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Abstract— In this paper, we investigate scheduling policies that
minimize the age of information in single-hop queueing systems.
We propose a Last-Generated, First-Serve (LGFS) scheduling
policy, in which the packet with the earliest generation time
is processed with the highest priority. If the service times are
i.i.d. exponentially distributed, the preemptive LGFS policy is
proven to be age-optimal in a stochastic ordering sense. If the
service times are i.i.d. and satisfy a New-Better-than-Used (NBU)
distributional property, the non-preemptive LGFS policy is shown
to be within a constant gap from the optimum age performance.
These age-optimality results are quite general: (i) they hold for
arbitrary packet generation times and arrival times (including
out-of-order packet arrivals); (ii) they hold for multi-server
packet scheduling with the possibility of replicating a packet
over multiple servers; (iii) and they hold for minimizing not
only the time-average age and mean peak age, but also for
minimizing the age stochastic process and any non-decreasing
functional of the age stochastic process. If the packet generation
time is equal to the packet arrival time, the LGFS policies reduce
to the Last-Come, First-Serve (LCFS) policies. Hence, the age
optimality results of LCFS-type policies are also established.

Index Terms— Age of information, information update system,
new-better-than-used, date freshness, replication.

I. INTRODUCTION

T
HE ubiquity of mobile devices and applications has

greatly boosted the demand for real-time information

updates, such as news, weather reports, email notifications,

stock quotes, social updates, mobile ads, etc. Also, timely

status updates are crucial in networked monitoring and control

systems. These include, but are not limited to, sensor networks

used to measure temperature or other physical phenomena, and

surrounding monitoring in autonomous driving.

A common need in these real-time applications is to keep

the destination (i.e., information consumer) updated with the
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Fig. 1. System model.

freshest information. To identify the timeliness of the updates,

a metric called the age-of-information, or simply age, was

defined in, e.g., [2]–[5]. At time t , if the packet with the largest

generation time at the destination was generated at time U(t),

the age 1(t) is defined as

1(t) = t − U(t). (1)

Hence, age is the time elapsed since the freshest received

packet was generated.

In recent years, a variety of approaches have been investi-

gated to reduce the age. In [5]–[7], it was found in First-Come,

First-Serve (FCFS) queueing systems that the time-average age

first decreases with the update frequency and then increases

with the update frequency. The optimal update frequency was

obtained to minimize the age in FCFS systems. In [8]–[10],

it was shown that the age can be further improved by

discarding old packets waiting in the queue when a new

sample arrives. Characterizing the age in Last-Come, First-

Serve (LCFS) queueing systems with gamma distributed ser-

vice times was considered in [11]. However, these studies

cannot tell us (i) which queueing discipline can minimize

the age and (ii) under what conditions the minimum age is

achievable.

In this paper, we answer these two questions for an

information-update system illustrated in Fig. 1, where a

sequence of update packets arrive at a queue with m servers

and a buffer size B . Each server can be used to model a

channel in multi-channel communication systems [12], or a

computer in parallel computing systems [13]. The service

times of the update packets are i.i.d. across servers and the

packets assigned to the same server. Let si be the generation

time of the update packet i at an external source, and ai be the

arrival time of the update packet i at the queue. Out-of-order

packet arrivals are allowed, such that the packets may arrive

in an order different from their generation times, e.g., si < s j
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but a j < ai . Packet replication [14]–[16] is considered in

this study. In particular, multiple replicas of a packet can

be assigned to different servers, at possibly different service

starting time epochs. The first completed replica is considered

as the valid execution of the packet; after that, the remaining

replicas of this packet are cancelled immediately to release the

servers. Suppose that a packet can be replicated on at most r

servers (r ≤ m), where r is called the maximum replication

degree. If r = 1, this reduces to the case where replication

is not allowed at all. We propose a Last-Generated, First-

Serve (LGFS) scheduling policy, in which the packet with the

earliest generation time is served with the highest priority. The

following are the key contributions of this paper:

• If the packet service times are i.i.d. exponentially dis-

tributed, then for arbitrary system parameters (includ-

ing arbitrary packet generation times si , packet arrival

times ai , number of servers m, maximum replication

degree r , and buffer size B), we prove that the pre-

emptive LGFS with replication (prmp-LGFS-R) policy

minimizes the age stochastic process and any non-

decreasing functional of the age stochastic process among

all policies in a stochastic ordering sense (Theorem 6).

Note that this age penalty model is very general. Many

age penalty metrics studied in the literature, such as

the time-average age [5], [6], [8]–[11], [17]–[21], aver-

age peak age [7]–[9], [11], [20], [22], and time-average

age penalty function [23], [24], are special cases of

this age penalty model.

• We further investigate a more general class of

packet service time distributions called New-Better-

than-Used (NBU) distributions. We show that the non-

preemptive Last-Generated, First-Serve with replication

(non-prmp-LGFS-R) policy is within a constant age gap

from the optimum average age, and that the gap is

independent of the system parameters mentioned above

(Theorem 12). Note that policy non-prmp-LGFS-R with

a maximum replication degree r can be near age-optimal

compared with policies with any maximum replication

degree. This result was not anticipated: In [16], [25], [26],

it was shown that non-replication policies are near delay-

optimal and replication policies are far from the optimum

delay and throughput performance for NBU service time

distributions. From these studies, one would expect that

replications may worsen the age performance. To our

surprise, however, we found that a replicative policy

(i.e., non-prmp-LGFS-R) is near-optimal in minimizing

the age, even for NBU service time distributions.

• For a special case of the system settings where the update

packets arrive in the same order of their generation times

and there is no replication, the prmp-LGFS-R policy

reduces to LCFS with preemption in service for a single

source case in [17], and the non-prmp-LGFS-R when

B = 1 reduces to LCFS with preemption only in waiting

for a single source case in [17], or the “M/M/1/2*”

in [8], [9]. Hence, our optimality results are also estab-

lished for these LCFS-type policies. This relationship

tells us that this policy can achieve age-optimality in this

case.

• Finally, we investigate the throughput and delay perfor-

mance of the proposed policies. We show that if the

packet service times are i.i.d. exponentially distributed,

then the prmp-LGFS-R policy is also throughput and

delay optimal among all policies (Theorem 14). In addi-

tion, if the packet service times are i.i.d. NBU and replica-

tions are not allowed, then the non-prmp-LGFS policy is

throughput and delay optimal among all non-preemptive

policies (Theorem 15).

To the best of our knowledge, these are the first optimality

results on minimizing the age-of-information in queueing

systems. Moreover, this is the first paper that considers packet

replication to minimize the age.

The remainder of this paper is organized as follows. After

a brief overview of related work in Section II, we present

the model and problem formulation in Section III. The age

of the proposed policies is analyzed in Section IV, and

the throughput and delay performance of these policies are

investigated in Section V. Finally, we conclude in Section VI.

II. RELATED WORK

A series of works studied the age performance

of scheduling policies in a single queueing system

with Poisson arrival process and exponential service

time [5], [6], [8]–[10], [17], [18]. In [5], [6], the update

frequency was optimized to improve data freshness in

FCFS information-update systems. The effect of the packet

management on the age was considered in [8]–[10]. It was

found that a good policy is to discard the old updates waiting

in the queue when a new sample arrives, which can greatly

reduce the impact of queueing delay on data freshness.

In [17], the time-average age was characterized for multiple

sources Last-Come, First-Serve (LCFS) information-update

systems with and without preemption. In this study, it was

shown that sharing service facility among Poisson sources

can improve the total age. Characterizing the time average

age for FCFS queueing system with two and infinite number

of servers was studied in [18]. The analysis in [18] showed

that the model with infinite servers has a lower age in

conjunction with more wasting of network resources due to

the rise in the obsolete delivered packets. One open question

in these studies on age analysis [5], [6], [8]–[10], [17], [18]

is whether the preemptive LCFS policy is age-optimal

for exponential service times. In this paper, we provide a

confirmative answer to this question, and further investigate

age-optimality for more general system settings such as

arbitrary packet generation and arrival processes (including

out-of-order packet arrivals), multi-server networks, as well

as packet replications over multiple servers.

In [19], the average age was characterized in a pull model,

where a customer sends requests to all servers to retrieve (pull)

the interested information. In this model, the servers carry

information with different freshness level and a user waits for

the responses from these servers. The server updating process

and the response times were assumed to be Poisson and expo-

nential, respectively. In contrast with [19], where the authors

assumed that a user contacts servers to check for updates, here

we prove age-optimality in a multi-server queueing system
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where a user sends the updates to a destination through the

servers and packet replication is considered.

Characterizing the age for a class of packet service time

distributions that are more general than exponential was con-

sidered in [7], [11], [22]. In [7], the age was analyzed in multi-

class M/G/1 and M/G/1/1 queues. The age performance in the

presence of errors when the service times are exponentially

distributed was analyzed in [22]. Gamma-distributed service

times was considered in [11]. The studies in [11], [22] were

carried out for LCFS queueing systems with and without

preemption. In complement with the age analysis results

in [7], [11], [22], we show that non-preemptive LGFS (and

its special case non-preemptive LCFS) policies are near age-

optimal for NBU service time distributions. Similar to the

exponential case, these results for NBU service times hold

for arbitrary packet general and arrival processes, multiple

server networks, and packet replication over multiple servers.

In addition, gamma distribution considered in [11], [22] is a

special case of NBU service time distributions.

In our study, packet generation and arrival times are

not controllable. Another line of research has been the

joint optimization of packet generation and transmissions

in [20], [21], [23], [24]. An information update policy was

developed in [23], [24], which was proven to minimize a

general class of non-negative, non-decreasing age penalty

functions among all causally feasible policies. More recently,

a real-time sampling problem of the Wiener process has been

studied in [27]: If the sampling times are independent of

the observed Wiener process, the optimal sampling problem

in [27] reduces to an age-of-information optimization problem;

otherwise, the optimal sampling policy can use knowledge of

the Wiener process to achieve better performance than age-of-

information optimization.

Recently, we generalized our results to multihop networks

in [28], where we proved that age-optimality is achievable

in multihop networks with arbitrary packet generation times,

packet arrival times, and general network topologies. In par-

ticular, it was shown that the LGFS policy is age-optimal

among all causal policies for exponential packet service times.

In addition, for arbitrary distributions of packet service times,

it was shown that the LGFS policy is age-optimal among all

non-preemptive work-conserving policies.

The considered age penalty model in this paper is very

general such that it includes, but is not limited to, the time-

average age [5], [6], [8]–[11], [17]–[21], average peak

age [7]–[9], [11], [20], [22], and time-average age penalty

function [23], [24].

III. MODEL AND FORMULATION

A. Notations and Definitions

For any random variable Z and an event A, let [Z |A] denote

a random variable with the conditional distribution of Z for

given A, and E[Z |A] denote the conditional expectation of Z

for given A.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two

vectors in R
n , then we denote x ≤ y if xi ≤ yi for i =

1, 2, . . . , n. We use x[i] to denote the i -th largest component

of vector x. A set U ⊆ R
n is called upper if y ∈ U whenever

y ≥ x and x ∈ U . We will need the following definitions:

Definition 1. Univariate Stochastic Ordering: [29] Let X

and Y be two random variables. Then, X is said to be

stochastically smaller than Y (denoted as X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 2. Multivariate Stochastic Ordering: [29] Let

X and Y be two random vectors. Then, X is said to be

stochastically smaller than Y (denoted as X ≤st Y), if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ R
n.

Definition 3. Stochastic Ordering of Stochastic Processes:

[29] Let {X (t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two

stochastic processes. Then, {X (t), t ∈ [0,∞)} is said to be

stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by

{X (t), t ∈ [0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices

of an integer n and t1 < t2 < . . . < tn in [0,∞), it holds that

(X (t1), X (t2), . . . , X (tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (2)

where the multivariate stochastic ordering in (2) was defined

in Definition 2.

B. Preliminary Propositions

The following propositions will be used throughout the

paper:

Proposition 1 ( [29], Theorem 6.B.3). Let X = (X1, X2,

. . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional

random vectors. If

X1 ≤st Y1,

[X2|X1 = x1] ≤st [Y2|Y1 = y1] whenever x1 ≤ y1,

and in general, for i = 2, 3, . . . , n,

[X i |X1 = x1, . . . , X i−1 = xi−1] ≤st

[Yi |Y1 = y1, . . . , Yi−1 = yi−1]

whenever x j ≤ y j , j = 1, 2, . . . , i − 1,

then X ≤st Y.

Proposition 2 ( [29], Theorem 6.B.16.(a)). Let X and Y be

two n-dimensional random vectors. If X ≤st Y and q : R
n →

R
k is any k-dimensional increasing [decreasing] function, for

any positive integer k, then the k-dimensional vectors q(X)

and q(Y) satisfy q(X) ≤st [≥st]q(Y).

Proposition 3 ( [29], Theorem 6.B.16.(b)). Let X1, X2, . . . Xd

be a set of independent random vectors where the dimension of

Xi is ki , i = 1, 2, . . . , d. Let Y1, Y2, . . . Yd be another set of

independent random vectors where the dimension of Yi is ki ,

i = 1, 2, . . . , d. Denote k = k1 +k2+ . . .+kd . If Xi ≤st Yi for

i = 1, 2, . . . , d, then, for any increasing function ψ : R
k → R,

one has

ψ(X1, X2, . . . Xd) ≤st ψ(Y1, Y2, . . . Yd).
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Fig. 2. Sample path of the age process 1(t).

Proposition 4 ( [29], Theorem 6.B.16.(e)). Let X, Y, and 2

be random vectors such that [X|2 = θ ] ≤st [Y|2 = θ ] for all

θ in the support of 2. Then X ≤st Y.

In the next proposition, =st denotes equality in law.

Proposition 5 ( [29], Theorem 6.B.30). The random processes

{X (t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} satisfy {X (t), t ∈

[0,∞)} ≤st {Y (t), t ∈ [0,∞)} if, and only if, there exist two

random processes {X̃(t), t ∈ [0,∞)} and {Ỹ (t), t ∈ [0,∞)},

defined on the same probability space, such that

{X̃(t), t ∈ [0,∞)} =st {X (t), t ∈ [0,∞)},

{Ỹ (t), t ∈ [0,∞)} =st {Y (t), t ∈ [0,∞)},

and

P{X̃(t) ≤ Ỹ (t), t ∈ [0,∞)} = 1.

C. Queueing System Model

We consider a queueing system with m servers as shown

in Fig. 1. The system starts to operate at time t = 0. The

update packets are generated exogenously to the system and

then arrive at the queue. Thus, the update packets may not

arrive at the queue instantly when they are generated. The i -th

update packet, called packet i , is generated at time si , arrives

at the queue at time ai , and is delivered to the destination at

time ci such that 0 ≤ s1 ≤ s2 ≤ . . . and si ≤ ai ≤ ci . Note

that in this paper, the sequences {s1, s2, . . .} and {a1, a2, . . .}

are arbitrary. Hence, the update packets may not arrive at the

system in the order of their generation times. For example,

in Fig. 2, we have s1 < s2 but a2 < a1. Let B denote the

buffer size of the queue which can be infinite, finite, or even

zero. If B is finite, the packets that arrive to a full buffer

are either dropped or replace other packets in the queue.

The packet service times are i.i.d. across servers and the

packets assigned to the same server, and are independent of

the packet generation and arrival processes. Packet replication

is considered in this model, where the maximum replication

degree is r (1 ≤ r ≤ m). In this model, one packet can be

replicated to at most r servers and the first completed replica

is considered as the valid execution of the packet. After that,

the remaining replicas of this packet are cancelled immediately

to release the servers. Note that, the maximum replication

degree r is fixed for a system; however, the number of replicas

that can be created for a packet may vary between 1 and r .

D. Scheduling Policy

A scheduling policy, denoted by π , determines the packet

assignments and replications over time; it also controls drop-

ping or replacing packets when the queue buffer is full. Note

that the packet delivery time to the destination ci is a function

of the scheduling policy π , while the sequences {s1, s2, . . .}

and {a1, a2, . . .} do not change according to the scheduling

policy. However, a policy π may have knowledge of the future

packet generation and arrival times. Moreover, we assume that

the packet service times are invariant of the scheduling policy

and the realization of a packet service time is unknown until its

service is completed (unless the service time is deterministic).

Define 5r as the set of all policies, that includes causal and

non-causal policies, when the maximum replication degree

is r . Hence, 51 ⊂ 52 ⊂ . . . ⊂ 5m . Note that causal policies

are those policies whose scheduling decisions are made based

only on the history and current state of the system; while non-

causal policies are those policies whose scheduling decisions

are made based on the history, current, and future state of the

system. We define several types of policies in 5r :

A policy is said to be preemptive, if a server can preempt

a packet being processed and switch to processing any other

(including the preempted packet itself) packet at any time;

only one copy of the preempted packet can be stored back

into the queue if there is enough buffer space and sent at a

later time when the servers are available again.1 In contrast,

in a non-preemptive policy, processing of a packet cannot

be interrupted until the packet is completed or cancelled2;

after completing or cancelling a packet, the server can switch

to process another packet. A policy is said to be work-

conserving, if no server is idle whenever there are packets

waiting in the queue.

E. Age Performance Metric

Let U(t) = max{si : ci ≤ t} be the largest generation

time of the packets at the destination at time t . The age-of-

information, or simply the age, is defined as [2]–[5]

1(t) = t − U(t). (3)

The initial state U(0−) at time t = 0− is invariant of the

policy π ∈ 5r , where we assume that s0 = U(0−) = 0.

As shown in Fig. 2, the age increases linearly with t but is

reset to a smaller value with the arrival of a packet with larger

generation time. The age process is given by

1 = {1(t), t ∈ [0,∞)}. (4)

In this paper, we introduce a non-decreasing age penalty

functional g(1) to represent the level of dissatisfaction for

data staleness at the receiver or destination.

Definition 4. Age Penalty Functional: Let V be the set of

n-dimensional Lebesgue measurable functions, i.e.,

V={ f : [0,∞)n 7→ R such that f is Lebesgue measurable}.

1If a preempted packet is served again, its service either starts over or it
resumes the service from the preempted point. In case of exponential service
times, both scenarios are equivalent because of the memoryless property.

2Recall that a packet is cancelled when a replica has completed processing
at another server.
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A functional g : V 7→ R is said to be an age penalty functional

if g is non-decreasing in the following sense:

g(11) ≤ g(12), whenever 11(t) ≤ 12(t),∀t ∈ [0,∞). (5)

The age penalty functionals used in prior studies include:

• Time-average age [5], [6], [8]–[11], [17]–[21]: The

time-average age is defined as

g1(1) =
1

T

∫ T

0

1(t)dt, (6)

• Average peak age [7]–[9], [11], [20], [22]: The average

peak is defined as

g2(1) =
1

K

K∑

k=1

Ak, (7)

where Ak denotes the k-th peak value of 1(t) since time

t = 0.

• Time-average age penalty function [23], [24]: The aver-

age age penalty function is

g3(1) =
1

T

∫ T

0

h(1(t))dt, (8)

where h : [0,∞) → [0,∞) can be any non-negative and

non-decreasing function. As pointed out in [24], a stair-

shape function h(x) = bxc can be used to characterize

the dissatisfaction of data staleness when the information

of interest is checked periodically, and an exponential

function h(x) = ex is appropriate for online learning

and control applications where the demand for updating

data increases quickly with respect to the age. Also,

an indicator function h(x) = 1(x > d) can be used to

characterize the dissatisfaction when a given age limit d

is violated.

IV. AGE-OPTIMALITY RESULTS OF LGFS POLICIES

In this section, we provide age-optimality and near age-

optimality results for multi-server queueing networks with

packet replication. We start by considering the exponential

packet service time distribution and show that age-optimality

can be achieved. Then, we consider the classes of NBU packet

service time distributions and show that there exist simple

policies that can come close to age-optimality.

A. Exponential Service Time Distribution

We study age-optimal packet scheduling when the packet

service times are i.i.d. exponentially distributed. We start by

defining the Last-Generated, First-Serve discipline as follows.

Definition 5. A scheduling policy is said to follow the Last-

Generated, First-Serve (LGFS) discipline, if the last gener-

ated packet is served first among all packets in the system.

In the LGFS disciplines, packets are served according to

their generation times such that the packet with the largest

generation time is served first among all packets in the

system. In contrast, in the LCFS disciplines, packets are served

according to their arrival times such that the packet with the

Algorithm 1 Prmp-LGFS-R Policy When r = 1

1 α := 0; // α is the smallest generation time of the packets under
service

2 I := m; // I is the number of idle servers
3 Q := ∅; // Q is the set of distinct packets that are under service
4 while the system is ON do

5 if a new packet pi with generation time s arrives then

6 if I=0 then // All servers are busy
7 if s ≤ α then // Packet pi is stale
8 Store the packet in the queue;

9 else // Packet pi carries fresh information
10 Find packet p j ∈ Q with generation time α;

11 Preempt packet p j and store it back to the queue;

12 Assign packet pi to the idle server;
13 Q := Q ∪ {pi } − {p j };

14 end

15 else // At least one of the servers is idle
16 Assign packet pi to an idle server;
17 Q := Q ∪ {pi };
18 end

19 Update I ;
20 α := min{si : i ∈ Q};
21 end
22 if a packet pl is delivered then

23 Q := Q − {pl};
24 if the queue is not empty then

25 Pick the packet with the largest generation time in the queue
ph ;

26 Assign packet ph to an idle server;
27 Q := Q ∪ {ph};
28 end

29 Update I ;
30 α := min{si : i ∈ Q};
31 end
32 end

largest arrival time is served first among all packets in the

system. Both disciplines are equivalent when the packets arrive

to the queue in the same order of their generation times.

In this paper, we propose a policy called preemptive Last-

Generated, First-Serve with replication (prmp-LGFS-R).

This policy follows the LGFS discipline. When there is

no replication (r = 1), the implementation details of

prmp-LGFS-R policy3 are depicted in Algorithm 1.

When there is a packet replication (r > 1), the prmp-

LGFS-R policy acts as follows. We replicate the packet with

the largest generation time in the system on r servers. Then,

we replicate the packet with the second largest generation

time in the system on the remaining idle servers such that

the total number of replicas does not exceed r , and so on

(i.e., the replicas of the packet with a larger generation time

are sent with a higher priority than those of the packet with

a lower generation time). In other words, since we may not

have m = ar for some positive integer a, packets under

service may not be evenly distributed among the servers if

all servers are busy. In this case, we give the highest priority

to the k (k = bm
r
c) packets under service with the largest

generation times and each one of them is replicated on r

servers. The packet under service with the smallest generation

time is replicated on the remaining idle servers (whose number

3The decision related to dropping or replacing packets in the full buffer
case does not affect the age performance of prmp-LGFS-R policy. Hence,
we don’t specify this decision under the prmp-LGFS-R policy in all related
algorithms.
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Algorithm 2 Prmp-LGFS-R Policy When r ≥ 1

1 α := 0; // α is the smallest generation time of the packets under service
2 I := m; // I is the number of idle servers
3 Q := ∅; // Q is the set of distinct packets that are under service
4 k := b m

r c; // k is the number of distinct packets that each one of them

can be replicated on r servers
5 while the system is ON do

6 if a new packet pi with generation time s arrives then
7 if I = 0 then // All servers are busy
8 if s ≤ α then // Packet pi is stale
9 Store packet pi in the queue;

10 else // Packet pi carries fresh information
11 Find packet p j ∈ Q with generation time α;

12 Preempt all replicas of packet p j ;

13 Packet p j is stored back to the queue;

14 Q := Q ∪ {pi } − {p j };

15 Update I ;
16 end

17 else // At least one of the servers is idle
18 Q := Q ∪ {pi };
19 end
20 α := min{si : i ∈ Q};
21 if pi ∈ Q and generation time of packet pi > α and I < r

then // Specify the number of replicas of packet pi
22 Preempt (r − I ) replicas of the packet with generation time

α;
23 Replicate packet pi on r idle servers;
24 else if pi ∈ Q and generation time of packet pi = α then
25 Replicate packet pi on min{r, I } idle servers;
26 end

27 Update I ;
28 end

29 if a packet pl is delivered then

30 Cancel the remaining replicas of packet pl ;
31 Q := Q − {pl };
32 if the queue is not empty then

33 Pick the packet with the largest generation time in the queue
ph ;

34 Q := Q ∪ {ph};
35 Replicate packet ph on min{r, I } idle servers;
36 Update I ;
37 end
38 α := min{si : i ∈ Q};
39 end

40 end

is less than r ). If m = ar for some positive integer a, then

all packets under service are evenly distributed among the

servers and each one of them is replicated on r servers. The

implementation details of prmp-LGFS-R policy when r ≥ 1

are depicted in Algorithm 2: This algorithm explains the

procedures that the prmp-LGFS-R policy follows in the case

of packet arrival and departure events as follows.

• Packet arrival event: If a new packet pi arrives, we first

check whether this new packet preempts an older packet

that is being processed or not in Steps 6-19. After that,

if packet pi is served, we specify the number of replicas

that we need to create for packet pi in Steps 21-26.

In particular, if packet pi is served, we have two possible

cases.

Case 1: The generation time of packet pi is greater than

the one with the smallest generation time in the set Q

(set Q is defined at the beginning of the algorithm).

In this case, we need to replicate packet pi on r idle

servers. Therefore, if the number of available servers (I )

is less than r , we preempt (r − I ) more replicas of the

packet with the smallest generation time in the set Q and

replicate packet pi on r servers. These procedures are

depicted in Steps 21-23.

Case 2: The generation time of packet pi is the smallest

one among the packets in the set Q. In this case, packet pi

is replicated on the available idle servers such that the

total number of replicas of packet pi does not exceed r ,

as depicted in Steps 24-26.

• Packet departure event: If a packet pl is delivered,

we cancel all the remaining replicas of packet pl . More-

over, if the queue is not empty, we pick the freshest packet

in the queue and replicate it on the available idle servers

such that the total number of replicas of this packet

does not exceed r . These procedures are illustrated in

Steps 29-39.
Note that the prmp-LGFS-R policy is a causal policy, i.e., its

scheduling decisions are made based on the history and current

state of the system and do not require the knowledge of

the future packet generation and arrival times. Define a set

of parameters I = {B, m, r, si , ai , i = 1, 2, . . .}, where B

is the queue buffer size, m is the number of servers, r is

the maximum replication degree, si is the generation time of

packet i , and ai is the arrival time of packet i . Let 1π =

{1π (t), t ∈ [0,∞)} be the age processes under policy π . The

age performance of the prmp-LGFS-R policy is characterized

as follows.

Theorem 6. Suppose that the packet service times are expo-

nentially distributed, and i.i.d. across servers and the packets

assigned to the same server, then for all I and π ∈ 5r

[1prmp-LGFS-R|I] ≤st [1π |I], (9)

or equivalently, for all I and non-decreasing functional g

E[g(1prmp-LGFS-R)|I] = min
π∈5r

E[g(1π)|I], (10)

provided the expectations in (10) exist.

Proof. See Appendix A.

Theorem 6 tells us that for arbitrary sequence of packet

generation times (s1, s2, . . .), sequence of packet arrival times

(a1, a2, . . .), buffer size B , number of servers m, and maxi-

mum replication degree r , the prmp-LGFS-R policy achieves

optimality of the age process within the policy space 5r .

In addition, (10) tells us that the prmp-LGFS-R policy min-

imizes any non-decreasing functional of the age process,

including the time-average age (6), average peak age (7), and

time-average age penalty function (8) as special cases. It is

important to emphasize that the prmp-LGFS-R policy can

achieve optimality compared with all causal and non-causal

policies in 5r . Also, when the update packets arrive in the

same order of their generation times and there is no replication,

the prmp-LGFS-R policy becomes LCFS with preemption in

service (LCFS-S) for a single source case that was proposed

in [17]. Thus, this policy can achieve age-optimality in this

case.

As a result of Theorem 6, we can deduce the following

corollaries:

A weaker version of Theorem 6 can be obtained as follows.

Corollary 7. If the conditions of Theorem 6 hold, then for

any arbitrary packet generation and arrival processes, and for
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all π ∈ 5r

1prmp-LGFS-R ≤st 1π .

Proof. We consider the mixture over multiple sample paths

of the packet generation and arrival processes to prove the

result. In particular, by using the result of Theorem 6 and

Proposition 4, the corollary follows.

Corollary 8. Under the conditions of Theorem 6, if one packet

can be replicated to all m servers (i.e., r = m), then for all I,

the prmp-LGFS-R policy when r = m is an age-optimal among

all policies in 5m .

Proof. This corollary is a direct result of Theorem 6.

It is important to recall that 51 ⊂ 52 ⊂ . . . ⊂ 5m . Therefore,

Corollary 8 tells us that the prmp-LGFS-R policy when r = m

achieves age-optimality compared with all policies with any

maximum replication degree.

Corollary 9. If the conditions of Theorem 6 hold, then for

all I, the age performance of the prmp-LGFS-R policy remains

the same for any queue size B ≥ 0.

Proof. From the operation of policy prmp-LGFS-R, its queue

is used to store the preempted packets and outdated arrived

packets. The age process of the prmp-LGFS-R policy is not

affected no matter these packets are delivered or not. Hence,

the age performance of the prmp-LGFS-R policy is invariant

for any queue size B ≥ 0. This completes the proof.

The next corollary clarifies the relationship between the

prmp-LGFS-R policy and the LCFS-S policy.

Corollary 10. Under the conditions of Theorem 6, if the

packets arrive to the queue in the same order of their gen-

eration times and replications are not allowed, then for all I,

the LCFS-S policy is age-optimal, i.e., the LCFS-S satisfies (9)

and (10).

Proof. This corollary is a direct result of Theorem 6.

1) Simulation Results: We present some simulation results

to compare the age performance of the prmp-LGFS-R policy

with other policies. The packet service times are exponentially

distributed with mean 1/µ = 1. The inter-generation times

are i.i.d. Erlang-2 distribution with mean 1/λ. The number of

servers is m. Hence, the traffic intensity is ρ = λ/mµ.4 The

queue size is B , which is a non-negative integer.

Figure 3 illustrates the time-average age versus ρ for an

information-update system with m = 1 server. The time

difference (ai − si ) between packet generation and arrival

is zero, i.e., the update packets arrive in the same order of

their generation times. We can observe that the prmp-LGFS-R

policy achieves a smaller age than the FCFS policy analyzed

in [5], and the non-preemptive LGFS policy with queue size

B = 1 which is equivalent to “M/M/1/2*” in [8], [9] in this

case. Note that in these prior studies, the age was characterized

only for the special case of Poisson arrival process. Moreover,

with ordered arrived packets at the server, the LGFS policy

and LCFS policy have the same age performance.

4Throughout this paper, the traffic intensity ρ is computed without consid-
ering replications (i.e., ρ is calculated when r = 1).

Fig. 3. Average age versus traffic intensity ρ for an update system with
m = 1 server, queue size B , and i.i.d. exponential service times.

Fig. 4. Average peak age versus traffic intensity ρ for an update system
with m = 4 servers, queue size B , maximum replication degree r , and i.i.d.
exponential service times.

Figure 4 plots the average peak age versus ρ for an

information-update system with m = 4 servers. The time

difference between packet generation and arrival, i.e., ai − si ,

is modeled to be either 1 or 100, with equal probability.

The maximum replication degree r is either 1, 2, or 4. For

each r , we found that the prmp-LGFS-R policy achieves better

age performance than other policies that belong to the policy

space 5r . For example, the age performance of the prmp-

LGFS-R policy when r = 2 is better than the age performance

of the other policies that are plotted when r equal to 1 and 2.

Note that the age performance of the prmp-LGFS-R policy

remains the same for any queue size B ≥ 0. However, the age

performance of the non-prmp-LGFS-R policy and FCFS policy

varies with the queue size B . We also observe that the average

peak age in case of FCFS policy with B = ∞ blows up

when the traffic intensity is high. This is due to the increased

congestion in the network which leads to a delivery of stale

packets. Moreover, in case of FCFS policy with B = 10,

the average peak age is high but bounded at high traffic
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intensity, since the fresh packet has a better opportunity to

be delivered in a relatively short period compared with FCFS

policy with B = ∞. These numerical results agree with

Theorem 6.

B. NBU Service Time Distributions

The next question we proceed to answer is whether for

an important class of distributions that are more general

than exponential, age-optimality or near age-optimality can be

achieved. We consider the class of NBU packet service time

distributions, which are defined as follows.

Definition 6. New-Better-than-Used distributions: Consider

a non-negative random variable Z with complementary cumu-

lative distribution function (CCDF) F̄(z) = P[Z > z]. Then,

Z is New-Better-than-Used (NBU) if for all t, τ ≥ 0

F̄(τ + t) ≤ F̄(τ )F̄(t). (11)

Examples of NBU distributions include constant service

time, Gamma distribution, (shifted) exponential distribution,

geometric distribution, Erlang distribution, negative binomial

distribution, etc.

Next, we show that near age-optimality can be achieved

when the service times are NBU. We propose a policy called

non-preemptive LGFS with replication (non-prmp-LGFS-R).

The non-prmp-LGFS-R policy has the same main features of

the prmp-LGFS-R policy except that the non-prmp-LGFS-R

policy does not allow packet preemption. Moreover, under

the non-prmp-LGFS-R policy, the fresh packet replaces the

packet with the smallest generation time in the queue when

it has a finite buffer size that is full. The description of the

non-prmp-LGFS-R policy is depicted in Algorithm 3: This

algorithm explains the procedures that the non-prmp-LGFS-R

policy follows in the case of packet arrival and departure

events as follows.

• Packet arrival event: If a new packet pi arrives and all

servers are busy, then we have two cases.

Case 1: The buffer is full. In this case, packet pi is either

dropped or replaces another packet in the queue depend-

ing on its generation time, as depicted in Steps 7-12.

Case 2: The buffer is not full. In this case, packet pi is

stored directly in the queue, as depicted in Steps 13-15.

If there are idle servers, then packet pi is replicated on

the available idle servers such that the total number of

replicas of packet pi does not exceed r , as illustrated in

Steps 17-20.

• Packet departure event: If a packet pl is delivered,

we cancel all the remaining replicas of packet pl . Also,

if there is a packet p j that is replicated on fewer servers

than r servers, then packet p j is replicated on extra

((k + 1)r − m) servers under two cases.

Case A: If the queue is empty, as depicted in Steps 24-26.

Case B: If the queue is not empty, but the generation time

of packet p j is greater than the largest generation time

of the packets in the queue, as depicted in Steps 27-32.

Finally, if the queue is not empty, the packet with the

largest generation time in the queue is replicated on

the available idle servers such that the total number of

Algorithm 3 Non-prmp-LGFS-R Policy

1 δ := 0; // δ is the smallest generation time of the packets in the queue
2 I := m; // I is the number of idle servers
3 k := b m

r c; // k is number of packets that each one of them can be

replicated on r servers
4 while the system is ON do

5 if a new packet pi with generation time s arrives then

6 if I=0 then // All servers are busy
7 if Buffer is full then

8 if s > δ then // Packet pi carries fresh information
9 Packet pi replaces the packet with generation time δ

in the queue;
10 else // Packet pi is stale
11 Drop packet pi ;
12 end
13 else

14 Store packet pi in the queue;
15 end

16 Update δ;
17 else // At least one of the servers is idle
18 Replicate packet pi on min{r, I } idle servers;
19 Update I ;
20 end

21 if a packet pl is delivered then

22 Cancel the remaining replicas of packet pl ;
23 Update I ;
24 Find packet p j that is replicated on (m − kr) servers;

25 if the queue is empty and packet p j exists then

26 Replicate packet p j on extra ((k + 1)r − m) idle servers;

27 else if the queue is not empty then
28 Pick the packet with the largest generation time in the

queue ph ;
29 if packet p j exists and generation time of packet p j >

generation time of packet ph then

30 Replicate packet p j on extra ((k + 1)r − m) idle

servers;
31 Update I ;
32 end

33 Replicate packet ph on min{r, I } idle servers;
34 end
35 Update I ;
36 Update δ;
37 end
38 end

39 end

replicas of this packet does not exceed r , as illustrated in

Step 33.

It is important to emphasize that the non-prmp-LGFS-R

policy is a causal policy, i.e., its scheduling decisions are made

based on the history and current state of the system and do

not require the knowledge of the future packet generation and

arrival times. To show that policy non-prmp-LGFS-R can come

close to age-optimal, we need to construct an age lower bound

as follows:

Let vi denote the earliest time that packet i has started

service (the earliest assignment time of packet i to a server),

which is a function of the scheduling policy π . Define a

function 1LB
π (t) as

1LB
π (t) = t − max{si : vi (π) ≤ t}. (12)

The process of 1LB
π (t) is given by 1LB

π = {1LB
π (t), t ∈

[0,∞)}. The definition of the process 1LB
π (t) is similar to

that of the age process of policy π except that the packet

completion times are replaced by their assignment times to

the servers. In this case, the process 1LB
π (t) increases linearly

with t but is reset to a smaller value with the assignment of a
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Fig. 5. The evolution of 1LB
π and 1π in a single server queue. We assume

that a1 > s1 and a2 > c1 > s2. Thus, we have v1 = a1 and v2 = a2.

fresher packet to a server under policy π , as shown in Fig. 5.

The process 1LB
non-prmp-LGFS-R is a lower bound of all policies

in 5m in the following sense.

Lemma 11. Suppose that the packet service times are NBU,

and i.i.d. across servers and the packets assigned to the same

server, then for all I satisfying B ≥ 1, and π ∈ 5m

[1LB
non-prmp-LGFS-R|I] ≤st [1π |I]. (13)

Proof. See Appendix B.

We can now proceed to characterize the age performance

of policy non-prmp-LGFS-R. Let X1, . . . , Xm denote the i.i.d.

packet service times of the m servers, with mean E[Xl ] =

E[X] < ∞. We use Lemma 11 to prove the following

theorem.

Theorem 12. Suppose that the packet service times are NBU,

and i.i.d. across servers and the packets assigned to the same

server, then for all I satisfying B ≥ 1

(a) min
π∈5m

[1̄π |I] ≤ [1̄non-prmp-LGFS-R|I] ≤

min
π∈5m

[1̄π |I] + E[X]. (14)

(b) If there is a positive integer a such that m = ar , then

min
π∈5m

[1̄π |I] ≤ [1̄non-prmp-LGFS-R|I] ≤

min
π∈5m

[1̄π |I] + E[ min
l=1,...,r

X l], (15)

where 1̄π = lim supT →∞
E[

∫ T
0 1π (t)dt ]

T
is the average age

under policy π .

Proof. See Appendix C.

Theorem 12 tells us that for arbitrary sequence of packet

generation times (s1, s2, . . .), sequence of packet arrival times

(a1, a2, . . .), number of servers m, maximum replication

degree r , and buffer size B ≥ 1, the non-prmp-LGFS-R

policy is within a constant age gap from the optimum average

age among policies in 5m . It is important to emphasize that

policy non-prmp-LGFS-R with a maximum replication degree

r can be near age-optimal compared with policies with any

maximum replication degree. Also, when the update packets

arrive in the same order of their generation times and there

is no replication, the non-prmp-LGFS-R policy when B = 1

Fig. 6. Average age versus traffic intensity ρ for an update system with
m = 4 servers, queue size B , maximum replication degree r , and i.i.d NBU
service times.

becomes LCFS with preemption only in waiting (LCFS-W)

for a single source case in [17], or the “M/M/1/2*” in [8], [9].

Thus, these policies can achieve near age-optimality in this

case. The following corollary emphasizes this relationship.

Corollary 13. Under the conditions of Theorem 12, if the

packets arrive to the queue in the same order of their gener-

ation times, replications are not allowed (r = 1), and B = 1,

then for all I, the LCFS-W policy and the “M/M/1/2*” policy

are near age-optimal, i.e., these policies satisfy (14).

Proof. This corollary is a direct result of Theorem 12.

1) Simulation Results: We now provide simulation results

to illustrate the age performance of different policies when

the service times are NBU. The inter-generation times are

i.i.d. Erlang-2 distribution with mean 1/λ. The time difference

(ai − si ) between packet generation and arrival is zero. The

maximum replication degree r is either 1 or 4.

Figure 6 plots the average age versus ρ for an information-

update system with m = 4 servers. The packet service times

are the sum of a constant .25 and a value drawn from

an exponential distribution with mean .25. Hence, the mean

service time is 1/µ = .5. The “Age lower bound” curves are

generated by using

∫ T
0 1LB

non-prmp-LGFS-R(t)dt

T
when r is 1 and 4,

and B = 1 which, according to Lemma 11, are lower bounds

of the optimum average age. We can observe that the gap

between the “Age lower bound” curves and the average age

of the non-prmp-LGFS-R policy when r = 1 and r = 4 is no

larger than E[X] = 1/µ = .5, which agrees with Theorem 12.

This is a surprising result since it was shown in [16], [25], [26]

that replication policies are far from the optimum delay and

throughput performance for NBU service time distributions.

Moreover, we can observe that the average age of the prmp-

LGFS-R policies blows up when the traffic intensity is high.

This is because the packet service times do not have the

memoryless property in this case. Hence, when a packet is

preempted, the service time of a new packet is probably

longer than the remaining service time of the preempted

packet. Because the arrival rate is high, packet preemption
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Fig. 7. Average age under gamma service time distributions with different
shape parameter K , where m = 4 servers, queue size B = ∞, and maximum
replication degree r .

happens frequently, which leads to infrequent packet delivery

and increases the age, as observed in [8].

Figure 7 plots the average age under gamma service time

distributions with different shape parameter K , where m = 4,

B = ∞, and the traffic intensity ρ = λ/mµ = 1.8. The

mean of the gamma service time distributions is normalized

to 1/µ = 1. Note that the average age of the FCFS policy

in this case is extremely high and hence is not plotted in this

figure. One can notice that packet replication and preemption

affect the age performance of the plotted policies. In particular,

we found that packet replication improves the age performance

of the non-prmp-LGFS-R policy when the shape parameter

K ≤ 12.5, where the non-prmp-LGFS-R policy for r = 4

outperforms the case of r = 1. This is because the variance

(variability) of the normalized gamma distribution is high for

small values of K . Thus, packet replication can exploit the

diversity provided by the four servers in this case. For the

same reason, we can observe that packet replication improves

the age performance of the preemptive policies when K = 1,

where the prmp-LGFS-R policy for r = 4 achieves the best

age performance among all plotted policies. Another reason

behind the latter observation is that a gamma distribution

with shape parameter K = 1 is an exponential distribution

and hence is memoryless. Thus, packet preemption improves

the age performance in this case and age-optimality can be

achieved by the prmp-LGFS-R policy when r = m as stated

in Theorem 6 and Corollary 8. On the other hand, as the

shape parameter K increases, the variance (variability) of

the normalized gamma distribution decreases. This, in turn,

reduces the benefit gained from the diversity provided by four

servers and hence worsens the age performance of the policies

that use packet replication. Moreover, as can be seen in the

figure, preemption further worsens the age performance as the

shape parameter K increases, and the average age of the prmp-

LGFS-R policies blows up in this case. This is because of the

reduction in the variability of the packet service time when

the shape parameter K increases as well as the loss of the

memoryless property when K 6= 1. Thus, preemption is not

useful in this case.

C. Discussion

In this subsection, we discuss our results and compare it

with prior works.

1) Preemption vs. Non-Preemption: The effect of the pre-

emption on the age performance depends basically on the

distribution of the packet service time. More specifically,

when the packet service times are exponentially distributed,

preemptive policies (i.e., prmp-LGFS-R) can achieve age-

optimality (Theorem 6). This is because the remaining service

time of a preempted packet has the same distribution as

the service time of a new packet. For example, in Fig. 7,

preemptive policies provide the best age performance when

K = 1 (gamma distribution with shape parameter K = 1

is an exponential distribution). It is important to notice that

preemptive policies can achieve age-optimality regardless of

the value of ρ, even if the system is unstable when ρ > 1

(ρ = 1.8 in Fig. 7). Thus, we suggest using preemption

when the packet service times are exponentially distributed.

However, when the packet service times are NBU, we suggest

to not use preemption. This is because the service times are

no longer memoryless. Hence, when a packet is preempted,

the service time of a new packet is probably longer than the

remaining service time of the preempted packet. As shown

in Fig. 7, the age of the preemptive LGFS policy grows to

infinity at high traffic intensity for gamma distributed service

times with K > 1. Thus, we suggest using non-preemptive

policies (i.e., non-prmp-LGFS-R) instead when the packet

service times are NBU.

Similar observations have been made in previous stud-

ies [11], [17]. For exponential service time distribution, Yates

and Kaul showed in Theorem 3(a) of [17] that the average

age of the preemptive LCFS policy is a decreasing function

of the traffic intensity ρ in M/M/1 queues as ρ grows to

infinite. This agrees with our study, in which we proved that

the preemptive LCFS policy is age-optimal for exponential

service times and general system parameters. For NBU service

time distributions, our study agrees with [11]. In particular,

in [11, Numerical Results], the authors showed that the non-

preemptive LCFS policy can achieve better average age than

the preemptive LCFS policy. In this paper, we further show

that the non-prmp-LGFS-R policy is within a small constant

gap from the optimum age performance for all NBU service

time distributions, which include gamma distribution as one

example.

In general, our study was carried out for system settings

that are more general than [17] and [11].

2) Replication vs. Non-Replication: The replication tech-

nique has gained significant attention in recent years to reduce

the delay in queueing systems [14]–[16]. However, it was

shown in [16], [25], [26] that replication policies are far

from the optimum delay and throughput performance for NBU

service time distributions. A simple explanation of this result

is as follows: Let X1, . . . , Xm be i.i.d. NBU random variables

with mean E[X l ] = E[X] < ∞. From the properties of the

NBU distributions, we can obtain [29]

1

E[minl=1,...,m X l ]
≤

m

E[X]
. (16)
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Now, if X l represents the packet service time of server l, then

the left-hand side of (16) represents the service rate when

each packet is replicated to all servers; and the right-hand side

of (16) represents the service rate when there is no replication.

This gives insight why packet replication can worsen the delay

and throughput performance when the service times are NBU.

Somewhat to our surprise, we found that the non-prmp-

LGFS-R policy is near-optimal in minimizing the age, even for

NBU service time distributions. The intuition behind this result

is that the age is affected by only the freshest packet, instead

of all the packets in the queue. In other words, to reduce the

age, we need to deliver the freshest packet as soon as possible.

Obviously, we have

E[ min
l=1,...,m

X l ] ≤ E[X]. (17)

Thus, packet replication can help to reduce the age by exploit-

ing the diversity provided by multiple servers. As shown

in Fig. 7, we can observe that packet replication can improve

the age performance. In particular, the age performance of the

non-prmp-LGFS-R policy with r = 4 is better than that of the

non-prmp-LGFS-R policy with r = 1 when K ≤ 12.5.

V. THROUGHPUT-DELAY ANALYSIS

Recent studies on information-update systems have shown

that the age-of-information can be reduced by intelligently

dropping stale packets. However, packet dropping may not be

appropriate in many applications such as (but not limited to):

• News feeds: In addition to the latest breaking news,

the older news may be relevant to the user as well

(e.g., to provide context or outline a different story that

the user may have missed, etc.).

• Social updates: Users may need to be up to date with

the freshest events and social posts. Nonetheless, they

may also be interested in the previous posts. Thus, social

applications need to update users with latest posts and

previous ones as well.

• Stock quotes: Although the latest price in the market

is very important for the traders, they may also use the

history of the price change to predict the short-term price

movement and attempt to profit from this. Thus, both the

latest prices and historical price data are important in this

case.

• Autonomous driving or sensor information: In such

applications, while it is important to receive the latest

information, historical information may also be relevant

to exploit trends. For example, historical data on loca-

tion information can predict the trajectory, velocity, and

acceleration of the automobile. Similarly, certain types

of historical sensed data may be useful to predict forest

fires, earthquakes, Tsunamis, etc.

In these applications, users are interested in not just the latest

updates, but also past information. Therefore, all packets may

need to be successfully delivered. This motivates us to study

whether it is possible to simultaneously optimize multiple

performance metrics, such as age, throughput, and delay. In the

sequel, we investigate the throughput and delay performance

of the proposed policies. We first consider the exponential

service time distribution. Then, we generalize the service time

distribution to the NBU distributions. We need the following

definitions:

Definition 7. Throughput-optimality: A policy is said to be

throughput-optimal, if it maximizes the expected number of

delivered packets among all policies.

The average delay under policy π is defined as

Davg(π) =
1

n

n∑

i=1

[ci (π) − ai ], (18)

where the delay of packet i under policy π is ci (π) − ai .
5

Definition 8. Delay-optimality: A policy is said to be delay-

optimal, if it minimizes the expected average delay among all

policies.

Note that to maximize the throughput, we need to maximize

the total number of distinct delivered packets. Moreover,

to minimize the expected average delay, we need to minimize

the total number of distinct packets in the system along the

time. Based on these two key ideas, we prove our results in

the next subsections.

A. Exponential Service Time Distribution

We study the throughput and delay performance of the

prmp-LGFS-R policy when the service times are i.i.d. expo-

nentially distributed. The delay and throughput performance

of the prmp-LGFS-R policy are characterized as follows:

Theorem 14. Suppose that the packet service times are

exponentially distributed, and i.i.d. across servers and the

packets assigned to the same server, then for all I such that

B = ∞, the prmp-LGFS-R policy is throughput-optimal and

delay-optimal among all policies in 5m .

Proof. We provide a proof sketch of Theorem 14. We use the

coupling and forward induction to prove it. We first consider

the comparison between the prmp-LGFS-R policy and an

arbitrary work-conserving policy π . We couple the packet

departure processes at each server such that they are identical

under both policies. Then, we use the forward induction over

the packet arrival and departure events to show that the total

number of distinct packets in the system (excluding packet

replicas) and the total number of distinct delivered packets

are the same under both policies. By this, we show that the

prmp-LGFS-R policy has the same throughput and mean-

delay performance as any work-conserving policy (indeed, all

work-conserving policies have the same throughput and delay

performance). Finally, since the packet service times are i.i.d.

across servers and the packets assigned to the same server,

service idling only postpones the delivery of packets. There-

fore, both throughput and delay under non-work-conserving

policies will be worse. For more details, see Appendix D.

It is worth pointing out that when the packet service

times are i.i.d exponentially distributed, packet replication

does not affect the throughput and delay performance of the

5The lim sup operator is enforced on the right hand side of (18) if n → ∞.
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replicative policies. The reasons for this observation can be

summarized as follows. Because the packet service times

are i.i.d. across the servers and the CCDF F̄ is continuous,

the probability for any two servers to complete their packets

at the same time is zero. Therefore, in the replicative policies,

if one copy of a replicated packet is completed on a server,

the remaining replicated copies of this packet are still being

processed on the other servers; these replicated packet copies

are cancelled immediately and a new packet is replicated

on these servers. Due to the memoryless property of the

exponential distribution, the service times of the new packet

copies and the remaining service times of the cancelled packets

have the same distribution. Thus, packet replication does not

affect the throughput and delay performance of the replicative

policies.

B. NBU Service Time Distributions

Now, we consider a class of NBU service time distributions.

We study the throughput and delay performance of the non-

prmp-LGFS-R policy when there is no replication. The delay

and throughput performance of the non-prmp-LGFS-R policy

are characterized as follows:

Theorem 15. Suppose that the packet service times are NBU,

and i.i.d. across servers and the packets assigned to the same

server, then for all I such that B = ∞ and r = 1, the non-

prmp-LGFS-R policy is throughput-optimal and delay-optimal

among all non-preemptive policies in 51.

We omit the proof of Theorem 15, because it is similar to

that of Theorem 14.

VI. CONCLUSIONS

In this paper, we studied the age-of-information optimiza-

tion in multi-server queues. Packet replication was considered

in this model, where the maximum replication degree is con-

strained. We considered general system settings including arbi-

trary arrival processes where the incoming update packets may

arrive out of order of their generation times. We developed

scheduling policies that can achieve age-optimality for any

maximum replication degree when the packet service times are

exponentially distributed. This optimality result not only holds

for the age process, but also for any non-decreasing functional

of the age process. Interestingly, the proposed policies can also

achieve throughput and delay optimality. In addition, we inves-

tigated the class of NBU packet service time distributions

and showed that LGFS policies with replication are near age-

optimal for any maximum replication degree.

APPENDIX A

PROOF OF THEOREM 6

We need to define the system state of any policy π :

Definition 9. Define Uπ (t) as the largest generation time of

the packets at the destination at time t under policy π . Let

αi,π (t) be the generation time of the packet that is being

processed by server i at time t under policy π , where we set

αi,π (t) = Uπ (t) if server i is idle. Then, at any time t, the sys-

tem state of policy π is specified by Vπ (t) = (Uπ (t), α[1],π (t),

. . . , α[m],π (t)). Note that if there is a replication, we may

have α[i],π (t) = α[i+1],π (t) for some i’s. Without loss of

generality, if h servers are sending packets with generation

times less than Uπ (t) (i.e., α[m],π (t) ≤ α[m−1],π (t) ≤ . . . ≤

α[m−h+1],π (t) ≤ Uπ (t)) or h servers are idle, then we set

α[m],π (t) = . . . = α[m−h+1],π (t) = Uπ (t). Hence,

Uπ (t) ≤ α[m],π (t) ≤ . . . ≤ α[1],π (t). (19)

Let {Vπ (t), t ∈ [0,∞)} be the state process of policy π , which

is assumed to be right-continuous. For notational simplicity,

let policy P represent the prmp-LGFS-R policy. Throughout

the proof, we assume that VP(0−) = Vπ (0−) for all π ∈ 5r .

The key step in the proof of Theorem 6 is the following

lemma, where we compare policy P with any work-conserving

policy π .

Lemma 16. Suppose that VP(0−) = Vπ (0−) for all work

conserving policies π , then for all I

[{VP(t), t ∈ [0,∞)}|I]≥st [{Vπ(t), t ∈ [0,∞)}|I]. (20)

We use coupling and forward induction to prove Lemma 16.

For any work-conserving policy π , suppose that stochastic

processes ṼP(t) and Ṽπ (t) have the same stochastic laws

as VP(t) and Vπ (t). The state processes ṼP(t) and Ṽπ (t)

are coupled in the following manner: If the packet with

generation time α̃[i],P (t) is delivered at time t as ṼP(t)

evolves, then the packet with generation time α̃[i],π (t) is

delivered at time t as Ṽπ (t) evolves. Such a coupling is

valid because the service times are exponentially distributed

and thus memoryless. Moreover, policy P and policy π have

identical packet generation times (s1, s2, . . .) and packet arrival

times (a1, a2, . . .). According to Proposition 5, if we can show

P[ṼP(t) ≥ Ṽπ (t), t ∈ [0,∞)|I] = 1, (21)

then (20) is proven. To ease the notational burden, we will

omit the tildes on the coupled versions in this proof and just

use VP(t) and Vπ (t). Next, we use the following lemmas to

prove (21):

Lemma 17. At any time t, suppose that the system state

of policy P is {UP , α[1],P , . . . , α[m],P }, and meanwhile the

system state of policy π is {Uπ , α[1],π , . . . , α[m],π }. If

UP ≥ Uπ , (22)

then,

α[i],P ≥ α[i],π , ∀i = 1, . . . , m. (23)

Proof. Let S denote the set of packets that have arrived to the

system at the considered time t . It is important to note that

the set S is invariant of the scheduling policy. If S is empty,

then since VP(0−) = Vπ (0−), Lemma 17 follows directly.

Thus, we assume that S is not empty during the proof. We use

s[i] to denote the i -th largest generation time of the packets

in S. Define k = bm
r
c. From the definition of the system state,

condition (19), and the definition of policy P , we have

α[i],P = max{s[ j ], UP },

∀i = ( j − 1)r + 1, . . . , jr, ∀ j = 1, . . . , k,

α[i],P = max{s[k+1], UP}, ∀i = kr + 1, . . . , m. (24)
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Since policy π is an arbitrary policy, the servers under policy π

may not process the packets with the largest generation times

in the set S or policy π may replicate packets with lower

generation times more than those that have larger generation

times in the set S. Hence, we have

α[i],π ≤ max{s[ j ], Uπ },

∀i = ( j − 1)r + 1, . . . , jr, ∀ j = 1, . . . , k,

α[i],π ≤ max{s[k+1], Uπ }, ∀i = kr + 1, . . . , m. (25)

where the maximization here follows from the definition of

the system state. Since the set S is invariant of the scheduling

policy and UP ≥ Uπ , this with (24) and (25) imply

α[i],P ≥ α[i],π , ∀i = 1, . . . , m, (26)

which completes the proof.

Lemma 18. Suppose that under policy P, {U 0
P , α0

[1],P ,

. . . , α0
[m],P } is obtained by delivering a packet with gen-

eration time α[l],P to the destination in the system whose

state is {UP , α[1],P , . . . , α[m],P }. Further, suppose that under

policy π , {U 0
π , α0

[1],π , . . . , α0
[m],π } is obtained by delivering a

packet with generation time α[l],π to the destination in the

system whose state is {Uπ , α[1],π , . . . , α[m],π }. If

α[i],P ≥ α[i],π , ∀i = 1, . . . , m, (27)

then,

U 0
P ≥ U 0

π , α0
[i],P ≥ α0

[i],π , ∀i = 1, . . . , m. (28)

Proof. Since the packet with generation time α[l],P is delivered

under policy P , the packet with generation time α[l],π is

delivered under policy π , and α[l],P ≥ α[l],π , we get

U 0
P = α[l],P ≥ α[l],π = U 0

π . (29)

This, together with Lemma 17, implies

α0
[i],P ≥ α0

[i],π , i = 1, . . . , m. (30)

Hence, (28) holds for any queue size B ≥ 0, which completes

the proof.

Lemma 19. Suppose that under policy P, {U 0
P , α0

[1],P ,

. . . , α0
[m],P } is obtained by adding a packet to the system

whose state is {UP , α[1],P , . . . , α[m],P }. Further, suppose that

under policy π , {U 0
π , α0

[1],π , . . . , α0
[m],π } is obtained by adding

a packet to the system whose state is {Uπ , α[1],π , . . . , α[m],π }.

If

UP ≥ Uπ , (31)

then

U 0
P ≥ U 0

π , α0
[i],P ≥ α0

[i],π , ∀i = 1, . . . , m. (32)

Proof. Since there is no packet delivery, we have

U 0
P = UP ≥ Uπ = U 0

π . (33)

This, together with Lemma 17, implies

α0
[i],P ≥ α0

[i],π , i = 1, . . . , m. (34)

Hence, (32) holds for any queue size B ≥ 0, which completes

the proof.

Fig. 8. An illustration of vi , ci , 0i , and Di . There are 2 servers, and s j > si .
There is no packet with generation time greater than si that is assigned to any
of the servers before time v j . Packet j is assigned to Server 1 at time v j and
delivered to the destination at time c j ; while packet i is assigned to Server 2
at time vi and delivered to the destination at time ci . The service starting
time and completion time of packet j are earlier than those of packet i . Thus,
we have 0i = v j and Di = c j .

Proof of Lemma 16. For any sample path, we have that

UP(0−) = Uπ (0−) and α[i],P (0−) = α[i],π (0−) for i =

1, . . . , m. According to the coupling between the system state

processes {VP(t), t ∈ [0,∞)} and {Vπ (t), t ∈ [0,∞)}, as well

as Lemma 18 and 19, we get

[UP(t)|I] ≥ [Uπ (t)|I], [α[i],P (t)|I] ≥ [α[i],π (t)|I],

holds for all t ∈ [0,∞) and i = 1, . . . , m. Hence, (21) follows

which implies (20) by Proposition 5. This completes the

proof.

Proof of Theorem 6. As a result of Lemma 16, we have

[{UP(t), t ∈ [0,∞)}|I] ≥st [{Uπ (t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π , which implies

[{1P(t), t ∈ [0,∞)}|I]≤st[{1π (t), t ∈ [0,∞)}|I], (35)

holds for all work-conserving policies π .

For non-work-conserving policies, since the packet service

times are i.i.d. exponentially distributed, service idling only

increases the waiting time of the packet in the system.

Therefore, the age under non-work-conserving policies will

be greater. As a result, we have

[{1P(t), t ∈[0,∞)}|I] ≤st [{1π (t), t ∈[0,∞)}|I], ∀π ∈ 5r .

Finally, (10) follows directly from (9) using the properties

of stochastic ordering [29]. This completes the proof.

APPENDIX B

PROOF OF LEMMA 11

The proof of Lemma 11 is motivated by the proof idea of

[16, Lemma 1]. For notation simplicity, let policy P represent

the non-prmp-LGFS-R policy. We need to define the following

parameters:

Define 0i and Di as

0i = min{v j : s j ≥ si }, (36)

Di = min{c j : s j ≥ si }. (37)

where 0i and Di are the smallest assignment time and com-

pletion time, respectively, of all packets that have generation

times greater than that of packet i . An illustration of these

parameters is provided in Fig. 8. Suppose that there are n

update packets, where n is an arbitrary positive integer, no mat-

ter finite or infinite. Define the vectors 0 = (01, . . . , 0n),
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and D = (D1, . . . , Dn). All these quantities are functions of

the scheduling policy π .

Notice that we can deduce from (3) that the age process

{1π (t), t ∈ [0,∞)} under any policy π is an increasing

function of D(π). Moreover, we can deduce from (12) that

the process {1LB
P (t), t ∈ [0,∞)} is an increasing function of

0(P). According to Proposition 2, if we can show

[0(P)|I] ≤st [D(π)|I], (38)

holds for all π ∈ 5m , then (13) is proven. Hence, (38) is what

we need to show. We pick an arbitrary policy π ∈ 5m and

prove (38) using Proposition 1 into two steps.

Step 1: Consider packet 1. Define i∗ = argmini ai , where

si∗ ≥ s1. Since all servers are idle by time ai∗ and policy P is

work-conserving policy, packet i∗ will be assigned to a server

under policy P once it arrives. Thus, from (36), we obtain

[01(P)|I] = [vi∗(P)|I] = ai∗ . (39)

Under policy π , the completion times of all packets must be

no smaller than ai∗ . Hence, we have

[ci (π)|I] ≥ ai∗ , ∀i ≥ 1. (40)

This with (37) imply

[D1(π)|I] ≥ ai∗ . (41)

Combining (39) and (41), we get

[01(P)|I] ≤ [D1(π)|I]. (42)

Step 2: Consider a packet j , where 2 ≤ j ≤ n. We suppose

that there is no packet with generation time greater than s j that

has been delivered before packet j under policy π . We need

to prove that

[0 j (P)|I, 01(P) = γ1, . . . , 0 j−1(P) = γ j−1]

≤st [D j (π)|I, D1(π) = d1, . . . , D j−1(π) = d j−1]

whenever γi ≤ di , i = 1, 2, . . . , j − 1. (43)

For notational simplicity, define 0 j−1 � {01(P) = γ1, . . . ,

0 j−1(P) = γ j−1} and D j−1 � {D1(π) = d1, . . . , D j−1(π) =

d j−1}. We will show that there is at least one server under

policy P that can serve a new packet at a time that is

stochastically smaller than the completion time of packet j

under policy π . At this time, there are two possible cases

under policy P . One of them is that the idle server processes

a packet with generation time greater than s j . The other one

is that the idle server processes a packet with generation time

less than s j or there is no packet to be processed. We will

show that (43) holds in either case.

As illustrated in Fig. 9, suppose that u copies of packet j

are replicated on the servers l1, l2, . . . , lu at the time epochs

τ1, τ2, . . . , τu in policy π , where v j (π) = minw=1,...,u τw .6

In addition, suppose that server lw will complete serving its

copy of packet j at time αw if there is no cancellation. Then,

one of these u servers will complete one copy of packet j

at time c j (π) = minw=1,...,u αw , which is the earliest among

6If u = 1, then either there is no replication or policy π decides not to
replicate packet j .

Fig. 9. Illustration of packet assignments under policy π and policy P .
In policy π , two copies of packet j are replicated on the server l1 and server l2
at time τ1 and τ2, where v j (π) = min{τ1, τ2} = τ1. Server l2 completes
one copy of packet j at time c j (π) = α2, server l1 cancels its redundant
copy of packet j at time c j (π). Hence, the service duration of packet j is
[v j (π), c j (π)] in policy π . In policy P , at least one of the servers l1 and l2
becomes idle before time c j (π). In this example, server l2 becomes idle at
time θ(P) < c j (π) and a fresh packet k with sk ≥ s j starts its service on
server l2 at time θ(P).

these u servers. Hence, packet j starts service at time v j (π)

and completes service at time c j (π) in policy π . In policy P ,

let hw represent the index of the last packet that has been

assigned to server lw before time τw . Suppose that under

policy P , server lw has spent χlw (χlw ≥ 0) seconds on serving

packet hw before time τw. Let Rlw denote the remaining

service time of server lw for serving packet hw after time

τw in policy P . Let Xπ
lw

= αw − τw denote the service time

of one copy of packet j in server lw under policy π and

X P
lw

= χlw + Rlw denote the service time of packet hw in

server lw under policy P . The CCDF of Rlw is given by

P[Rlw > s] = P[X P
lw

− χlw > s|X P
lw

> χlw ]. (44)

Because the packet service times are NBU, we can obtain that

for all s, χlw ≥ 0

P[X P
lw

− χlw > s|X P
lw

> χlw ] =

P[Xπ
lw

− χlw > s|Xπ
lw

> χlw ] ≤ P[Xπ
lw

> s]. (45)

By combining (44) and (45), we obtain

Rlw ≤st Xπ
lw

. (46)

Because the packet service times are independent across the

servers, by Lemma 13 of [16], Rl1 , . . . , Rlu are mutually

independent. By Proposition 3 and (46), we can obtain

min
w=1,...,u

τw + Rlw ≤st min
w=1,...,u

τw + Xπ
lw

= min
w=1,...,u

αw. (47)

From (47) we can deduce that at least one of the servers

l1, . . . , lu , say server lz , becomes available to serve a new

packet under policy P at a time that is stochastically smaller

than the time c j (π) = minw=1,...,u αw . Let θ(P) denote the

time that server lz becomes available to serve a new packet in

policy P . According to (47), we have

[θ(P)|I, 0 j−1] ≤st [c j (π)|I, D j−1]

whenever γi ≤ di , i = 1, 2, . . . , j − 1. (48)

At time θ(P), we have two possible cases under policy P:

Case 1: A fresh packet k is assigned at time θ(P) to server lz

under policy P such that sk ≥ s j , as shown in Fig. 10(a).

Authorized licensed use limited to: Auburn University. Downloaded on May 26,2020 at 04:07:34 UTC from IEEE Xplore.  Restrictions apply. 



BEDEWY et al.: MINIMIZING THE AGE OF INFORMATION THROUGH QUEUES 5229

Fig. 10. The possible cases to occur after the completion of packet hz . (a) Case 1: Packet k is assigned to server lz after the completion of packet hz .
(b) Case 2: Packet k is assigned to server l0 before the completion of packet hz .

Hence, we obtain

[vk(P)|I, 0 j−1] = [θ(P)|I, 0 j−1] ≤st [c j (π)|I, D j−1]

whenever γi ≤ di , i = 1, 2, . . . , j − 1.

(49)

Since sk ≥ s j , (36) implies

[0 j (P)|I, 0 j−1] ≤ [vk(P)|I, 0 j−1] (50)

Since there is no packet with generation time greater than s j

that has been delivered before packet j under policy π , (37)

implies

[D j (π)|I, D j−1] = [c j (π)|I, D j−1] (51)

By combining (49), (50), and (51), (43) follows.

Case 2: A packet with generation time smaller than s j

is assigned to server lz or there is no packet assignment to

server lz at time θ(P) under policy P . Since policy P is a

work-conserving policy, policy P serves the packet with the

largest generation time first, and the packet generation times

(s1, s2, . . .) and arrival times (a1, a2, . . .) are invariant of the

scheduling policy, a packet k with sk ≥ s j must have been

assigned to another server, call it server l 0, before time θ(P),

as shown in Fig. 10(b). Hence, we obtain

[vk(P)|I, 0 j−1] ≤ [θ(P)|I, 0 j−1] ≤st [c j (π)|I, D j−1]

whenever γi ≤ di , i = 1, 2, . . . , j − 1.

(52)

Similar to Case 1, we can use (36), (37), and (52) to show

that (43) follows in this case.

It is important to note that if there is a packet y with sy > s j

and cy(π) < c j (π) (this may occur if packet y preempts the

service of packet j under policy π or packet y arrives to the

system before packet j ), then we replace packet j by packet

y in the arguments and equations from (43) to (52) to obtain

[0y(P)|I, 0 j−1] ≤st [Dy(π)|I, D j−1]

whenever γi ≤ di , i = 1, 2, . . . , j − 1. (53)

Observing that sy > s j , (36) implies

[0 j (P)|I, 0 j−1] ≤ [0y(P)|I, 0 j−1]. (54)

Since cy(π) < c j (π) and sy > s j , (37) implies

[D j (π)|I, D j−1] = [Dy(π)|I, D j−1]. (55)

By combining (53), (54), and (55), we can prove (43) in this

case too. Now, substituting (42) and (43) into Proposition 1,

(38) is proven. This completes the proof.

APPENDIX C

PROOF OF THEOREM 12

For notation simplicity, let policy P represent the non-prmp-

LGFS-R policy.

Proof of Theorem 12.(a). We prove Theorem 12.(a) into two

steps:

Step 1: We will show that the average gap between 1LB
P

and 1P is upper bounded by E[X]. Recall the definitions of

0i and Di from (36) and (37), respectively. Define di (P) =

Di (P)−0i (P). We know that there is a packet k with sk ≥ si

that starts service at time 0i (P) under policy P . Without

loss of generality, suppose that a server l is processing a

copy of packet k. Because of replications, packet k completes

service under policy P as soon as one of its replica completes

service. Hence, packet k is delivered at time ck(P) that

is no later than 0i (P) + X l under policy P . This implies

that ck(P) − 0i (P) ≤ X l . From (37), we can deduce that

Di (P) − 0i (P) ≤ ck(P) − 0i (P) ≤ X l . From this, we can

obtain

E[di ] ≤ E[X], ∀i. (56)

We now proceed to characterize the gap between 1LB
P and 1P .

We use {G(t), t ∈ [0,∞)} to denote the gap process between

1LB
P and 1P . The average gap is given by

[Ḡ|I] = lim sup
T →∞

E[
∫ T

0
G(t)dt]

T
. (57)

Let τi denote the inter-generation time between packet i and

packet i − 1 (i.e., τi = si − si−1), where τ = {τi , i ≥ 1}.

Note that, since the packet service times are independent of

the packet generation process, we have di ’s are independent

of τ . Define N(T ) = max{i : si ≤ T } as the number of

generated packets by time T . Note that [0, sN(T )] ⊆ [0, T ],

where the length of the interval [0, sN(T )] is
∑N(T )

i=1 τi . Thus,

we have
N(T )∑

i=1

τi ≤ T . (58)

The area defined by the integral in (57) can be decomposed

into a sum of disjoint geometric parts. Observing Fig. 11,
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Fig. 11. The evolution of 1LB
P

and 1P in a queue with 4 servers and r = 2.

the area can be approximated to the concatenation of the

parallelograms G1, G2, . . . (Gi ’s are highlighted in Fig. 11).

Note that the parallelogram Gi results after the generation of

packet i (i.e., the gap that is corresponding to the packet i

occurs after its generation). Since the observing time T is

chosen arbitrary, when T ≥ si , the total area of the parallel-

ogram Gi is accounted in the summation
∑N(T )

i=1 Gi , while it

may not be accounted in the integral
∫ T

0 G(t)dt . This implies

that
N(T )∑

i=1

Gi ≥

∫ T

0

G(t)dt . (59)

Combining (58) and (59), we get

∫ T

0
G(t)dt

T
≤

∑N(T )
i=1 Gi

∑N(T )
i=1 τi

. (60)

Then, take conditional expectation given τ and N(T ) on both

sides of (60), we obtain

E[
∫ T

0 G(t)dt|τ, N(T )]

T
≤

E[
∑N(T )

i=1 Gi |τ, N(T )]
∑N(T )

i=1 τi

=

∑N(T )
i=1 E[Gi |τ, N(T )]

∑N(T )
i=1 τi

, (61)

where the second equality follows from the linearity of the

expectation. From Fig. 11, Gi can be calculated as

Gi = τi di . (62)

Substituting by (62) into (61), yields

E[
∫ T

0
G(t)dt|τ, N(T )]

T
≤

∑N(T )
i=1 E[τi di |τ, N(T )]

∑N(T )
i=1 τi

=

∑N(T )
i=1 τiE[di |τ, N(T )]

∑N(T )
i=1 τi

. (63)

Note that di ’s are independent of τ . Thus, we have

E[di |τ, N(T )] = E[di ] ≤ E[X] for all i . Substituting this

into (63), yields

E[
∫ T

0
G(t)dt|τ, N(T )]

T
≤

∑N(T )
i=1 τiE[X]
∑N(T )

i=1 τi

= E[X], (64)

by the law of iterated expectations, we have

E[
∫ T

0 G(t)dt]

T
≤ E[X]. (65)

Taking the lim sup of both side of (65) when T → ∞, yields

lim sup
T →∞

E[
∫ T

0 G(t)dt]

T
≤ E[X]. (66)

Equation (66) tells us that the average gap between 1LB
P and

1P is no larger than E[X].

Step 2: We prove (14). Since 1LB
P is a lower bound of the

age process of policy P and the average gap between 1LB
P

and 1P is no larger than E[X], we obtain

[1̄LB
P |I] ≤ [1̄P |I] ≤ [1̄LB

P |I] + E[X], (67)

where 1̄LB
P = lim supT →∞

E[
∫ T

0 1LB
P (t)dt ]

T
. From Lemma 11,

we have for all I satisfying B ≥ 1, and π ∈ 5m

[{1LB
P (t), t ∈ [0,∞)}|I] ≤st [{1π(t), t ∈ [0,∞)}|I], (68)

which implies that

[1̄LB
P |I] ≤ [1̄π |I], (69)

holds for all π ∈ 5m . As a result, we get

[1̄LB
P |I] ≤ min

π∈5m

[1̄π |I]. (70)

Since policy non-prmp-LGFS-R is a feasible policy, we get

min
π∈5m

[1̄π |I] ≤ [1̄P |I]. (71)

Combining (67), (70), and (71), we get

min
π∈5m

[1̄π |I] ≤ [1̄P |I] ≤ min
π∈5m

[1̄π |I] + E[X], (72)

which completes the proof.

Proof of Theorem 12.(b). The proof of part (b) is similar to

that of part (a). Define di (P) = Di (P) − 0i (P). We know

that there is a packet k with sk ≥ si that starts service at time

0i (P) under policy P . Since m = ar for a positive integer a,

packet k is processed by r servers in policy P . Let Sk ⊆

{1, . . . , m} be the set of servers that process packet k under

policy P , which satisfies |Sk | = r . Because of replications,

packet k completes service under policy P as soon as one of

its replica is completes service. Hence, packet k is delivered

at time ck(P) = 0i (P) + minl∈Sk
X l under policy P . This

implies that ck(P) − 0i (P) = minl∈Sk
X l . From (37), We can

deduce that Di (P) − 0i (P) ≤ ck(P) − 0i (P) = minl∈Sk
X l .

From this, we can obtain

E[di ] ≤ E[ min
l=1,...,r

X l ],∀i. (73)

Similar to part a, we use {G(t), t ∈ [0,∞)} to denote the gap

process between 1LB
P and 1P . The average gap is given by

[Ḡ|I] = lim sup
T →∞

E[
∫ T

0
G(t)dt]

T
. (74)
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Following the same steps as in the proof of part (a), we can

show that

lim sup
T →∞

E[
∫ T

0
G(t)dt]

T
≤ E[ min

l=1,...,r
X l ]. (75)

Equation (75) tells us that the average gap between 1LB
P and

1P is no larger than E[minl=1,...,r X l ]. This and the fact that

1LB
P is a lower bound of the age process of policy P , imply

[1̄LB
P |I] ≤ [1̄P |I] ≤ [1̄LB

P |I] + E[ min
l=1,...,r

X l ]. (76)

Similar to part (a), we can use (76) with Lemma 11 to show

that

min
π∈5m

[1̄π |I] ≤ [1̄P |I] ≤ min
π∈5m

[1̄π |I]+E[ min
l=1,...,r

X l ], (77)

which completes the proof.

APPENDIX D

PROOF OF THEOREM 14

We follow the same proof technique of Theorem 6. We start

by comparing policy P (prmp-LGFS-R policy) with an arbi-

trary work-conserving policy π . For this, we need to define

the system state of any policy π :

Definition 10. At any time t, the system state of policy π is

specified by Hπ(t) = (Nπ (t), γπ (t)), where Nπ (t) is the total

number of distinct packets in the system at time t (excluding

packet replicas). Define γπ (t) as the total number of distinct

packets that are delivered to the destination at time t. Let

{Hπ(t), t ∈ [0,∞)} be the state process of policy π , which is

assumed to be right-continuous.

To prove Theorem 14, we will need the following lemma.

Lemma 20. For any work-conserving policy π , if HP(0−) =

Hπ(0−) and B = ∞, then [{HP(t), t ∈ [0,∞)}|I] and

[{Hπ(t), t ∈ [0,∞)}|I] are of the same distribution.

Suppose that {H̃P(t), t ∈ [0,∞)} and {H̃π(t), t ∈ [0,∞)}

are stochastic processes having the same stochastic laws as

{HP(t), t ∈ [0,∞)} and {Hπ(t), t ∈ [0,∞)}. Now, we couple

the packet delivery times during the evolution of H̃P(t) to be

identical with the packet delivery times during the evolution

of H̃π(t). Such a coupling is valid because the service times

are exponentially distributed, and hence, memoryless.

To ease the notational burden, we will omit the tildes

henceforth on the coupled versions and just use {HP(t)} and

{Hπ(t)}. The following two lemmas are needed to prove

Lemma 20:

Lemma 21. Suppose that under policy P, {N 0
P , γ 0

P} is

obtained by delivering a packet to the destination in the system

whose state is {NP , γP}. Further, suppose that under policy π ,

{N 0
π , γ 0

π } is obtained by delivering a packet to the destination

in the system whose state is {Nπ , γπ }. If

NP = Nπ , γP = γπ ,

then

N 0
P = N 0

π , γ 0
P = γ 0

π . (78)

Proof. Because the packet service times are i.i.d. and the

CCDF F̄ is continuous, the probability for any two servers

to complete their packets at the same time is zero. Therefore,

in policy P , if one copy of a replicated packet is completed

on a server, the remaining replicated copies of this packet

are still being processed on the other servers; these replicated

packet copies are cancelled immediately and a new packet is

replicated on these servers. Since there is a packet delivery,

we have

N 0
P = NP − 1 = Nπ − 1 = N 0

π ,

γ 0
P = γP + 1 = γπ + 1 = γ 0

π .

Hence, (78) holds, which complete the proof.

Lemma 22. Suppose that under policy P, {N 0
P , γ 0

P} is

obtained by adding a new packet to the system whose state

is {NP , γP}. Further, suppose that under policy π , {N 0
π , γ 0

π }

is obtained by adding a new packet to the system whose

state is {Nπ , γπ }. If

NP = Nπ , γP = γπ ,

then

N 0
P = N 0

π , γ 0
P = γ 0

π . (79)

Proof. Because B = ∞, no packet is dropped in policy P

and policy π . Since there is a new added packet to the system,

we have

N 0
P = NP + 1 = Nπ + 1 = N 0

π .

Also, there is no packet delivery, hence

γ 0
P = γP = γπ = γ 0

π .

Thus, (79) holds, which complete the proof.

Proof of Lemma 20. For any sample path, we have that

NP (0−) = Nπ (0−) and γP(0−) = γπ (0−). According to

the coupling between the system state processes {HP(t), t ∈

[0,∞)} and {Hπ(t), t ∈ [0,∞)}, as well as Lemma 21 and 22,

we get

[NP (t)|I] = [Nπ (t)|I], [γP(t)|I] = [γπ (t)|I],

holds for all t ∈ [0,∞). This implies that [{HP(t), t ∈

[0,∞)}|I] and [{Hπ(t), t ∈ [0,∞)}|I] are of the same

distribution, which completes the proof.

Proof of Theorem 14. As a result of Lemma 20, [{γP(t), t ∈

[0,∞)}|I] and [{γπ(t), t ∈ [0,∞)}|I] are of the same distri-

bution. This implies that policy P and policy π have the same

throughput performance. Also, from Lemma 20, we have that

[{NP (t), t ∈ [0,∞)}|I] and [{Nπ (t), t ∈ [0,∞)}|I] are of the

same distribution. Hence, policy P and policy π have the same

delay performance. These imply that policy P has the same

throughput and delay performance as any work-conserving

policy.

Finally, since the service times are i.i.d., service idling

only increases the waiting time of the packet in the sys-

tem. Therefore, the throughput and delay performance under

non-work-conserving policies will be worse. As a result,
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the prmp-LGFS-R policy is throughput-optimal and delay-

optimal among all policies in 5m (indeed, all work-conserving

policies with infinite buffer size B = ∞ have the same

throughput and delay performance, and hence, they are

throughput-optimal and delay-optimal).
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