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Minimizing the Age of Information

Ahmed M. Bedewy ™, Yin Sun™', Member, IEEE, and Ness B. Shroff, Fellow, IEEE

Abstract—In this paper, we investigate scheduling policies that
minimize the age of information in single-hop queueing systems.
We propose a Last-Generated, First-Serve (LGFS) scheduling
policy, in which the packet with the earliest generation time
is processed with the highest priority. If the service times are
i.i.d. exponentially distributed, the preemptive LGFS policy is
proven to be age-optimal in a stochastic ordering sense. If the
service times are i.i.d. and satisfy a New-Better-than-Used (NBU)
distributional property, the non-preemptive LGFS policy is shown
to be within a constant gap from the optimum age performance.
These age-optimality results are quite general: (i) they hold for
arbitrary packet generation times and arrival times (including
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out-of-order packet arrivals); (ii) they hold for multi-server
packet scheduling with the possibility of replicating a packet
over multiple servers; (iii) and they hold for minimizing not
only the time-average age and mean peak age, but also for
minimizing the age stochastic process and any non-decreasing
functional of the age stochastic process. If the packet generation
time is equal to the packet arrival time, the LGFS policies reduce
to the Last-Come, First-Serve (LCFS) policies. Hence, the age
optimality results of LCFS-type policies are also established.

Index Terms— Age of information, information update system,
new-better-than-used, date freshness, replication.

I. INTRODUCTION

HE ubiquity of mobile devices and applications has
greatly boosted the demand for real-time information
updates, such as news, weather reports, email notifications,
stock quotes, social updates, mobile ads, etc. Also, timely
status updates are crucial in networked monitoring and control
systems. These include, but are not limited to, sensor networks
used to measure temperature or other physical phenomena, and

surrounding monitoring in autonomous driving.
A common need in these real-time applications is to keep
the destination (i.e., information consumer) updated with the
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freshest information. To identify the timeliness of the updates,
a metric called the age-of-information, or simply age, was
defined in, e.g., [2]-[5]. At time ¢, if the packet with the largest
generation time at the destination was generated at time U (¢),
the age A(r) is defined as

A@)=t—-U(@). (D)

Hence, age is the time elapsed since the freshest received
packet was generated.

In recent years, a variety of approaches have been investi-
gated to reduce the age. In [5]-[7], it was found in First-Come,
First-Serve (FCFS) queueing systems that the time-average age
first decreases with the update frequency and then increases
with the update frequency. The optimal update frequency was
obtained to minimize the age in FCFS systems. In [8]-[10],
it was shown that the age can be further improved by
discarding old packets waiting in the queue when a new
sample arrives. Characterizing the age in Last-Come, First-
Serve (LCFS) queueing systems with gamma distributed ser-
vice times was considered in [11]. However, these studies
cannot tell us (i) which queueing discipline can minimize
the age and (ii) under what conditions the minimum age is
achievable.

In this paper, we answer these two questions for an
information-update system illustrated in Fig. 1, where a
sequence of update packets arrive at a queue with m servers
and a buffer size B. Each server can be used to model a
channel in multi-channel communication systems [12], or a
computer in parallel computing systems [13]. The service
times of the update packets are i.i.d. across servers and the
packets assigned to the same server. Let s; be the generation
time of the update packet i at an external source, and a; be the
arrival time of the update packet i at the queue. Out-of-order
packet arrivals are allowed, such that the packets may arrive
in an order different from their generation times, e.g., s; < s;
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but a; < a;. Packet replication [14]-[16] is considered in
this study. In particular, multiple replicas of a packet can
be assigned to different servers, at possibly different service
starting time epochs. The first completed replica is considered
as the valid execution of the packet; after that, the remaining
replicas of this packet are cancelled immediately to release the
servers. Suppose that a packet can be replicated on at most r
servers (r < m), where r is called the maximum replication
degree. If r = 1, this reduces to the case where replication
is not allowed at all. We propose a Last-Generated, First-
Serve (LGFS) scheduling policy, in which the packet with the
earliest generation time is served with the highest priority. The
following are the key contributions of this paper:

o If the packet service times are ii.d. exponentially dis-
tributed, then for arbitrary system parameters (includ-
ing arbitrary packet generation times s;, packet arrival
times a;, number of servers m, maximum replication
degree r, and buffer size B), we prove that the pre-
emptive LGFS with replication (prmp-LGFS-R) policy
minimizes the age stochastic process and any non-
decreasing functional of the age stochastic process among
all policies in a stochastic ordering sense (Theorem 6).
Note that this age penalty model is very general. Many
age penalty metrics studied in the literature, such as
the time-average age [5], [6], [8]-[11], [17]-[21], aver-
age peak age [7]-[9], [11], [20], [22], and time-average
age penalty function [23], [24], are special cases of
this age penalty model.

o We further investigate a more general class of
packet service time distributions called New-Better-
than-Used (NBU) distributions. We show that the non-
preemptive Last-Generated, First-Serve with replication
(non-prmp-LGFS-R) policy is within a constant age gap
from the optimum average age, and that the gap is
independent of the system parameters mentioned above
(Theorem 12). Note that policy non-prmp-LGFS-R with
a maximum replication degree r can be near age-optimal
compared with policies with any maximum replication
degree. This result was not anticipated: In [16], [25], [26],
it was shown that non-replication policies are near delay-
optimal and replication policies are far from the optimum
delay and throughput performance for NBU service time
distributions. From these studies, one would expect that
replications may worsen the age performance. To our
surprise, however, we found that a replicative policy
(i.e., non-prmp-LGFS-R) is near-optimal in minimizing
the age, even for NBU service time distributions.

« For a special case of the system settings where the update
packets arrive in the same order of their generation times
and there is no replication, the prmp-LGFS-R policy
reduces to LCFS with preemption in service for a single
source case in [17], and the non-prmp-LGFS-R when
B =1 reduces to LCFS with preemption only in waiting
for a single source case in [17], or the “M/M/1/2*”
in [8], [9]. Hence, our optimality results are also estab-
lished for these LCFS-type policies. This relationship
tells us that this policy can achieve age-optimality in this
case.
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« Finally, we investigate the throughput and delay perfor-
mance of the proposed policies. We show that if the
packet service times are i.i.d. exponentially distributed,
then the prmp-LGFS-R policy is also throughput and
delay optimal among all policies (Theorem 14). In addi-
tion, if the packet service times are i.i.d. NBU and replica-
tions are not allowed, then the non-prmp-LGES policy is
throughput and delay optimal among all non-preemptive
policies (Theorem 15).

To the best of our knowledge, these are the first optimality
results on minimizing the age-of-information in queueing
systems. Moreover, this is the first paper that considers packet
replication to minimize the age.

The remainder of this paper is organized as follows. After
a brief overview of related work in Section II, we present
the model and problem formulation in Section III. The age
of the proposed policies is analyzed in Section IV, and
the throughput and delay performance of these policies are
investigated in Section V. Finally, we conclude in Section VI.

II. RELATED WORK

A series of works studied the age performance
of scheduling policies in a single queueing system
with Poisson arrival process and exponential service

time [5], [6], [8]-[10], [17], [18]. In [5], [6], the update
frequency was optimized to improve data freshness in
FCFS information-update systems. The effect of the packet
management on the age was considered in [8]-[10]. It was
found that a good policy is to discard the old updates waiting
in the queue when a new sample arrives, which can greatly
reduce the impact of queueing delay on data freshness.
In [17], the time-average age was characterized for multiple
sources Last-Come, First-Serve (LCFS) information-update
systems with and without preemption. In this study, it was
shown that sharing service facility among Poisson sources
can improve the total age. Characterizing the time average
age for FCFS queueing system with two and infinite number
of servers was studied in [18]. The analysis in [18] showed
that the model with infinite servers has a lower age in
conjunction with more wasting of network resources due to
the rise in the obsolete delivered packets. One open question
in these studies on age analysis [5], [6], [8]-[10], [17], [18]
is whether the preemptive LCFS policy is age-optimal
for exponential service times. In this paper, we provide a
confirmative answer to this question, and further investigate
age-optimality for more general system settings such as
arbitrary packet generation and arrival processes (including
out-of-order packet arrivals), multi-server networks, as well
as packet replications over multiple servers.

In [19], the average age was characterized in a pull model,
where a customer sends requests to all servers to retrieve (pull)
the interested information. In this model, the servers carry
information with different freshness level and a user waits for
the responses from these servers. The server updating process
and the response times were assumed to be Poisson and expo-
nential, respectively. In contrast with [19], where the authors
assumed that a user contacts servers to check for updates, here
we prove age-optimality in a multi-server queueing system
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where a user sends the updates to a destination through the
servers and packet replication is considered.

Characterizing the age for a class of packet service time
distributions that are more general than exponential was con-
sidered in [7], [11], [22]. In [7], the age was analyzed in multi-
class M/G/1 and M/G/1/1 queues. The age performance in the
presence of errors when the service times are exponentially
distributed was analyzed in [22]. Gamma-distributed service
times was considered in [11]. The studies in [11], [22] were
carried out for LCFS queueing systems with and without
preemption. In complement with the age analysis results
in [7], [11], [22], we show that non-preemptive LGFS (and
its special case non-preemptive LCFS) policies are near age-
optimal for NBU service time distributions. Similar to the
exponential case, these results for NBU service times hold
for arbitrary packet general and arrival processes, multiple
server networks, and packet replication over multiple servers.
In addition, gamma distribution considered in [11], [22] is a
special case of NBU service time distributions.

In our study, packet generation and arrival times are
not controllable. Another line of research has been the
joint optimization of packet generation and transmissions
in [20], [21], [23], [24]. An information update policy was
developed in [23], [24], which was proven to minimize a
general class of non-negative, non-decreasing age penalty
functions among all causally feasible policies. More recently,
a real-time sampling problem of the Wiener process has been
studied in [27]: If the sampling times are independent of
the observed Wiener process, the optimal sampling problem
in [27] reduces to an age-of-information optimization problem;
otherwise, the optimal sampling policy can use knowledge of
the Wiener process to achieve better performance than age-of-
information optimization.

Recently, we generalized our results to multihop networks
in [28], where we proved that age-optimality is achievable
in multihop networks with arbitrary packet generation times,
packet arrival times, and general network topologies. In par-
ticular, it was shown that the LGFS policy is age-optimal
among all causal policies for exponential packet service times.
In addition, for arbitrary distributions of packet service times,
it was shown that the LGFS policy is age-optimal among all
non-preemptive work-conserving policies.

The considered age penalty model in this paper is very
general such that it includes, but is not limited to, the time-
average age [5], [6], [8]-[11], [17]-[21], average peak
age [7]-[9], [11], [20], [22], and time-average age penalty
function [23], [24].

III. MODEL AND FORMULATION

A. Notations and Definitions

For any random variable Z and an event A, let [Z|A] denote
a random variable with the conditional distribution of Z for
given A, and E[Z]|A] denote the conditional expectation of Z
for given A.

Let x = (x1,x2,...,x,) and y = (y1, y2,..., yn) be two
vectors in R”, then we denote x < y if x; < y; fori =
1,2,...,n. We use x;] to denote the i-th largest component
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of vector x. A set U C R” is called upper if y € U whenever
y > x and x € U. We will need the following definitions:

Definition 1. Univariate Stochastic Ordering: [29] Let X
and Y be two random variables. Then, X is said to be
stochastically smaller than Y (denoted as X <g Y), if

P{X > x} <P{Y > x}, VxeR.

Definition 2. Multivariate Stochastic Ordering: [29] Let
X and Y be two random vectors. Then, X is said to be
stochastically smaller than Y (denoted as X <4'Y), if

P{(X e U} <P{Y € U}, for all upper sets U C R".

Definition 3. Stochastic Ordering of Stochastic Processes:
[29] Let {X(t),t € [0,00)} and {Y(¢t),t € [0,00)} be two
stochastic processes. Then, {X(t),t € [0, 00)} is said to be
stochastically smaller than {Y (t),t € [0,00)} (denoted by
{X(@),t € [0,00)} <g {Y(1),t € [0,00)}), if, for all choices
of an integer n and t| <ty < ... <t, in [0, 00), it holds that

(X(11), X(12), ..., X(tn)) < (Y (11), Y (22), ..., Y (2n)), (2)

where the multivariate stochastic ordering in (2) was defined
in Definition 2.

B. Preliminary Propositions
The following propositions will be used throughout the
paper:

Proposition 1 ([29], Theorem 6.B.3). Let X = (X1, X»,
X)) and Y = (Y1,Ya, ..., Y,) be two n-dimensional
random vectors. If

Xl fst Yla

[X2|X1 = x1] <& [Y2|Y1 = y1] whenever x1 < y1,

and in general, fori =2,3,...,n,
[Xil X1 =x1,...,Xi-1 = xi—1] <g
[YilY1 = y1,...,Yi1 = yi-1]
whenever x; <y;, j=1,2,...,i — 1,

then X <, Y.

Proposition 2 ( [29], Theorem 6.B.16.(a)). Let X and Y be
two n-dimensional random vectors. If X <s Y and q : R" —
R¥ is any k-dimensional increasing [decreasing] function, for
any positive integer k, then the k-dimensional vectors q(X)
and q(Y) satisfy q(X) <q [Zs1q(Y).

Proposition 3 ( [29], Theorem 6.B.16.(b)). Let X1, X>, ... Xy
be a set of independent random vectors where the dimension of
X;iski, i =1,2,...,d. Let Y1, Y2, ...Yy4 be another set of
independent random vectors where the dimension of Y; is ki,
i=1,2,...,d. Denote k = k1+ky+...+kq. If X; <y Y; for
i =1,2,...,d, then, for any increasing function y : R - R,
one has
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Fig. 2. Sample path of the age process A(t).

Proposition 4 ( [29], Theorem 6.B.16.(e)). Let X, Y, and ©®
be random vectors such that [X|® = 0] < [Y|® = 0] for all
0 in the support of ©. Then X <y Y.

In the next proposition, =g denotes equality in law.

Proposition 5 ( [29], Theorem 6.B.30). The random processes
{X(@),t € [0,00)} and {Y(t),t € [0,00)} satisfy {X(t),t €
[0, 00)} <4 {Y (1), S [0, 00)} if, and only gf there exist two
random processes {X(t),t € [0,00)} and {Y(t),t € [0, o0)},
defined on the same probability space, such that

(X(0). 1 € 10,00)} =y {X (1)1 € [0, 00)},
{Y(t)’t € [O’ OO)} =st {Y(t)’t € [O’ OO)},

and _ _
P{X(@) <Y(),t €[0,00)} = 1.

C. Queueing System Model

We consider a queueing system with m servers as shown
in Fig. 1. The system starts to operate at time t = 0. The
update packets are generated exogenously to the system and
then arrive at the queue. Thus, the update packets may not
arrive at the queue instantly when they are generated. The i-th
update packet, called packet 7, is generated at time s;, arrives
at the queue at time a;, and is delivered to the destination at
time ¢; such that 0 < sy < s < ... and s; < a; < c¢;. Note
that in this paper, the sequences {s1, s2, ...} and {aj, az, ...}
are arbitrary. Hence, the update packets may not arrive at the
system in the order of their generation times. For example,
in Fig. 2, we have s1 < s but ao < a;. Let B denote the
buffer size of the queue which can be infinite, finite, or even
zero. If B is finite, the packets that arrive to a full buffer
are either dropped or replace other packets in the queue.
The packet service times are i.i.d. across servers and the
packets assigned to the same server, and are independent of
the packet generation and arrival processes. Packet replication
is considered in this model, where the maximum replication
degree is r (1 < r < m). In this model, one packet can be
replicated to at most r servers and the first completed replica
is considered as the valid execution of the packet. After that,
the remaining replicas of this packet are cancelled immediately
to release the servers. Note that, the maximum replication
degree r is fixed for a system; however, the number of replicas
that can be created for a packet may vary between 1 and r.
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D. Scheduling Policy

A scheduling policy, denoted by x, determines the packet
assignments and replications over time; it also controls drop-
ping or replacing packets when the queue buffer is full. Note
that the packet delivery time to the destination ¢; is a function
of the scheduling policy =, while the sequences {s1, s2, ...}
and {aj, az, ...} do not change according to the scheduling
policy. However, a policy 7 may have knowledge of the future
packet generation and arrival times. Moreover, we assume that
the packet service times are invariant of the scheduling policy
and the realization of a packet service time is unknown until its
service is completed (unless the service time is deterministic).

Define I1, as the set of all policies, that includes causal and
non-causal policies, when the maximum replication degree
is r. Hence, Iy C I1, C ... C II,,. Note that causal policies
are those policies whose scheduling decisions are made based
only on the history and current state of the system; while non-
causal policies are those policies whose scheduling decisions
are made based on the history, current, and future state of the
system. We define several types of policies in II,:

A policy is said to be preemptive, if a server can preempt
a packet being processed and switch to processing any other
(including the preempted packet itself) packet at any time;
only one copy of the preempted packet can be stored back
into the queue if there is enough buffer space and sent at a
later time when the servers are available again.! In contrast,
in a non-preemptive policy, processing of a packet cannot
be interrupted until the packet is completed or cancelled?;
after completing or cancelling a packet, the server can switch
to process another packet. A policy is said to be work-
conserving, if no server is idle whenever there are packets
waiting in the queue.

E. Age Performance Metric

Let U(t) = max{s; : ¢; < t} be the largest generation
time of the packets at the destination at time ¢. The age-of-
information, or simply the age, is defined as [2]-[5]

A=t —-U(). (3)

The initial state U(07) at time + = 0~ is invariant of the
policy = € II,, where we assume that so = U(07) = 0.
As shown in Fig. 2, the age increases linearly with ¢ but is
reset to a smaller value with the arrival of a packet with larger
generation time. The age process is given by

A ={A(),t € [0, 00)}. 4)

In this paper, we introduce a non-decreasing age penalty
Sfunctional g(A) to represent the level of dissatisfaction for
data staleness at the receiver or destination.

Definition 4. Age Penalty Functional: Let V be the set of
n-dimensional Lebesgue measurable functions, i.e.,

V={f:[0,00)" = R such that f is Lebesgue measurable}.

I a preempted packet is served again, its service either starts over or it
resumes the service from the preempted point. In case of exponential service
times, both scenarios are equivalent because of the memoryless property.

2Recall that a packet is cancelled when a replica has completed processing
at another server.
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A functional g : V — R is said to be an age penalty functional
if g is non-decreasing in the following sense:

g(A1) < g(A3), whenever A1(t) < Aa(t),Vt € [0,00). (5)

The age penalty functionals used in prior studies include:
o Time-average age [5], [6], [8]-[11], [17]-[21]: The
time-average age is defined as

1 T
a® =1 [ awa, ©

o Average peak age [7]-[9], [11], [20], [22]: The average
peak is defined as

K
1
£(8) =2 > Ac, (7
k=1
where Ay denotes the k-th peak value of A(¢) since time
t=0.
o Time-average age penalty function [23], [24]: The aver-
age age penalty function is

1 T
g3(A) = 7/0 h(A())dt, (@)

where h : [0, 0c0) — [0, 00) can be any non-negative and
non-decreasing function. As pointed out in [24], a stair-
shape function i(x) = |x] can be used to characterize
the dissatisfaction of data staleness when the information
of interest is checked periodically, and an exponential
function h(x) = e* is appropriate for online learning
and control applications where the demand for updating
data increases quickly with respect to the age. Also,
an indicator function A(x) = 1(x > d) can be used to
characterize the dissatisfaction when a given age limit d
is violated.

IV. AGE-OPTIMALITY RESULTS OF LGFS POLICIES

In this section, we provide age-optimality and near age-
optimality results for multi-server queueing networks with
packet replication. We start by considering the exponential
packet service time distribution and show that age-optimality
can be achieved. Then, we consider the classes of NBU packet
service time distributions and show that there exist simple
policies that can come close to age-optimality.

A. Exponential Service Time Distribution

We study age-optimal packet scheduling when the packet
service times are i.i.d. exponentially distributed. We start by
defining the Last-Generated, First-Serve discipline as follows.

Definition 5. A scheduling policy is said to follow the Last-
Generated, First-Serve (LGFS) discipline, if the last gener-
ated packet is served first among all packets in the system.

In the LGFS disciplines, packets are served according to
their generation times such that the packet with the largest
generation time is served first among all packets in the
system. In contrast, in the LCFS disciplines, packets are served
according to their arrival times such that the packet with the
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Algorithm 1 Prmp-LGFS-R Policy When r = 1

1 a:=0; // a is the smallest generation time of the packets under
service

2 [ :=m;

3 Q:=0; /I Q is the set of distinct packets that are under service

4 while the system is ON do

5 if a new packet p; with generation time s arrives then

6

7

8

9

/I I is the number of idle servers

if /=0 then /I All servers are busy
if s < a then /I Packet p; is stale
| Store the packet in the queue;

else /I Packet p; carries fresh information
10 Find packet p; € Q with generation time «;
11 Preempt packet p; and store it back to the queue;
12 Assign packet p; to the idle server;
13 0:=0U{pi} —1{pj}
14 end
15 else /I At least one of the servers is idle
16 Assign packet p; to an idle server;
17 0:=0U{pi}
18 end
19 Update 7
20 o :=min{s; : i € Q};
21 end
2 if a packet p; is delivered then
» 0:=0-{ph
24 if the queue is not empty then
25 Pick the packet with the largest generation time in the queue
Phs
26 Assign packet pj to an idle server;
27 Q= Q0U{pn}
28 end
29 Update I
30 o :=min{s; : i € Q};
31 end
32 end

largest arrival time is served first among all packets in the
system. Both disciplines are equivalent when the packets arrive
to the queue in the same order of their generation times.

In this paper, we propose a policy called preemptive Last-
Generated, First-Serve with replication (prmp-LGFS-R).
This policy follows the LGFS discipline. When there is
no replication (r = 1), the implementation details of
prmp-LGFS-R policy? are depicted in Algorithm 1.

When there is a packet replication (» > 1), the prmp-
LGFS-R policy acts as follows. We replicate the packet with
the largest generation time in the system on r servers. Then,
we replicate the packet with the second largest generation
time in the system on the remaining idle servers such that
the total number of replicas does not exceed r, and so on
(i.e., the replicas of the packet with a larger generation time
are sent with a higher priority than those of the packet with
a lower generation time). In other words, since we may not
have m = ar for some positive integer a, packets under
service may not be evenly distributed among the servers if
all servers are busy. In this case, we give the highest priority
to the k (k = |]) packets under service with the largest
generation times and each one of them is replicated on r
servers. The packet under service with the smallest generation
time is replicated on the remaining idle servers (whose number

3The decision related to dropping or replacing packets in the full buffer
case does not affect the age performance of prmp-LGFS-R policy. Hence,
we don’t specify this decision under the prmp-LGFS-R policy in all related
algorithms.
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Algorithm 2 Prmp-LGFS-R Policy When r > 1

o = 0; // o is the smallest generation time of the packets under service
1 :=m; /I I is the number of idle servers
Q=0 /I Q is the set of distinct packets that are under service
k= L%J; /I k is the number of distinct packets that each one of them
can be replicated on r servers

while the system is ON do

B W R =

5

6 if a new packet p; with generation time s arrives then

7 if 7/ =0 then /I All servers are busy

8 if s < a then // Packet p; is stale

9 | Store packet p; in the queue;

10 else // Packet p; carries fresh information

1 Find packet p; € Q with generation time «;

12 Preempt all replicas of packet pj;

13 Packet p; is stored back to the queue;

14 Q:=0U{pi} —{pj}

15 Update 1;

16 end

17 else /I At least one of the servers is idle

13 | 0:=0U{p}

19 end

20 o :=min{s; : i € Q};

21 if p; € Q and generation time of packet p; > o and 1 <r
then /I Specify the number of replicas of packet p;

2 Preempt (r — I) replicas of the packet with generation time

a;

23 Replicate packet p; on r idle servers;

24 else if p; € Q and generation time of packet p; = o then

25 | Replicate packet p; on min{r, I} idle servers;

26 end

27 Update 7;

28 end

29 if a packet p; is delivered then

30 Cancel the remaining replicas of packet py;

31 0:=0—-{p}h

32 if the queue is not empty then

33 Pick the packet with the largest generation time in the queue

Phs

2 Q:=Q0U{pn}

35 Replicate packet pj on min{r, /} idle servers;

36 Update /;

37 end

38 o :=min{s; : i € Q};

39 end

40 end

is less than r). If m = ar for some positive integer a, then
all packets under service are evenly distributed among the
servers and each one of them is replicated on r servers. The
implementation details of prmp-LGFS-R policy when r > 1
are depicted in Algorithm 2: This algorithm explains the
procedures that the prmp-LGFS-R policy follows in the case
of packet arrival and departure events as follows.

« Packet arrival event: If a new packet p; arrives, we first
check whether this new packet preempts an older packet
that is being processed or not in Steps 6-19. After that,
if packet p; is served, we specify the number of replicas
that we need to create for packet p; in Steps 21-26.
In particular, if packet p; is served, we have two possible
cases.

Case 1: The generation time of packet p; is greater than
the one with the smallest generation time in the set Q
(set Q is defined at the beginning of the algorithm).
In this case, we need to replicate packet p; on r idle
servers. Therefore, if the number of available servers (/)
is less than r, we preempt (r — I) more replicas of the
packet with the smallest generation time in the set Q and
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replicate packet p; on r servers. These procedures are
depicted in Steps 21-23.

Case 2: The generation time of packet p; is the smallest
one among the packets in the set Q. In this case, packet p;
is replicated on the available idle servers such that the
total number of replicas of packet p; does not exceed r,
as depicted in Steps 24-26.

o Packet departure event: If a packet p; is delivered,
we cancel all the remaining replicas of packet p;. More-
over, if the queue is not empty, we pick the freshest packet
in the queue and replicate it on the available idle servers
such that the total number of replicas of this packet
does not exceed r. These procedures are illustrated in
Steps 29-39.

Note that the prmp-LGFS-R policy is a causal policy, i.e., its
scheduling decisions are made based on the history and current
state of the system and do not require the knowledge of
the future packet generation and arrival times. Define a set
of parameters 7 = {B,m,r,s;,a;,i = 1,2,...}, where B
is the queue buffer size, m is the number of servers, r is
the maximum replication degree, s; is the generation time of
packet i, and a; is the arrival time of packet i. Let A, =
{A;(t),t € [0,00)} be the age processes under policy 7. The
age performance of the prmp-LGFS-R policy is characterized
as follows.

Theorem 6. Suppose that the packet service times are expo-
nentially distributed, and i.1.d. across servers and the packets
assigned to the same server, then for all T and © € 11,

[Aprmp—LGFS-R|I] Sst [A7r|I], (9)

or equivalently, for all T and non-decreasing functional g

E[g(Aprmp-LGFs-R)| L] = 7?6111'111 E[g(Az)IZ], (10)
provided the expectations in (10) exist.
Proof. See Appendix A. O

Theorem 6 tells us that for arbitrary sequence of packet
generation times (s, 52, . ..), sequence of packet arrival times
(a1, az,...), buffer size B, number of servers m, and maxi-
mum replication degree r, the prmp-LGFS-R policy achieves
optimality of the age process within the policy space II,.
In addition, (10) tells us that the prmp-LGFS-R policy min-
imizes any non-decreasing functional of the age process,
including the time-average age (6), average peak age (7), and
time-average age penalty function (8) as special cases. It is
important to emphasize that the prmp-LGFS-R policy can
achieve optimality compared with all causal and non-causal
policies in II,. Also, when the update packets arrive in the
same order of their generation times and there is no replication,
the prmp-LGFS-R policy becomes LCFS with preemption in
service (LCFS-S) for a single source case that was proposed
in [17]. Thus, this policy can achieve age-optimality in this
case.

As a result of Theorem 6, we can deduce the following
corollaries:

A weaker version of Theorem 6 can be obtained as follows.

Corollary 7. If the conditions of Theorem 6 hold, then for
any arbitrary packet generation and arrival processes, and for
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all © € 11,

Aprmp—LGFS—R <u Az.

Proof. We consider the mixture over multiple sample paths
of the packet generation and arrival processes to prove the
result. In particular, by using the result of Theorem 6 and
Proposition 4, the corollary follows. O

Corollary 8. Under the conditions of Theorem 6, if one packet
can be replicated to all m servers (i.e., r = m), then for all Z,
the prmp-LGFS-R policy when r = m is an age-optimal among
all policies in 11,,.

Proof. This corollary is a direct result of Theorem 6. O
It is important to recall that I[1; C II, C ... C II,,. Therefore,
Corollary 8 tells us that the prmp-LGFS-R policy when r = m
achieves age-optimality compared with all policies with any
maximum replication degree.

Corollary 9. If the conditions of Theorem 6 hold, then for
all T, the age performance of the prmp-LGFS-R policy remains
the same for any queue size B > 0.

Proof. From the operation of policy prmp-LGFS-R, its queue
is used to store the preempted packets and outdated arrived
packets. The age process of the prmp-LGFS-R policy is not
affected no matter these packets are delivered or not. Hence,
the age performance of the prmp-LGFS-R policy is invariant
for any queue size B > 0. This completes the proof. O

The next corollary clarifies the relationship between the
prmp-LGFS-R policy and the LCFS-S policy.

Corollary 10. Under the conditions of Theorem 6, if the
packets arrive to the queue in the same order of their gen-
eration times and replications are not allowed, then for all Z,
the LCFS-S policy is age-optimal, i.e., the LCFS-S satisfies (9)
and (10).

Proof. This corollary is a direct result of Theorem 6. O

1) Simulation Results: We present some simulation results
to compare the age performance of the prmp-LGFS-R policy
with other policies. The packet service times are exponentially
distributed with mean 1/u = 1. The inter-generation times
are i.i.d. Erlang-2 distribution with mean 1/A. The number of
servers is m. Hence, the traffic intensity is p = A/mu.* The
queue size is B, which is a non-negative integer.

Figure 3 illustrates the time-average age versus p for an
information-update system with m = 1 server. The time
difference (a; — s;) between packet generation and arrival
is zero, i.e., the update packets arrive in the same order of
their generation times. We can observe that the prmp-LGFS-R
policy achieves a smaller age than the FCES policy analyzed
in [5], and the non-preemptive LGFS policy with queue size
B =1 which is equivalent to “M/M/1/2*” in [8], [9] in this
case. Note that in these prior studies, the age was characterized
only for the special case of Poisson arrival process. Moreover,
with ordered arrived packets at the server, the LGFS policy
and LCFS policy have the same age performance.

4Throughout this paper, the traffic intensity p is computed without consid-
ering replications (i.e., p is calculated when r = 1).

5221

7 L L L L L L L 1]
— -FCFS, B=oo !
--#+ FCFS, B=10 !
6F\  |..... FCFS, B=1 1 %
—--Non-prmp-LGFS-R, B=1 !
° — Prmp-LGFS-R, any B> 0 IS
o5 1 3 1
P '
2 %
o4r > ]
< K
\ ,x“
3F Ql“\”;"s‘_‘—“— - - -
2F .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

Fig. 3. Average age versus traffic intensity p for an update system with
m =1 server, queue size B, and i.i.d. exponential service times.
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Fig. 4. Average peak age versus traffic intensity p for an update system
with m = 4 servers, queue size B, maximum replication degree r, and i.i.d.
exponential service times.

Figure 4 plots the average peak age versus p for an
information-update system with m = 4 servers. The time
difference between packet generation and arrival, i.e., a; — s;,
is modeled to be either 1 or 100, with equal probability.
The maximum replication degree r is either 1, 2, or 4. For
each r, we found that the prmp-LGFS-R policy achieves better
age performance than other policies that belong to the policy
space II,. For example, the age performance of the prmp-
LGFS-R policy when r = 2 is better than the age performance
of the other policies that are plotted when » equal to 1 and 2.
Note that the age performance of the prmp-LGFS-R policy
remains the same for any queue size B > (0. However, the age
performance of the non-prmp-LGFS-R policy and FCFS policy
varies with the queue size B. We also observe that the average
peak age in case of FCFS policy with B = oo blows up
when the traffic intensity is high. This is due to the increased
congestion in the network which leads to a delivery of stale
packets. Moreover, in case of FCFS policy with B = 10,
the average peak age is high but bounded at high traffic
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intensity, since the fresh packet has a better opportunity to
be delivered in a relatively short period compared with FCEFS
policy with B = oo. These numerical results agree with
Theorem 6.

B. NBU Service Time Distributions

The next question we proceed to answer is whether for
an important class of distributions that are more general
than exponential, age-optimality or near age-optimality can be
achieved. We consider the class of NBU packet service time
distributions, which are defined as follows.

Definition 6. New-Better-than-Used distributions: Consider
a non-negative random variable Z with complementary cumu-
lative distribution function (CCDF) F(z) = P[Z > z]. Then,
Z is New-Better-than-Used (NBU) if for all t,7 > 0

F(t +1) < F()F(). (11)

Examples of NBU distributions include constant service
time, Gamma distribution, (shifted) exponential distribution,
geometric distribution, Erlang distribution, negative binomial
distribution, etc.

Next, we show that near age-optimality can be achieved
when the service times are NBU. We propose a policy called
non-preemptive LGFS with replication (non-prmp-LGFS-R).
The non-prmp-LGFS-R policy has the same main features of
the prmp-LGFS-R policy except that the non-prmp-LGFS-R
policy does not allow packet preemption. Moreover, under
the non-prmp-LGFS-R policy, the fresh packet replaces the
packet with the smallest generation time in the queue when
it has a finite buffer size that is full. The description of the
non-prmp-LGFS-R policy is depicted in Algorithm 3: This
algorithm explains the procedures that the non-prmp-LGFS-R
policy follows in the case of packet arrival and departure
events as follows.

« Packet arrival event: If a new packet p; arrives and all

servers are busy, then we have two cases.

Case 1: The buffer is full. In this case, packet p; is either
dropped or replaces another packet in the queue depend-
ing on its generation time, as depicted in Steps 7-12.
Case 2: The buffer is not full. In this case, packet p; is
stored directly in the queue, as depicted in Steps 13-15.
If there are idle servers, then packet p; is replicated on
the available idle servers such that the total number of
replicas of packet p; does not exceed r, as illustrated in
Steps 17-20.

o Packet departure event: If a packet p; is delivered,
we cancel all the remaining replicas of packet p;. Also,
if there is a packet p; that is replicated on fewer servers
than r servers, then packet p; is replicated on extra
((k + 1)r — m) servers under two cases.

Case A: If the queue is empty, as depicted in Steps 24-26.
Case B: If the queue is not empty, but the generation time
of packet p; is greater than the largest generation time
of the packets in the queue, as depicted in Steps 27-32.
Finally, if the queue is not empty, the packet with the
largest generation time in the queue is replicated on
the available idle servers such that the total number of
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Algorithm 3 Non-prmp-LGFS-R Policy

1 0:=0; //Jis the smallest generation time of the packets in the queue
2 [ :=m; // I is the number of idle servers
3 k= L"r—’J; /I 'k is number of packets that each one of them can be

replicated on r servers
4 while the system is ON do

5 if a new packet p; with generation time s arrives then

6 if /=0 then /I All servers are busy

7 if Buffer is full then

8 if s > 0 then /I Packet p; carries fresh information

9 Packet p; replaces the packet with generation time ¢

in the queue;

10 else /] Packet p; is stale

1 | Drop packet p;;

12 end

13 else

14 | Store packet p; in the queue;

15 end

16 Update 0;

17 else /I At least one of the servers is idle

18 Replicate packet p; on min{r, /} idle servers;

19 Update 7;

20 end

21 if a packet p; is delivered then

2 Cancel the remaining replicas of packet py;

23 Update /;

24 Find packet p; that is replicated on (m — kr) servers;

25 if the queue is empty and packet p; exists then

26 | Replicate packet p; on extra ((k + 1)r —m) idle servers;

27 else if the queue is not empty then

28 Pick the packet with the largest generation time in the
queue pp;

29 if packet p; exists and generation time of packet p;j >
generation time of packet pj, then

30 Replicate packet p; on extra ((k + 1)r —m) idle

servers;

31 Update 7;

32 end

33 Replicate packet pj, on min{r, I} idle servers;

34 end

35 Update /;

36 Update 0;

37 end

38 end

39 end

replicas of this packet does not exceed r, as illustrated in
Step 33.

It is important to emphasize that the non-prmp-LGFS-R
policy is a causal policy, i.e., its scheduling decisions are made
based on the history and current state of the system and do
not require the knowledge of the future packet generation and
arrival times. To show that policy non-prmp-LGFS-R can come
close to age-optimal, we need to construct an age lower bound
as follows:

Let v; denote the earliest time that packet i has started
service (the earliest assignment time of packet i to a server),
which is a function of the scheduling policy z. Define a
function ALB(¢) as

ALB(1) =1 — max{s; 1 v;(z) <1}. (12)

The process of ALB(¢) is given by ALB = {ALB(1),+ €
[0, 00)}. The definition of the process A%B(t) is similar to
that of the age process of policy # except that the packet
completion times are replaced by their assignment times to
the servers. In this case, the process AE;B () increases linearly
with 7 but is reset to a smaller value with the assignment of a
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Fig. 5. The evolution of A%B and Az in a single server queue. We assume
that a; > s1 and ap > ¢ > sp. Thus, we have v; = a; and vy = ap.

fresher packet to a server under policy z, as shown in Fig. 5.
The process Aﬁfn_prmp_LGFS_R is a lower bound of all policies
in II,, in the following sense.

Lemma 11. Suppose that the packet service times are NBU,
and i.1.d. across servers and the packets assigned to the same
server, then for all T satisfying B > 1, and © € 11,,

[Aﬁfn—prmp—LGFS—R|I] S5t [Ax|Z]. (13)

Proof. See Appendix B. O]

We can now proceed to characterize the age performance
of policy non-prmp-LGFS-R. Let X1, ..., X,, denote the i.i.d.
packet service times of the m servers, with mean E[X;] =
E[X] < oo. We use Lemma 11 to prove the following
theorem.

Theorem 12. Suppose that the packet service times are NBU,
and i.i.d. across servers and the packets assigned to the same
server, then for all T satisfying B > 1

(a)

nm}_}l [Azr I7] < [Anon—prmp—LGFS—R|I] =

m

min [A;|Z] + E[X].

relly

(14)

(b) If there is a positive integer a such that m = ar, then

min [An 7] < [Anon-prmp-LGFS—R|I] <

welly
min [A;|Z] +E[ min X;], (15)
relly, I=1,...,r
_ T
where A = limsupy_, w is the average age
under policy «.
Proof. See Appendix C. O

Theorem 12 tells us that for arbitrary sequence of packet
generation times (s, 52, . ..), sequence of packet arrival times
(ai,az,...), number of servers m, maximum replication
degree r, and buffer size B > 1, the non-prmp-LGFS-R
policy is within a constant age gap from the optimum average
age among policies in II,,. It is important to emphasize that
policy non-prmp-LGFS-R with a maximum replication degree
r can be near age-optimal compared with policies with any
maximum replication degree. Also, when the update packets
arrive in the same order of their generation times and there
is no replication, the non-prmp-LGFS-R policy when B = 1
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Fig. 6.  Average age versus traffic intensity p for an update system with
m = 4 servers, queue size B, maximum replication degree r, and i.i.d NBU
service times.

becomes LCFS with preemption only in waiting (LCFS-W)
for a single source case in [17], or the “M/M/1/2*” in [8], [9].
Thus, these policies can achieve near age-optimality in this
case. The following corollary emphasizes this relationship.

Corollary 13. Under the conditions of Theorem 12, if the
packets arrive to the queue in the same order of their gener-
ation times, replications are not allowed (r = 1), and B = 1,
then for all Z, the LCFS-W policy and the “M/M/1/2*” policy
are near age-optimal, i.e., these policies satisfy (14).

Proof. This corollary is a direct result of Theorem 12. O

1) Simulation Results: We now provide simulation results
to illustrate the age performance of different policies when
the service times are NBU. The inter-generation times are
i.i.d. Erlang-2 distribution with mean 1/4. The time difference
(a; — s;) between packet generation and arrival is zero. The
maximum replication degree r is either 1 or 4.

Figure 6 plots the average age versus p for an information-
update system with m = 4 servers. The packet service times
are the sum of a constant .25 and a value drawn from
an exponential distribution with mean .25. Hence, the mean
service time is 1/u = .5. The “Age lower bound” curves are

T ALB
fO Anon»prmp-LGFS»R(I)dt

generated by using T when r is 1 and 4,
and B = | which, according to Lemma 11, are lower bounds
of the optimum average age. We can observe that the gap
between the “Age lower bound” curves and the average age
of the non-prmp-LGFS-R policy when » = 1 and r = 4 is no
larger than E[X] = 1/u = .5, which agrees with Theorem 12.
This is a surprising result since it was shown in [16], [25], [26]
that replication policies are far from the optimum delay and
throughput performance for NBU service time distributions.
Moreover, we can observe that the average age of the prmp-
LGFS-R policies blows up when the traffic intensity is high.
This is because the packet service times do not have the
memoryless property in this case. Hence, when a packet is
preempted, the service time of a new packet is probably
longer than the remaining service time of the preempted
packet. Because the arrival rate is high, packet preemption
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Fig. 7. Average age under gamma service time distributions with different

shape parameter K, where m = 4 servers, queue size B = 0o, and maximum
replication degree r.

happens frequently, which leads to infrequent packet delivery
and increases the age, as observed in [8].

Figure 7 plots the average age under gamma service time
distributions with different shape parameter K, where m = 4,
B = oo, and the traffic intensity p = A/mu = 1.8. The
mean of the gamma service time distributions is normalized
to 1/u = 1. Note that the average age of the FCFS policy
in this case is extremely high and hence is not plotted in this
figure. One can notice that packet replication and preemption
affect the age performance of the plotted policies. In particular,
we found that packet replication improves the age performance
of the non-prmp-LGFS-R policy when the shape parameter
K < 12.5, where the non-prmp-LGFS-R policy for r = 4
outperforms the case of » = 1. This is because the variance
(variability) of the normalized gamma distribution is high for
small values of K. Thus, packet replication can exploit the
diversity provided by the four servers in this case. For the
same reason, we can observe that packet replication improves
the age performance of the preemptive policies when K = 1,
where the prmp-LGFS-R policy for r = 4 achieves the best
age performance among all plotted policies. Another reason
behind the latter observation is that a gamma distribution
with shape parameter K = 1 is an exponential distribution
and hence is memoryless. Thus, packet preemption improves
the age performance in this case and age-optimality can be
achieved by the prmp-LGFS-R policy when r = m as stated
in Theorem 6 and Corollary 8. On the other hand, as the
shape parameter K increases, the variance (variability) of
the normalized gamma distribution decreases. This, in turn,
reduces the benefit gained from the diversity provided by four
servers and hence worsens the age performance of the policies
that use packet replication. Moreover, as can be seen in the
figure, preemption further worsens the age performance as the
shape parameter K increases, and the average age of the prmp-
LGFS-R policies blows up in this case. This is because of the
reduction in the variability of the packet service time when
the shape parameter K increases as well as the loss of the
memoryless property when K # 1. Thus, preemption is not
useful in this case.
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C. Discussion

In this subsection, we discuss our results and compare it
with prior works.

1) Preemption vs. Non-Preemption: The effect of the pre-
emption on the age performance depends basically on the
distribution of the packet service time. More specifically,
when the packet service times are exponentially distributed,
preemptive policies (i.e., prmp-LGFS-R) can achieve age-
optimality (Theorem 6). This is because the remaining service
time of a preempted packet has the same distribution as
the service time of a new packet. For example, in Fig. 7,
preemptive policies provide the best age performance when
K = 1 (gamma distribution with shape parameter K = 1
is an exponential distribution). It is important to notice that
preemptive policies can achieve age-optimality regardless of
the value of p, even if the system is unstable when p > 1
(p = 1.8 in Fig. 7). Thus, we suggest using preemption
when the packet service times are exponentially distributed.
However, when the packet service times are NBU, we suggest
to not use preemption. This is because the service times are
no longer memoryless. Hence, when a packet is preempted,
the service time of a new packet is probably longer than the
remaining service time of the preempted packet. As shown
in Fig. 7, the age of the preemptive LGFS policy grows to
infinity at high traffic intensity for gamma distributed service
times with K > 1. Thus, we suggest using non-preemptive
policies (i.e., non-prmp-LGFS-R) instead when the packet
service times are NBU.

Similar observations have been made in previous stud-
ies [11], [17]. For exponential service time distribution, Yates
and Kaul showed in Theorem 3(a) of [17] that the average
age of the preemptive LCFS policy is a decreasing function
of the traffic intensity p in M/M/1 queues as p grows to
infinite. This agrees with our study, in which we proved that
the preemptive LCFS policy is age-optimal for exponential
service times and general system parameters. For NBU service
time distributions, our study agrees with [11]. In particular,
in [11, Numerical Results], the authors showed that the non-
preemptive LCFS policy can achieve better average age than
the preemptive LCFS policy. In this paper, we further show
that the non-prmp-LGFS-R policy is within a small constant
gap from the optimum age performance for all NBU service
time distributions, which include gamma distribution as one
example.

In general, our study was carried out for system settings
that are more general than [17] and [11].

2) Replication vs. Non-Replication: The replication tech-
nique has gained significant attention in recent years to reduce
the delay in queueing systems [14]-[16]. However, it was
shown in [16], [25], [26] that replication policies are far
from the optimum delay and throughput performance for NBU
service time distributions. A simple explanation of this result
is as follows: Let X1, ..., X,; be i.i.d. NBU random variables
with mean E[X;] = E[X] < oco. From the properties of the
NBU distributions, we can obtain [29]

1 _m
IE[Ininlzl,...,m X1~ E[X]

(16)
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Now, if X; represents the packet service time of server /, then
the left-hand side of (16) represents the service rate when
each packet is replicated to all servers; and the right-hand side
of (16) represents the service rate when there is no replication.
This gives insight why packet replication can worsen the delay
and throughput performance when the service times are NBU.
Somewhat to our surprise, we found that the non-prmp-
LGFS-R policy is near-optimal in minimizing the age, even for
NBU service time distributions. The intuition behind this result
is that the age is affected by only the freshest packet, instead
of all the packets in the queue. In other words, to reduce the
age, we need to deliver the freshest packet as soon as possible.

Obviously, we have
E[ min X;] < E[X].

I=1,....m

a7

Thus, packet replication can help to reduce the age by exploit-
ing the diversity provided by multiple servers. As shown
in Fig. 7, we can observe that packet replication can improve
the age performance. In particular, the age performance of the
non-prmp-LGFS-R policy with r = 4 is better than that of the
non-prmp-LGFS-R policy with » = 1 when K < 12.5.

V. THROUGHPUT-DELAY ANALYSIS

Recent studies on information-update systems have shown
that the age-of-information can be reduced by intelligently
dropping stale packets. However, packet dropping may not be
appropriate in many applications such as (but not limited to):

o News feeds: In addition to the latest breaking news,
the older news may be relevant to the user as well
(e.g., to provide context or outline a different story that
the user may have missed, etc.).

« Social updates: Users may need to be up to date with
the freshest events and social posts. Nonetheless, they
may also be interested in the previous posts. Thus, social
applications need to update users with latest posts and
previous ones as well.

o Stock quotes: Although the latest price in the market
is very important for the traders, they may also use the
history of the price change to predict the short-term price
movement and attempt to profit from this. Thus, both the
latest prices and historical price data are important in this
case.

o Autonomous driving or sensor information: In such
applications, while it is important to receive the latest
information, historical information may also be relevant
to exploit trends. For example, historical data on loca-
tion information can predict the trajectory, velocity, and
acceleration of the automobile. Similarly, certain types
of historical sensed data may be useful to predict forest
fires, earthquakes, Tsunamis, etc.

In these applications, users are interested in not just the latest
updates, but also past information. Therefore, all packets may
need to be successfully delivered. This motivates us to study
whether it is possible to simultaneously optimize multiple
performance metrics, such as age, throughput, and delay. In the
sequel, we investigate the throughput and delay performance
of the proposed policies. We first consider the exponential
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service time distribution. Then, we generalize the service time
distribution to the NBU distributions. We need the following
definitions:

Definition 7. Throughput-optimality: A policy is said to be
throughput-optimal, if it maximizes the expected number of
delivered packets among all policies.

The average delay under policy 7 is defined as

1 n
Davg (1) = — > [ei(x) = ail, (18)
i=1

where the delay of packet i under policy 7 is ¢;(7) — a;.>

Definition 8. Delay-optimality: A policy is said to be delay-
optimal, if it minimizes the expected average delay among all
policies.

Note that to maximize the throughput, we need to maximize
the total number of distinct delivered packets. Moreover,
to minimize the expected average delay, we need to minimize
the total number of distinct packets in the system along the
time. Based on these two key ideas, we prove our results in
the next subsections.

A. Exponential Service Time Distribution

We study the throughput and delay performance of the
prmp-LGFS-R policy when the service times are i.i.d. expo-
nentially distributed. The delay and throughput performance
of the prmp-LGFS-R policy are characterized as follows:

Theorem 14. Suppose that the packet service times are
exponentially distributed, and i.i.d. across servers and the
packets assigned to the same server, then for all T such that
B = oo, the prmp-LGFS-R policy is throughput-optimal and
delay-optimal among all policies in 11,,.

Proof. We provide a proof sketch of Theorem 14. We use the
coupling and forward induction to prove it. We first consider
the comparison between the prmp-LGFS-R policy and an
arbitrary work-conserving policy 7. We couple the packet
departure processes at each server such that they are identical
under both policies. Then, we use the forward induction over
the packet arrival and departure events to show that the total
number of distinct packets in the system (excluding packet
replicas) and the total number of distinct delivered packets
are the same under both policies. By this, we show that the
prmp-LGFS-R policy has the same throughput and mean-
delay performance as any work-conserving policy (indeed, all
work-conserving policies have the same throughput and delay
performance). Finally, since the packet service times are i.i.d.
across servers and the packets assigned to the same server,
service idling only postpones the delivery of packets. There-
fore, both throughput and delay under non-work-conserving
policies will be worse. For more details, see Appendix D. [J

It is worth pointing out that when the packet service
times are i.i.d exponentially distributed, packet replication
does not affect the throughput and delay performance of the

5The lim sup operator is enforced on the right hand side of (18) if n — oo.
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replicative policies. The reasons for this observation can be
summarized as follows. Because the packet service times
are i.i.d. across the servers and the CCDF F is continuous,
the probability for any two servers to complete their packets
at the same time is zero. Therefore, in the replicative policies,
if one copy of a replicated packet is completed on a server,
the remaining replicated copies of this packet are still being
processed on the other servers; these replicated packet copies
are cancelled immediately and a new packet is replicated
on these servers. Due to the memoryless property of the
exponential distribution, the service times of the new packet
copies and the remaining service times of the cancelled packets
have the same distribution. Thus, packet replication does not
affect the throughput and delay performance of the replicative
policies.

B. NBU Service Time Distributions

Now, we consider a class of NBU service time distributions.
We study the throughput and delay performance of the non-
prmp-LGFS-R policy when there is no replication. The delay
and throughput performance of the non-prmp-LGFS-R policy
are characterized as follows:

Theorem 15. Suppose that the packet service times are NBU,
and i.1.d. across servers and the packets assigned to the same
server, then for all T such that B = oo and r = 1, the non-
prmp-LGFS-R policy is throughput-optimal and delay-optimal
among all non-preemptive policies in I1;.

We omit the proof of Theorem 15, because it is similar to
that of Theorem 14.

VI. CONCLUSIONS

In this paper, we studied the age-of-information optimiza-
tion in multi-server queues. Packet replication was considered
in this model, where the maximum replication degree is con-
strained. We considered general system settings including arbi-
trary arrival processes where the incoming update packets may
arrive out of order of their generation times. We developed
scheduling policies that can achieve age-optimality for any
maximum replication degree when the packet service times are
exponentially distributed. This optimality result not only holds
for the age process, but also for any non-decreasing functional
of the age process. Interestingly, the proposed policies can also
achieve throughput and delay optimality. In addition, we inves-
tigated the class of NBU packet service time distributions
and showed that LGFS policies with replication are near age-
optimal for any maximum replication degree.

APPENDIX A
PROOF OF THEOREM 6

We need to define the system state of any policy x:

Definition 9. Define U, (t) as the largest generation time of
the packets at the destination at time t under policy n. Let
aiz(t) be the generation time of the packet that is being
processed by server i at time t under policy &, where we set
aix (t) = Uz (t) if server i is idle. Then, at any time t, the sys-
tem state of policy ©t is specified by V() = (Ur (t), af11,z (1),
..., 0,z (t)). Note that if there is a replication, we may
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have afi)z (t) = oa[i+11.z () for some i’s. Without loss of
generality, if h servers are sending packets with generation
times less than Ug(t) (i.e., apul,z(t) < Opm—112z(t) < ... <
apm—n+11,7 (&) < Ugr(t)) or h servers are idle, then we set
Am),x (t) = ... = Am—n+11,z (t) = Uz (t). Hence,

Ur (1) < apmyz (1) < ... < appx (). (19)

Let {V,(t),t € [0, 00)} be the state process of policy m, which
is assumed to be right-continuous. For notational simplicity,
let policy P represent the prmp-LGFS-R policy. Throughout
the proof, we assume that Vp(0~) =V, (07) for all = € I1,.

The key step in the proof of Theorem 6 is the following
lemma, where we compare policy P with any work-conserving
policy 7.

Lemma 16. Suppose that Vp(0~) = V,(07) for all work
conserving policies r, then for all T

{Vp (), 1 €10, 00)}Z]=4 [{Vz (1), € [0, 00)}|Z]. (20)

We use coupling and forward induction to prove Lemma 16.
For any work-conserving policy 7z, suppose that stochastic
processes Vp(#) and V7 (¢) have the same stochastic laws
as Vp(t) and V(r). The state processes Vp(t) and V. (¢)
are coupled in the following manner: If the packet with
generation time af;),p(r) is delivered at time r as Vp(r)
evolves, then the packet with generation time @,z (f) is
delivered at time ¢ as V. (z) evolves. Such a coupling is
valid because the service times are exponentially distributed
and thus memoryless. Moreover, policy P and policy = have
identical packet generation times (s1, 52, . . .) and packet arrival
times (a1, az, . ..). According to Proposition 5, if we can show

P[Vp(1) > Vi (1), 1 € [0,00)|Z] = 1, Q1)

then (20) is proven. To ease the notational burden, we will
omit the tildes on the coupled versions in this proof and just
use Vp(r) and V;(¢). Next, we use the following lemmas to
prove (21):

Lemma 17. Ar any time t, suppose that the system state
of policy P is {Up,apy,p,...,0m),p}, and meanwhile the

system state of policy w is {Uz,a[i),z,---> Amlz ) If
Up > Uy, (22)
then,
o[Lp = iz, Yi=1,...,m. (23)

Proof. Let S denote the set of packets that have arrived to the
system at the considered time ¢. It is important to note that
the set S is invariant of the scheduling policy. If S is empty,
then since Vp(0™) = V,(07), Lemma 17 follows directly.
Thus, we assume that S is not empty during the proof. We use
s[;] to denote the i-th largest generation time of the packets
in §. Define k = | %% |. From the definition of the system state,
condition (19), and the definition of policy P, we have

api,p = max{sy}, Up},
Vi=G—-Dr+1,...
ajil,p = max{sp+1y, Up}, Vi =kr+1,...,m.

S Vji=1,...,k,
(24)
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Since policy # is an arbitrary policy, the servers under policy @
may not process the packets with the largest generation times
in the set S or policy # may replicate packets with lower
generation times more than those that have larger generation
times in the set S. Hence, we have

afil,x < max{sf;}, Ur},
Vi=((—-Dr+1,...
afi,z < max{sp+1y, Uz}, Yi=kr +1,...,m.

SJn Vi=1,...,k,
(25)

where the maximization here follows from the definition of
the system state. Since the set S is invariant of the scheduling
policy and Up > Uy, this with (24) and (25) imply

ap,p > aiilz, Vi=1,...,m, (26)

which completes the proof. O]

Lemma 18. Suppose that under policy P, {Up,a[ ps
...,afm],P} is obtained by delivering a packet with gen-
eration time oy, p to the destination in the system whose
state is {Up, a[11,p, ..., 0[m),p}. Further, suppose that under
policy w, {Ug, @[y 1> O .} is Obtained by delivering a

packet with generation time ay),r to the destination in the
system whose state is {Uz, a1,z ->0mlx ) If
a[L,p > ailx, Yi=1,...,m, (27)
then,
Up=Ur,ajp =0, Yi=1...,m. (28)

Proof. Since the packet with generation time ay;), p is delivered
under policy P, the packet with generation time oy, 1is
delivered under policy 7, and ap),p > ayy,z, we get

U}, =aq,p = a[ll,z = U7/r' (29)
This, together with Lemma 17, implies
ap = i L=1,...,m. (30)

Hence, (28) holds for any queue size B > 0, which completes
the proof. O

Lemma 19. Suppose that under policy P, {Up, o[ ps
""aEm],P} is obtained by adding a packet to the system
whose state is {Up, o[1],p, - - ., Qm),P}. Further, suppose that
under policy &, {Ug, @[y 1> Oy 5} is obtained by adding

a packet to the system whose state is {Uz, 0[1],z - - > Cm],x }-
If
Up > U;T , (31)
then
Up=Up,ap = 0> Yi=1,...,m. (32)
Proof. Since there is no packet delivery, we have
Up=Up>U; =U,. (33)
This, together with Lemma 17, implies
aip = s L=1,...,m. (34)

Hence, (32) holds for any queue size B > 0, which completes
the proof. O
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Server 1 J time
Y3 G
Server 2 __|! [ -
T; v, Dy &

Fig. 8. Anillustration of v;, ¢;, I';, and D;. There are 2 servers, and s; > ;.
There is no packet with generation time greater than s; that is assigned to any
of the servers before time v ;. Packet j is assigned to Server 1 at time v; and
delivered to the destination at time ¢ s while packet i is assigned to Server 2
at time v; and delivered to the destination at time c¢;. The service starting
time and completion time of packet j are earlier than those of packet i. Thus,
we have I'; = v and D; =c;.

Proof of Lemma 16. For any sample path, we have that
Up(07) = Uz (07) and ap1,p(07) = ap,2(07) for i =
1,...,m. According to the coupling between the system state
processes {Vp(t),t € [0,00)} and {V;(¢), t € [0, 00)}, as well
as Lemma 18 and 19, we get

[UpMIZL] = [Uz (0)IT], [ai), p ()] = [agir,= (1) L],

holds for all ¢ € [0,00) andi =1, ..., m. Hence, (21) follows
which implies (20) by Proposition 5. This completes the
proof. O

Proof of Theorem 6. As a result of Lemma 16, we have
{Up(1), 1 € [0, 00)}|Z] st [{Ur (1), 1 € [0, 00)}|Z],

holds for all work-conserving policies 7, which implies
{Ap(1), 1 €10, 00)Z]=ul{Az (1), 1 € [0, 00)}|Z], (35)

holds for all work-conserving policies 7.

For non-work-conserving policies, since the packet service
times are ii.d. exponentially distributed, service idling only
increases the waiting time of the packet in the system.
Therefore, the age under non-work-conserving policies will
be greater. As a result, we have

[{AP(t)ﬂt 6[09 OO)}'I] SS'[ [{Aﬂ.'(t)’t E[O’ OO)}|I], Vﬂ € Hr-

Finally, (10) follows directly from (9) using the properties
of stochastic ordering [29]. This completes the proof. O

APPENDIX B
PROOF OF LEMMA 11

The proof of Lemma 11 is motivated by the proof idea of
[16, Lemma 1]. For notation simplicity, let policy P represent
the non-prmp-LGFS-R policy. We need to define the following
parameters:

Define I'; and D; as

(36)
(37

I'i =min{o; : 5; > 5;},
D; = min{c; : s; > s;}.

where I'; and D; are the smallest assignment time and com-
pletion time, respectively, of all packets that have generation
times greater than that of packet i. An illustration of these
parameters is provided in Fig. 8. Suppose that there are n
update packets, where n is an arbitrary positive integer, no mat-
ter finite or infinite. Define the vectors I' = (I'y,...,[,),
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and D = (Dy,..., Dy). All these quantities are functions of
the scheduling policy 7.

Notice that we can deduce from (3) that the age process
{Az(t),t € [0,00)} under any policy 7 is an increasing
function of D(x). Moreover, we can deduce from (12) that
the process {A%,B (t),t € [0,00)} is an increasing function of
I'(P). According to Proposition 2, if we can show

[T(P)IZ] =& [D(z)IZ], (38)

holds for all # € I1,,, then (13) is proven. Hence, (38) is what
we need to show. We pick an arbitrary policy = € II,, and
prove (38) using Proposition 1 into two steps.

Step 1: Consider packet 1. Define i* = argmin; a;, where
si+ > s1. Since all servers are idle by time a;+ and policy P is
work-conserving policy, packet i* will be assigned to a server

under policy P once it arrives. Thus, from (36), we obtain
[C1(P)IZ] = [vix (P)IT] = a*. (39)

Under policy 7, the completion times of all packets must be

no smaller than a;+. Hence, we have
[ci(m)IT] = a;=, Vi > 1. (40)

This with (37) imply

[D1()|Z] > ajx. (41)
Combining (39) and (41), we get
[C1(P)IZ] < [D1(z)|Z]. (42)

Step 2: Consider a packet j, where 2 < j < n. We suppose
that there is no packet with generation time greater than s; that
has been delivered before packet j under policy z. We need
to prove that

[T;(P)Z,T1(P)=1y1,....,Tj—1(P) =yj-1]
<a [Dj(@)|Z,Di(x) =di,...,Dj_1(x) =dj_1]
whenever y; <d;,i =1,2,...,j— 1. (43)

For notational simplicity, define ri-1 2 {C'1(P) =vy1,...,
Tj_1(P)=y;—1}and D/ £{D\(x) =d,...,Dj_i(zx) =
dj_1}. We will show that there is at least one server under
policy P that can serve a new packet at a time that is
stochastically smaller than the completion time of packet j
under policy 7. At this time, there are two possible cases
under policy P. One of them is that the idle server processes
a packet with generation time greater than s;. The other one
is that the idle server processes a packet with generation time
less than s; or there is no packet to be processed. We will
show that (43) holds in either case.

As illustrated in Fig. 9, suppose that u copies of packet j
are replicated on the servers [, [, ..., [, at the time epochs
T1,72,..., 7, in policy m, where v;(7) = mingy=1, 7.0
In addition, suppose that server /,, will complete serving its
copy of packet j at time a,, if there is no cancellation. Then,
one of these u servers will complete one copy of packet j
at time ¢;(7) = min,—1,. 4 0y, Which is the earliest among

OIf u = 1, then either there is no replication or policy 7 decides not to
replicate packet j.
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Policy 7 Server [y !ﬁ—j!_ _O!él time
Server Iy : 7_|2 J —
Server [y I_Eh—li-l time
Policy P Server Iy | : ho e(lp) L : |
vi(m) = 7 ej(m) = as
Fig. 9. Illustration of packet assignments under policy 7 and policy P.

In policy 7, two copies of packet j are replicated on the server /1 and server /o
at time 71 and 73, where vj(z) = min{zj, 72} = 7. Server /; completes
one copy of packet j at time c;(x) = ap, server /] cancels its redundant
copy of packet j at time c;(x). Hence, the service duration of packet j is
[vj(7),cj(x)] in policy 7. In policy P, at least one of the servers /; and I
becomes idle before time c;(z). In this example, server I/, becomes idle at
time 6(P) < cj(x) and a fresh packet k with s; > s; starts its service on
server [ at time 6(P).

these u servers. Hence, packet j starts service at time v (x)
and completes service at time ¢;(x) in policy z. In policy P,
let i, represent the index of the last packet that has been
assigned to server [,, before time 7,. Suppose that under
policy P, server [,, has spent y;, (1, > 0) seconds on serving
packet h, before time 7,. Let R;, denote the remaining
service time of server [,, for serving packet h, after time
7y in policy P. Let XZU = a, — T, denote the service time
of one copy of packet j in server /,, under policy = and
X li = j1, + Ri, denote the service time of packet &, in
server [, under policy P. The CCDF of R,, is given by
PR, > s1=P[X] —

>s1X) > ) @4)

w

Because the packet service times are NBU, we can obtain that
for all s, y;, >0

]P)[Xli = Xl > S|XII; > Xlw] =

PIXT — x, > sIX] > y,]1 < PIX[ > s]. (45)
By combining (44) and (45), we obtain
Ry, <u XT. (46)

Because the packet service times are independent across the
servers, by Lemma 13 of [16], Ry,..., R, are mutually
independent. By Proposition 3 and (46), we can obtain

(47)

min 7, + R, <¢ min 7, + X7 = min ay.
u w=l,...,u w w=1

w=1,..., s i
From (47) we can deduce that at least one of the servers
li,...,1,, say server I, becomes available to serve a new
packet under policy P at a time that is stochastically smaller
than the time ¢;(7) = miny—1,. 4 0. Let 6(P) denote the
time that server [, becomes available to serve a new packet in
policy P. According to (47), we have

[0(P)|Z, T/ <g [¢j(m)|Z, D/ 1]

whenever y; <d;,i =1,2,...,j— 1. (48)

At time 0(P), we have two possible cases under policy P:
Case 1: A fresh packet k is assigned at time 0 (P) to server [,

under policy P such that sy > s;, as shown in Fig. 10(a).
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Server [, 7 1 time
in policy 7 ﬁ’_ﬁ
1 L. 1
Server [, | 7 : I - : | time
in policy NP ~N—2~—~"
Xlz Tz Rlz v,
(@

Fig. 10.
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Server [, ] time
in policy m ﬁflﬂ—’;
1 z 1
Server [, I_hz:_l : time
i licy P e~ 1
in policy X. 1 R |
I I
Server ' Vo ]
in policy P Tz Az
®

The possible cases to occur after the completion of packet ;. (a) Case 1: Packet k is assigned to server [; after the completion of packet /.

(b) Case 2: Packet k is assigned to server I’ before the completion of packet /.

Hence, we obtain

[ok(PIZ, TV = [0(P)Z, TV 7" < [cj(x)|Z, D71

whenever y; <d;,i =1,2,...,j— 1.
(49)
Since s; > s, (36) implies
[T;(P)Z, T/ < [ok(P)IZ, T/ 71 (50)

Since there is no packet with generation time greater than s;
that has been delivered before packet j under policy =, (37)
implies

[D;(m)|Z, D/~ = [¢j(x)|Z, DI (51)

By combining (49), (50), and (51), (43) follows.

Case 2: A packet with generation time smaller than s;
is assigned to server /; or there is no packet assignment to
server [, at time #(P) under policy P. Since policy P is a
work-conserving policy, policy P serves the packet with the
largest generation time first, and the packet generation times
(s1,$2,...) and arrival times (a, aa, ...) are invariant of the
scheduling policy, a packet k with sy > s; must have been
assigned to another server, call it server [/, before time 6(P),
as shown in Fig. 10(b). Hence, we obtain

[oe(P)|Z, T/~ < [0(P)IZ, T/71] < [¢j(x)IZ, D7)
whenever y; <d;,i =1,2,...,j— 1.
(52)

Similar to Case 1, we can use (36), (37), and (52) to show
that (43) follows in this case.

It is important to note that if there is a packet y with s, > s;
and ¢, (7) < c¢j(z) (this may occur if packet y preempts the
service of packet j under policy 7 or packet y arrives to the
system before packet j), then we replace packet j by packet
y in the arguments and equations from (43) to (52) to obtain

[Ty(P)|Z, 1971 <4 [Dy(n)|Z, D/

whenever y; <d;,i =1,2,...,j — 1. (53)
Observing that s, > s;, (36) implies
[T (P)Z, T/ < [Ty (P)IZ, T/, (54)
Since cy(r) < cj(7) and sy, > s5;, (37) implies
[D;(@)|Z, D'~ = [Dy(m)IZ, D], (55)

By combining (53), (54), and (55), we can prove (43) in this
case too. Now, substituting (42) and (43) into Proposition 1,
(38) is proven. This completes the proof.

APPENDIX C
PROOF OF THEOREM 12

For notation simplicity, let policy P represent the non-prmp-
LGFS-R policy.

Proof of Theorem 12.(a). We prove Theorem 12.(a) into two
steps:

Step 1: We will show that the average gap between A%,B
and A p is upper bounded by E[X]. Recall the definitions of
I'; and D; from (36) and (37), respectively. Define d;(P) =
D;(P)—T;(P). We know that there is a packet k with s; > s;
that starts service at time I';(P) under policy P. Without
loss of generality, suppose that a server [ is processing a
copy of packet k. Because of replications, packet k completes
service under policy P as soon as one of its replica completes
service. Hence, packet k is delivered at time cx(P) that
is no later than I';(P) + X; under policy P. This implies
that ¢x(P) — I';(P) < X;. From (37), we can deduce that
D;(P) —T;(P) < cx(P) — T;(P) < X;. From this, we can
obtain

E[d;] = E[X], Vi. (56)

‘We now proceed to characterize the gap between AI;,B and A p.
We use {G(t),t € [0,00)} to denote the gap process between
A];,B and A p. The average gap is given by

T
[G|Z] = lim sup w. (57)
T—o0 T
Let 7; denote the inter-generation time between packet i and
packet i — 1 (ie., 1; = s; — si—1), where 7 = {7;,i > 1}.
Note that, since the packet service times are independent of
the packet generation process, we have d;’s are independent
of 7. Define N(T) = max{i : s; < T} as the number of
generated packets by time 7. Note that [0, sy(r)] € [0, T],
where the length of the interval [0, sy(r)] is ZlNz(lT ) 7;. Thus,

we have
N(T)

z ; <T.
i=1

The area defined by the integral in (57) can be decomposed
into a sum of disjoint geometric parts. Observing Fig. 11,

(58)
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The evolution of AII‘,B and A p in a queue with 4 servers and r = 2.
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Fig. 11.

the area can be approximated to the concatenation of the
parallelograms G1, G2, ... (G;’s are highlighted in Fig. 11).
Note that the parallelogram G; results after the generation of
packet i (i.e., the gap that is corresponding to the packet i
occurs after its generation). Since the observing time 7T is
chosen arbitrary, when 7 > s;, the total area of the parallel-
ogram G; is accounted in the summation ZN(T) G;, while it

may not be accounted in the integral fo G(t)dt. This implies

that
N(T) T
> Gi= / G(t)dt. (59)
i=1 0
Combining (58) and (59), we get
T N(T)
G(t)dt Gi
fy Gwdi _ 37 G )

=SNT)
r Ziz(l)fi

Then, take conditional expectation given 7 and N(7') on both
sides of (60), we obtain

ELfy G(t)dt|z, N(T)] -

. <
E[>ND Gz, N(T)) Z;\;(lT)E[G”T’N(T)] 61
Gil o)

21 T 2=t T

where the second equality follows from the linearity of the
expectation. From Fig. 11, G; can be calculated as

Gi = Tidi. (62)
Substituting by (62) into (61), yields
ELf, G(t)dt]z, N(T)]
T <
SV Bldile, N END 6Eldi e, N(T)]
N(T) = N(T) - (63)
2ol T 2ol T
Note that d;’s are independent of 7. Thus, we have

Eldi|t, N(T)] = E[d;] < E[X] for all i.
into (63), yields

Substituting this

Elfy G@dilr, N _ 331 EIX]
T ToyNMDy

= E[X], (64)
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by the law of iterated expectations, we have

ELf) G(1)d1]
T

=< E[X]. (65)

Taking the lim sup of both side of (65) when 7" — oo, yields

T
lim sup 7E[f0 CT;(t)dt]

T—o0

< E[X]. (66)

Equation (66) tells us that the average gap between AI;,B and
A p is no larger than E[X].

Step 2: We prove (14). Since A%,B is a lower bound of the

age process of policy P and the average gap between A];,B
and Ap is no larger than E[X], we obtain
[AFPIT] < [Ap|T] < [APP|T] + ELX], (67)

- T LB
where ALB = limsup;_, w. From Lemma 11,

we have for all 7 satisfying B > 1, and = € II,,

AR (), 1 €10, 00)}|7] <g [{Ax (1), €[0,00)}|Z], (68)
which implies that
[ARPI1T] < [A- 171, (69)
holds for all z € II,,. As a result, we get
(APPIT) < min [Ag|T). (70)

Since policy non-prmp-LGFS-R is a feasible policy, we get

min [A,|Z] < [Ap|Z]. (71
rell,
Combining (67), (70), and (71), we get
mgl [A:|T] < [Ap|T] < mln [A |Z] + E[X], (72)
relly,
which completes the proof. O]

Proof of Theorem 12.(b). The proof of part (b) is similar to
that of part (a). Define d;(P) = D;(P) — I';(P). We know
that there is a packet k with s; > s; that starts service at time
I'; (P) under policy P. Since m = ar for a positive integer a,
packet k is processed by r servers in policy P. Let Sy C
{1,...,m} be the set of servers that process packet k under
policy P, which satisfies |Sx| = r. Because of replications,
packet k completes service under policy P as soon as one of
its replica is completes service. Hence, packet k is delivered
at time cx(P) = I[;(P) + minses, X; under policy P. This
implies that ¢, (P) — I';(P) = minjcs, X;. From (37), We can
deduce that D;(P) — I';(P) < cx(P) — I'i(P) = minjes, X.
From this, we can obtain

Eld;] <E[ mm Xl] Vi.

.....

(73)

Similar to part a, we use {G(t),t € [0, o0)} to denote the gap
process between A];,B and A p. The average gap is given by

T
[G|Z] = lim sup w.

(74)
T—o0 T
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Following the same steps as in the proof of part (a), we can
show that

T
lim sup 71[4:[]0 g(t)dt]

T—o0

(75)
Equation (75) tells us that the average gap between A%,B and
A p is no larger than E[min;—; ., X;]. This and the fact that
A];,B is a lower bound of the age process of policy P, imply

[ARPIZ] < [Ap[T] < [AFIT] + B[ min X].

(76)

Similar to part (a), we can use (76) with Lemma 11 to show
that

.....

which completes the proof. O

APPENDIX D
PROOF OF THEOREM 14

We follow the same proof technique of Theorem 6. We start
by comparing policy P (prmp-LGFS-R policy) with an arbi-
trary work-conserving policy #. For this, we need to define
the system state of any policy z:

Definition 10. Ar any time t, the system state of policy w is
specified by Hy (t) = (N (t), yz (1)), where N (t) is the total
number of distinct packets in the system at time t (excluding
packet replicas). Define v, (t) as the total number of distinct
packets that are delivered to the destination at time t. Let
{H (1), t € [0, 00)} be the state process of policy m, which is
assumed to be right-continuous.

To prove Theorem 14, we will need the following lemma.

Lemma 20. For any work-conserving policy n, if Hp(07) =
H;(07) and B = oo, then [{Hp(t),t € [0,00)}|Z] and
[{Hz(t),t € [0,00)}|Z] are of the same distribution.

Suppose that {Hp(t),t € [0, 00)} and {H,(t),t € [0, 00)}
are stochastic processes having the same stochastic laws as
{Hp(t),t € [0,00)} and {H;(?),t € [0, c0)}. Now, we couple
the packet delivery times during the evolution of Hp(t) to be
identical with the packet delivery times during the evolution
of H(t). Such a coupling is valid because the service times
are exponentially distributed, and hence, memoryless.

To ease the notational burden, we will omit the tildes
henceforth on the coupled versions and just use {Hp(t)} and
{H;(t)}. The following two lemmas are needed to prove
Lemma 20:

Lemma 21. Suppose that under policy P, {Np,yp} is
obtained by delivering a packet to the destination in the system
whose state is {Np, y p}. Further, suppose that under policy r,
{N.,y.}) is obtained by delivering a packet to the destination
in the system whose state is {Ny, yz}. If

NP:NﬂayP:yﬂ.'a

then
(78)

5231

Proof. Because the packet service times are i.i.d. and the
CCDF F is continuous, the probability for any two servers
to complete their packets at the same time is zero. Therefore,
in policy P, if one copy of a replicated packet is completed
on a server, the remaining replicated copies of this packet
are still being processed on the other servers; these replicated
packet copies are cancelled immediately and a new packet is
replicated on these servers. Since there is a packet delivery,
we have

Np=Np—1=N; —1=N,,
yp=ryp+l=yz+1=1y..
Hence, (78) holds, which complete the proof. O

Lemma 22. Suppose that under policy P, {Np,yp} is
obtained by adding a new packet to the system whose state
is {Np, yp}. Further, suppose that under policy =, {N},v}}
is obtained by adding a new packet to the system whose

state is {Ng, y }. If
NP :Nﬂ.'; )’P - )’7“

then

Np=Nz,7p =7z (79)

Proof. Because B = 00, no packet is dropped in policy P
and policy z. Since there is a new added packet to the system,
we have

Np=Np+1=N;+1=N,.
Also, there is no packet delivery, hence
/ /
Yp=7VP =V = Vg-
Thus, (79) holds, which complete the proof. O

Proof of Lemma 20. For any sample path, we have that
Np(07™) = N,(07) and yp(07) = y,(07). According to
the coupling between the system state processes {Hp(t),t €
[0, 0)} and {H, (1), t € [0, 00)}, as well as Lemma 21 and 22,
we get

[Np(DIZ] = [Nz DIZ], [yp(D)IZ] = [yz (DIZ],

holds for all + € [0,00). This implies that [{Hp(t),t €
[0,00)}Z] and [{H,(t),t € [0,00)}|Z] are of the same
distribution, which completes the proof. O]

Proof of Theorem 14. As a result of Lemma 20, [{yp(?),? €
[0, 00)}|Z] and [{y (1), t € [0, 00)}|Z] are of the same distri-
bution. This implies that policy P and policy 7 have the same
throughput performance. Also, from Lemma 20, we have that
[{Np(t),t € [0,00)}|Z] and [{N, (1), t € [0, 00)}|Z] are of the
same distribution. Hence, policy P and policy = have the same
delay performance. These imply that policy P has the same
throughput and delay performance as any work-conserving
policy.

Finally, since the service times are i.i.d., service idling
only increases the waiting time of the packet in the sys-
tem. Therefore, the throughput and delay performance under
non-work-conserving policies will be worse. As a result,
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the prmp-LGFS-R policy is throughput-optimal and delay-
optimal among all policies in I1,, (indeed, all work-conserving
policies with infinite buffer size B = oo have the same
throughput and delay performance, and hence, they are
throughput-optimal and delay-optimal). O
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