the i-th largest component of vector x. For
any bounded set X C R, we use max X to represent the maximum
of set X, i.e, x* = max X implies that x < x* for all x € X. A set
U C R" is called upper if y € U whenever y > x and x € U. We
will need the following definitions:

Definition 2.1. Univariate Stochastic Ordering: [30] Let X
and Y be two random variables. Then, X is said to be stochastically
smaller than Y (denoted as X <g Y), if

P{X > x} <P{Y >x}, VxeR.

Definition 2.2. Multivariate Stochastic Ordering: [30] Let X
and Y be two random vectors. Then, X is said to be stochastically
smaller than Y (denoted as X <g Y), if

P{XeU} <P{Y e U}, foralluppersets U CR".

Definition 2.3. Stochastic Ordering of Stochastic Processes:
[30] Let {X(¢),t € [0,00)} and {Y(¢),t € [0,0)} be two stochas-
tic processes. Then, {X(t),t € [0, o)} is said to be stochastically
smaller than {Y(t),t € [0,00)} (denoted by {X(t),t € [0,00)} <
{Y(¢),t € [0,00)}), if, for all choices of an integer n and t; < t; <
... <ty in [0, 00), it holds that

(X(tl )’ X(tz)’ cee 7X(tn)) <st (Y(tl)’ Y(t2)7 ) Y(tn))’ (1)

where the multivariate stochastic ordering in (1) was defined in
Definition 2.2.

2.2 System Model

We consider a status update system with m sources as shown in
Fig. 1, where each source observes a time-varying process. An
update packet is generated from a source and is then sent over an
error-free delay channel to the destination, where only one packet
can be sent at a time. A decision maker (a controller) controls the
generation times of the update packets and transmission order of
the sources. This is known as “generate-at-will” model [2, 35, 41]
(i.e., the decision maker can generate the update packets at any
time). We use S; to denote the generation time of the i-th generated
packet, called packet i. Moreover, we use r; to represent the source
index from which packet i is generated. The channel is modeled
as First-Come First-Served (FCFS) queue with random i.i.d. service
time Y;, where Y; represents the service time of packet i, Y; € Y,
and Y C R is a finite and bounded set. We also assume that
0 < E[Y;] < oo for all i. We suppose that the decision maker knows
the idle/busy state of the server through acknowledgments (ACKs)
from the destination with zero delay. To avoid unnecessary waiting
time in the queue, there is no need to generate an update packet
during the busy periods. Thus, a packet is served immediately once

123

Mobihoc ’19, July 2-5, 2019, Catania, Italy

7
S .
' . '

S D, Dy S5 Ds
e Y

-
a
'

Y Zy Y3
Figure 2: The age A;(t) of source [, where we suppose that

51,53 € Gy.

it is generated. Let D; denote the delivery time of packet i, where
D; = S; + Y;. After the delivery of packet i at time D;, the decision
maker may insert a waiting time Z; before generating a new packet
(hence, Sij+1 = D; + Zl-)l, where Z; € Z,and Z c Rt is a finite
and bounded set. We use M to represent the the maximum amount
of waiting time allowed by the system, i.e., M = max Z.

We use G to represent the set of generation times of the update
packets that are generated from source [. At any time ¢, the most
recently delivered packet from source [ is generated at time

Uj(t) = max{S; € Gy : D; < t}. (2)

The age of information, or simply the age, for source [ is defined as
[1, 10, 12, 22]

Ay(t) =t = Uj(d). (3)
As shown in Fig. 2, the age increases linearly with ¢ but is reset to
a smaller value with the delivery of a fresher packet. We suppose
that the age Aj(¢) is right-continuous. The age process for source
lis given by {A;(t),t > 0}. We suppose that the initial age values
(A;(07) for all I) are known to the system.

2.3 Decision Policies

A decision policy, denoted by d, specifies the following: i) the source
scheduling strategy, denoted by 7, that determines the source to
be served at each transmission opportunity 7 = (ry, ra, .. .), ii) the
sampling strategy, denoted by f, that controls the packet generation
times f = (S1,S2,...), or equivalently, the sequence of waiting
times f = (Zy,Z1,...). Hence, d = (r, f) implies that a decision
policy d follows the scheduling strategy 7 and the sampling strategy
f.Let D denote the set of causal decision policies in which decisions
are made based on the history and current states of the system.
Observe that D consists of IT and ¥, where IT and ¥ are the sets
of causal scheduling and sampling strategies, respectively.

After each delivery, the decision maker chooses the source to
be served, and imposes a waiting time before the generation of the
new packet. Next, we present our optimization problems.

2.4 Optimization Problem

We define two metrics to assess the long term age performance
over our status update system in (4) and (5). Consider the time

!We suppose that Dy = 0. Thus, we have S; = Z;.
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interval [0, Dy, ]. For any decision policy d = (r, f), we define the
total average peak age (TaPA) as

, 1% -
Apeak(m. f) = limsup ~E| 3" A, (D7) o)
n—oo i=1
and the total average age per unit time (TaA) as
| E[ m "Al(t)dt]
Aavg(rr, f) = lim sup (5)
n—oo

E[Dn]

In this paper, we aim to minimize both the TaPA and the TaA
separately. Thus, our optimization problems can be formulated
as follows. We seek a decision policy d = (7, f) that solves the
following optimization problems

Apeak—opt = nerrrll,i}leTApeak(ﬂ’f)’ (6)

and
Aaveopt = min  Agve(r, ), 7
avg-opt rellfeF avg( f) ( )

where Apeak-opt and Agvgopt are the optimum objective values of
Problems (6) and (7), respectively. Due to the large decision policy
space, the optimization problem is quite challenging. In particular,
we need to seek the optimal decision policy that controls both the
sampling and scheduling strategies to minimize the TaPA and the
TaA. On the one hand, the TaPA metric is more suitable for the ap-
plications that have an upper bound restriction on age. On the other
hand, it was recently shown that, under certain conditions, infor-
mation freshness measures expressed in terms of auto-correlation
functions, the estimation error of signal values, and mutual informa-
tion, are monotonic functions of the age [32]. The optimal solution
that we develop for minimizing TaA can be generalized to optimize
the total time-average of monotonic age functions, which are useful
for these applications. In the next section, we discuss our approach
to tackle these optimization problems.

3 OPTIMAL DECISION POLICY

We first show that our optimization problems in (6) and (7) have
an important separation principle: The scheduling strategy and the
sampling strategy can be designed independently of each other.
To that end, we show that, given the generation times of the up-
date packets, following the Maximum Age First (MAF) scheduling
strategy provides the best age performance compared to following
any other scheduling strategy. What then remains to be addressed
is the question of finding the best sampling strategies that solve
Problems (6) and (7). Next, we present our approach to solve our
optimization problems in detail.

3.1 Optimal Scheduling Strategy
We start by defining the MAF scheduling strategy as follows:

Definition 3.1 ([15, 18, 19, 24, 34]). Maximum Age First scheduling
strategy: In this scheduling strategy, the source with the maximum
age is served the first among all sources. Ties are broken arbitrarily.

For simplicity, let mpar represent the MAF scheduling strategy.
The age performance resulting from following myiar strategy is
characterized as follows.
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PROPOSITION 3.2. For any given sampling strategy f € F, the
MATF scheduling strategy minimizes the TaPA and the TaA in (4)
and (5), respectively, among all scheduling strategies inI1, i.e., for all
feF andr e1l,

Apeak(ﬂMAF’ f) < Apeak(”’ i) ®)
Aavg(”MAFa )< Aavg(”,f)- )

PRrooF. One of the key ideas of the proofis as follows. Given any
sampling strategy, that controls the generation times of the update
packets, we only control from which source a packet is generated.
We couple the policies such that the packet delivery times are fixed
under all decision policies. Since we follow the MAF scheduling
strategy, after each delivery, a source with maximum age becomes
the source with minimum age among the m sources. Under any
arbitrary scheduling strategy, a packet can be generated from any
source, which is not necessary the one with maximum age, and
the chosen source becomes the one with minimum age among the
m sources after the delivery. Thus, following the MAF scheduling
strategy provides a better age performance compared to following
any other scheduling strategy. For details, see Appendix A. O

Proposition 3.2 is proven by using a sample-path proof technique
that was recently developed in [34]. The difference is that in [34]
the authors proved the results for symmetrical packet generation
and arrival processes, while we consider here that the sampling
times are controllable. We found that the same proof technique
applies to both cases.

Remark 1. The result in Proposition 3.2 can be extended to more
general Y and Z, i.e., Y and Z can be any uncountable sets. In
other words, Proposition 3.2 holds for any arbitrary distributed
service times, including continuous service times. This is because
the proof of Proposition 3.2 does not depend on the service time
distribution.

Proposition 3.2 helps us conclude the separation principle that
the optimal sampling strategy can be designed independently of
the optimal scheduling strategy. In particular, we are able to fix the
scheduling strategy to the MAF strategy, and the remaining task is
to search for the optimal sampling strategy. Hence, the optimization
problems (6) and (7) reduce to the following

Apeak—opt = }neir%Apeak(”MAFa 1),

(10)
(11)

Next, we seek the optimal sampling strategy for Problems (10) and
(11). Without a confusion, we will use the term “sampling policy" or
“sampler” to denote the sampling strategy that a decision policy can
follow. Similarly, we use the term “scheduling policy" or “scheduler”
to denote the scheduling strategy that a decision policy can follow.

Aavg-opt 2 Jr}lgi%Aavg(”MAF,f)~

3.2 Optimal Sampler for Problem (10)

By fixing the scheduling policy to the MAF scheduler, the evolution
of the age processes of the sources is as follows. The sampler may
impose a waiting time Z; before generating packet i + 1 at time
Si+1 = D; + Z; from the source with the maximum age at time
t = Dj. Packet i + 1 is delivered at time D;+1 = Sj+1 + Yi+1 and the
age of the source with maximum age drops to the minimum age with
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(a) The age evolution of source 1.
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(b) The age evolution of source 2.

Figure 3: The age processes evolution of the MAF scheduler in a two-sources information update system. Source 2 has a higher
initial age than Source 1. Thus, Source 2 starts service and packet 1 is generated from Source 2, which is delivered at time D;.
Then, Source 1is served and packet 2 is generated from Source 1, which is delivered at time D,. The same operation is repeated

over time.

the value of Yj41, while the age processes of other sources increase
linearly with time without change. This operation is repeated with
time and the age processes evolve accordingly. An example of age
processes evolution is shown in Fig. 3. Next, we show that the
zero-wait sampler minimize the TaPA.

ProprosITION 3.3. The optimal sampler for Problem (10) is the
zero-wait sampler, i.e., Z; = 0 for all i.

Proor. We prove Proposition 3.3 by showing that the TaPA is
an increasing function of the packets waiting times Z;’s. For details,
see our technical report [3]. O

Remark 2. Similar to Proposition 3.2, the result in Proposition
3.3 can be extended to more general Y and Z, ie., Y and Z can
be any uncountable bounded sets.

In conclusion, the optimal solution for Problem (6) is manifested
in the following theorem.

THEOREM 3.4. The optimal solution for Problem (6) is the MAF
scheduler and the zero-wait sampler.

Proor. The theorem follows directly from Proposition 3.2 and
Proposition 3.3. o

3.3 Optimal Sampler for Problem (11)

Although the zero-wait sampler is the optimal sampler for minimiz-
ing the TaPA, it is not clear whether it also minimizes the TaA. This
is because the latter metric may not be a non-decreasing function
of the waiting times as we will see later, which makes Problem (11)
more challenging. Next, we derive the TaA when the MAF sched-
uler is followed and provide an equivalent mapping for Problem

(11).

3.3.1 Equivalent Mapping of Problem (11). We start by deriving
the TaA when the scheduling policy is fixed to the MAF sched-
uler. We decompose the area under each curve A(t) into a sum
of disjoint geometric parts. Observing Fig. 3, this area in the time

interval [0, D, ], where D, = Z;’:_()l Z;i + Yi+1, can be seen as the
concatenation of the areas Q;;, 0 < i < n— 1. Thus, we have

D, n—1
/0 Ay(t)dt = Z Qy;. (12)
i=0

Recall that we use a;; to denote the age value for the source [ at time
Di, i.e., aj; = Aj(D;). Then, as seen in Fig. 3, Q;; can be expressed
as

1
Qi = ai(Z; + Yiv1) + E(Zi + Yie1)? (13)

Using this with (12), we get
m Dy, n-1 m
> [ anar= Y Az v + B v (9
=170 i=0 2

where A; = Z;’il aj;. The TaA can be written as

i SV E[ANZi + Yier) + B(Zi + Yig1)?]
im sup — .
n—eo SPLE[Zi + Yie]

(15)

Using this, the optimal sampling problem for minimizing the TaA,
given that the scheduling policy is fixed to the MAF scheduler, can
be formulated as

S VE[ANZi+Yie)+ B (Zi+ Vi)
SV EIZi+ Y]

. (16)

Aqvg-opt £ min lim sup
feF nooo

Since Z and Y are bounded, Aavg.opt is bounded as well. Note that
Problem (16) is hard to solve in the current form. Therefore, we
provide an equivalent mapping for it. We consider the following
optimization problem with a parameter f > 0:

n-1
1
P() & minlim sup ;;E[mi—ﬂxzﬁmn 2@y, a7

where p () is the optimal value of (17).

LEmMA 3.5. The following assertions are true:
(0). Aavg-opt £ B if and only if p(B) £ 0.
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(ii). Ifp(B) = 0, then the optimal sampling policies that solve (16)
and (17) are identical.

Proor. The proof of Lemma 3.5 is similar to the proof of [33,
Lemma 2]. The difference is that the regenerative property of the
inter-sampling times is used to prove the result in [33]; instead, we
use the boundedness of the inter-sampling times to prove the result.
For the sake of completeness, we modify the proof accordingly and
provide it in our technical report [3]. O

As a result of Lemma 3.5, the solution to (16) can be obtained by
solving (17) and seeking a f§ = Aavg-opt > 0 such that p(Aavg_opt) =
0. Lemma 3.5 helps us formulate our optimization problem as a DP
problem. Note that without Lemma 3.5, it would be quite difficult
to formulate (16) as DP problem or solve it optimally. Next, we use
the DP technique to solve Problem (17).

3.3.2  The DP problem of (17). Following the methodology pro-
posed in [8], when f = Aavg-opt, Problem (17) is equivalent to an
average cost per stage DP problem. According to [8], we describe
the components of our DP problem in detail below.

e States: At stage? i, the system state is specified by
(18)

We use S to denote the state-space including all possible
states. Notice that § is finite and bounded because Z and
Y are finite and bounded. Also, this implies that A;’s are
uniformly bounded, i.e., there exists A € R* such that A; <
A for all i.

e Control action: At stage i, the action that is taken by the
sampler is Z; € Z. Recall that Z; < M for all i > 0.

e Random disturbance: In our model, the random distur-
bance occurring at stage i is Yj4+1, which is independent of
the system state and the control action.

e Transition probabilities: If the control Z; = z is applied
at stage i and the service time of packet i + 1is Yj+1 =y,
then the evolution of the system state from s(i) to s(i + 1) is
as follows.

s(i) = (a[1)is - - - Ym)i)-

Amli+1 = Y»

(19)

ais1 = a1 tz+y, I=1,...,m-1.

We let Psy(z) denote the transition probabilities
Pss'(z) = P(s(i + 1) = s"|s(i) = 5,Z; = z), 5,8’ € S.

When s = (a[q], . . ., a[p,]) and s’ = (a{l], e, afm]), the law
of the transition probability is given by

P(Yiy1 =y) if afm] =y and
Psy(z) = a{” =auq tz+yforl#m; (20
0 else.

e Cost Function: Each time the system is in stage i and con-
trol Z; is applied, we incur a cost
C(s(i), Zi, Yis1) =(A; — Aavg-opt)(Zi + Yir1)+

m (21)
E(Zf +2ZiYie1 + YA ).

2From henceforward, we assume that the duration of stage i is [D;, Dj41).
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To simplify notation, we use the expected cost C(s(i), Z;) as
the cost per stage, i.e.,

C(s(i), Zi) = By,,, [C(s(D), Zi, Yi+1)],

where Ey,,, is the expectation with respect to Y;.;. Hence,
we have

C(s(i), Zi) =(Ai = Bavg-opt)(Zi + E[Y])+

(22)

%(Zl? +2Z;B[Y] +E [Y?]), @3

where we have used the fact that Z; and Y;1 are indepen-
dent, and the random variable Y has the same distribution
as the service times Y;’s. It is important to note that there
exists ¢ € R™ such that |C(s(i), Z;)| < c for all s(i) € S and
Z; € Z. This is because Z, Y, S, and Agyg_opt are bounded.

In general, the average cost per stage under a sampling policy
f € F is given by

1
limsup —E . (24)
n—oo N

n-1
>, Cls(i), Z3)
i=0

We say that a sampling policy f € F is average-optimal if it min-
imizes the average cost per stage in (24). Our objective is to find
the average-optimal sampling policy. A policy f is called history-
dependent if the control Z; depends on the entire past history, i.e., it
depends on s(0), . .., s(i) and Zp, . . ., Zi—1. A policy is stationary if
Z; = Z; whenever s(i) = s(j) for any i, j. In addition, a randomized
policy assigns a probability distribution over the control set such
that it chooses a control randomly according to this distribution,
while a deterministic policy selects an action with certainty. Ac-
cording to [8], there may not exist a stationary deterministic policy
that is average-optimal. In the next proposition, we show that there
is actually a stationary deterministic policy that is average-optimal
to our problem.

PROPOSITION 3.6. There exist a scalar A and a function h that
satisfy the following Bellman’s equation

A+ his) = min |C(s,2) + ) Pes (A
s'eS

(25)
where A is the optimal average cost per stage that is independent of
the initial state s(0) and satisfies

A= liml(l —a)Ju(s),Vs €S, (26)

and h(s) is the relative cost function that, for any state o, satisfies
h(s) = lim (Ju(s) = Ja(0)), Vs € S, (27)
a—

where J,(s) is the optimal total expected a-discounted cost function,
which is defined by

n—1
Ja(s) = Jrrneigli’rln_fng g alC(s(i), Zi)|,s(0) =s € S,  (28)

where 0 < a < 1 is the discount factor. Furthermore, there exists a
stationary deterministic policy that attains the minimum in (25) for
eachs € S and is average-optimal.



Proor. The proof idea of this proposition is different from those
used in literature such as [14, 15]. In particular, we show that for
every two states s and s’, there exists a stationary deterministic
policy f such that for some k, we have P [s(k) = s’|s(0) = s, f] > 0,
i.e., we have a communicating Markov decision process (MDP). For
details, see our technical report [3]. O

We can deduce from Proposition 3.6 that the optimal waiting
time is a fixed function of the state s. Next, we use the relative value
iteration algorithm to obtain the optimal sampler for minimizing
the TaA, and then exploit the structure of our problem to reduce
its complexity.

3.3.3  Optimal Sampler Structure. The relative value iteration (RVI)
algorithm [28, Section 9.5.3], [20, Page 171] can be used to solve
the Bellman’s equation (25). Starting with an arbitrary state o, a
single iteration for the RVI algorithm is given as follows:

Qns1(s,2) = Cls,2) + ) Pos(2)hn(s"),
s’eS
Jn+1(s) = Znéig(QnH(S’ 2)),

hn+1(8) = Ju+1(s) — Ju+1(0),

where Qp+1(s,z), Ju(s), and hy(s) denote the state action value
function, value function, and relative value function for iteration
n, respectively. At the beginning, we set Jo(s) = 0 forall s € S,
and then we repeat the iteration of the RVI algorithm as described
before 3.

The complexity of the RVI algorithm is high due to many sources
(i.e., curse of dimensionatlity [26]). Thus, we need to simplify the
RVI algorithm. To that end, we show that the optimal sampler has
a threshold property that can reduce the complexity of the RVI
algorithm.

(29)

PROPOSITION 3.7. Let Ag be the sum of the age values of state s.
Then, the optimal waiting time of any state s with As > (Agyg-opt —
mE[Y]) is zero.

PRrOOF. See our technical report [3]. O

We can exploit Proposition 3.7 to reduce the complexity of the
RVI algorithm as follows. The optimal waiting time for any state
s whose Ag > (Aavg-opt — mE[Y]) is zero. Thus, we need to solve
(29) only for the states whose As < (Aavg-opt — ME[Y]). As a result,
we reduce the number of computations required along the system
state space, which reduce the complexity of the RVI algorithm. Note
that Aayg.opt can be obtained using the bisection method or any
other one-dimensional search methods. Combining this with the
result of Proposition 3.7 and the RVI algorithm, we propose the
“threshold-based sampler” in Algorithm 1, where z§ is the optimal
waiting time for state s. In the outer layer of Algorithm 1, bisection
is employed to obtain Agyg opt, where § converges to Agvg-opt-

Note that, according to [20, 28], J(0) in Algorithm 1 converges
to the optimal average cost per stage. Moreover, the value of u

3 According to [20, 28], a sufficient condition for the convergence of the RVI algorithm
is the aperiodicity of the transition matrices of stationary deterministic optimal policies.
In our case, these transition matrices depend on the service times. This condition can
always be achieved by applying the aperiodicity transformation as explained in [28,
Section 8.5.4], which is a simple transformation. However, This is not always necessary
to be done.
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Algorithm 1: Threshold-based sampler based on RVI algorithm.

1 given | = 0, sufficiently large u, tolerance €; > 0, tolerance €; > 0;
2 whileu -1 > ¢; do
3 p= HT“;
4 J(s) =0, h(s) = 0, hjast(s) = 0 for all states s € S;
5 while maxges |A(s) — hjgs(s)| > €, do
6 for eachs € S do
7 if As > (f — mE[Y]) then
8 | zi=0;
9 else
10 z; = argmin,. 7 (As — f)(z + E[Y]) + Z(z* + 2zE[Y] +
E[¥2]) + Sy s Py (2)h(S));
1 end
12 J(s) = (As — B)(z + E[Y]) + %(z2 +2zE[Y]+E [Yz]) +
Tyes Pow (D)
13 end
1 hiast(s) = h(s);
15 h(s) = J(s) — J(o);
16 end
17 if J(0) > 0 then
18 | u=48;
19 else
20 ‘ 1=p;
21 end
22 end

in Algorithm 1 can be initialized to the value of the TaA of the
zero-wait sampler (as the TaA of the zero-wait sampler provides an
upper bound on the optimal TaA), which can be easily calculated.

The RVI algorithm and Whittle’s methodology have been used
in literature to obtain the optimal age scheduler in a time-slotted
multi-source networks (e.g.,[14, 15]). Since they considered time-
slotted system, their model belongs to the class of MDPs. In contrast,
we consider random discrete transmission times that can be more
than one time slot. Thus, our model belongs to the class of SMDPs,
and hence is different from those in [14, 15].

In conclusion, the optimal solution for Problem (7) is manifested
in the following theorem.

THEOREM 3.8. The optimal solution for Problem (7) is the MAF
scheduler and the threshold-based sampler.

Proor. The theorem follows directly from Proposition 3.2, Propo-
sition 3.6, and Proposition 3.7 O

Although the work in [35] provided the solution of the optimal
sampling problem for minimizing the age in single source systems,
its results hold only when there is a bound on the waiting times. In
this paper, we show that we can indeed generalize our results and
eliminate the upper bound on the waiting times, M. In particular,
we show that for a large enough M, the obtained solution is as if the
upper bound M is removed. Let Agg-opt and f denote the optimal
TaA and optimal sampler when the upper bound on the waiting
times is oo, respectively. Moreover, let Agg-opt and fy, denote the
optimal TaA and optimal sampler when the upper bound on the
waiting times is M, respectively. Our result is manifested as follows.

THEOREM 3.9. There exists Ny € R* such that for all M > N,, we
have

A AM
fo= f]\a;[’ A(cﬁzg-opt = Aavg—opt' (30)
PRrOOF. See our technical report [3]. O
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The authors in [15] obtained a similar result, where they showed
that the truncated MDP for solving the scheduling problem in multi-
source systems with stochastic arrivals converges to the original
MDP (with infinite state space) as the truncate level goes to co. How-
ever, for very low arrival rates, the truncate level can be achieved
even under optimal policies. In this paper, we show that the trun-
cate level on the waiting times can actually be removed without
affecting the optimal result.

4 BELLMAN’S EQUATION APPROXIMATION

In this section, we provide an approximate analysis for Bellman
equation in (25) in order to find a simple algorithm to solve Problem
(17). For a given state s, we denote the next state given z and y by
s’(z, y). From the state evolution in (19) and the transition prob-
ability equation (20), Bellman’s equation in (25) can be rewritten
as

A= mzin C(s,z) + Z P(Y = y)(h(s'(z,y)) — h(s))] .

yey
Although h(s) is discrete, we can interpolate the value of h(s) be-
tween the discrete values so that it is differentiable by follow-
ing the same approach in [9] and [40]. Let s = (a1, - -, a[m));
then using the first order Taylor approximation around a state

(31)

t= (a[t1J ) (some fixed state), we get
Bh t
h(s) ~ h(t) + Z(a - ) aai ]) (32)

Again, we use the first order Taylor approximation around the state
t, together with the state evolution in (19), to get

S’ (2. ) (e ry - a[ml)ah )+Z(“u+1

From (32) and (33), we get

Oh(t

S 2, ) hOS ) S Z(a Ll l]+z+y>ﬁ (9

This implies that

DB =)(h(s” (2, 4)~h() ~(ELY] ~aymy )_ﬁh“)]

ey

y (Y Oh(t) (33)
;(a[1+1]—a[1]+z+E[Y]) e

Using (31) with (35), we can get the following approximated Bell-
man’s equation.

A ~min(A; - Aavg-opt)(z + E[Y]) + %((z)z +2zE[Y] + E [Y?])

aht) " Jh(t
Y]~ g+ g~ + 2+ EVD G
me=n

where Ag is the sum of the age values of state s. A necessary condi-
tion for minimizing the RHS of the previous equation is to set its
derivative to zero. We get

m-—

Z

6h(t)

A — Aavg opt + mz + mE[Y =0. (36)
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~ —MAF, Zero-wait sampler

Figure 4: TaPA versus transmission probability p for an up-
date system with m = 3 sources.

Rearranging (36), we get

A _ _ yvm-1 0h(t) +
e Aavg—opt mE[Y] Zl:l dag As
= " |

(37)

where Z7 is the optimal solution of the approximated Bellman’s
m—-1 0h(t)

i=1 day is constant.

equation for state s. Note that the term

-]

where we have used Theorem 3.9 to eliminate the upper bound M in
(38) (or simply M can be set to be large enough such that it is greater
than the optimal threshold in (38)). The solution in (38) is in the
form of the water-filling solution as we compare a fixed threshold
(th) with the average age of a state s. The solution in (38) suggests
that the water-filling solution can approximate the optimal solution
of the original Bellman’s equation in (25). The optimal threshold
(th) in (38) can be obtained using a golden-section method [27]. We
evaluate the performance of the water-filling solution obtained in
(38) in the next section.

Hence, (37) can be written as

(38)

5 NUMERICAL RESULTS

We present some numerical results to verify our theoretical results.
We consider an information update system with m = 3 sources. The
packet transmission times are either 0 or 3 with probability p and 1—
p, respectively. We use “RAND" to represent the random scheduler
in which a source is chosen randomly to be served. Also, we use
“constant-wait sampler" to represent the sampler that imposes a
constant waiting time after each delivery with Z; = 0.3E[Y], Vi.

Fig. 4 illustrates the TaPA versus the transmission probability p.
As we can observe, with fixing the scheduling policy to the MAF
scheduler, the zero-wait sampler provides a lower TaPA compared to
the constant-wait sampler. This observation agrees with Proposition
3.3. However, as we will see later, zero-wait sampler does not always
minimize the TaA.
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Figure 5: TaA versus transmission probability p for an
date system with m = 3 sources.

Fig. 5 illustrates the TaA versus the transmission probability p.
For the zero-wait sampler, we find that following the MAF sched-
uler provides a lower TaA than that is resulting from following
the RAND scheduler. This agrees with Proposition 3.2. Moreover,
when the scheduling policy is fixed to the MAF scheduler, we find
that the TaA results from the threshold-based sampler is lower
than those result from the zero-wait sampler and the constant-wait
sampler. This observation implies the following: i) The zero-wait
sampler does not necessarily minimize the TaA, ii) optimizing the
scheduling policy only is not enough to minimize the TaA and
we have to optimize both the scheduling policy and the sampling
policy together to minimize the TaA. Finally, as we can observe,
the TaA resulting from the water-filling sampler almost coincides
on the TaA resulting from the threshold-based sampler.

6 CONCLUSION

In this paper, we studied the problem of finding the optimal decision
policy that controls the packet generation times and transmission
order of the sources to minimize the TaPA and TaA in multi-source
information update system. We showed the MAF scheduler and
the zero-wait sampler are jointly optimal for minimizing the TaPA.
Moreover, we showed that the MAF scheduler and the threshold-
based sampler, that is based on the RVI algorithm, are jointly opti-
mal for minimizing the TaA. Finally, we provided an approximate
analysis of Bellman’s equation and showed that the water-filling
solution can approximate the threshold-based sampler. The numeri-
cal result showed that the performance of the water-filling solution
is almost the same as that of the threshold-based sampler.
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A PROOF OF PROPOSITION 3.2

Let the vector Az (t) = (A[1], 7 (t), - - -, Apm), z(t)) denote the system
state at time t when the scheduling strategy r is followed, where
A, z(t) is the I-th largest age of the sources at time ¢t under the
scheduling strategy 7. Let {A;(t),t > 0} denote the state process
when the scheduling strategy = is followed. For notational simplic-
ity, let P represent the MAF scheduling strategy. Throughout the
proof, we assume that A, (07) = Ap(07) for all 7 and the sampling
strategy is fixed to an arbitrarily chosen one. The key step in the
proof of Proposition 3.2 is the following lemma, where we compare
the scheduling strategy P with any arbitrary scheduling strategy .

LEMMA A.1. Suppose that A;(07) = Ap(07) for all scheduling
strategy 7 and the sampling strategy is fixed, then we have

{Ap(1),t > 0} <q {Ar(1),t > 0} (39)

We use a coupling and forward induction to prove Lemma A.1.
For any scheduling strategy =, suppose that the stochastic processes
Ap(t) and A, (¢) have the same stochastic laws as Ap(t) and A (t).
The state processes Zp(t) and E,[(t) are coupled such that the
packet service times are equal under both scheduling policies, i.e.,
Y;’s are the same under both scheduling policies. Such a coupling
is valid since the service time distribution is fixed under all policies.
Since the sampling strategy is fixed, such a coupling implies that
the packet generation and delivery times are the same under both
scheduling strategies. According to Theorem 6.B.30 of [30], if we
can show

P|Ap(t) < Ap(t),t > o] =1, (40)

then (39) is proven. To ease the notational burden, we will omit the
tildes on the coupled versions in this proof and just use Ap(t) and
Ax(t). Next, we compare strategy P and strategy 7 on a sample
path and prove (39) using the following lemma:
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LEmMMA A.2 (INDUCTIVE COMPARISON). Suppose that a packet
with generation time S is delivered under the scheduling strategy
P and the scheduling strategy m at the same time t. The system
state of the scheduling strategy P is Ap before the packet delivery,
which becomes A}, after the packet delivery. The system state of the
scheduling strategy  is A, before the packet delivery, which becomes
A’, after the packet delivery. If

A[iJ’P < A[iJ,r[yi =1,...,m, (41)
then
’ ’ .
Aipp SDjjpoi=b.om (42)

Lemma A.2 is proven by following the proof idea of [34, Lemma
2]. For the sake of completeness, we provide the proof of Lemma
A.2 as follows.

Proor. Since only one source can be scheduled at a time and the
scheduling strategy P is the MAF scheduling strategy, the packet
with generation time S must be generated from the source with
maximum age Ay}, p, call it source I*. In other words, the age of
source [* is reduced from the maximum age A[q) p to the minimum
age Afm],P =t — S, and the age of the other (m — 1) sources remain
unchanged. Hence,

Afl.],P =Apspri=1...,m—1,

=t-S. “3)

7
Alm,p
In the scheduling strategy , this packet can be generated from any
source. Thus, for all cases of strategy , it must hold that

Afl.]’ﬂ 2 Al oi=1,...,m—1. (44)
By combining (41), (43), and (44), we have
Afl.],n 2 A 2 Afiv1,p = AEI.]’P,i =1,...,m—-1. (45

In addition, since the same packet is also delivered under the sched-
uling strategy 7, the source from which this packet is generated
under policy 7 will have the minimum age after the delivery, i.e.,
we have

Mopn =t=S=A b (46)
By this, (42) is proven. O

Proor oF LEMMA A.1. Using the coupling between the system
state processes, and for any given sample path of the packet service
times, we consider two cases:

Case 1: When there is no packet delivery, the age of each source
grows linearly with a slope 1.

Case 2: When a packet is delivered, the ages of the sources evolve
according to Lemma A.2.

By induction over time, we obtain

A[iJ,P(t) < A[iJ’”(t),i =1,...,mt2>0. (47)

Hence, (40) follows which implies (39) by Theorem 6.B.30 of [30].
This completes the proof. O

Proor oF ProposITION 3.2. Since the TaPA and TaA for any
scheduling policy 7 are the expectation of non-decreasing function-
als of the process {A,(t), ¢ > 0}, (39) implies (8) and (9) using the
properties of stochastic ordering [30]. This completes the proof. O
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