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Optimal Status Updating with a Finite-Battery
Energy Harvesting Source
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Abstract: We consider an energy harvesting source equipped with a

finite battery, which needs to send timely status updates to a remote

destination. The timeliness of status updates is measured by a non-

decreasing penalty function of the age of information (AoI). The

problem is to find a policy for generating updates that achieves the

lowest possible time-average expected age penalty among all online

policies. We prove that one optimal solution of this problem is a

monotone threshold policy, which satisfies (i) each new update is

sent out only when the age is higher than a threshold and (ii) the

threshold is a non-increasing function of the instantaneous battery

level. Let τB denote the optimal threshold corresponding to the full

battery level B, and p(·) denote the age-penalty function, then we

can show that p(τB) is equal to the optimum objective value, i.e.,

the minimum achievable time-average expected age penalty. These

structural properties are used to develop an algorithm to compute

the optimal thresholds. Our numerical analysis indicates that the

improvement in average age with added battery capacity is largest

at small battery sizes; specifically, more than half the total possible

reduction in age is attained when battery storage increases from

one transmission’s worth of energy to two. This encourages fur-

ther study of status update policies for sensors with small battery

storage.

Index Terms: Age of information, age-energy tradeoff, battery ca-

pacity, energy harvesting, non-linear age penalty, optimal thresh-

old, threshold policy.

I. INTRODUCTION

THE age of information (AoI), or simply the age, was pro-

posed in [2], [3] as a performance metric that measures the

freshness of information in status-update systems. For a flow

of information updates sent from a source to a destination, the

age is defined as the time elapsed since the newest update avail-

able was generated at the source. That is, if U(t) is the largest

among the time-stamps of all packets received by time t, the age

is defined as:

∆(t) = t− U(t). (1)

AoI is a particularly relevant performance metric for status-

update applications that have growing importance in remote
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monitoring [4], [5], machine-type communication, industrial

manufacturing, telerobotics, Internet of Things and social net-

works.

In many applications, the timeliness of status updates not only

determines the quality of service, but also affects other design

goals such as the controllability of a dynamical system that re-

lies on the updates of sensing and control signals. AoI quan-

tifies the timeliness of status-updates from the perspective of

the receiver rather than throughput or delay based measures that

are actually channel-centric. Moreover, AoI is also related to

measures such as the time-average mean-square error (MSE)

for remote estimation. An example of this is the result in [6]

which showed remote estimation of a Wiener process minimiz-

ing MSE reduces to an AoI optimization problem when the sam-

pling times at the transmitting side are independent of the pro-

cess. While AoI optimization based on linear functions of the

age ∆(t) is a relevant performance goal for most scenarios, the

performance of some applications may be related to non-linear

functions of the age. For example, the change in the value of

stale data can be less/more significant as its age grows. In such

cases, the penalty of data staleness can be modelled as a non-

linear function p(∆(t)) of the age ∆(t), i.e., the age-penalty.

This function is chosen to be non-decreasing so that a decrease

in age-penalty can be only possible when the age is less. Ac-

cordingly, the optimization of the age-penalty parallels to av-

erage AoI optimization while it might have distinct optimality

conditions.

Ideally, AoI is minimized when status updates are frequent

and fresh. That is, good AoI performance requires packets with

low delay received regularly. A limitation in the minimization of

AoI is a constraint on the long-term average update rate which

may be due to an average power budget for the channel over

which status updates are sent. A stricter constraint is to keep

a detailed budget on the number of status updates by allow-

ing update transmission when a replenishable resource becomes

available. This is the case of energy harvesting communication

systems where each update consumes a certain amount of the

harvested energy, if available. In the related literature of AoI

optimization for energy harvesting communication systems, en-

ergy harvesting process is considered as an arrival process where

each energy arrival carries the energy required for an update

[7]–[14]. The goal of AoI optimization in such formulations is

to find an optimal timing of update instants in order to mini-

mize average AoI while transmission opportunities are subject

to the availability of energy. Energy arrivals occur irregularly

or randomly, which models an energy harvesting scenario. The

main challenge in optimizing time average expected age under

random energy arrivals is that in the case of an energy outages

(empty battery), the transmitter must idle for an unknown du-
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ration of time. If it is the case that such random durations are

inevitable, they introduce a tension for the regulation of inter-

update durations. Another challenge is due to the finiteness of

battery sizes. Theoretically, it is possible to achieve asymptoti-

cally optimal average AoI by employing simple schemes assum-

ing infinite [8] or sufficiently large battery [9] sizes. However,

when the battery size is comparable to the energy required per

update, such simple schemes do not allow performance guaran-

tees. Consequently, it is important to explore optimal policies

under such regimes where performance depends heavily on the

statistics of energy arrivals and the battery size.

This study is motivated by the aforementioned challenges of

optimizing AoI in energy harvesting systems, capturing both the

randomness of energy arrivals and finite energy storage capa-

bility. In addition capturing both challenges we go further, by

optimizing not only average age itself, but a more general age

penalty function p(∆(t)) that is not necessarily linear (see [15]–

[20]). Hence, the problem considered in this study is an age-

penalty optimization problem where status updates consume

discrete units of energy that are randomly generated, i.e., har-

vested, such that the number of energy units that can be stored

at a time is limited by a finite value which is called battery ca-

pacity.

Under the assumption of Poisson energy arrivals, we show the

structure of solutions for the age-penalty optimization problem.

The structure of the optimal solution reflects a basic intuition

about the optimal strategy: Updates should be sent when the up-

date is valuable (when the age is high) and the energy is cheap

(the battery level is high). We show that the optimal solution

is given by a stopping rule according to which an update is sent

when its immediate cost is surpassed by the expected future cost.

For Poisson energy arrivals, this stopping rule can be found in

the set of policies that we refer as monotone threshold policies.

Monotone threshold policies have the property that each update

is sent only when the age is higher than a certain threshold which

is a non-increasing function of the instantaneous battery level.

One of our key results is that the value of the age-penalty func-

tion at the optimal threshold corresponding to the full battery

level is exactly equal to the optimal value of the average age-

penalty.

A. Contributions

The contributions of this paper can be summarized as follows:

• We formulate the general average age-penalty optimization

problem for sending status updates from an energy harvest-

ing source. This generalizes the AoI optimization goal in the

prior studies [1], [8], [9], [11], [12] to a non-linear function

of age. In addition to the generalization on the objective, the

optimization is carried out over a more general policy space

defined only using the causality assumption. We prove that

solutions to this general optimization problem can be found

among threshold-type policies.

• We show that, for optimal threshold-type policies with non-

decreasing thresholds, the value of the penalty function at the

threshold corresponding to the highest battery level is equal

to the minimum value of the average age-penalty. As this op-

timal threshold is also the minimum of optimal thresholds at

different battery levels, this implies that inter-update durations

under such a policy is always above the minimum value of the

average age-penalty.

• For the case when the age-penalty function is linear, i.e.,

average AoI minimization problem, we provide the optimal

thresholds for integer battery size up to 4. These results show

that the most significant decrease in the minimum average AoI

happens when incrementing the battery capacity of unit size

(capable of holding one packet transmission’s worth of en-

ergy) to two units. The minimum achievable average AoI with

a battery size of 4 units is only about 10% larger than the ul-

timate minimum average AoI with infinite battery capacity.

That is a promising result for small sensor systems.

• For average AoI minimization problem, we provide an algo-

rithm that can find near optimal policies achieving average

AoI values arbitrarily close to the optimal values for any given

battery capacity. This algorithm provides a methodical way to

derive near optimal policies utilizing analytical results.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,

the related work is discussed and summarized. In Section III, the

system model and the formulation of the AoI optimization prob-

lem are described. In Section IV, the main results on the struc-

tural properties of the solution to the AoI optimization problem

are shown and an algorithm to derive solutions for arbitrary inte-

ger battery sizes is provided. In Section V, the numerical results

validating analytical results and also showing optimal solutions

for integer battery size up to 4 are presented. In Section VI, the

paper is concluded summaring the results and insights obtained

over the course of this study.

II. RELATED WORK

Several studies on AoI considered this performance metric

under various queueing system models comparing service dis-

ciplines and queue management policies (e.g., [21]–[29]). A

common observation in these studies was that many queue-

ing/service policies that are throughput and delay optimal but

are often suboptimal with respect to AoI, while AoI-optimal

policies can be throughput and delay optimal, at the same time.

This showed that AoI optimization is quite different than opti-

mization with respect to classical performance metrics. This re-

quired many queueing models to be re-addressed under respect

to age related objectives. Moreover, queueing system formula-

tions typically assume no precise control on the transmission or

generation times of status updates. However, such control is im-

portant for age optimization [16], [17].

A direct control on the generation times of status updates is

possible through a control algorithm that runs at the source. This

is the “generate-at-will" assumption formulated in [7], [10] and

studied in [6], [16], [17]. In [7], the problem of AoI optimiza-

tion for a source, which is constrained by an arbitrary sequence

of energy arrivals was studied. In [10], AoI optimization was

considered for a source that harvests energy at a constant rate

under stochastic delays experienced by the status update pack-

ets. The results in these studies showed suboptimality of work-

conserving transmission schemes. Often, introducing a waiting

time before sending the next update is optimal. That is, for maxi-
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Fig. 1. System model.

mum freshness, one may sometimes send updates at a rate lower

than one is allowed to which may be counter-intuitive at first

sight.

The problem in [7] was extended to a continuous-time formu-

lation with Poisson energy arrivals, finite energy storage (bat-

tery) capacity, and random packet errors in the channel in [8].

An age-optimal threshold policy was proposed for the unit bat-

tery case, and the achievable AoI for arbitrary battery size was

bounded for a channel with a constant packet erasure probabil-

ity. The concurrent study in [9], limited to the special cases of

unit battery capacity and infinite battery capacity computed the

same threshold-type policies under these assumptions. These

special cases were investigated also for noisy channels with a

constant packet erasure probability in [13], [14]. The case for

a battery with 2-units capacity was studied in [11] and the op-

timal policies for this case characterized as threshold-type poli-

cies similar to the optimal policy for unit battery capacity intro-

duced in [8] and [9]. Optimal policies for arbitrary battery sizes

were characterized via Lagrangian approach in [12] and using

optimal stopping theory in [1].

III. SYSTEM MODEL

Consider an energy harvesting transmitter that sends update

packets to a receiver, as illustrated in Fig. 1. Suppose that the

transmitter has a finite battery which is capable of storing up to

B units of energy. Similar to [8], we assume that the transmis-

sion of an update packet consumes one unit of energy. The en-

ergy that can be harvested arrive in units according to a Poisson

process with rate µH . Let E(t) denote the amount of energy

stored in the battery at time t such that 0 ≤ E(t) ≤ B. The

timing of status updates are controlled by a sampler which can

monitor the battery level E(t) for all t. We assume that the ini-

tial age and the initial battery level are zero, i.e., ∆(0) = 0 and

E(0) = 0.

Let H(t) and A(t) denote the number of energy units that

have arrived during [0, t] and the number of updates sent out

during [0, t], respectively. Hence, {H(t), t ≥ 0} and {A(t), t ≥
0} are two counting processes. If an energy unit arrives when

the battery is full, it is lost because there is no capacity to store

it.

The system starts to operate at time t = 0. Let Zk de-

note the generation time of the k-th update packet such that

0 = Z0 ≤ Z1 ≤ Z2 ≤ · · ·. An update policy is represented

by a sequence of update instants π = (Z0, Z1, Z2, · · ·). Let Xk

represent the inter-update duration between updates k − 1 and

k, i.e., Xk = Zk−Zk−1. In many status-update systems (e.g., a

sensor reporting temperature [30]), update packets are small in

size and are only sent out sporadically. Typically, the duration

for transmitting a packet is much smaller than the difference be-

tween two subsequent update times, i.e., Xks are typically large

compared to the duration of a packet transmission. With such

systems in mind, in our model, we will approximate the packet

transmission durations as zero. In other words, once the k-th up-

date is generated and sent out at time t = Zk, it is immediately

delivered to the receiver. Hence, the age of information ∆(t) at

any time t ≥ 0 is

∆(t) = t−max{Zk : Zk ≤ t}, (2)

which satisfies ∆(t) = 0 at each update time t = Zk. Because

an update costs one unit of energy, the battery level reduces by

one upon each update, i.e.,

E(Zk) = E(Z−
k )− 1, (3)

where Z−
k is the time immediately before the kth update. Fur-

ther, because the battery size is B, the battery level evolves ac-

cording to

E(t) = min{E(Zk) +H(t)−H(Zk), B}, (4)

when t ∈ [Zk, Zk+1) is between two subsequent updates.

In terms of energy available to the scheduler, we can define

update policies, that do not violate causality, as in the following:

Definition 1: A policy π is said to be energy-causal if

updates only occur when the battery is non-empty, that is,

E(Z−
k ) ≥ 1 for each packet k.

Another restriction on update instants is due to the informa-

tion available to the scheduler which we define as follows,

Definition 2: Information on the energy arrivals and up-

dates by time t is represented by the filtration 1 Ft =
σ({(H(t′), A(t′)), 0 ≤ t′ < t}) which is the σ-field gen-

erated by the sequence of energy arrivals and updates, i.e.,

{(H(t′), A(t′)), 0 ≤ t′ < t}.
Similar to the definition of energy-causal policies, in the pol-

icy space that we will consider we merely assume the causality

of available information besides energy causality. To formulate

this assumption, we use the definition of Ft. In terms of in-

formation available to the scheduler, any random time instant θ
does not violate causality if and only if {θ ≤ t} ∈ Ft for all

t ≥ 0. We will refer such random instants as Markov times [31]

and consider update times as Markov times based on the filtra-

tion Ft in general. Notice that such update times do not have to

be finite, however, we will refer Markov times that are also finite

with probability 1 (w.p.1.) as stopping times [31]. For a policy

trying to regulate age, it is legitimate to assume that update in-

stants are always finite w.p.1. as otherwise the age may grow

unbounded with a positive probability. With this in mind, we

will consider only the update instants that are stopping times.

Accordingly, we can define the online update policies com-

bining the causality assumptions on available energy and infor-

1Note that the filtration is right continuous as both H(t) and A(t) are right
continuous.
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mation as follows:

Definition 3: A policy is said to be online if (i) it is energy

causal, (ii) no update instant is determined based on future infor-

mation, i.e., all update times are stopping (finite Markov) times

based on Ft, i.e., Zk is finite w.p.1. while {Zk ≤ t} ∈ Ft for

all t ≥ 0 and k ≥ 1.

Let Πonline denote the set of online update policies. To evaluate

the performance of online policies, we consider an age-penalty

function that relates the age at a particular time to a cost which

increases by the age. This function is defined as in below:

We consider an age-penalty function p(·) that maps the age

∆(t) at time t to a penalty p(∆(t)):

Definition 4: A function p : [0,∞) → [0,∞) of the age is

said to be an age-penalty function if

• lim∆→∞ p(∆) =∞.

• p(·) is a non-decreasing function.

•
∫∞
0

p(t)e−αtdt <∞ for all α > 0.

Observe that the definition of age-penalty functions covers any

non-decreasing function of age that is of sub-exponential order2

and grows to infinity.

The time-average expected value of the age-penalty or simply

the average age-penalty can be expressed as

p̄ = lim sup
T→∞

1

T
E

[
∫ T

0

p(∆(t))dt

]

. (5)

Let p̄π denote the average age-penalty achieved by a particu-

lar policy π. The goal of this paper is to find the optimal update

policy for minimizing the average age-penalty, which is formu-

lated as
min

π∈Πonline

p̄π. (6)

IV. MAIN RESULTS

We begin with a result guaranteeing that the space of

threshold-type policies (see Definition 5) contains optimal up-

date policies hence we can focus our attention to these policies

for finding solutions to (6).

Note that at time t = Zk, the age ∆(t) is equal to 0. In

the meanwhile, the battery level E(t) will grow as more energy

is harvested. In threshold policies, the threshold τE(t) changes

according to the battery level E(t) and a new sample is taken at

the earliest time that the age ∆(t) exceeds the threshold τE(t).

We define such policies as follows:

Definition 5: When E(t) ∈ {` = 1, · · ·, B} represents the

battery level at time t, an online policy is said to be a threshold

policy if there exists τ` for ` = 1, · · ·, B s.t.

Zk+1 = inf
{
t ≥ Zk : ∆(t) ≥ τE(t)

}
. (7)

Note that a policy is said to be stationary if its actions depend

only on a current state while being independent of time. An

immediate observation is that given ∆(t) and E(t) threshold

policies do not depend on time, hence:

Proposition 1: All threshold policies are stationary.

2This is due to the third property in the definition, which is a technical re-
quirement for the proofs.

Proof: By definition, the update instants of a threshold

policy only depend on the time elapsed since the last update,

i.e., ∆(t), and the current battery level. 2

We expect that such stationary policies can minimize ∆̄ among

all online policies as energy arrivals follow a Poisson process

which is memoryless. Due to the memorylessness of energy ar-

rivals, the evolution of the system can be understood through a

renewal type behaviour which suggests that an optimal policy

should be stationary.

Indeed, we note the following as the first key result of this

paper.

Theorem 1: There exists a threshold policy that is optimal

for solving (6).

Proof: See Appendix A. 2

One significant challenge in the proof of Theorem 1 is that

(6) is an infinite time-horizon time-averaged MDP which has

an uncountable state space. When the state space is countable,

one can analyze infinite time-horizon time-averaged MDP by

making a unichain assumption. However, this method cannot be

directly applied when state space is uncountable. To resolve this,

we use a modified version of the “vanishing discount factor"

approach [32] to prove Theorem 1 in two steps:

1. Show that for every α > 0, there exists a threshold policy

that is optimal for solving

min
π∈Πonline

E

[∫ ∞

0

e−α(t−a)p(∆(t))dt

]

.

2. Prove that this property also holds when the discount factor

α vanishes to zero.

In our search for an optimal policy, we can further reduce the

space of policies:

Definition 6: A threshold policy is said to be a monotone

threshold policy if τ1 ≥ τ2 ≥ · · · ≥ τB .

Note that the definition of monotone threshold policies refers

only to the case of thresholds that non-increasing in battery lev-

els as opposed to the non-decreasing case.

Let ΠMT be the set of monotone threshold policies, then, the

following is true:

Theorem 2: There exists a monotone threshold policy π ∈
ΠMT that is optimal for solving (6).

Proof: See Appendix B. 2

Theorem 2 implies that in the optimal update policy, update

packets are sent out more frequently when the battery level is

high and less frequently when the battery level is low. This re-

sult is quite intuitive: If the battery is full, arrival energy cannot

be harvested; if the battery is empty, update packets cannot be

transmitted when needed and the age increases. Hence, both

battery overflow and outage are harmful. Monotone threshold

policies can address this issue. When the battery level l is high,

the threshold τl is small to reduce the chance of battery over-

flow; when the battery level l is low, the threshold τl is high to

avoid battery outage.

For a policy in ΠMT, the state (∆(t), E(t)) does not spend

a measurable amount of time anywhere ∆(t) ≥ τE(t) in which

an update is sent out instantly reducing the battery level. Oth-

erwise, the battery level is incremented upon energy harvests

while the age is increasing linearly in time. The illustration in

Fig. 2 shows the time evolution of the state (∆(t), E(t)) for
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Fig. 2. An illustration of a monotone threshold policy.

policies in ΠMT. If the energy level is E(Zk) = j upon the

previous update, then the inter-update time Xk+1 ∈ [τm, τm−1]
holds if and only if m− j packets arrive during the inter-update

time. In other words, reaching the battery state m or higher is

necessary and sufficient for the next inter-update duration being

shorter than some x when x ∈ [τm, τm−1). Let Yi denote the

duration required for i ≥ 1 successive energy arrivals, which

obeys the Erlang distribution at rate µH with parameter i,

P (Yi ≤ x) = 1−

i−1∑

v=0

1

v!
e−µHx(µHx)v, (8)

and let Yi = 0 for i ≤ 0.

Accordingly, for policies in ΠMT, the cumulative distribution

function (CDF) of inter-update durations, can be expressed as

Pr(Xk+1 ≤ x | E(Zk) = j) =






0, if x < τ ,B
Pr(Ym−j ≤ x), if τm ≤ x < τm−1, ∀m ∈ {2, · · ·, B},

Pr(Y1−j ≤ x), if τ1 ≤ x.

(9)

From (9), an expression for the transition probability

Pr(E(Zk+1) = i | E(Zk) = j) for i = 0, 1, · · ·, B − 1 can

be derived3

Pr(E(Zk+1) = i | E(Zk) = j) =
{

Pr(YB−j ≤ τB−1), if i = B − 1,

Pr(Y1+i−j ≤ τi)− Pr(Y2+i−j ≤ τi+1), if i < B − 1.

(10)

Hence, energy states sampled at update instants can be de-

scribed as a discrete time Markov chain (DTMC) with the tran-

sition probabilities in (10) (See Fig. 3). When thresholds are fi-

nite, this DTMC is ergodic as any energy state is reachable from

any other energy state in B − 1 steps with positive probability.

Any optimal policy in ΠMT has the following property:

Theorem 3: An optimal policy for solving (6) is a monotone

3Note that the event E(Zk+1) = i happens if and only if Xk+1 ∈
[τi+1, τi), accordingly Pr(E(Zk+1) = i | E(Zk) = j) = Pr(Xk+1 ≤
τi | E(Zk) = j)− Pr(Xk+1 ≤ τi+1 | E(Zk) = j).

E =B−1E = 0 E = 1 E = j E =j+1 E =j+2 · · ·

Fig. 3. The DTMC for energy states sampled at update times.

threshold policy that satisfies the following

p(τ∗B) = p̄π∗ = min
π∈Πonline

p̄π, (11)

where π∗ is a monotone threshold policy solving (6) and τ∗B is

its age threshold for the full battery case.

Proof: See Appendix E. 2

The result in Theorem 3 exhibits a structural property of op-

timal policies which also appears in the sampling problem that

was studied in [19] . The sampling problem in [19] considered

sources without energy harvesting, where the packet transmis-

sion times were i.i.d. and non-zero. On the one hand, the opti-

mal sampling policy in Theorem 1 of [19] is a threshold policy

on an expected age penalty term, and the threshold is exactly

equal to the optimal objective value. On the other hand, a sam-

pling problem for an energy harvesting source with zero packet

transmission time is considered in the current paper. The opti-

mal sampling policy in Theorem 3 can be rewritten as

Zk+1 = inf
{

t ≥ Zk : p(∆(t)) ≥ p(τ∗E(t))
}

,

which is a multi-threshold policy on the age penalty function,

each threshold p(τ∗` ) corresponding to a battery level `. Further,

the threshold p(τ∗B) associated with a full battery size E(t) =
B is equal to the optimal objective value. The results in these

two studies are similar to each other. Together, they provide a

unified view on optimal sampler design for sources both with

and without energy harvesting capability. The proof techniques

in these two studies are of fundamental difference.

A. Average Age Case

If we take the age-penalty function as an identity function,

i.e., p(∆) = ∆, then (6) becomes the problem of minimizing

the time-average expected age. In this case, the result in Theo-

rem 3 implies that in optimal monotone threshold policies, inter-

update durations can be small as much as the minimum average

AoI only when the battery is full. From results in [8] and [9],

we know that the minimum average AoI for the infinite battery

case is 1/2µH and this can be achieved asymptotically using the

best-effort scheme in [9] or with a threshold policy [8] where all

thresholds are nearly equal to 1/µH . On the other hand, accord-

ing to Theorem 3, the optimal threshold for the full battery level

tends to 1/2µH as the battery capacity increases. This shows

that the optimal monotone threshold policies remain structurally

dissimilar to asymptotically optimal policies when the battery

capacity is approaching to infinity. The result is more useful

when the battery capacity is finite as it may lead to the optimal

threshold values of the other battery levels. We will use this in an

algorithm for finding near optimal policies for any given integer

sized battery capacity. In addition, the special case of Theo-
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rem 3 for average age [1] can be derived from a more general

result which we provide in Lemma 1. This result shows a re-

lation between the partial derivatives of a non-negative random

variable with respect to the thresholds determining the random

variable in a similar way to the inter-update duration case.

Lemma 1: Suppose X is a r.v. that satisfies the following:

Pr(X ≤ x) =







0 if x < τB ,

Fi(x) if τi ≤ x < τi−1, ∀i ∈ {2, · · ·, B},

F1(x) if τ1 ≤ x,

where 0 < τB ≤ · · · ≤ τ2 ≤ τ1 and for each i ∈ {1, · · ·, B}
Fi(x) is the CDF of a non-negative random variable. Then:

∂

∂τi
E
[
X2

]
= 2τi

∂

∂τi
E [X] .

Proof: See Appendix C. 2

Corollary 1: The inter-update intervals, X , for any π ∈
ΠMT satisfy the following:

∂

∂τi
E
[
X2|E=j

]
=2τi

∂

∂τi
E [X |E=j] , ∀(i, j) ∈{1, 2, · · ·, B}2,

(12)

where E [X |E = j] , E [Xk |E(Zk)=j] and E
[
X2 |E=j

]
,

E
[
X2

k | E(Zk) = j
]

.

Note that the transition probabilities (10) do not depend on τB
hence the steady-state probabilities obtained from (10) also do

not depend on τB . This leads to a property of τB the average

age case of Theorem 3 as shown in [1]. The unit-battery case ,

i.e., B = 1 case was solved in [8] and [9]. For completeness,

this result is summarized in Theorem 4.

Theorem 4: When B = 1, the average age ∆̄ can be ex-

pressed as

∆̄ =
1
2 (µHτ1)

2 + e−µHτ1(µHτ1 + 1)

µH(µHτ1 + e−µHτ1)
, (13)

and τ∗1 = ∆̄π∗ = 1
µH

2W ( 1√
2
) where W (·) is the Lambert-W

function.

Proof: See Appendix F. 2

Theorem 5: When B = 2, the average age ∆̄ can be ex-

pressed as:

∆̄ =
α2
2
2 +e−α2[α2+1+ρ1(α

2
2+2α2+2)]−e−α1[α1+1+ρ1(α

2
1+α1+1)]

µH(α2+e−α2 [1+ρ1(α2+1)]−e−α1 [1+ρ1α1])
, (14)

where

ρ1 =
e−α1

1− e−α1α1
,

and

α1 = µHτ1, α2 = µHτ2.

Proof: See Appendix G. 2

B. An Algorithm for Finding Near Optimal Policies

We propose an algorithm to find a near optimal policy π ∈
ΠMT such that ∆̄π − ∆̄π∗ ≤ 1

2q+1µH
for any given B and q ∈

Algorithm 1 Find π ∈ ΠMT such that ∆̄π − ∆̄π∗ ≤ 1
2q+1µH

.

Require: B ≥ 1 ∧ q ≥ 1
Ensure: ∆̄π − ∆̄π∗ ≤ 1

2q+1µH

τ−B ←
1

2µH
, τ+B ←

1
µH

for i = 1, 2, · · ·, q do

τ̂B ←
τ−

B
+τ+

B

2
if ∃τB−1 ≤ · · · ≤ τ2 ≤ τ1 s.t. τB−1 ≥ τ̂B and

2τ̂Bm1(τ1, τ2, · · ·, τ̂B)−m2(τ1, τ2, · · ·, τ̂B) = 0 then

τ+B ← τ̂B
else

τ−B ← τ̂B
end if

end for

Solve 2τ̂Bm1(τ1, τ2, · · ·, τ̂B)−m2(τ1, τ2, · · ·, τ̂B) = 0
return π = (τ1, τ2, · · ·, τ̂B)

Z
+. Let m1(τ1, τ2, · · ·, τB) and m2(τ1, τ2, · · ·, τB) denote the

functions such that:

m1(τ1, τ2, · · ·, τB) =

B−1∑

j=0

E [X | E = j] Pr(E = j), (15)

m2(τ1, τ2, · · ·, τB) =

B−1∑

j=0

E
[
X2 | E = j

]
Pr(E = j), (16)

where Pr(E = j) is the steady-state probability for energy state

j, E [X | E = j] , E [Xk | E(Zk) = j] and E
[
X2 | E = j

]
,

E
[
X2

k | E(Zk) = j
]
.

Note that it is straight forward to derive m1(τ1, τ2, · · ·, τB)
and m2(τ1, τ2, · · ·, τB) using (9) and (10), hence we assume

these functions are available for any B.

In the below theorem , we state the main result that we will

use in an algorithm for finding near optimal policies:

Theorem 6: For B > 1, the equation

2τBm1(τ1, τ2, · · ·, τB)−m2(τ1, τ2, · · ·, τB) = 0, (17)

has a solution with monotone non-increasing thresholds, i.e.,

τB ≤ · · · ≤ τ2 ≤ τ1 if and only if τB ≥ ∆̄π∗ .

Proof: See Appendix H. 2

Algorithm 1 uses this result to find a near optimal policy π ∈
ΠMT such that ∆̄π − ∆̄π∗ ≤ 1/(2q+1µH). Each iteration in

Algorithm 1 halves the interval where the minimum average AoI

can be found based on the existence of solution to (6) with the

current estimate of the smallest threshold τ̂B . Accordingly, it is

guaranteed that Algorithm 1 finds a solution within a gap to the

optimal value that is 1/(2q+1µH).
Algorithm 1 assumes a numerical solver that can solve the

transcendental equation in (17), however, the exact solution is

required only once at the final step while iterations only require

verifying the existence of a solution to (6).

V. NUMERICAL RESULTS

For battery sizes B = 1, 2, 3, 4, the policies in ΠMT are nu-

merically optimized giving AoI versus energy arrival rate (Pois-
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Fig. 4. AoI versus energy arrival rate (Poisson) for different battery sizes B =
1, 2, 3, 4.
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Fig. 5. AoI versus τ1 against various τ2 values for B = 2 and µH = 1.
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Fig. 6. AoI versus τ2 against various τ1 values for B = 2 and µH = 1.

son) curves in Fig. 4. We give the corresponding threshold val-

ues in Table 1. These results were obtained through exhaustive

search for possible threshold values, and Monte Carlo analysis

for approximating AoI values in the simulation of the consid-

ered system and policies without relying on analytical results.

It can be seen that these optimal thresholds and corresponding

AoI values (in Table 1) validate Theorem 3. Figs. 5 and 6 show

the dependency of AoI on threshold values τ1 and τ2 which is

consistent with the result in Theorem 5 for the special case of

B = 2.

Table 1. Optimal thresholds for different battery sizes for µH = 1.

τ1 τ2 τ3 τ4 ∆̄π∗

B = 1 0.90 - - - 0.90

B = 2 1.5 0.72 - - 0.72

B = 3 1.5 1.2 0.64 - 0.64

B = 4 1.5 1.2 0.86 0.604 0.604

VI. CONCLUSION

We have studied optimizing a non-linear age penalty in the

generation and transmission of status updates by an energy har-

vesting source with a finite battery. An optimal status updating

policy for minimizing the time-average expectation of a general

non-decreasing age function p(·) has been obtained. The pol-

icy has a monotonic threshold structure: (i) Each new update is

sent out only when the age is higher than a threshold and (ii)

the threshold is a non-increasing function of the instantaneous

battery level such that the updates are sent out more frequently

when the battery level is high. Furthermore, we have identified

an interesting relationship between the smallest optimal thresh-

old τ∗B (i.e., the threshold corresponding to a full battery level)

and the optimal objective value p̄π∗ (i.e., the minimum achiev-

able time-average expected age penalty), which is given by

p(τ∗B) = p̄π∗ . (18)

APPENDIX A

THE PROOF OF THEOREM 1

In order to prove Theorem 1, we use a modified version of

the “vanishing discount factor” approach [32] which consists of

2 steps:

Step 1. Show that for every α > 0, there exists a threshold

policy that is optimal for solving

min
π∈Πonline

E

[∫ ∞

0

e−αtp(∆(t))dt

]

.

Step 2. Prove that this property still holds when the discount

factor α vanishes to zero.

We first discuss Step 1. Recall that Ft represents the informa-

tion about the energy arrivals and the update policy during [0, t].
Given Fa, we are interested in finding the optimal online policy

during [a,∞), which is formulated as

min
π∈Πonline

E

[∫ ∞

a

e−α(t−a)p(∆(t))dt

∣
∣
∣
∣
Fa

]

. (19)

Observe that, in (19), the term e−α(t−a) ensures that the ex-

ponential decay always starts from unity so that the problem is

independent of a given Fa. In addition, this problem has the

following nice property:

Lemma 2: There exists an optimal solution to (19) that de-

pends on Fa only through (∆(a), E(a)). That is, (∆(a), E(a))
is a sufficient statistic for solving (19).

Proof: In Problem (19), the age evolution {∆(t), t ≥ a}
is determined by the initial age ∆(a) at time a and the update

policy during [a,∞). Further, the update policy during [a,∞)
is determined by the initial age ∆(a), the initial battery level
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E(a), and the energy counting process {H(t) −H(a), t ≥ a}.
Hence, {∆(t), t ≥ a} is determined by ∆(a), E(a), and

{H(t)−H(a), t ≥ a}.

Recall that ∆(0) and E(0) are fixed. Hence, for any online

update policy, the online update decisions during [0, a] depends

only on {H(t), t ≤ a}. Hence, Fa is determined by {H(t), t ≤
a}. Because {H(t), t ≥ 0} is a compound Poisson process,

{H(t)−H(a), t ≥ a} is independent of {H(t), t ≤ a}. Hence,

{∆(t), t ≥ a} depends on Fa only through ∆(a) and E(a). By

this, (∆(a), E(a)) is a sufficient statistic for solving (19). 2

By using Lemma 2, we can simplify (19) as (20) and define

a cost function Jα(∆(a), E(a)) which is the optimal objective

value of (20):

Jα(∆(a), E(a)) := min
π∈Πonline

E

[∫ ∞

a

e−α(t−a)p(∆(t))dt

∣
∣
∣
∣
Fa

]

= min
π∈Πonline

E

[∫ ∞

a

e−α(t−a)p(∆(t))dt

∣
∣
∣
∣
∆(a), E(a)

]

. (20)

Furthermore, one important question is: Given that the pre-

vious update occurs at Zk = a, how to choose the next update

time Zk+1. This can be formulated as

min
(Z1,···,Zk=a,Zk+1,···)∈Πonline

E

[∫ ∞

a

e−α(t−a)p(∆(t))dt

∣
∣
∣
∣
Zk = a,∆(a) = 0, E(a)

]

,

(21)

where we have used the fact that if Zk = a, then ∆(a) =
∆(Zk) = 0.

According to the definition of Πonline, Zk+1 is a finite Markov

time, i.e., stopping time, hence the problem of finding Zk+1 for

a solution to (21) can be formulated as an infinite horizon opti-

mal stopping problem in the interval [a,∞). We will consider

a gain [31] process G = (Gt)t≥a adapted to the filtration Ft

where a stopping time Zk+1 for a solution to (21) maximizes

E
[
GZk+1

| Fa

]
when we choose Zk+1 from a family of stop-

ping times based on Ft. Let Ma denote this family of Zk+1s

which can be expressed as:

Ma =

{Zk+1 ≥ a : Pr(Zk+1 <∞) = 1, {Zk+1 ≤ t} ∈ Ft, ∀t ≥ a} .

Note that a stopping time in Ma may violate energy causality

however our definition of the gain process will guarantee that

those stopping times cannot be optimal.

We will define the gain process (Gt)t≥a based on the value of

the discounted cost when an update is sent at a particular time

t. The gain process (Gt)t≥a for E(t) > 0 corresponds to the

additive inverse of this cost and can be written as follows:

Gt = − min
π∈Πonline

E

[∫ ∞

a

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
Zk = a, Zk+1 = t, E(t)

]

,

E(t) > 0. (22)

Note that the stopping time cannot be at time t when E(t) = 0
as there is no energy to send another update in that case. To

cover this case, we set Gt to −∞ so that a stopping time

Zk+1 maximizing E
[
GZk+1

| Fa

]
should satisfy energy causal-

ity hence belongs to an online policy. In other words, the stop-

ping time Zk+1 in a solution to (21) maximizes E
[
GZk+1

| Fa

]

among all the stopping times in Ma.

Alternatively, the gain process (Gt)t≥a can be expressed in

terms of the cost defined in (20) as follows

Gt =−

∫ t

a

e−α(w−a)p(w − a)dw

− E

[∫ ∞

t

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
Zk = a, Zk+1 = t, E(t)

]

=−

∫ t

a

e−α(w−a)p(w − a)dw − e−α(t−a)Jα(0, E(t)− 1),

(23)

for t ≥ a and E(t) > 0.

Let’s define J(0,−1) :=∞ so that (23) holds for the E(t) =
0 as well. Notice that the process Gt is driven by the random

process E(t) which is not conditioned on any particular value

of E(a) while being adapted to the filtration Ft. However, for a

policy solving (21), the stopping time Zk+1 depends on E(a) as

it maximizes E
[
GZk+1

| Fa

]
which depends on E(a) through

the filtration Fa.

Accordingly, we define the stopping problem of maximizing

the expected gain in the given interval [a,∞) as in the following:

max
t∈Ma

E [Gt | Fa] . (24)

Based on this formulation, we will show that the optimal stop-

ping time exists and is given by the following stopping rule for

Zk+1:

Zk+1 = inf{t ≥ Zk = a : Gt = St}, (25)

where S is the Snell envelope [31] for G:

St = ess sup
t′∈Mt

E [Gt′ | Ft] . (26)

Showing that Zk+1 in (25) is finite w.p.1 is sufficient to prove

the existence of the optimal stopping time and the optimality of

the stopping rule in (25) (see [31, Theorem 2.2.]). Consider the

lemma below and its proof in order to see the finiteness of Zk+1

in (25):

Lemma 3: For the stopping rule in (25) Zk+1 is finite w.p.1,

i.e., Pr(Zk+1 <∞) = 1.

Proof: Consider the Markov time Qk+1 which is defined

as follows:

Qk+1 := inf{t ≥ Zk = a : E(t) = B,Gt = St}. (27)

Clearly, the stopping time Zk+1 chosen in (25) is earlier than

Qk+1 as Qk+1 has an additional stopping condition E(t) = B.

This means that if Pr(Qk+1 <∞) = 1, then Pr(Zk+1 <∞) =
1.

Accordingly, for the proof of this lemma, it is sufficient to

show that Qk+1 is finite w.p.1. We will show this by showing the
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finiteness of (i) the first time t ≥ Zk = a such that E(t) = B,

and (ii) the duration between this time and the Markov time

Qk+1. Note that E(t) = B condition is always satisfied af-

ter it reached for the first time. Let Rk+1 be the Markov time

representing the first time when E(t) = B is satisfied:

Rk+1 := inf{t ≥ Zk = a : E(t) = B}. (28)

(i) Observe that the Markov time Rk+1 is finite w.p.1 as it

is stochastically dominated by a + YB where YB is an Erlang

distributed random variable with parameter B which obeys (8)

and Pr(YB <∞) = 1.

(ii) In order to see that Qk+1 − Rk+1 is also finite, consider

the time period after Rk+1, i.e., [Rk+1,∞). As E(t) = B for

any t ≥ Rk+1, the evolution of Gt becomes deterministic after

t ≥ Rk+1:

Gt =

−
∫ t

a
e−α(w−a)p(w − a)dw − e−α(t−a)Jα(0, B − 1), (29)

for t ≥ Rk+1.

On the other hand, for t ≥ Rk+1, the Snell envelope is

St = ess supt′∈Mt
Gt′ = supt′≥t Gt′ . We will show that Gt

is always non-increasing after some finite time so that St = Gt

is always satisfied after that time.

In order to see this, consider the change in Gt for t ≥ Rk+1.

As

−
∂

∂t

[∫ t

a

e−α(w−a)p(w − a)dw + e−α(t−a)Jα(0, B − 1)

]

= e−α(t−a) (αJα(0, B − 1)− p(t− a)) , (30)

and p(t − a) is non-decreasing, for t ≥ Rk+1, Gt is non-

increasing if t ≥ tc for some tc such that

tc := inf{t ≥ a : p(t− a) = αJα(0, B − 1)}. (31)

This implies that, for t ≥ max{Rk+1, tc}, Gt = supt′≥t Gt′

and hence St = Gt. Accordingly, the stopping conditions of

Qk+1 are satisfied for the first time when t = max{Rk+1, tc}
which means Qk+1 = max{Rk+1, tc}.

As αJα(0, B − 1) is finite, tc is finite which implies Qk+1 is

finite w.p.1 as Rk+1 is finite w.p.1. This completes the proof. 2

We just showed that the Markov time in (25) is finite w.p.1 and

this means that it is the optimal stopping time by [31, Theorem

2.2.]. Next, we show that the optimal stopping rule in (25) is a

threshold policy by using the properties of the cost function in

(20). To relate the optimal stopping time and the cost function

in (20), we will express the Snell envelope in an alternative way.

Notice that the Snell envelope can be written by substituting

(22) in (26) as follows:

St = ess sup
t′∈Mt

− min
π∈Πonline

E

[∫ ∞

a

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
Zk = a, Zk+1 = t′,Ft

]

.

(32)

Hence,

St = − min
π∈Πonline

E

[∫ ∞

a

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
Zk = a, Zk+1 ≥ t,Ft

]

. (33)

Accordingly, using the definition of Jα(∆(a), E(a)), we can

write

St = −

∫ t

a

e−α(w−a)p(w − a)dw + e−α(t−a)Jα(∆(t), E(t)).

(34)

Therefore, as the first terms in (29) and (34) are identical, the

optimal stopping rule in (25) is equivalent to

Zk+1 = inf{t ≥ Zk = a : Jα(0, E(t)−1) = Jα(∆(t), E(t))}.
(35)

Next, we show that the stopping rule in (35) is a threshold rule

in age. In order to show this, let us define the function ρα(·) :
{0, 1, · · ·, B} → [0,∞) such that:

ρα(`) := inf{w ≥ 0 : Jα(0, `− 1) = Jα(w, `)}. (36)

We can show that for any ∆ ≥ ρα(`), it is guaranteed that

Jα(0, `− 1) = Jα(∆, `) due to the following reasons:

• For any ∆ and ` ∈ {0, 1, 2, · · ·, B}, Jα(∆, `) is smaller than

or equal to Jα(0, `− 1) as :

Jα(∆, `) = min
π∈Πonline

ea

E

[∫ ∞

a

e−αwp(∆(w))dw

∣
∣
∣
∣
Zk= ta−∆, Zk+1 ≥ ta, E(ta) = `

]

≤ min
π∈Πonline

ea

E

[∫ ∞

a

e−αwp(∆(w))dw

∣
∣
∣
∣
Zk = ta −∆, Zk+1 = a,E(t) = `

]

= Jα(0, `− 1),

where the inequality is true as the expectation is conditioned

on policies with Zk+1 = ta.

• For any ` ∈ {0, 1, 2, · · ·, B}, Jα(∆, `) is non-decreasing in ∆
as :

Jα(∆, `)

= min
π∈Πonline

E

[
∫ Zk+1

a

e−α(w−a)p(w +∆− ta)dw

∣
∣
∣
∣
∣
θ(∆)

]

+ E

[
∫ ∞

Zk+1

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
∣
θ(∆)

]

≤ min
π∈Πonline

E

[
∫ Zk+1

a

e−α(w−a)p(w +∆′ − ta)dw

∣
∣
∣
∣
∣
θ(∆)

]

+ E

[
∫ ∞

Zk+1

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
∣
θ(∆

]

= min
π∈Πonline

E

[
∫ Zk+1

a

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
∣
θ(∆′)

]
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+ E

[
∫ ∞

Zk+1

e−α(w−a)p(∆(w))dw

∣
∣
∣
∣
∣
θ(∆′)

]

=Jα(∆
′, `),

for any ∆′ ≥ ∆ and θ(∆) := (Zk = ta − ∆, Zk+1 ≥
ta, E(ta) = `) where the inequality follows from the fact that

p(·) is non-decreasing and the second equality is due to that,

given Zk+1, the integrated values are conditionally indepen-

dent from Zk.

Accordingly, Jα(∆, `) = Jα(0, ` − 1) for any ` ∈
{0, 1, 2, · · ·, B} and ∆ ≥ ρα(`). Therefore, the stopping rule

in (35) is equivalent to:

Zk+1 = inf{t ≥ Zk = a : ∆(t) ≥ ρα(E(t))}, (37)

for ` ∈ {0, 1, 2, · · ·, B}.

We showed that the stopping rule in (37) gives the optimal

stopping time Zk+1 for a policy solving (21). Now, we can start

discussing Step 2 in order to show that the optimal stopping rule

with the same structure also gives a solution to (6).

In this part (Step 2) of the proof, we will consider the optimal

stopping rules in (37) while the discount factor α is vanishing to

zero. Notice that the policy solving (21) is identified by ρα(`)
due to (37). Let πα and ∆πα

(t) be a policy obeying (37) and

solving (21) for discount factor α and the age at time t for that

policy, respectively. We will show the following

limβ↓0 limtf→∞

∫ tf
0 E[p(∆πβ

(t))]dt
tf

=

infπ∈Πonline lim suptf→∞

∫ tf
0 E[p(∆π(t))]dt

tf
, (38)

which implies that for any {βn}n≥1 ↓ 0 sequence, πβn
con-

verges to the policy solving (6).

To prove the equivalence in (38), we will use Feller’s Taube-

rian theorem [33] (also see the Tauberian theorem in [34]) which

can be stated as follows:

Theorem 7: (Feller 1971) Let f(t) be a Lebesgue-

measurable, bounded, real function. Then,

lim inf
tf→∞

∫ tf
0

f(t)dt

tf
≤ lim inf

α↓0
α

∫ tf

0

e−α(t−a)f(t)dt

≤ lim sup
α↓0

α

∫ tf

0

e−α(t−a)f(t)dt ≤ lim sup
tf→∞

∫ tf
0

f(t)dt

tf
.

(39)

Moreover, if the central inequality is an equality, then all in-

equalities are equalities.

This theorem can be applied for the function f(t) =
E
[
p(∆πβ

(t))
]

where β > 0 4. To simplify the inequalities for

this case, let’s define a function Jα;β(∆(a), E(a)) for β > 0

4Note that the function E

[

p(∆πβ
(t))

]

is Lebesgue-measurable (as p(·) is

non-decreasing) and bounded (as Xks are bounded w.p.1 for a policy obeying
(37)).

such that:

Jα;β(∆(a), E(a)) :=
∫ ∞

a

e−α(t−a)
E
[
p(∆πβ

(t))
∣
∣∆(a), E(a)

]
dt. (40)

Note that for a = 0:

Jα;β(0, 0) :=

∫ ∞

a

e−α(t−a)
E
[
p(∆πβ

(t))
]
dt.

Accordingly, we can apply Feller’s Tauberian theorem for

f(t) = E
[
p(∆πβ

(t))
]

when a = 0 giving:

lim inftf→∞

∫ tf
0 E[p(∆πβ

(t))]dt
tf

≤ lim infα↓0 αJα;β(0, 0) ≤

lim supα↓0 αJα;β(0, 0) ≤ lim suptf→∞

∫ tf
0 E[p(∆πβ

(t))]dt
tf

.

(41)

We can show that the inequalities in (41) are satisfied with

equality for any πβ with β > 0 as limtf→∞

∫ tf
0 E[∆πβ

(t)]dt
tf

ex-

ists for any πβ with β > 0. To see this, consider the following

lemma:

Lemma 4: For α > 0 and {Zk+1, k ≥ 0} with Zk+1 as in

(37), the following holds:

lim
tf→∞

∫ tf
0

E [p(∆πα
(t))] dt

tf
=

limn→+∞
1
n

∑n
k=0 E[p(Xk)]

limn→+∞
1
n

∑n
k=0 Xk

w.p.1. (42)

Proof: The proof of Lemma 3 showed that for Zk = a and

optimal stopping time solving (24) it is true that Pr(Xk+1 ≥
x) ≤ Pr(tc − ta + YB ≥ x) where tc is the determin-

istic time defined in (31) and YB is an Erlang distributed

with parameter B which obeys (8). Accordingly, E[p(Xk+1)]
is finite as E[p(αJα(0, B) + YB)] is finite for α > 0.

On the other hand, limn→+∞
1
n

∑n
k=0 Xk < ∞ w.p.1 and

limn→+∞
1
n

∑n
k=0 Xk > 1

µH
w.p.1 due to the energy causal-

ity constraint. Therefore, we can apply the derivation steps in

[35, Theorem 5.4.5] and obtain (42). This completes the proof.

2

Lemma 4 and (41) imply the following for for a = 0 and β > 0:

lim
α↓0

αJα;β(0, 0) = lim
tf→∞

∫ tf
0

E
[
p(∆πβ

(t))
]
dt

tf
. (43)

Now, consider an arbitrary online policy π for which

E [p(∆π(t))] is Lebesgue-measurable and bounded, then apply

Feller’s Tauberian theorem for f(t) = E [p(∆π(t))] giving the

following inequality when ta = 0:

lim supα↓0 α
∫∞
0

e−α(t−a)
E [p(∆π(t))] dt ≤

lim suptf→∞

∫ tf
0 E[p(∆π(t))]dt

tf
. (44)

Note that for α > 0, Jα;β(0, 0) is minimized for α = β,
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hence:

limβ↓0 limα↓0 αJα;β(0, 0) = infβ>0 limα↓0 αJα;β(0, 0)

≤ lim supα↓0 α
∫∞
0

e−α(t−a)
E [p(∆π(t))] dt. (45)

Combining (43), (44) and (45), we get (38). This completes the

proof.

APPENDIX B

THE PROOF OF THEOREM 2

Theorem 2 follows from the proof of Theorem 1. To prove the

theorem it is sufficient to show that for any α > 0, ρα(`) (see

(36)) is non-increasing in ` as this guarantees that the mono-

tonicity of optimal thresholds holds for any sequence of α val-

ues that vanishes to zero. To see this, consider the following

lemma and the argument provided below its proof:

Lemma 5: For J(·, ·) is the function defined in (20),

Jα(0, `)−Jα(0, `+1) is non-increasing in ` ∈ {0, 1, · · ·, B−1}
for any α ≥ 0.

Proof:

First, consider the alternative formulation of Jα(r, ` + 1) in

below:

Jα(r, `+ 1) = min
π∈Πonline

eaE[

E

[∫ ∞

a

e−αtp(∆(t))dt

∣
∣
∣
∣
Zk+1,∆(ta) = r, E(ta) = `+ 1

]

],

where the outer expectation is taken over Zk+1.

Let

Kr,`+1(z, σ) :=

Pr (Zk+1 = z,H(z)−H(a) = σ|∆(ta) = r, E(ta) = `+ 1)

be the joint distribution of Zk+1 ∈Ma and the energy harvested

during [a, z]. Then, we can write Jα(r, `+ 1) as follows:

Jα(r, `+ 1) = min
Zk+1∈Ma

∞∑

σ=0

∫ ∞

ta

Kr,`+1(z, σ)e
a

×

[∫ z

a

e−αtp(∆(t))dt+ e−αzJα(0,min{`+ σ,B − 1})

]

dz.

(46)

Similarly,

Jα(r, `+ 2) = min
Zk+1∈Ma

∞∑

σ=0

∫ ∞

ta

Kr,`+2(z, σ)e
a

×

[∫ z

a

e−αtp(∆(t))dt+e−αzJα(0,min{`+1+σ,B − 1})

]

dz.

(47)

Now, let K∗
r,`+2(z, σ) be the distribution corresponding to the

update time Zk+1 ∈Ma that is optimal in (47), which means:

Jα(r, `+ 2) =

∞∑

σ=0

∫ ∞

ta

K∗
r,`+2(z, σ)e

a

×

[∫ z

a

e−αtp(∆(t))dt+ e−αzJα(0,min{`+1+σ,B − 1})

]

dz.

(48)

Clearly, K∗
r,`+2(z, σ) is not necessarily the joint distribution

corresponding the update time Zk+1 ∈ Ma that is optimal for

(46), hence:

Jα(r, `+ 1) ≤

∞∑

σ=0

∫ ∞

ta

K∗
r,`+2(z, σ)[

∫ z

a

e−α(t−a)p(∆(t))dt

+ e−α(z−a)Jα(0,min{`+ σ,B − 1})]dz. (49)

Combining (50) and (49) gives:

Jα(r, `+ 1)− Jα(r, `+ 2) ≤

∞∑

σ=0

∫ ∞

a

K∗
r,`+2(z, σ)e

−α(z−a)

×[Jα(0,min{`+σ,B−1})−Jα(0,min{`+1+ σ,B − 1})]dz.
(50)

which implies :

Jα(r, `+ 1)− Jα(r, `+ 2) ≤ maxσ∈{0,1,···,B−`}
Jα(0,min{`+ σ,B − 1})−Jα(0,min{`+1+σ,B − 1})

Now, consider the case when r = 0 and ` = B − 2 for (50):

Jα(0, B − 1)− Jα(0, B) ≤
∞∑

σ=0

∫ ∞

a

K∗
r,`+2(z, σ)e

−α(z−a)[Jα(0,min{B −2+σ,B − 1})

−Jα(0,min{B−1+ σ,B − 1})]dz, (51)

which implies:

Jα(0, B−1)−Jα(0, B) ≤ Jα(0, B−2)−Jα(0, B−1). (52)

Suppose that the inequality below is true for j ≥ `+ 1:

Jα(0, j + 1)− Jα(0, j + 2) ≤ Jα(0, j)− Jα(0, j + 1). (53)

Then, we have:

Jα(0, `+ 1)− Jα(0, `+ 2)

≤

∞∑

σ=0

∫ ∞

a

K∗
r,`+2(z, σ)e

−α(z−a)×

[Jα(0,min{`+ σ,B − 1})−Jα(0,min{`+ 1 + σ,B − 1})]dz

≤

∫ ∞

a

K∗(z, 0)e−α(z−a)[Jα(0, `)− Jα(0, `+ 1)]dz +

∞∑

σ=1
∫ ∞

a

K∗
r,`+2(z, σ)e

−α(z−a)[Jα(0, `+ 1)− Jα(0, `+ 2)]dz

≤ Jα(0, `)− Jα(0, `+ 1). (54)
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This means that the inequality (53) is also true for j = ` so is

for any j = 0, 1, · · ·, B − 2 by induction. Combining this and

(51):

Jα(r, `+ 1)− Jα(r, `+ 2) ≤ Jα(0, `)− Jα(0, `+ 1), (55)

for α ≥ 0, r ≥ 0 and 2

Lemma 5 shows that ρα(`) is non-increasing in ` for α > 0. It

is sufficient to consider (55) when r = ρα(`):

0 = Jα(0, `−1)−Jα(ρα(`), `) ≤ Jα(0, `−2)−Jα(ρα(`), `−1),
(56)

which implies ρα(`− 1) ≥ ρα(`) combining

Jα(0, `− 2)− Jα(ρα(`− 1), `− 1)

and that Jα(r, ` − 1) is non-decreasing 5 in r. Accordingly, the

optimal policies solving (19) are monotone threshold policies,

i.e., πα ∈ ΠMT for any α > 0.

APPENDIX C

THE PROOF OF LEMMA 1

Let τB+1 = 0. Then, consider:

∂

∂τi
E
[
X2

]
=

∂

∂τi

∫ ∞

0

2xPr(X ≥ x)dx

=
∂

∂τi

B∑

i=0

∫ τi

τi+1

2xPr(X ≥ x)dx

= 2
∂

∂τi

[
∫ τi

τi+1

xPr(X ≥ x)dx+

∫ τi−1

τi

xPr(X ≥ x)dx

]

= 2τi
∂

∂τi

∫ τi−1

τi+1

Pr(X ≥ x)dx

= 2τi
∂

∂τi

B∑

i=0

∫ τi

τi+1

Pr(X ≥ x)dx = 2τi
∂

∂τi
E [X] ,

for i = 0, 1, · · ·, B.

APPENDIX D

USEFUL RESULTS FOR ASYMPTOTIC PROPERTIES

Lemmas 6, 7, and 8 provide some useful results that combine

ergodicity properties and renewal-reward theorem for a DTMC

with transition probabilities in (10).

Lemma 6: The DTMC with the transition probabilities in

(10) is ergodic for a monotone threshold policy where τ1 is fi-

nite.

Proof: Consider an energy state j in [0, B − 1]. We will

show that any other energy state i is reachable from j in at most

B − 1 steps with a positive probability. For i ≥ j, the higher

energy state i is reachable from j in one step with a positive

probability as for i = B − 1, Pr(YB−j ≤ τB−1) is strictly

5This fact is provided in the proof of Theorem 1.

positive and for j ≤ i < B − 1:

Pr(Y1+i−j ≤ τi)− Pr(Y2+i−j ≤ τi+1) ≥

Pr(Y1+i−j ≤ τi+1)− Pr(Y2+i−j ≤ τi+1) > 0,

as τi+1 ≤ τi and i− j ≥ 0.

Similarly, the energy state i = j− 1 for j = 1, · · ·, B− 1 can

be reached from j with a probability 1 − Pr(Y1 ≤ τj) which is

strictly positive as τj is finite. This means that any state i < j
can be reached from j in at most B − 1 steps with a positive

probability. 2

Lemma 7: For monotone threshold policies with finite τ1,

the following is true:

lim
n→+∞

1

n

n∑

k=0

Xk =

B−1∑

j=0

E [X | E = j] Pr(E = j) w.p.1.

(57)

lim
n→+∞

1

2n

n∑

k=0

E[X2
k ] =

1

2

B−1∑

j=0

E
[
X2 | E = j

]
Pr(E = j),

(58)

where Pr(E = j) is the steady-state probability for energy state

j, E [X | E = j] , E [Xk | E(Zk) = j] and E
[
X2 | E = j

]
,

E
[
X2

k | E(Zk) = j
]
.

Proof: Consider:

1

n

n∑

k=0

Xk =
1

n

B−1∑

j=0

∑

k∈[0,n]
E(Zk)=j

Xk =
1

n

B−1∑

j=0

Lj∑

`=0

X`;j ,

where Lj is the number of ks in [0, n] such that E(Zk) = j and

X`;j is a r.v. with the CDF Pr(X`;j ≤ x) = Pr(Xk ≤ x |
E(Zk) = j) for some k.

Note that the sequence X0;j , X1;j , · · ·, XLj ;j is i.i.d. for any

j and their mean is bounded as all thresholds are finite, hence:

lim
Lj→∞

1

Lj

Lj∑

`=0

X`;j = E [X | E = j] , w.p.1.

Due to the ergodicity of E(Zk)s (Lemma 6):

lim
n→∞

Lj

n
= Pr(E = j), w.p.1.

Therefore,

lim
n→∞

1

n

n∑

k=0

Xk = lim
n→∞

B−1∑

j=0

Lj

n
(
1

Lj

Lj∑

`=0

X`;j),

=

B−1∑

j=0

E [X | E = j] Pr(E = j), w.p.1.
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Similarly,

lim
n→∞

1

n

n∑

k=0

E[X2
k ] = lim

n→∞

B−1∑

j=0

Lj

n
(
1

Lj

Lj∑

`=0

X2
`;j)

=

B−1∑

j=0

E
[
X2 | E = j

]
Pr(E = j), w.p.1.

2

Lemma 8: For a threshold policy where τ1 is finite, the av-

erage age ∆̄ is finite (w.p.1) and given by the following expres-

sion.

∆̄ =
limn→+∞

1
2n

∑n
k=0 E[X

2
k ]

limn→+∞
1
n

∑n
k=0 Xk

w.p.1. (59)

Proof: The proof is a generalization of Theorem 5.4.5 in

[35] for the case where Xks are non-i.i.d. but the limits still exist

(w.p.1). When Xks are i.i.d. with E[Xk] <∞ and E[X2
k ] <∞,

the convergence (w.p.1) of the limits is guaranteed. 2

APPENDIX E

THE PROOF OF THEOREM 3

Theorem 3 follows from the proof of Theorem 1. The proof

of Lemma 3 shows that given that Zk = a is the last update time

and E(t′) = B for some t′ > a, the condition St = Gt is sat-

isfied for the first time when t ≥ {t′, tc} (see (31)). This means

that ρα(B) = αJα(0, B−1) for ρα(E(t)) in (37). Accordingly,

p(τ∗B) = limα↓0 ρα(B) = limα↓0 αJα(0, B − 1) =

minπ∈Πonline lim suptf→∞

∫ tf
0 E[p(∆π(t))|E(0)=B]dt

tf
= p̄π∗ ,

which follows from the application of Feller’s Tauberian theo-

rem (applying Theorem 7 for f(t) = E [p(∆π(t)) | E(0) = B]).
This completes the proof.

APPENDIX F

THE PROOF OF THEOREM 4

By Lemma 8 and Lemma 7, ∆̄ for B = 1 can be computed

as follows

∆̄ =
1

2

E
[
X2 | E = 0

]
Pr(E = 0)

E [X | E = 0]Pr(E = 0)
, (60)

where Pr(E = 0) = 1, E
[
X2 | E = 0

]
= τ21 + ( 2

µ2
H

+
2

µH
τ1)e

−µHτ1 and E [X | E = 0] = τ1+
1

µH
e−µHτ1 . Accord-

ingly, ∆̄ is given by (13). By Theorem 3, τ∗1 = ∆̄π∗ and com-

bining this with (13) results in

µHτ∗1 =
1
2 (µHτ∗1 )

2 + e−µHτ∗

1(µHτ1 + 1)

µHτ∗1 + e−µHτ∗

1
. (61)

Solving (61) gives that (τ∗1 )
2 = 2

µH
e−µHτ∗

1 which means τ∗1 =
1

µH
2W ( 1√

2
).

APPENDIX G

THE PROOF OF THEOREM 5

By Lemma 8 and Lemma 7, ∆̄ for B = 2 is the following:

∆̄ =

1

2

E
[
X2 | E = 0

]
Pr(E = 0) + E

[
X2 | E = 1

]
Pr(E = 1)

E [X | E = 0]Pr(E = 0) + E [X | E = 1]Pr(E = 1)
.

(62)

The probability of being in E = 1, i.e. Pr(E = 1) can be solved

using:

Pr(E = 1) =

1∑

j=0

Pr(E(Zk+1) = 1 | E(Zk) = j) Pr(E = j).

(63)

Combining (63) and (9),

Pr(E = 1) =
e−µHτ1

1− e−µHτ1µHτ1
. (64)

Now, we can obtain E
[
X2 | E = j

]
, E [X | E = j] using (9).

Combining these with (64) and substituting in (62) gives (5).

APPENDIX H

THE PROOF OF THEOREM 6

First, we show that τB ≥ ∆̄π∗ is necessary to find a solution

to (17) with monotonic non-increasing thresholds. Then, we

show that this condition is also sufficient.

The necessity part of the proof follows from the fact

that τB = ∆̄π for any solution of (17), as ∆̄π =
m1(τ1, τ2, · · ·, τB)/2m2(τ1, τ2, · · ·, τB) by Lemma 8 and

Lemma 7. Therefore, by the optimality of ∆̄π∗ , τB ≥ ∆̄π∗

must hold for any solution of (17).

Now, we consider the sufficiency part of the proof where it is

useful to define a function φ : [0,∞)B → R as follows:

φ(τB , τB−1 − τB , · · ·, τ1 − τ2) ,

2τBm1(τ1, τ2, · · ·, τB)−m2(τ1, τ2, · · ·, τB).

Using this definition, (17) can be written as,

φ(τB , τB−1 − τB , · · ·, τ1 − τ2) = 0.

We need to show that given τB ≥ ∆̄π∗ , one can find

a set of non-negative real numbers d1, · · ·, dB−1 such that

φ(τB , dB−1, · · ·, d1) = 0. Accordingly, τB and d1, · · ·, dB−1

constitute a solution to (17) with monotonic non-decreasing

thresholds where τi = τi+1 + di, for i = 1, · · ·, B − 1. In

order to prove this, let us start with the optimal policy π∗ =
(τ∗1 , τ

∗
2 · · ·, τ

∗
B) where we know that τ∗B = ∆̄π∗ by Theorem 3.

Starting from the optimal policy π∗, the policy will be modified

following the procedure below:

• Phase 1: Modify the policy π(+) = (τ
(+)
1 , τ

(+)
2 , · · ·,τ

(+)
B ) from

the previous phase to the policy π(−) = (τ
(−)
1 , τ

(−)
2 · · ·, τ

(−)
B )

so that τ
(−)
B = min{τ

(+)
B−1, τB} while τ

(−)
i = τ

(+)
i , for i =

1, · · ·, B − 1. Then, go to Phase 2 with policy π(−).

• Phase 2: Modify the policy π(−) = (τ
(−)
1 , τ

(−)
2 , · · ·,τ

(−)
B ) from
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the previous phase to the policy π(+) = (τ
(+)
1 , τ

(+)
2 · · ·, τ

(+)
B )

so that τ
(+)
B = τ

(−)
B while τ

(+)
i = τ

(−)
i +x for i = 1, · · ·, B−

1 where x > 0 is the solution of the following:

φ(τ
(−)
B , τ

(−)
B−1 − τ

(−)
B + x, · · ·, τ

(−)
1 − τ

(−)
2 + x) = 0. (65)

If τ
(−)
B = τB , the procedure stops and (65) gives the solution

that φ(τB , dB−1, · · ·, d1) = 0, otherwise go to Phase 1 with

policy π(+).

It can be shown that the procedure always stops with a solution

that φ(τB , dB−1, · · ·, d1) = 0. To see this, first observe that (65)

always has a solution as long as:

φ(τ
(−)
B , τ

(−)
B−1 − τ

(−)
B , · · ·, τ

(−)
1 − τ

(−)
2 ) > 0. (66)

This is due to the following facts about the function

φ(τ
(−)
B , τ

(−)
B−1 − τ

(−)
B + x, · · ·, τ

(−)
1 − τ

(−)
2 + x): (i) It is a con-

tinuous function of x, (ii) it goes to −∞ as x grows.

Next, observe that (66) always holds, i.e.,

φ(τ
(−)
B , τ

(−)
B−1 − τ

(−)
B , · · ·, τ

(−)
1 − τ

(−)
2 ) =

φ(τ
(+)
B , τ

(+)
B−1 − τ

(+)
B , · · ·, τ

(+)
1 − τ

(+)
2 )

︸ ︷︷ ︸

=0 due to the Phase 2 or the initial/optimal policy

+
∫ π(−)

π(+) dφ,

is positive. This can be seen by considering:

∂φ
∂τB

= 2m1(τ1, τ2, · · ·, τB)

+
∑B−1

j=0

[

2τB
∂

∂τB
E [X | E = j]− ∂

∂τB
E
[
X2 | E = j

]]

×Pr(E = j),

which follows from the fact that Pr(E = j) does not depend on

τB (see (10)) and can be further simplified by Lemma 1, hence:

∂φ

∂τB
= 2m1(τ1, τ2, · · ·, τB).

Accordingly, we have:

φ(τ
(−)
B , τ

(−)
B−1 − τ

(−)
B , · · ·, τ

(−)
1 − τ

(−)
2 ) =

∫ π(−)

π(+) dφ

= 2
∫ τ

(−)
B

τ
(+)
B

m1(τ
(+)
1 , τ

(+)
2 , · · ·, τ)dτ > 0,

where the inequality follows from the fact that m1(τ
(+)
1 , τ

(+)
2 , · · ·,τ)

being the average inter-update time is always positive.

Therefore, (65) can be always satisfied in Phase 2. Also, as

the second smallest threshold is strictly increased in Phase 2, the

smallest threshold can be moved toward τB in Phase 1. Also, it

can be shown that the procedure does not converge any policy

other than the policy that φ(τB , dB−1, · · ·, d1) = 0. This can be

seen considering the following:

d

dx
m2(τ1 + x, τ2 + x, · · ·, τ̂B) |x=0

< lim
x→0

lim
n→+∞

1

nx

n∑

k=0

(
E[(Xk + x)2]− E[X2

k ]
)

= lim
n→+∞

2

n

n∑

k=0

E[Xk] = 2m1(τ1, τ2, · · ·, τ̂B),

hence,

d

dx
φ(τ̂B , τB−1 − τ̂B + x, · · ·, τ1 − τ2 + x) |x=0 (67)

+
d

dx
φ(τ̂B + x, τB−1 − τ̂B − x, · · ·, τ1 − τ2) |x=0 (68)

> 2τ̂B
d

dx
m1(τ1 + x, τ2 + x, · · ·, τ̂B) |x=0, (69)

which implies that the procedure cannot converge to a policy

with τ
(+)
B < τB as the RHS of (67) is positive 6 and does not

vanish for a finite set of thresholds. Therefore, as the smallest

threshold of the policies modified by the procedure is increased

up to τB , a solution that φ(τB , dB−1, · · ·, d1) = 0 is eventually

reached. This completes the proof.
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