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Optimal Status Updating with a Finite-Battery
Energy Harvesting Source

Baran Tan Bacinoglu, Yin Sun, Elif Uysal, and Volkan Mutlu

Abstract: We consider an energy harvesting source equipped with a
finite battery, which needs to send timely status updates to a remote
destination. The timeliness of status updates is measured by a non-
decreasing penalty function of the age of information (Aol). The
problem is to find a policy for generating updates that achieves the
lowest possible time-average expected age penalty among all online
policies. We prove that one optimal solution of this problem is a
monotone threshold policy, which satisfies (i) each new update is
sent out only when the age is higher than a threshold and (ii) the
threshold is a non-increasing function of the instantaneous battery
level. Let 75 denote the optimal threshold corresponding to the full
battery level B, and p(-) denote the age-penalty function, then we
can show that p(75) is equal to the optimum objective value, i.e.,
the minimum achievable time-average expected age penalty. These
structural properties are used to develop an algorithm to compute
the optimal thresholds. Our numerical analysis indicates that the
improvement in average age with added battery capacity is largest
at small battery sizes; specifically, more than half the total possible
reduction in age is attained when battery storage increases from
one transmission’s worth of energy to two. This encourages fur-
ther study of status update policies for sensors with small battery
storage.

Index Terms: Age of information, age-energy tradeoff, battery ca-
pacity, energy harvesting, non-linear age penalty, optimal thresh-
old, threshold policy.

I. INTRODUCTION

HE age of information (Aol), or simply the age, was pro-
posed in [2], [3] as a performance metric that measures the
freshness of information in status-update systems. For a flow
of information updates sent from a source to a destination, the
age is defined as the time elapsed since the newest update avail-
able was generated at the source. That is, if U(?) is the largest
among the time-stamps of all packets received by time ¢, the age

is defined as:
A(t) =t —U(t). 1)

Aol is a particularly relevant performance metric for status-
update applications that have growing importance in remote
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monitoring [4], [5], machine-type communication, industrial
manufacturing, telerobotics, Internet of Things and social net-
works.

In many applications, the timeliness of status updates not only
determines the quality of service, but also affects other design
goals such as the controllability of a dynamical system that re-
lies on the updates of sensing and control signals. Aol quan-
tifies the timeliness of status-updates from the perspective of
the receiver rather than throughput or delay based measures that
are actually channel-centric. Moreover, Aol is also related to
measures such as the time-average mean-square error (MSE)
for remote estimation. An example of this is the result in [6]
which showed remote estimation of a Wiener process minimiz-
ing MSE reduces to an Aol optimization problem when the sam-
pling times at the transmitting side are independent of the pro-
cess. While Aol optimization based on linear functions of the
age A(t) is a relevant performance goal for most scenarios, the
performance of some applications may be related to non-linear
functions of the age. For example, the change in the value of
stale data can be less/more significant as its age grows. In such
cases, the penalty of data staleness can be modelled as a non-
linear function p(A(t)) of the age A(¢), i.e., the age-penalty.
This function is chosen to be non-decreasing so that a decrease
in age-penalty can be only possible when the age is less. Ac-
cordingly, the optimization of the age-penalty parallels to av-
erage Aol optimization while it might have distinct optimality
conditions.

Ideally, Aol is minimized when status updates are frequent
and fresh. That is, good Aol performance requires packets with
low delay received regularly. A limitation in the minimization of
Aol is a constraint on the long-term average update rate which
may be due to an average power budget for the channel over
which status updates are sent. A stricter constraint is to keep
a detailed budget on the number of status updates by allow-
ing update transmission when a replenishable resource becomes
available. This is the case of energy harvesting communication
systems where each update consumes a certain amount of the
harvested energy, if available. In the related literature of Aol
optimization for energy harvesting communication systems, en-
ergy harvesting process is considered as an arrival process where
each energy arrival carries the energy required for an update
[7]-[14]. The goal of Aol optimization in such formulations is
to find an optimal timing of update instants in order to mini-
mize average Aol while transmission opportunities are subject
to the availability of energy. Energy arrivals occur irregularly
or randomly, which models an energy harvesting scenario. The
main challenge in optimizing time average expected age under
random energy arrivals is that in the case of an energy outages
(empty battery), the transmitter must idle for an unknown du-
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ration of time. If it is the case that such random durations are
inevitable, they introduce a tension for the regulation of inter-
update durations. Another challenge is due to the finiteness of
battery sizes. Theoretically, it is possible to achieve asymptoti-
cally optimal average Aol by employing simple schemes assum-
ing infinite [8] or sufficiently large battery [9] sizes. However,
when the battery size is comparable to the energy required per
update, such simple schemes do not allow performance guaran-
tees. Consequently, it is important to explore optimal policies
under such regimes where performance depends heavily on the
statistics of energy arrivals and the battery size.

This study is motivated by the aforementioned challenges of
optimizing Aol in energy harvesting systems, capturing both the
randomness of energy arrivals and finite energy storage capa-
bility. In addition capturing both challenges we go further, by
optimizing not only average age itself, but a more general age
penalty function p(A(t)) that is not necessarily linear (see [15]-
[20]). Hence, the problem considered in this study is an age-
penalty optimization problem where status updates consume
discrete units of energy that are randomly generated, i.e., har-
vested, such that the number of energy units that can be stored
at a time is limited by a finite value which is called battery ca-
pacity.

Under the assumption of Poisson energy arrivals, we show the
structure of solutions for the age-penalty optimization problem.
The structure of the optimal solution reflects a basic intuition
about the optimal strategy: Updates should be sent when the up-
date is valuable (when the age is high) and the energy is cheap
(the battery level is high). We show that the optimal solution
is given by a stopping rule according to which an update is sent
when its immediate cost is surpassed by the expected future cost.
For Poisson energy arrivals, this stopping rule can be found in
the set of policies that we refer as monotone threshold policies.
Monotone threshold policies have the property that each update
is sent only when the age is higher than a certain threshold which
is a non-increasing function of the instantaneous battery level.
One of our key results is that the value of the age-penalty func-
tion at the optimal threshold corresponding to the full battery
level is exactly equal to the optimal value of the average age-
penalty.

A. Contributions

The contributions of this paper can be summarized as follows:

« We formulate the general average age-penalty optimization
problem for sending status updates from an energy harvest-
ing source. This generalizes the Aol optimization goal in the
prior studies [1], [8], [9], [11], [12] to a non-linear function
of age. In addition to the generalization on the objective, the
optimization is carried out over a more general policy space
defined only using the causality assumption. We prove that
solutions to this general optimization problem can be found
among threshold-type policies.

« We show that, for optimal threshold-type policies with non-
decreasing thresholds, the value of the penalty function at the
threshold corresponding to the highest battery level is equal
to the minimum value of the average age-penalty. As this op-
timal threshold is also the minimum of optimal thresholds at
different battery levels, this implies that inter-update durations
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under such a policy is always above the minimum value of the
average age-penalty.

o For the case when the age-penalty function is linear, i.e.,
average Aol minimization problem, we provide the optimal
thresholds for integer battery size up to 4. These results show
that the most significant decrease in the minimum average Aol
happens when incrementing the battery capacity of unit size
(capable of holding one packet transmission’s worth of en-
ergy) to two units. The minimum achievable average Aol with
a battery size of 4 units is only about 10% larger than the ul-
timate minimum average Aol with infinite battery capacity.
That is a promising result for small sensor systems.

« For average Aol minimization problem, we provide an algo-
rithm that can find near optimal policies achieving average
Aol values arbitrarily close to the optimal values for any given
battery capacity. This algorithm provides a methodical way to
derive near optimal policies utilizing analytical results.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,
the related work is discussed and summarized. In Section III, the
system model and the formulation of the Aol optimization prob-
lem are described. In Section IV, the main results on the struc-
tural properties of the solution to the Aol optimization problem
are shown and an algorithm to derive solutions for arbitrary inte-
ger battery sizes is provided. In Section V, the numerical results
validating analytical results and also showing optimal solutions
for integer battery size up to 4 are presented. In Section VI, the
paper is concluded summaring the results and insights obtained
over the course of this study.

II. RELATED WORK

Several studies on Aol considered this performance metric
under various queueing system models comparing service dis-
ciplines and queue management policies (e.g., [21]-[29]). A
common observation in these studies was that many queue-
ing/service policies that are throughput and delay optimal but
are often suboptimal with respect to Aol, while Aol-optimal
policies can be throughput and delay optimal, at the same time.
This showed that Aol optimization is quite different than opti-
mization with respect to classical performance metrics. This re-
quired many queueing models to be re-addressed under respect
to age related objectives. Moreover, queueing system formula-
tions typically assume no precise control on the transmission or
generation times of status updates. However, such control is im-
portant for age optimization [16], [17].

A direct control on the generation times of status updates is
possible through a control algorithm that runs at the source. This
is the “generate-at-will" assumption formulated in [7], [10] and
studied in [6], [16], [17]. In [7], the problem of Aol optimiza-
tion for a source, which is constrained by an arbitrary sequence
of energy arrivals was studied. In [10], Aol optimization was
considered for a source that harvests energy at a constant rate
under stochastic delays experienced by the status update pack-
ets. The results in these studies showed suboptimality of work-
conserving transmission schemes. Often, introducing a waiting
time before sending the next update is optimal. That is, for maxi-
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mum freshness, one may sometimes send updates at a rate lower
than one is allowed to which may be counter-intuitive at first
sight.

The problem in [7] was extended to a continuous-time formu-
lation with Poisson energy arrivals, finite energy storage (bat-
tery) capacity, and random packet errors in the channel in [8].
An age-optimal threshold policy was proposed for the unit bat-
tery case, and the achievable Aol for arbitrary battery size was
bounded for a channel with a constant packet erasure probabil-
ity. The concurrent study in [9], limited to the special cases of
unit battery capacity and infinite battery capacity computed the
same threshold-type policies under these assumptions. These
special cases were investigated also for noisy channels with a
constant packet erasure probability in [13], [14]. The case for
a battery with 2-units capacity was studied in [11] and the op-
timal policies for this case characterized as threshold-type poli-
cies similar to the optimal policy for unit battery capacity intro-
duced in [8] and [9]. Optimal policies for arbitrary battery sizes
were characterized via Lagrangian approach in [12] and using
optimal stopping theory in [1].

II. SYSTEM MODEL

Consider an energy harvesting transmitter that sends update
packets to a receiver, as illustrated in Fig. 1. Suppose that the
transmitter has a finite battery which is capable of storing up to
B units of energy. Similar to [8], we assume that the transmis-
sion of an update packet consumes one unit of energy. The en-
ergy that can be harvested arrive in units according to a Poisson
process with rate pg. Let E(t) denote the amount of energy
stored in the battery at time ¢ such that 0 < FE(t) < B. The
timing of status updates are controlled by a sampler which can
monitor the battery level E(t) for all ¢. We assume that the ini-
tial age and the initial battery level are zero, i.e., A(0) = 0 and
E(0)=0.

Let H(t) and A(t) denote the number of energy units that
have arrived during [0,¢] and the number of updates sent out
during [0, ¢], respectively. Hence, { H(t),t > 0} and {A(¢),t >
0} are two counting processes. If an energy unit arrives when
the battery is full, it is lost because there is no capacity to store
it.

The system starts to operate at time ¢ = 0. Let Z; de-
note the generation time of the k-th update packet such that
0=2y < Zy < Zy < ---. An update policy is represented
by a sequence of update instants m = (Zy, Z1, Za, - - ). Let Xy,
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represent the inter-update duration between updates £ — 1 and
k,ie., Xy = Zy — Zy—1. In many status-update systems (e.g., a
sensor reporting temperature [30]), update packets are small in
size and are only sent out sporadically. Typically, the duration
for transmitting a packet is much smaller than the difference be-
tween two subsequent update times, i.e., Xjs are typically large
compared to the duration of a packet transmission. With such
systems in mind, in our model, we will approximate the packet
transmission durations as zero. In other words, once the k-th up-
date is generated and sent out at time ¢ = Zy, it is immediately
delivered to the receiver. Hence, the age of information A(t) at
any time ¢t > 0 is

A(t) =1— max{Zk : Zk < t}, (2)

which satisfies A(t) = 0 at each update time ¢ = Zj. Because
an update costs one unit of energy, the battery level reduces by
one upon each update, i.e.,

E(Zy) = E(Z;) - 1, 3)

where Z,~ is the time immediately before the kth update. Fur-
ther, because the battery size is B, the battery level evolves ac-
cording to

E(t) =min{E(Zy) + H(t) — H(Zy), B}, 4)

when ¢ € [Zy, Zk+1) is between two subsequent updates.

In terms of energy available to the scheduler, we can define
update policies, that do not violate causality, as in the following:

Definition 1: A policy 7 is said to be energy-causal if
updates only occur when the battery is non-empty, that is,
E(Z, ) > 1 for each packet k.

Another restriction on update instants is due to the informa-
tion available to the scheduler which we define as follows,

Definition 2: Information on the energy arrivals and up-
dates by time t is represented by the filtration ! F, =
o({(H(t),A")),0 < t' < t}) which is the o-field gen-
erated by the sequence of energy arrivals and updates, i.e.,
{(H{),A)),0 <t <t}
Similar to the definition of energy-causal policies, in the pol-
icy space that we will consider we merely assume the causality
of available information besides energy causality. To formulate
this assumption, we use the definition of F;. In terms of in-
formation available to the scheduler, any random time instant ¢
does not violate causality if and only if {6 <t} € F; for all
t > 0. We will refer such random instants as Markov times [31]
and consider update times as Markov times based on the filtra-
tion F; in general. Notice that such update times do not have to
be finite, however, we will refer Markov times that are also finite
with probability 1 (w.p.1.) as stopping times [31]. For a policy
trying to regulate age, it is legitimate to assume that update in-
stants are always finite w.p.1. as otherwise the age may grow
unbounded with a positive probability. With this in mind, we
will consider only the update instants that are stopping times.

Accordingly, we can define the online update policies com-
bining the causality assumptions on available energy and infor-

INote that the filtration is right continuous as both H(t) and A(t) are right
continuous.
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mation as follows:

Definition 3: A policy is said to be online if (i) it is energy

causal, (ii) no update instant is determined based on future infor-
mation, i.e., all update times are stopping (finite Markov) times
based on Fy, i.e., Zj is finite w.p.1. while {Z; <t} € F; for
allt > 0and k > 1.
Let I1°""® denote the set of online update policies. To evaluate
the performance of online policies, we consider an age-penalty
function that relates the age at a particular time to a cost which
increases by the age. This function is defined as in below:

We consider an age-penalty function p(-) that maps the age
A(t) at time ¢ to a penalty p(A(t)):

Definition 4: A function p : [0,00) — [0, 00) of the age is
said to be an age-penalty function if

o lima 00 P(A) = 0.

« p(+) is a non-decreasing function.

. fooo p(t)e~*tdt < oo forall a > 0.
Observe that the definition of age-penalty functions covers any
non-decreasing function of age that is of sub-exponential order”
and grows to infinity.

The time-average expected value of the age-penalty or simply
the average age-penalty can be expressed as

1
p = limsup =E

T—o0

/0 p(A(t»dt} . 5)

Let p,. denote the average age-penalty achieved by a particu-
lar policy 7. The goal of this paper is to find the optimal update
policy for minimizing the average age-penalty, which is formu-

lated as )
min_p. ©6)
7 €]Jonline

IV. MAIN RESULTS

We begin with a result guaranteeing that the space of
threshold-type policies (see Definition 5) contains optimal up-
date policies hence we can focus our attention to these policies
for finding solutions to (6).

Note that at time ¢ = Zj, the age A(t) is equal to 0. In
the meanwhile, the battery level E(¢) will grow as more energy
is harvested. In threshold policies, the threshold 7z ;) changes
according to the battery level F(t) and a new sample is taken at
the earliest time that the age A(t) exceeds the threshold 75 ;).
We define such policies as follows:

Definition 5: When E(t) € {¢ = 1,---, B} represents the
battery level at time ¢, an online policy is said to be a threshold
policy if there exists 7y for{ = 1,---, B s.t.

Zipr =inf {t > Zi : A(t) > Tpw } - 7
Note that a policy is said to be stationary if its actions depend
only on a current state while being independent of time. An
immediate observation is that given A(¢) and F(t) threshold
policies do not depend on time, hence:
Proposition 1: All threshold policies are stationary.

2This is due to the third property in the definition, which is a technical re-
quirement for the proofs.
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Proof: By definition, the update instants of a threshold
policy only depend on the time elapsed since the last update,
i.e., A(t), and the current battery level. O
We expect that such stationary policies can minimize A among
all online policies as energy arrivals follow a Poisson process
which is memoryless. Due to the memorylessness of energy ar-
rivals, the evolution of the system can be understood through a
renewal type behaviour which suggests that an optimal policy
should be stationary.

Indeed, we note the following as the first key result of this
paper.

Theorem 1: There exists a threshold policy that is optimal
for solving (6).

Proof: See Appendix A. O

One significant challenge in the proof of Theorem 1 is that
(6) is an infinite time-horizon time-averaged MDP which has
an uncountable state space. When the state space is countable,
one can analyze infinite time-horizon time-averaged MDP by
making a unichain assumption. However, this method cannot be
directly applied when state space is uncountable. To resolve this,
we use a modified version of the “vanishing discount factor"
approach [32] to prove Theorem 1 in two steps:

1. Show that for every @ > 0, there exists a threshold policy
that is optimal for solving

min E {/ e = p(A(t))dt ] .
€ TTonline 0

2. Prove that this property also holds when the discount factor
« vanishes to zero.

In our search for an optimal policy, we can further reduce the
space of policies:

Definition 6: A threshold policy is said to be a monotone
threshold policy if 1y > 170 > -+ > 7p.
Note that the definition of monotone threshold policies refers
only to the case of thresholds that non-increasing in battery lev-
els as opposed to the non-decreasing case.

Let IIMT be the set of monotone threshold policies, then, the
following is true:

Theorem 2: There exists a monotone threshold policy m €
IIMT that is optimal for solving (6).

Proof: See Appendix B. |
Theorem 2 implies that in the optimal update policy, update
packets are sent out more frequently when the battery level is
high and less frequently when the battery level is low. This re-
sult is quite intuitive: If the battery is full, arrival energy cannot
be harvested; if the battery is empty, update packets cannot be
transmitted when needed and the age increases. Hence, both
battery overflow and outage are harmful. Monotone threshold
policies can address this issue. When the battery level [ is high,
the threshold 7; is small to reduce the chance of battery over-
flow; when the battery level [ is low, the threshold 7; is high to
avoid battery outage.

For a policy in ITMT, the state (A(t), E(t)) does not spend
a measurable amount of time anywhere A(t) > 7p ) in which
an update is sent out instantly reducing the battery level. Oth-
erwise, the battery level is incremented upon energy harvests
while the age is increasing linearly in time. The illustration in
Fig. 2 shows the time evolution of the state (A(t), E(t)) for
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Fig. 2. An illustration of a monotone threshold policy.

policies in TIMT. If the energy level is F(Z;) = j upon the
previous update, then the inter-update time Xy11 € [T, Trn—1]
holds if and only if m — j packets arrive during the inter-update
time. In other words, reaching the battery state m or higher is
necessary and sufficient for the next inter-update duration being
shorter than some 2 when € [y, Tn—1). Let Y; denote the
duration required for ¢ > 1 successive energy arrivals, which
obeys the Erlang distribution at rate pz; with parameter 4,

PY;<z)=1-) —e " (ugz)’, ®)

and let Y; = 0 fori < 0.
Accordingly, for policies in IIMT, the cumulative distribution
function (CDF) of inter-update durations, can be expressed as

Pr(Xep1 < | E(Zy) =) =
0,ifx < 7p
Pr(Y,—; <x),if r <@ < Tpo1,¥Ym € {2,---, B},
Pr(Y1_; <x),if n <.
)

From (9), an expression for the transition probability
Pr(E(Zk41) =i | E(Z;) = j) fori = 0,1,---,B — 1 can
be derived?

Pr(E(Zpy1) =i | E(Zy) = j) =

PI‘(YB_j S TB_l),ifi =B- 1,
PI’(Y1+Z',j < TZ') — PI‘(}/Q+Z',]' < Ti+1),if7; <B-1.
(10)

Hence, energy states sampled at update instants can be de-
scribed as a discrete time Markov chain (DTMC) with the tran-
sition probabilities in (10) (See Fig. 3). When thresholds are fi-
nite, this DTMC is ergodic as any energy state is reachable from
any other energy state in B — 1 steps with positive probability.

Any optimal policy in IIMT has the following property:

Theorem 3: An optimal policy for solving (6) is a monotone

3Note that the event E(Zy41) = i happens if and only if Xy €

[Ti41,74), accordingly Pr(E(Zg41) = i | E(Zg) = j) = Pr(Xpq1 <
Ti | B(Z) = ) — Pr(Xpq1 < mig1 | E(Zk) = J).
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Fig. 3. The DTMC for energy states sampled at update times.

threshold policy that satisfies the following
min g, an

*\ — 5» —
blr) =pe- = i,

where 7* is a monotone threshold policy solving (6) and 75 is
its age threshold for the full battery case.
Proof: See Appendix E. O
The result in Theorem 3 exhibits a structural property of op-
timal policies which also appears in the sampling problem that
was studied in [19] . The sampling problem in [19] considered
sources without energy harvesting, where the packet transmis-
sion times were i.i.d. and non-zero. On the one hand, the opti-
mal sampling policy in Theorem 1 of [19] is a threshold policy
on an expected age penalty term, and the threshold is exactly
equal to the optimal objective value. On the other hand, a sam-
pling problem for an energy harvesting source with zero packet
transmission time is considered in the current paper. The opti-
mal sampling policy in Theorem 3 can be rewritten as

Ziga = inf {t = Z1: p(A®) = plrie) }

which is a multi-threshold policy on the age penalty function,
each threshold p(7; ) corresponding to a battery level £. Further,
the threshold p(7}) associated with a full battery size E(t) =
B is equal to the optimal objective value. The results in these
two studies are similar to each other. Together, they provide a
unified view on optimal sampler design for sources both with
and without energy harvesting capability. The proof techniques
in these two studies are of fundamental difference.

A. Average Age Case

If we take the age-penalty function as an identity function,
i.e., p(A) = A, then (6) becomes the problem of minimizing
the time-average expected age. In this case, the result in Theo-
rem 3 implies that in optimal monotone threshold policies, inter-
update durations can be small as much as the minimum average
Aol only when the battery is full. From results in [8] and [9],
we know that the minimum average Aol for the infinite battery
case is 1/2up and this can be achieved asymptotically using the
best-effort scheme in [9] or with a threshold policy [8] where all
thresholds are nearly equal to 1/u . On the other hand, accord-
ing to Theorem 3, the optimal threshold for the full battery level
tends to 1/2up as the battery capacity increases. This shows
that the optimal monotone threshold policies remain structurally
dissimilar to asymptotically optimal policies when the battery
capacity is approaching to infinity. The result is more useful
when the battery capacity is finite as it may lead to the optimal
threshold values of the other battery levels. We will use this in an
algorithm for finding near optimal policies for any given integer
sized battery capacity. In addition, the special case of Theo-
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rem 3 for average age [1] can be derived from a more general ~ Algorithm 1 Find 7 € IIMT such that A, — A+ < 1

. . . . 24+ gy
res'ult which we pr0V1d'e in L.emr.na 1. This result s.hows a re- Require: B> L Ag> 1
lation between the partial derivatives of a non-negative random A
. . .. Ensure: A, — A, < q+1
variable with respect to the thresholds determining the random B L N 12 wH
variable in a similar way to the inter-update duration case. B <_ Sun’ B m
Lemma 1: Suppose X is a r.v. that satisfies the following: fori=1,2,. w4 do”
B 773 175
0 ifr <7p, ifdrp_ 1§ -+ <71 <7118t 71 > 7 and
PT(XSLE) = Fl(:Z?) ifTiS$<T¢_1,Vi€{2,'“,B}, 2%3T1(7—177—2a"'7723)7m2(TlvT2a"'a7A-B):Othen
1 Th T8
< B
Fi(z) ifn <, else
where 0 < 75 < -+- < 79 < 71 and for each ¢ € {1,---, B} (TlEif<_ B
F;(z) is the CDF of a non-negative random variable. Then: end1
end for
0 ) o) Solve 27gmi (71, T, -+, 7p) — ma(T1, 72, -+, 78) =0
ajE [X?] _2713 ZE[X] return ™ = (71,72, -+, 7B)
Proof: See Appendix C. m|
Corollary 1: The inter-update intervals, X, for any 7 €
IIMT satisfy the following: Z*. Let my(7y,72,- -+, 75) and ma (71,72, -, 75) denote the
5 5 functions such that:
0 E[X2|E: } 27—18 [X‘E ] V(i,j)E{l,Q,---,B}Q, B-1
Ti i . .
(12) my (71, T2, TB) = ZE[X|E:]}PI‘(E:])3 (15)
j=0
where E[X | E = j] £ E[X,| E(Z))=j] and E [X2|E:j] £ Bo1
E X} | E(Zy) =] - mo(1, 7, 78) = > E[X?| E=j]Pr(E =j), (16)

Note that the transition probabilities (10) do not depend on 75
hence the steady-state probabilities obtained from (10) also do
not depend on 7. This leads to a property of 75 the average
age case of Theorem 3 as shown in [1]. The unit-battery case ,
i.e., B = 1 case was solved in [8] and [9]. For completeness,
this result is summarized in Theorem 4.

Theorem 4: When B = 1, the average age A can be ex-

<.
I
o

where Pr(E = j) is the steady-state probability for energy state
E[X |E=j]2E[X)|E(Z) = jlandE [X? | E = j] £
E (X2 | E(Z) - J].
Note that it is straight forward to derive mi (71,72, -+, 7B)
and ma(71, 72, -, 75) using (9) and (10), hence we assume
these functions are available for any B.

ressed as
P In the below theorem , we state the main result that we will
A Lupm)? + e "1 (ugm + 1) 13 use in an algorithm for finding near optimal policies:
= PP ) Theorem 6: For B > 1, the equation

and 7t = Ane — LW (L) where V() is the Lambertw 278107170 78) —ma(mi,may75) =0, (1)
; WH V2

function. . has a solution with monotone non-increasing thresholds, i.e.,
Proof: See Appendlx F. B O B S . S Ty S T if and only if B Z Aﬂ_*

Theorem 5: When B = 2, the average age A can be ex- Proof: See Appendix H. =]

pressed as: Algorithm 1 uses this result to find a near optimal policy 7 €
- IIMT such that A, — Ay« < 1/(29 ug). Each iteration in
% - Algorithm 1 halves the interval where the minimum average Aol
o2

e Ploatlipi(agt20z42) e Mlagt1tp(ef+antD] (49 can be found based on the existence of solution to (6) with the
—a - ) . N . o
ua(azte” 2 [l+pi(azt1)]—em 1 I+ on]) current estimate of the smallest threshold 75. Accordingly, it is

where guaranteed that Algorithm 1 finds a solution within a gap to the
e optimal value thatis 1/(297 ).
pP1= 1—eqy’ Algorithm 1 assumes a numerical solver that can solve the
and transcendental equation in (17), however, the exact solution is
1 = Ty, 02 = T Vetfying the xisence of asoluten 10 O
Proof: See Appendix G. g Vvertymg X1 utt )

B. An Algorithm for Finding Near Optimal Policies V. NUMERICAL RESULTS

We propose an algorithm to ﬁnd a near optimal policy 7 € For battery sizes B = 1,2, 3, 4, the policies in IIMT are nu-

IIMT such that A — Az < 2q+1 — for any given B and ¢ € merically optimized giving AoI versus energy arrival rate (Pois-
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Fig. 4. Aol versus energy arrival rate (Poisson) for different battery sizes B =
1,2,3,4.

Fig. 6. Aol versus 7 against various 71 values for B = 2 and g = 1.

son) curves in Fig. 4. We give the corresponding threshold val-
ues in Table 1. These results were obtained through exhaustive
search for possible threshold values, and Monte Carlo analysis
for approximating Aol values in the simulation of the consid-
ered system and policies without relying on analytical results.
It can be seen that these optimal thresholds and corresponding
Aol values (in Table 1) validate Theorem 3. Figs. 5 and 6 show
the dependency of Aol on threshold values 71 and 79 which is
consistent with the result in Theorem 5 for the special case of
B=2.
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Table 1. Optimal thresholds for different battery sizes for ppr = 1.

1 72 73 T4 A
B=11]090]| - - - 0.90
B=2]15 0.72 | - - 0.72
B=31]15 1.2 0.64 | - 0.64
B=41]15 1.2 0.86 | 0.604 | 0.604

VI. CONCLUSION

We have studied optimizing a non-linear age penalty in the
generation and transmission of status updates by an energy har-
vesting source with a finite battery. An optimal status updating
policy for minimizing the time-average expectation of a general
non-decreasing age function p(-) has been obtained. The pol-
icy has a monotonic threshold structure: (i) Each new update is
sent out only when the age is higher than a threshold and (ii)
the threshold is a non-increasing function of the instantaneous
battery level such that the updates are sent out more frequently
when the battery level is high. Furthermore, we have identified
an interesting relationship between the smallest optimal thresh-
old 75 (i.e., the threshold corresponding to a full battery level)
and the optimal objective value p,~ (i.e., the minimum achiev-
able time-average expected age penalty), which is given by

p(75) = Pr- (18)

APPENDIX A
THE PROOF OF THEOREM 1

In order to prove Theorem 1, we use a modified version of
the “vanishing discount factor” approach [32] which consists of
2 steps:

Step 1. Show that for every a > 0, there exists a threshold
policy that is optimal for solving

E Uooo e—“tp(A(t))dt} .

Step 2. Prove that this property still holds when the discount
factor « vanishes to zero.

We first discuss Step 1. Recall that F; represents the informa-
tion about the energy arrivals and the update policy during [0, ¢].
Given F,, we are interested in finding the optimal online policy
during [a, c0), which is formulated as

min
€ IJonline

19)

T €JJonline

min E { / b e‘“(t_“)p(A(t))dt‘]-"a} .

Observe that, in (19), the term e~(t=a) engures that the ex-
ponential decay always starts from unity so that the problem is
independent of a given F,. In addition, this problem has the
following nice property:

Lemma 2: There exists an optimal solution to (19) that de-
pends on F, only through (A(a), E(a)). Thatis, (A(a), E(a))
is a sufficient statistic for solving (19).

Proof: In Problem (19), the age evolution {A(t),t > a}
is determined by the initial age A(a) at time a and the update
policy during [a, c0). Further, the update policy during [a, 00)
is determined by the initial age A(a), the initial battery level
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E(a), and the energy counting process { H(t) — H(a),t > a}.
Hence, {A(t),t > a} is determined by A(a), F(a), and
{H(t) — H(a),t > a}.

Recall that A(0) and E(0) are fixed. Hence, for any online
update policy, the online update decisions during [0, a] depends
only on {H(t),t < a}. Hence, F, is determined by { H (t),t <
a}. Because {H(t),t > 0} is a compound Poisson process,
{H(t) — H(a),t > a} is independent of { H(t),t < a}. Hence,
{A(t),t > a} depends on F, only through A(a) and E(a). By
this, (A(a), E(a)) is a sufficient statistic for solving (19). O

By using Lemma 2, we can simplify (19) as (20) and define

a cost function J, (A(a), E(a)) which is the optimal objective
value of (20):

Ja(A(a), E(a)) = min E { / Temal=a) y( A(t))dt

7 €Ionline

7]

= min ]E{ / 02O‘(t“)p(A(t))dt‘A(a),E(a)} (20)

Trenonline

Furthermore, one important question is: Given that the pre-
vious update occurs at Z; = a, how to choose the next update
time Zy_1. This can be formulated as

min _
(Z1,Zx=a,Zj41,--)€EIIonline

E {/00 e =D p(A(t))dt| Zy, = a, Ala) = 0, E(a) |,
ey

where we have used the fact that if Z, = a, then A(a) =
A(Z,) =0.

According to the definition of IT°""¢, 7, . | is a finite Markov
time, i.e., stopping time, hence the problem of finding Zj; for
a solution to (21) can be formulated as an infinite horizon opti-
mal stopping problem in the interval [a, c0). We will consider
a gain [31] process G = (G4)¢>q adapted to the filtration F;
where a stopping time Zj; for a solution to (21) maximizes
E [Gz,., | Fa] when we choose Z1 from a family of stop-
ping times based on F;. Let 1, denote this family of Zj1s
which can be expressed as:

M, =
{Zk+1 >a: PI‘(Zk_H < OO) =1, {Zk+1 < t} S ]-"t,Vt > a} .

Note that a stopping time in 97, may violate energy causality
however our definition of the gain process will guarantee that
those stopping times cannot be optimal.

We will define the gain process (G¢):>, based on the value of
the discounted cost when an update is sent at a particular time
t. The gain process (G¢)i>q for E(t) > 0 corresponds to the
additive inverse of this cost and can be written as follows:

Gy = — min
ﬂ.eHonIine

E {/ e W=D p(A(w))dw|Zy = a, Zri, =t, E(t)],

E(t) > 0. (22)
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Note that the stopping time cannot be at time ¢ when E(¢) = 0
as there is no energy to send another update in that case. To
cover this case, we set G; to —oo so that a stopping time
Zi1 maximizing E [Gz, ., | Fu] should satisfy energy causal-
ity hence belongs to an online policy. In other words, the stop-
ping time Zj 1 in a solution to (21) maximizes E [sz+1 | fa]
among all the stopping times in 27,.

Alternatively, the gain process (G;);>, can be expressed in
terms of the cost defined in (20) as follows

t
Gy =— / e~ W=Dy — a)dw
- ]E{/ e W= p(A(w))dw|Zy = a, Ziq = t, E(t)
t

t
=— / e~ W=y — a)dw — e~ 1, (0, B(t) — 1),
(23)

fort > a and E(t) > 0.

Let’s define J(0, —1) := oo so that (23) holds for the E(¢) =
0 as well. Notice that the process G is driven by the random
process E(t) which is not conditioned on any particular value
of E(a) while being adapted to the filtration F;. However, for a
policy solving (21), the stopping time Zj_1 depends on E(a) as
it maximizes E [G 7, ,, | F,] which depends on E(a) through
the filtration F.

Accordingly, we define the stopping problem of maximizing
the expected gain in the given interval [a, co) as in the following:

max E [G, | F,].

tEM, (24)

Based on this formulation, we will show that the optimal stop-
ping time exists and is given by the following stopping rule for
Zi1:

Zk+1 = mf{t Z Zk =a.: Gt = St}7 (25)
where S is the Snell envelope [31] for G:
Sy = esssupE [Gy | F4]. (26)

t'eMy

Showing that Z 1 in (25) is finite w.p.1 is sufficient to prove
the existence of the optimal stopping time and the optimality of
the stopping rule in (25) (see [31, Theorem 2.2.]). Consider the
lemma below and its proof in order to see the finiteness of Zj,
in (25):

Lemma 3: For the stopping rule in (25) Zj4; is finite w.p.1,
ie., PI‘(Z]C+1 < OO) =1.

Proof: Consider the Markov time Q)1 which is defined
as follows:

Qpi1:=inf{t > Zy =a: E(t) = B,Gy = S;}. 27
Clearly, the stopping time Zj; chosen in (25) is earlier than
Qr+1 as Qi1 has an additional stopping condition E(t) = B.
This means that if Pr(Qy11 < o0) = 1, then Pr(Z; 41 < 00) =
1.

Accordingly, for the proof of this lemma, it is sufficient to
show that ()1 is finite w.p.1. We will show this by showing the
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finiteness of (i) the first time ¢ > Z;, = a such that E(t) = B,
and (ii) the duration between this time and the Markov time
Qr+1- Note that E(t) = B condition is always satisfied af-
ter it reached for the first time. Let Ry be the Markov time
representing the first time when E(t) = B is satisfied:

Rk+1 = inf{t Z Zk =a: E(t) = B} (28)

(i) Observe that the Markov time Ry is finite w.p.1 as it
is stochastically dominated by a + Yp where Yp is an Erlang
distributed random variable with parameter B which obeys (8)
and Pr(Yp < 00) = 1.

(ii) In order to see that QQ;+1 — Ry1 is also finite, consider
the time period after Ry1, i.e., [Rk41,00). As E(t) = B for
any t > Ry 1, the evolution of (G; becomes deterministic after
t Z Rk+1:

Gt -
_ fat e~ W=ap(w — a)dw — e~ J, (0, B — 1), (29)

fort > Ry41.

On the other hand, for ¢ > Ry, the Snell envelope is
St = esssupycon, G = supy >, Gi. We will show that G,
is always non-increasing after some finite time so that S; = G,
is always satisfied after that time.

In order to see this, consider the change in G, for t > Ry1.
As

_ 2
ot

= ¢ (=9 (0], (0, B — 1) — p(t — a)),

t
{/ e W= p(w — a)dw + e~ J (0, B — 1)}
(30)

and p(t — a) is non-decreasing, for ¢ > Rjyyi, Gy is non-
increasing if ¢ > ¢, for some ¢, such that

te:=inf{t > a:p(t—a)=alJ,(0,B-1)}. (31)

This implies that, for ¢ > max{Rj11,tc}, Gt = supy~; Gy
and hence S; = G;. Accordingly, the stopping conditions of
Q41 are satisfied for the first time when ¢ = max{Ryy1,t.}
which means Qg4+1 = max{Ryy1, tc}-

As aJ, (0, B — 1) is finite, .. is finite which implies Q1 is
finite w.p.1 as Ry is finite w.p.1. This completes the proof. O

We just showed that the Markov time in (25) is finite w.p.1 and
this means that it is the optimal stopping time by [31, Theorem
2.2.]. Next, we show that the optimal stopping rule in (25) is a
threshold policy by using the properties of the cost function in
(20). To relate the optimal stopping time and the cost function
in (20), we will express the Snell envelope in an alternative way.
Notice that the Snell envelope can be written by substituting
(22) in (26) as follows:
min

Sy = esssup —
7-‘-el‘[online

t'eMy
E [/ e W=D p(A(w))dw|Zy = a, Zy =t', Fy

(32)
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Hence,

Sp=—

min
T €JJonline

E U e W=y A(w))dw|Zy, = a, Zii >t Fr| . (33)

Accordingly, using the definition of J,(A(a), E(a)), we can
write

t
S== [ et — ajdu + ey (A, E (D).

(34)
Therefore, as the first terms in (29) and (34) are identical, the
optimal stopping rule in (25) is equivalent to

Zipr=inf{t > Zy = a: Jo(0,E(t) —1) = Jo(A(t), E(t))}.
(35)
Next, we show that the stopping rule in (35) is a threshold rule
in age. In order to show this, let us define the function p,(-) :
{0,1,---, B} — [0, 00) such that:
pa(l) :=1nf{w > 0: Jo(0,£ — 1) = Jo(w, £)}. (36)
We can show that for any A > p,(¢), it is guaranteed that
Jo(0,€ = 1) = Jo (A, £) due to the following reasons:

e Forany Aand ¢ € {0,1,2,---, B}, Jo(A,?) is smaller than
orequal to J,(0,£ — 1) as:
Ja(B6) = min e

E /e*awp(A(w))dw Zr=ta— 0D, Zp1 2 ta, E(ta) = g]

< min e*
€I]enline

E /e‘o‘wp(A(w))dw Zy =te— A, Zpy1 =a,E(t) = 4

= Ja(0,£ 1),

where the inequality is true as the expectation is conditioned
on policies with Zj, 1 = t,.
e Forany ¢ € {0,1,2,---, B}, Jo(A,¢) is non-decreasing in A

as:
Jo (A 0)
Zrt1
= min E l/ e W= p(w + A — t,)dw|O(A)
ﬂ-enonllne a
+E / e~ (w=0) (A (1)) duw| 0(A)
Zp41

Zp41
< min E / e~ W=D p(w + A — t,)dw

~ gcIrenline

G(A)]

+E

[ et apaw)de
Zk+1

m]

Zr+1
= min E / e~ W=D p(A(w))dw

7 €I online

H(A’)l
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+E

o0
/ e~ =) p( A (w))dw
Zk+1

:Ja(A/uf)u

M)]

for any A’ > A and 6(A) := (Zy = to — A, Zpy1 >
ta, E(t,) = £) where the inequality follows from the fact that
p(+) is non-decreasing and the second equality is due to that,
given Zj 1, the integrated values are conditionally indepen-
dent from Zj,.

Accordingly, Jo(A,¢) = Ju(0,£ — 1) for any ¢ €
{0,1,2,---,B} and A > p,(¢). Therefore, the stopping rule
in (35) is equivalent to:

Zipr =inf{t = Zy = a: A(t) 2 pa(E(1)},  (37)
for¢ € {0,1,2,---, B}.

We showed that the stopping rule in (37) gives the optimal
stopping time Zj;1 for a policy solving (21). Now, we can start
discussing Step 2 in order to show that the optimal stopping rule
with the same structure also gives a solution to (6).

In this part (Step 2) of the proof, we will consider the optimal
stopping rules in (37) while the discount factor « is vanishing to
zero. Notice that the policy solving (21) is identified by p,, (£)
due to (37). Let m, and A, _(t) be a policy obeying (37) and
solving (21) for discount factor o and the age at time ¢ for that
policy, respectively. We will show the following

Jo! E[p(An, ))]dt _
tf -
Jo! Elp(A- (0t
tf

lim/jio limtf 00

Inf e pponine limsup, ., (38)
which implies that for any {8,},>1 | 0 sequence, mg, con-
verges to the policy solving (6).

To prove the equivalence in (38), we will use Feller’s Taube-
rian theorem [33] (also see the Tauberian theorem in [34]) which
can be stated as follows:

Theorem 7: (Feller 1971) Let f(t) be a Lebesgue-
measurable, bounded, real function. Then,

ty :
t)dt f
lim inf M < lim infa/ e =) £ (1)t
ty—o00 f al0 o
N V7 f(t)dt
=< 1imsupa/ e~ f(t)dt < limsup Jo” 10t
al0 0 tp—00 f
(39)

Moreover, if the central inequality is an equality, then all in-
equalities are equalities.

This theorem can be applied for the function f(t) =
E [p(Ax,(t))] where 3 > 0 *. To simplify the inequalities for
this case, let’s define a function J,.3(A(a), E(a)) for 5 > 0

“Note that the function E [}o(A,r s (t))] is Lebesgue-measurable (as p(-) is
non-decreasing) and bounded (as Xs are bounded w.p.1 for a policy obeying

(37).
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such that:
Jass(A(a), E(a)) =

/ " e t0R [p(A,, (1) Al) B(@)] dt. (40)

Note that for a = 0:
Juup(0,0) = / U [p(Ar, (1))] dt.

Accordingly, we can apply Feller’s Tauberian theorem for
f(t) =E [p(Ar,(t))] when a = 0 giving:

Jo? Elp(An, (1))]dt

7 <liminf, o aJsp(0,0) <

liminf;, o0

! E[p(Anry (1))]d
limsup,, g @Ja;5(0,0) < lim SUD¢, o0 M.

(41)

We can show that the inequalities in (41) are satisfied with

t
g (D)]d
equality for any 75 with 8 > 0 as limy, o0 M ex-

ists for any g with 8 > 0. To see this, consider the following
lemma:

Lemma 4: For o > 0 and {Zj 41,k > 0} with Z44 as in
(37), the following holds:

tf
LY E (A, )] dt
ty—oo tf
limy, 4 oo % ZZ:O E[p(Xk)]
% ZZ:O X
Proof: The proof of Lemma 3 showed that for Z; = a and
optimal stopping time solving (24) it is true that Pr(Xy,; >
x) < Pr(te — t, + Yp > x) where t. is the determin-
istic time defined in (31) and Yp is an Erlang distributed
with parameter B which obeys (8). Accordingly, E[p(X+1)]
is finite as E[p(aJ,(0,B) + YB)} is finite for @« > 0.
On the other hand, lim,_, 4o + - Sh_o Xk < oo wp.l and
hm,HJroo Zk 0 Xk > L%H w.p.1 due to the energy causal-
ity constramt Therefore, we can apply the derivation steps in
[35, Theorem 5.4.5] and obtain (42). This completes the proof.
O

w.p.l. 42)

limn—H—oo

Lemma 4 and (41) imply the following for fora = O and 5 > 0:

imaJ,(0.0) = lim Jy B [p(As, ()] dt-

ty—o00 tf

(43)

Now, consider an arbitrary online policy m for which
E [p(Ax(t))] is Lebesgue-measurable and bounded, then apply
Feller’s Tauberian theorem for f(t) = E [p(A,(t))] giving the
following inequality when ¢, = 0:

e IR [p(Ar(1))]dt <

tf .

limsup,, o o f3°

(44)

limsup,

Note that for « > 0, J,,5(0,0) is minimized for o = f,
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hence:
limﬁw limau) aJa;g(O, O) = inf3>0 limaw Oé.]a;/j (O, 0)

< limsup,, o fooo e~ *=E [p(AL(t))] dt. 45)
Combining (43), (44) and (45), we get (38). This completes the
proof.

APPENDIX B
THE PROOF OF THEOREM 2

Theorem 2 follows from the proof of Theorem 1. To prove the
theorem it is sufficient to show that for any o > 0, p,(£) (see
(36)) is non-increasing in ¢ as this guarantees that the mono-
tonicity of optimal thresholds holds for any sequence of « val-
ues that vanishes to zero. To see this, consider the following
lemma and the argument provided below its proof:

Lemma 5: For J(,
Ja(0,6) —J(0,£+1) is non-increasing in ¢ € {0, 1,- -,
for any a > 0.

-) is the function defined in (20),
B-1}

Proof:

First, consider the alternative formulation of J,(r, ¢ + 1) in
below:

Jo(r,+1)= min e“E|

ﬂ.Enonline
E Uoo e~ p(A(8)dt| Zs1, Alta) = 7, B(ty) = £ + 1}},

where the outer expectation is taken over Zy 1.

Let

Ky py1(z,0) =
Pr(Zys1=2,H(z) — H(a) = 0|A(ty) =1, E(ty) =L+ 1)

be the joint distribution of Zj; € 91, and the energy harvested
during [a, z]. Then, we can write J,(r, £ 4+ 1) as follows:

/ Kr@-{-l 2, 0

ta

X [/z e~ p(A(t))dt + e **J, (0, min{l + o, B — 1})} dz
' (46)

min

Ja(r l+1) = S,

Similarly,

Jo(r,f+2) = min

§ / Kr Z+2 Z, U
Zk+1€ma

X [/Z e “p(A(t))dt+e™** Jo (0, min{l+1+0, B — 1})} dz
' “7)

Now, let K, »(z,0) be the distribution corresponding to the
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update time Zy 1 € 9, that is optimal in (47), which means:

o [e%e}
Jo(rt+2) =3 / K?yia(z0)e
o=0"1a

X [/z e “p(A(t))dt + e **J, (0, min{+1+0, B — 1})} dz
’ (48)

Clearly, K ,,,(z,0) is not necessarily the joint distribution
corresponding the update time Zj; € 9, that is optimal for
(46), hence:

Talr ) <30 [ Kol [ e Ipaw)
o=0"ta @

+ e =) 1 (0, min{l 4+ 0, B — 1})]dz (49)

Combining (50) and (49) gives:

0 oo
Art+D <Y / K7 p4y(z,0)e o)

o (0, min{f+1+ 0,B — 1})|d=.
(50)

Ja(’l",f + 1) -

X[Jo (0, min{l+o0,B—1})—J,

which implies :

Jo(r b+ 1) — Jo(r, £+2)<maxge{0717‘73 —0

Jo(0,min{l + 0,B — 1})—J (0, min{H1+0,B — 1})
Now, consider the case when r = 0 and £ = B — 2 for (50):

Ja(0,B—1) = J,(0, B) <

i /oo K:’€+2(Z7O')€_a(z_a) [Jo (0, min{B —2+0,B — 1})
a

—Jo(0,min{B—-1+ 0,B — 1})]dz ShH

which implies:
Jo(0,B—1)—J,(0,B) < J,(0,B—2)—J,(0,B—1). (52)

Suppose that the inequality below is true for j > ¢ + 1:
Ja(0,5+1) — Ja (0,5 +2) < Ju(0,5) — Jo(0,5 +1). (53)

Then, we have:
Ja (0,64 1) —

Jo(0,0+2)

< Z/ K} yyo(z,0)e 0 ¢

(0, min{f +1+0,B—1})|dz
)dz + Z

Jo(0, £+ 2)]dz

[Jo (0, min{l + o,B — 1})—J,

/ K*(2,0)e=*C=0[1(0,0) — Ju (0,041

/ K?p1a(20)e @G [0 (0,0 + 1) —

Jo(0,0) — Jo (0, + 1). (54)
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This means that the inequality (53) is also true for j = ¢ so is

forany j = 0,1, -, B — 2 by induction. Combining this and
(51):

Ja(r b+ 1) — Jo(r, € +2) < Ju(0,0) — Jo (0, 4+ 1), (55)
fora > 0,r > 0 and O

Lemma 5 shows that p, (¢) is non-increasing in £ for o > 0. It
is sufficient to consider (55) when r = p, (¢):

pa(l),£) <
which implies p, (¢ — 1) > po(£) combining
Ja(pa(l —

and that .J,, (7, £ — 1) is non-decreasing > in r. Accordingly, the
optimal policies solving (19) are monotone threshold policies,
ie., mq € IIMT for any o > 0.

0= Joc(07£_1>_‘]a( Ja(07£_2)_']a(pa(£)7£_1)7

(56)

Ja(0,0—2) — 1),6 1)

APPENDIX C
THE PROOF OF LEMMA 1

Let 7541 = 0. Then, consider:

0 9 a [
= >
aTiE (X7 o, /0 2x Pr(X > x)dx
0 S [T
= >
or ;ZO /Ti+1 2¢Pr(X > x)dx

7

=2 0 l/ xPr(sz)dx—l—/ ) xPr(X>x)dm]
a7i Tit1 T

Ti—1
= 2Tii/ Pr(X > z)dx
aTi Tit+1
0 & [T 9
TaTi;/w r(X > a)dx i [X]

fort =0,1,---, B.

APPENDIX D
USEFUL RESULTS FOR ASYMPTOTIC PROPERTIES

Lemmas 6, 7, and 8 provide some useful results that combine
ergodicity properties and renewal-reward theorem for a DTMC
with transition probabilities in (10).

Lemma 6: The DTMC with the transition probabilities in
(10) is ergodic for a monotone threshold policy where 7 is fi-
nite.

Proof: Consider an energy state j in [0, B — 1]. We will
show that any other energy state ¢ is reachable from j in at most
B — 1 steps with a positive probability. For ¢ > j, the higher
energy state ¢ is reachable from j in one step with a positive
probability as for ¢ = B — 1, Pr(Yp_; < 7p_1) is strictly

5This fact is provided in the proof of Theorem 1.
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positive and for j < i < B — 1:
Pr(Yiyioj <7) = Pr(Yayioj < Tiga) 2
Pr(Yiti—j < Tit1) — Pr(Yoqi—; < Tip1) > 0,
as 41 <T1;ande— 35 > 0.
Similarly, the energy state s = j — 1 forj = 1,---, B —1can

be reached from j with a probability 1 — Pr(Y; < 7;) which is
strictly positive as 7; is finite. This means that any state ¢ < j
can be reached from j in at most B — 1 steps with a positive
probability. O

Lemma 7: For monotone threshold policies with finite 71,
the following is true:

nEToonZX’“ = ZE [X | E=j]Pr(E=j) wp.l.
(57)
1Bl
2 _
i 5 DB = 5 SB[ B =] Pr(E =),
J
(58)
where Pr(E = j) is the steady-state probability for energy state
JHEX|E=j]2E[Xy | E(Z)=jlandE[X? | E =j] £

E [X} | B(Z) = j]-
Proof: Consider:
SRS MDD
n n

=0 ke[om] 3
E(Zy)=j

%

L
XZ;jv
£=0

I
<

where L; is the number of ks in [0, n] such that E(Z),) = j and
Xy.j is ar.v. with the CDF Pr(X,,; < z) = Pr(Xy < z |
E(Zy) = j) for some k.

Note that the sequence Xo.;, X1,5, -+, Xp;; is i.i.d. for any
7 and their mean is bounded as all thresholds are finite, hence:

LthOOL—ZXgJ— (X | E=j],wp.l.

Due to the ergodicity of F(Zy)s (Lemma 6):

L.
lim ~L = Pr(E = j),w.p.1.
n—oo M
Therefore,
1 n Bfl
i S S B S ),
k=0 j=0 Lj =0
B-1
= E[X | E=j]Pr(E =j),w.p.l.
=0
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Similarly,
n B—1 L
. 1 21 s Lj 1 2
Jin 5 2 B =l D ST ) XE)
k=0 j=0 =0
B—-1
= E[X? | E =j] Pr(E = j),w.p.l.
j=0

O
Lemma 8: For a threshold policy where 7, is finite, the av-
erage age A is finite (w.p.1) and given by the following expres-

sion.
limy,— 400 ﬁ Sr_o E[X?]
limy, 4 oo % ZZ:() X
Proof: The proof is a generalization of Theorem 5.4.5 in
[35] for the case where X,s are non-i.i.d. but the limits still exist
(w.p.1). When Xj;s are i.i.d. with E[X}] < oo and E[X?] < oo,
the convergence (w.p.1) of the limits is guaranteed. a

A:

w.p.l. (59)

APPENDIX E
THE PROOF OF THEOREM 3

Theorem 3 follows from the proof of Theorem 1. The proof
of Lemma 3 shows that given that Z;, = a is the last update time
and E(t') = B for some t' > a, the condition S; = G is sat-
isfied for the first time when ¢ > {¢’, t.} (see (31)). This means
that p, (B) = aJ, (0, B—1) for p, (E(t)) in (37). Accordingly,

p(75) = limy 0 po(B) =limy o aJy(0,B —1) =

Jo Elp(Ax ()| E(0)=Bldt
ty

min ¢ pponine lim supy _, o = Prxs

which follows from the application of Feller’s Tauberian theo-

rem (applying Theorem 7 for f(t) = E [p(A,(t)) | E(0) = B)).
This completes the proof.

APPENDIX F
THE PROOF OF THEOREM 4

By Lemma 8 and Lemma 7, A for B = 1 can be computed
as follows

1E[X2| E =0] Pr(E =0)

A=y EX|E=0P(E=0)’

(60)

where Pr(E = 0) = L E[X?[E=0] = 7 + (;Z +

H
H%Tl)(i*“f”l adE[X |E=0] =+ HiHefﬂiHTl. Accord-
ingly, A is given by (13). By Theorem 3, 7 = A« and com-
bining this with (13) results in

3(paT)? + e M (g + 1)
paT 4 eraT

pTE = . 6D

Solving (61) gives that (7;)? = -2~ #4171 which means 7; =

1 1 a #7
Low (L),
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THE PROOF OF THEOREM 5
By Lemma 8 and Lemma 7, A for B = 2 is the following:
A=
I1E[X? |E=0]Pr(E=0)+E[X? | E=1]|Pr(E=1)
= 0 ’

2 EX|E=0P(E=0)1E[X]|E=1Pr(E=1)
(62)

The probability of being in £ = 1,i.e. Pr(E = 1) can be solved
using:

Pr(E =1) =Y Pr(BE(Zx11) = 1| E(Zy) = j) Pr(E = j).

j=0
(63)
Combining (63) and (9),
e_HH T1
Pr(E=1) (64)

1—e mampyyr’

Now, we can obtain E [X? | E = j], E[X | E = j] using (9).
Combining these with (64) and substituting in (62) gives (5).

APPENDIX H
THE PROOF OF THEOREM 6

First, we show that 75 > A is necessary to find a solution
to (17) with monotonic non-increasing thresholds. Then, we
show that this condition is also sufficient.

The necessity part of the proof follows from the fact
that 75 = A, for any solution of (17), as A, =
mi(71, 72, TB)/2ma(T1, T2, -, 75) by Lemma 8 and
Lemma 7. Therefore, by the optimality of Ane, TB > Ans
must hold for any solution of (17).

Now, we consider the sufficiency part of the proof where it is
useful to define a function ¢ : [0,00)? — R as follows:

¢(TBaTB—1 —TB, " T1 *TQ) =

2rpmy (11,72, -, TB) — Ma(T1, T2, -+, TB).
Using this definition, (17) can be written as,

&(TB,TB—1 — 7B, T1 — T2) = 0.

We need to show that given 75 > A,~, one can find
a set of non-negative real numbers di,---,dg_1 such that
(b(TB, dB—17 Ty, dl) = 0. Accordingly, B and dl, . '7dB—1
constitute a solution to (17) with monotonic non-decreasing
thresholds where 7, = 741 + d;, forv = 1,---.B — 1. In
order to prove this, let us start with the optimal policy 7* =
(r,75- -+, 75) where we know that 7; = A« by Theorem 3.
Starting from the optimal policy 7*, the policy will be modified
following the procedure below:

e Phase 1: Modify the policy =() = (T1(+,)T2(+,)~ . -,rf;)) from

the previous phase to the policy 7(~) = (Tl( ), 7'2(_)' - Té_))
so that 71(9_) = min{Tl(;:)DTB} while 77 = () fori =
1,---, B — 1. Then, go to Phase 2 with policy 7(~).

e Phase 2: Modify the policy 7(~) = (71(_,)7'2(_,)~ . ',7'1(3_)) from
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A )

the previous phase to the policy 7(+) = ( S TH
so that TéJr) = é_) while Ti(+) = Ti(_) +x fori = ]_’ N B—

1 where x > 0 is the solution of the following:
¢(T(7)7 71(3:)1

If Tg) = Tp, the procedure stops and (65) gives the solution
that ¢(75,dg_1,- -+, d1) = 0, otherwise go to Phase 1 with
policy w(+).
It can be shown that the procedure always stops with a solution
that ¢(7p,dp_1, -, d1) = 0. To see this, first observe that (65)
always has a solution as long as:

o =0 T Ty 0. (66)

This is due to the following facts about the function
qS(T(_), 71(31)1 — T](B_) +x, 71(_) - 7'2(_) +x): (i) Itis a con-
tinuous function of z, (ii) it goes to —co as x grows.

Next, observe that (66) always holds, i.e.,

— TI(;) +z,-- ~,7'1(7) — 7'2(7) +xz)=0. (65

e 2, =7 el =
()
7'1(+) - 72(+))+f7r(+> do,

=0 due to the Phase 2 or the initial/optimal policy

¢(Té+)a Té-‘r_)l - Té-’—)a Y

is positive. This can be seen by considering:

% =2my (11,72, "+, TB)
B— . .
+ 275 2 EIX | B =] - 52 E [X? | E =]
X Pr(E = j),

which follows from the fact that Pr(E = j) does not depend on
7p (see (10)) and can be further simplified by Lemma 1, hence:

0
% =2mq (11,72, -+, TB)-

Accordingly, we have:

_ _ _ _ _ e
(b(T( )aTéjl _Té )a"'7T( )_T2( )) = fﬂ—(Jr) d¢

e
=2['E m1(7'1(+)77'2(+), <o, T)dT > 0,
B

where the inequality follows from the fact that m; (T(1+,)T(2+,)' .

being the average inter-update time is always positive.

Therefore, (65) can be always satisfied in Phase 2. Also, as
the second smallest threshold is strictly increased in Phase 2, the
smallest threshold can be moved toward 75 in Phase 1. Also, it
can be shown that the procedure does not converge any policy
other than the policy that ¢(75,dg_1, -+, d1) = 0. This can be
seen considering the following:

.77—)

%mz(ﬁ +x, 7+, 7B) |2=0

. . 1 ¢ 2 2
<oyt 32 o))
~ lm 23 EX] =2 A
_nj)rilooﬁk_o k] — m1(71a7_27" aTB)v
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hence,
e (7B, TB—1 —TB + X, ;71 — T2 + ) [2=0 (67)
+%¢(?B+$,TB—1*%fo,"',ﬁ*TQ) lz=0  (68)
> 2%3%7711(71 +x, 7o+, ,78) |z=0, (69)

which implies that the procedure cannot converge to a policy

with ’T;H < 7p as the RHS of (67) is positive ® and does not

vanish for a finite set of thresholds. Therefore, as the smallest
threshold of the policies modified by the procedure is increased
up to 75, a solution that ¢(75,dg_1,"--,d1) = 0 is eventually
reached. This completes the proof.
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