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Sampling for Data Freshness Optimization:
Non-linear Age Functions

Yin Sun and Benjamin Cyr

Abstract: In this paper, we study how to take samples at a data

source for improving the freshness of received data samples at a

remote receiver. We use non-linear functions of the age of informa-

tion to measure data freshness, and provide a survey of non-linear

age functions and their applications. The sampler design problem

is studied to optimize these data freshness metrics, even when there

is a sampling rate constraint. This sampling problem is formulated

as a constrained Markov decision process (MDP) with a possibly

uncountable state space. We present a complete characterization

of the optimal solution to this MDP: The optimal sampling pol-

icy is a deterministic or randomized threshold policy, where the

threshold and the randomization probabilities are characterized

based on the optimal objective value of the MDP and the sampling

rate constraint. The optimal sampling policy can be computed by

bisection search, and the curse of dimensionality is circumvented.

These age optimality results hold for (i) general data freshness met-

rics represented by monotonic functions of the age of information,

(ii) general service time distributions of the queueing server, (iii)

both continuous-time and discrete-time sampling problems, and

(iv) sampling problems both with and without the sampling rate

constraint. Numerical results suggest that the optimal sampling

policies can be much better than zero-wait sampling and the clas-

sic uniform sampling.

Index Terms: Age of information, data freshness, Markov decision

process, sampling.

I. INTRODUCTION

INFORMATION usually has the greatest value when it is fresh

[2, p. 56]. For example, real-time knowledge about the loca-

tion, orientation, and speed of motor vehicles is imperative in

autonomous driving, and the access to timely updates about the

stock price and interest-rate movements is essential for develop-

ing trading strategies on the stock market. In [3], [4], the concept

of Age of Information was introduced to measure the freshness

of information that a receiver knows about the status of the re-

mote source. Consider a sequence of source samples that are

sent through a queue to a receiver. Let Ut be the generation time

of the newest sample that has been delivered to the receiver by

time t. The age of information, as a function of t, is defined as
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∆t = t− Ut, (1)

which is the time elapsed since the newest sample was gener-

ated. Hence, a small age ∆t indicates that there exists a recently

generated sample at the receiver.

In practice, some information sources (e.g., vehicle location,

stock price) vary quickly over time, while others (e.g., temper-

ature, interest-rate) change slowly. Consider again the example

of autonomous driving: The location information of motor ve-

hicles collected 0.5 seconds ago could already be quite stale for

making control decisions1, but the engine temperature measured

a few minutes ago is still valid for engine health monitoring.

From this example, one can observe that data freshness should

be evaluated based on (i) the time-varying pattern of the source

and (ii) how valuable the fresh data is in the specific applica-

tion. However, the age ∆t defined in (1) is the time difference

between data generation at the transmitter and data usage at the

receiver, which cannot fully describe the source pattern and ap-

plication context.2 This motivated us to seek more appropriate

data freshness metrics that can interpret the role of freshness in

real-time applications.

In this paper, we consider using a non-linear function u(∆t)
of the age ∆t as a data freshness metric, where u(∆t) could

be the utility value of data with age ∆t, temporal autocorrela-

tion function of the source, estimation error of signal value, or

other application-specific performance metrics [1], [5]–[19]. A

survey of non-linear age functions and their applications is pro-

vided in Subsection III.B. Recently, the age of information has

received significant attention, because of the rapid deployment

of real-time applications. A large portion of existing studies on

age have been devoted to linear functions of the age ∆t, e.g.,

[4], [20]–[46]. However, the design of efficient data update poli-

cies for optimizing non-linear age metrics remains largely unex-

plored. To that end, we investigate a problem of sampling an in-

formation source, where the samples are forwarded to a remote

receiver through a channel that is modeled as a FIFO queue. The

optimal sampler design for optimizing non-linear age metrics is

obtained. The contributions of this paper are summarized as fol-

lows:

• We consider a class of data freshness metrics, where the util-

ity for data freshness is represented by a non-increasing func-

tion u(∆t) of the age ∆t. Accordingly, the penalty for data

1A car will travel 15 meters during 0.5 seconds at the speed of 70 mph.
2To the best of our knowledge, the issue that “the actual age ∆t is not a good

representation of freshness” was firstly pointed out by Anthony Ephremides in
one presentation at the Information Theory and Application (ITA) Workshop in
2015.
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staleness is denoted by a non-decreasing function p(∆t) of

∆t. The sampler design problem for optimizing these data

freshness metrics, possibly with a sampling rate constraint, is

considered. This sampling problem is formulated as a con-

strained Markov decision process (MDP) with a possibly un-

countable state space.

• We prove that an optimal sampling solution to this MDP is

a deterministic or randomized threshold policy, where the

threshold is equal to the optimum objective value of the MDP

plus the optimal Lagrangian dual variable associated with the

sampling rate constraint; see Subsection V.E for the details.

The threshold can be computed by bisection search, and the

randomization probabilities are chosen to satisfy the sam-

pling rate constraint. The curse of dimensionality is circum-

vented in this sampling solution by exploiting the structure

of the MDP. These age optimality results hold for (i) gen-

eral monotonic age metrics, (ii) general service time distri-

butions of the queueing server, (iii) both continuous-time and

discrete-time sampling problems, and (iv) sampling problems

both with and without the sampling rate constraint. Among

the technical tools used to prove these results are an exten-

sion of Dinkelbach’s method for MDP and a geometric mul-

tiplier technique for establishing strong duality. These tech-

nical tools were recently used in [47], [48], where a quite dif-

ferent sampling problem was solved. In addition, we will also

introduce some proof ideas that are specific to the sampling

problem that we consider in this paper, which will be used to

prove Lemma 5, Theorem 5, and Lemma 7 in Section V.

• When there is no sampling rate constraint, a logical sampling

policy is the zero-wait sampling policy [4], [15], [24], which

is throughput-optimal and delay-optimal, but not necessarily

age-optimal. We develop sufficient and necessary conditions

for characterizing the optimality of the zero-wait sampling

policy for general monotonic age metrics. Our numerical re-

sults show that the optimal sampling policies can be much

better than zero-wait sampling and the classic uniform sam-

pling.

The rest of this paper is organized as follows. In Section II, we

discuss some related work. In Section III, we describe the sys-

tem model and the formulation of the optimal sampling prob-

lem; a short survey of non-linear age functions is also provided.

In Section IV, we present the optimal sampling policy for dif-

ferent system settings, as well as a sufficient and necessary con-

dition for the optimality of the zero-wait sampling policy. The

proofs are provided In Section V. The numerical results and the

conclusion are presented in Section VI and Section VII.

II. RELATED WORK

The age of information was used as a data freshness met-

ric as early as 1990s in the studies of real-time databases [3],

[49]–[51]. Queueing theoretic techniques were introduced to

evaluate the age of information in [4]. The average age, aver-

age peak age, and age distribution have been analyzed for var-

ious queueing systems in, e.g., [4], [16], [20]–[22], [52]–[55].

It was observed that a last-come, first-served (LCFS) schedul-

ing policy can achieve a smaller time-average age than a few

other scheduling policies. The optimality of the LCFS policy,

or more generally the last-generated, first-served (LGFS) pol-

icy, was first proven in [56]. This age optimality result holds for

several queueing systems with multiple servers, multiple hops,

and/or multiple sources [56]–[60].

When the transmission power of the source is subject to an

energy-harvesting constraint, the age of information was mini-

mized in, e.g., [15], [23]–[30]. Source coding and channel cod-

ing schemes for reducing the age were developed in, e.g., [31]–

[34]. Age-optimal transmission scheduling of wireless networks

have been investigated in, e.g., [35]–[42], [61], [62]. Game the-

oretical perspective of the age was studied in [43], [44], [63],

[64]. The aging effect of channel state information was ana-

lyzed in, e.g., [65]–[67]. An interesting connection between the

age of information and remote estimation error was revealed in

[17], [47], [48], where the optimal sampling policies were ob-

tained for two continuous-time Markov processes. The impact

of the age to control systems was studied in [18], [19], [45],

[68]. Emulations and measurements of the age were conducted

in [46], [69], [70]. An age-based transport protocol was devel-

oped in [71].

In [33], [42], optimal sampling policies were developed to

minimize the time-average age for status updates over wireless

channels, where the optimal sampling policies were shown to be

randomized threshold policies. Structural properties of the ran-

domized threshold policies were obtained in [33], [42] to sim-

plify the value iteration or policy iteration algorithms therein.

The linear age function considered in [33], [42] is a special

case of the monotonic age functions considered in this paper,

and the channel models in [33], [42] are different from ours. In

our study, the optimal sampling policies are characterized semi-

analytically and can be computed by bisection search. In a spe-

cial case of [33], a closed-form optimal sampling solution was

obtained. However, it is unclear whether (semi-)analytical or

closed-form solutions can be found for the general cases con-

sidered in [33], [42].

The most relevant prior study to this paper is [15]. This paper

generalizes [15] in the following aspects: (i) The data freshness

metrics considered in this paper are more general than those of

[15]. The age penalty function p(∆t) in [15] is assumed to be

non-negative and non-decreasing, which is relaxed in this paper

to be an arbitrary non-decreasing function that is more desirable

for some applications. (ii) The optimal sampling policies de-

veloped in this paper are simpler and more insightful than those

in [15]. A two-layered nested bisection search algorithm was

developed to compute the optimal threshold [15]. In this pa-

per, the optimal threshold can be computed by a single layer

of bisection search. (iii) In [15], the optimal sampling strategy

was obtained for continuous-time systems. In this paper, we

also develop an optimal sampling strategy for discrete-time sys-

tems, without sacrificing from any approximation error or sub-

optimality. (iv) It was assumed in [15] that after the previous

sample was delivered, the next sample must be generated within

a given amount of time. By adopting more insightful proof tech-

niques, we are able to remove such an assumption and greatly

simplify the proofs in this paper.
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Fig. 1. System model.

III. MODEL, METRICS, AND FORMULATION

A. System Model

We consider the status update system illustrated in Fig. 1,

where samples of a source process Xt are taken and sent to

a receiver through a communication channel. The channel is

modeled as a single-server FIFO queue with independent and

identically distributed (i.i.d.) service times. The system starts to

operate at time t = 0. The ith sample is generated at time Si

and is delivered to the receiver at time Di with a service time

Yi, which satisfy Si ≤ Si+1, Si+Yi ≤ Di, Di+Yi+1 ≤ Di+1,

and 0 < E[Yi] < ∞ for all i. Each sample packet (Si, XSi
)

contains the sampling time Si and the sample value XSi
. Once

a sample is delivered, the receiver sends an acknowledgement

(ACK) back to the sampler with zero delay. Hence, the sampler

has access to the idle/busy state of the server in real-time.

Let Ut = max{Si : Di ≤ t} be the generation time of the

freshest sample that has been delivered to the receiver by time t.
Then, the age of information, or simply age, at time t is defined

by [3], [4]

∆t = t− Ut = t−max{Si : Di ≤ t}, (2)

which is plotted in Fig. 2. Because Di ≤ Di+1, ∆t can be also

written as

∆t = t− Si, if Di ≤ t < Di+1. (3)

The initial state of the system is assumed to be S0 = 0, D0 =
Y0, and ∆0 is a finite constant.

In this paper, we will consider both continuous-time and

discrete-time status-update systems. In the continuous-time set-

ting, t ∈ [0,∞) can take any positive value. In the discrete-time

setting, t ∈ {0, Ts, 2Ts, · · ·} is a multiple of period Ts; as a

result, Si, Di, Yi, t, Ut,∆t are all discrete-time variables. For

notational simplicity, we choose Ts = 1 second such that all the

discrete-time variables are integers. The results for other values

of Ts can be readily obtained by time scaling.

In practice, the continuous-time setting can be used to model

status-update systems with a high clock rate, while the discrete-

time setting is appropriate for characterizing sensors that have a

very low energy budget and can only wake up periodically from

a low-power sleep mode.

B. Data Staleness and Freshness Metrics: A Survey

The dissatisfaction for data staleness (or the eagerness for

data refreshing) is represented by a penalty function p(∆) of the

age ∆, where the function p : [0,∞) 7→ R is non-decreasing.

This non-decreasing requirement on p(∆) complies with the ob-

servations that stale data is usually less desired than fresh data

t

∆t

S0 S1 Sj−1 SjD0 D1 Dj−1 Dj

Fig. 2. Evolution of the age ∆t over time.

[2], [5]–[10]. This data staleness model is quite general, as it

allows p(∆) to be non-convex or dis-continuous. These data

staleness metrics are clearly more general than those in [14],

[15], where p(∆) was restricted to be non-negative and non-

decreasing.

Similarly, data freshness can be characterized by a non-

increasing utility function u(∆) of the age ∆ [6], [8]. One sim-

ple choice is u(∆) = −p(∆). Note that because the age ∆t is

a function of time t, p(∆t) and u(∆t) are both time-varying, as

illustrated in Fig. 3. In practice, one can choose p(·) and u(·)
based on the information source and the application under con-

sideration, as illustrated in the following examples.3

B.1 Auto-correlation Function of the Source

The auto-correlation function E[X∗
t Xt−∆t

] can be used to

evaluate the freshness of the sample Xt−∆t
[16]. For some

stationary sources, |E[X∗
t Xt−∆t

]| is a non-negative, non-

increasing function of the age ∆t, which can be considered as

an age utility function u(∆t). For example, in stationary er-

godic Gauss-Markov block fading channels, the impact of chan-

nel aging can be characterized by the auto-correlation function

of fading channel coefficients. When the age ∆t is small, the

auto-correlation function and the data rate both decay with re-

spect to the age ∆t [65].

B.2 Estimation Error of Real-time Source Value

Consider a status-update system, where samples of a Markov

source Xt are forwarded to a remote estimator. The estimator

uses causally received samples to reconstruct an estimate X̂t of

real-time source value. If the sampling times Si are independent

of the observed source {Xt, t ≥ 0}, the mean-squared estima-

tion error at time t can be expressed as an age penalty function

p(∆t) [17], [22], [47], [48]. If the sampling times Si are cho-

sen based on causal knowledge about the source, the estimation

error is not a function of ∆t [17], [47], [48].

The above result can be generalized to the state estimation

error of feedback control systems [18], [19]. Consider a single-

loop feedback control system, where a plant and a controller are

governed by a linear time-invariant (LTI) system, i.e.,

Xt+1 = AXt +BUt +Nt, (4)

where Xt ∈ Rn is the state of the system at time slot t, n is the

system dimension, Ut ∈ Rm represents the control input, and

3In some of these examples, the age utility function u(∆t) is non-negative and
non-increasing. The corresponding age penalty function p(∆t) = −u(∆t) is
non-positive and non-decreasing. Hence, it is desirable to allow the age penalty
function p(∆t) to be negative.
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t

p(∆t) = e0.2∆t − 1

S0 S1 Sj−1 SjD0 D1 Dj−1 Dj

(a) Non-decreasing age penalty function p(∆t) = e0.2∆t − 1.

t

u(∆t) = 10/∆t

S0 S1 Sj−1 SjD0 D1 Dj−1 Dj

(b) Non-increasing age utility function u(∆t) = 10/∆t.

Fig. 3. Two examples of non-linear age functions.

Nt ∈ Rn is the exogenous noise vector having i.i.d. Gaussian

distributed elements with zero mean and covariance Σ. The con-

stant matrices A ∈ Rn×n and B ∈ Rn×m are the system and

input matrices, respectively, where (A,B) is assumed to be con-

trollable. Samples of the state process Xt are forwarded to the

controller, which determines Ut at time t based on the samples

that have been delivered by time t. Under some assumptions,

the state estimation error can be proven to be independent of the

adopted control policy [72, Lemma 5.2.1], [45]. Furthermore, if

the sampling times Si are independent of the state process Xt,

then the state estimation error is an age penalty function p(∆t)
that is determined by the system matrix A and the covariance Σ
of the exogenous noise [18], [19].

B.3 Information based Data Freshness Metric

Let

Wt = {(XSi
, Si) : Di ≤ t} (5)

denote the samples that have been delivered to the receiver by

time t. One can use the mutual information I(Xt;Wt) — the

amount of information that the received samples Wt carry about

the current source value Xt — to evaluate the freshness of Wt.

If I(Xt;Wt) is close to H(Xt), the samples Wt contains a

lot of information about Xt and is considered to be fresh; if

I(Xt;Wt) is almost 0, Wt provides little information about Xt

and is deemed to be obsolete.

One way to interpret I(Xt;Wt) is to consider how helpful the

received samples Wt are for inferring Xt. By using the Shannon

code lengths [73, Section 5.4], the expected minimum number

of bits L required to specify Xt satisfies

H(Xt) ≤ L < H(Xt) + 1, (6)

where L can be interpreted as the expected minimum number of

binary tests that are needed to infer Xt. On the other hand, with

the knowledge of Wt, the expected minimum number of bits L′

that are required to specify Xt satisfies

H(Xt|Wt) ≤ L′ < H(Xt|Wt) + 1. (7)

If Xt is a random vector consisting of a large number of symbols

(e.g., Xt represents an image containing many pixels or the co-

efficients of MIMO-OFDM channels), the one bit of overhead in

(6) and (7) is insignificant. Hence, I(Xt;Wt) is approximately

the reduction in the description cost for inferring Xt without and

with the knowledge of Wt.

If Xt is a stationary Markov chain, by data processing in-

equality [73, Theorem 2.8.1], it is easy to prove the following

lemma:

Lemma 1: If Xt is a stationary (continuous-time or discrete-

time) Markov chain, Wt is defined in (5), and the sampling

times Si are independent of {Xt, t ≥ 0}, then the mutual in-

formation

I(Xt;Wt) = I(Xt;Xt−∆t
) (8)

is a non-negative and non-increasing function u(∆t) of ∆t.

Proof: See Appendix A. 2

Lemma 1 provides an intuitive interpretation of “informa-

tion aging”: The amount of information I(Xt;Wt) that is pre-

served in Wt for inferring the current source value Xt de-

creases as the age ∆t grows. We note that Lemma 1 can be

generalized to the case that Xt is a stationary discrete-time

Markov chain with memory k. In this case, each sample Vt =
(Xt, Xt−1, · · ·, Xt−k+1) should contain the source values at k
successive time instants. Let Wt = {(VSi

, Si) : Di ≤ t}, then

one can show that Vt−∆t
is a sufficient statistic of Wt for infer-

ring Xt and I(Xt;Wt) = I(Xt;Vt−∆t
) is still a non-negative

and non-increasing function of ∆t.

If the sampling times Si are determined by using causal

knowledge of Xt, I(Xt;Wt) is not necessarily a function of the

age. One interesting future research direction is how to choose

the sampling time Si based on the signal and utilize the timing

information in Si to improve data freshness.

Next, we provide the closed-form expression of I(Xt;Wt)
for two Markov sources:

Gauss-Markov source: Suppose that Xt is a first-order

discrete-time Gauss-Markov process, defined by

Xt = aXt−1 + Vt, (9)

where a ∈ (−1, 1) and the Vt’s are zero-mean i.i.d. Gaussian

random variables with variance σ2. Because Xt is a Gauss-

Markov process, one can show that [74]

I(Xt;Wt) = I (Xt;Xt−∆t
) = −

1

2
log2

(

1− a2∆t
)

. (10)

Since a ∈ (−1, 1) and ∆t ≥ 0 is an integer, I(Xt;Wt) is a

positive and decreasing function of the age ∆t. Note that if

∆t = 0, then I(Xt;Wt) = H(Xt) = ∞, because the absolute

entropy of a Gaussian random variable is infinite.

Binary Markov source: Suppose that Xt ∈ {0, 1} is a binary

symmetric Markov process defined by

Xt = Xt−1 ⊕ Vt, (11)

where ⊕ denotes binary modulo-2 addition and the Vt’s are i.i.d.

Bernoulli random variables with mean q ∈ [0, 1
2 ]. One can show
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that

I(Xt;Wt) = I(Xt;Xt−∆t
) = 1−h

(

1−(1− 2q)∆t

2

)

, (12)

where Pr[Xt = 1|X0 = 0] = (1− (1− 2q)t)/2 and h(x) is

the binary entropy function defined by h(x) = −x log2 x−(1−
x) log2(1−x) with a domain x ∈ [0, 1] [73, Eq. (2.5)]. Because

h(x) is increasing on [0, 1
2 ], I(Xt;Wt) is a non-negative and

decreasing function of the age ∆t.

Similarly, one can also use the conditional entropy

H(Xt|Wt) to represent the staleness of Wt [11]–[13]. In partic-

ular, H(Xt|Wt) can be interpreted as the amount of uncertainty

about the current source value Xt after receiving the samples

Wt. If the Si’s are independent of {Xt, t ≥ 0} and Xt is a

stationary Markov chain, H(Xt|Wt) = H(Xt|{XSi
: Di ≤

t}) = H(Xt|Xt−∆t
) is a non-decreasing function p(∆t) of the

age ∆t. If the sampling times Si are determined based on causal

knowledge of Xt, H(Xt|Wt) is not necessarily a function of the

age.

More usage cases of p(·) and u(·) can be found in [5]–[10].

Other data freshness metrics that cannot be expressed as func-

tions of ∆t were discussed in [52], [56]–[60].

C. Formulation of Optimal Sampling Problems

Let π = (S1, S2, · · ·) represent a sampling policy and Π de-

note the set of causal sampling policies that satisfy the follow-

ing two conditions: (i) Each sampling time Si is chosen based

on history and current information of the idle/busy state of the

channel. (ii) The inter-sampling times {Ti = Si+1 − Si, i =
1, 2, · · ·} form a regenerative process [75, Section 6.1]4: There

exists an increasing sequence 0 ≤ k1 < k2 < · · · of al-

most surely finite random integers such that the post-kj process

{Tkj+i, i = 1, 2, · · ·} has the same distribution as the post-k1
process {Tk1+i, i = 1, 2, · · ·} and is independent of the pre-kj
process {Ti, i = 1, 2, · · ·, kj − 1}; in addition, E[kj+1 − kj ] <
∞, E[Sk1

] < ∞, and 0 < E[Skj+1
− Skj

] < ∞, j = 1, 2, · · ·
We assume that the sampling times Si are independent of the

source process {Xt, t ≥ 0}, and the service times Yi of the

queue do not change according to the sampling policy. We fur-

ther assume that E[p(∆ + Yi)] < ∞ for all finite ∆.

In this paper, we study the optimal sampling policy that mini-

mizes (maximizes) the average age penalty (utility) subject to an

average sampling rate constraint. In the continuous-time case,

we will consider the following problem:

p̄opt,1 = inf
π∈Π

lim sup
T→∞

1

T
E

[

∫ T

0

p(∆t)dt

]

(13)

s.t. lim inf
n→∞

1

n
E [Sn] ≥

1

fmax
, (14)

where p̄opt,1 is the optimal value of (13) and fmax is the maxi-

mum allowed sampling rate. In the discrete-time case, we need

4We assume that Ti is a regenerative process because we will optimize

lim supT→∞
E[
∫ T

0
p(∆t)dt]/T , but operationally a nicer objective function

is lim supi→∞
E[
∫Di

0
p(∆t)dt]/E[Di]. These two criteria are equivalent, if

{T1, T2, · · ·} is a regenerative process, or more generally, if {T1, T2, · · ·} has
only one ergodic class. If no condition is imposed, however, they are different.

Algorithm 1 Bisection method for solving (18).

given l, u, tolerance ε > 0.

repeat

β := (l + u)/2.

o := β − E[v(Di+1(β)−Si(β))−v(Yi)]
E[Di+1(β)−Di(β)]

.

if o ≥ 0, u := β; else, l := β.

until u− l ≤ ε.
return β.

to solve the following optimal sampling problem:

p̄opt,2 = inf
π∈Π

lim sup
n→∞

1

n
E

[

n
∑

t=1

p(∆t)

]

(15)

s.t. lim inf
n→∞

1

n
E [Sn] ≥

1

fmax
, (16)

where p̄opt,2 is the optimal value of (15). We assume that p̄opt,1

and p̄opt,2 are finite. The problems for maximizing the average

age utility can be readily obtained from (13) and (15) by choos-

ing p(∆) = −u(∆). In practice, the cost for data updates in-

creases with the average sampling rate. Therefore, Problems

(13) and (15) represent a tradeoff between data staleness (fresh-

ness) and update cost.

Problems (13) and (15) are constrained MDPs, one with a

continuous (uncountable) state space and the other with a count-

able state space. Because of the curse of dimensionality [76],

it is quite rare that one can explicitly solve such problems and

derive analytical or closed-form solutions that are arbitrarily ac-

curate.

IV. MAIN RESULTS: OPTIMAL SAMPLING POLICIES

In this section, we present a complete characterization of the

solutions to (13) and (15). Specifically, the optimal sampling

policies are either deterministic or randomized threshold poli-

cies, depending on the scenario under consideration. Efficient

computation algorithms of the thresholds and the randomization

probabilities will be provided.

A. Continuous-time Sampling without Rate Constraint

We first consider the continuous-time sampling problem (13).

When there is no sampling rate constraint (i.e., fmax = ∞), a

solution to (13) is provided in the following theorem:

Theorem 1 (Continuous-time sampling without rate constraint)

If fmax = ∞, p(·) is non-decreasing, and the service times Yi

are i.i.d. with 0 < E[Yi] < ∞, then (S1(β), S2(β), · · ·) with a

parameter β is an optimal solution to (13), where

Si+1(β)=inf{t ≥ Di(β) : E[p(∆t+Yi+1
)]≥ β}, (17)

Di(β) = Si(β) + Yi, ∆t = t− Si(β), and β is the root of

β =
E
[

∫Di+1(β)

Di(β)
p(∆t)dt

]

E[Di+1(β)−Di(β)]
. (18)

Further, β is exactly the optimal value to (13), i.e., β = p̄opt,1.
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The proof of Theorem 1 is relegated to Subsection V.F.

The optimal sampling policy in (17)-(18) has a nice structure.

Specifically, the (i + 1)th sample is generated at the earliest

time t satisfying two conditions: (i) the ith sample has already

been delivered by time t, i.e., t ≥ Di(β), and (ii) the expected

age penalty E[p(∆t+Yi+1
)] has grown to be no smaller than a

pre-determined threshold β. Notice that if t = Si+1(β), then

t + Yi+1 = Si+1(β) + Yi+1 = Di+1(β) is the delivery time

of the (i + 1)th sample. In addition, β is equal to the optimum

objective value p̄opt,1 of (13). Hence, (17)-(18) require that the

expected age penalty upon the delivery of the (i+1)th sample is

no smaller than p̄opt,1, i.e., the minimum possible time-average

expected age penalty.

Next, we develop an efficient algorithm to find the root β of

(18). Because the Yi’s are i.i.d., the expectations on the right-

hand side of (18) are functions of β and are irrelevant of i. Given

β, these expectations can be evaluated by Monte Carlo simula-

tions or importance sampling. Define

v(s) =

∫ s

0

p(t)dt, (19)

then

∫ Di+1(β)

Di(β)

p(∆t)dt= v(Di+1(β)−Si(β))−v(Yi), (20)

which can be used to simplify the numerical evaluation of the

expected integral in (18). As proven in Subsection V.F, (18) has

a unique solution. We use a simple bisection method to solve

(18), which is illustrated in Algorithm 1.

A.1 Optimality Condition of Zero-wait Sampling

When fmax = ∞, one logical sampling policy is the zero-

wait sampling policy [4], [15], [24], given by

Si+1 = Si + Yi. (21)

This zero-wait sampling policy achieves the maximum through-

put and the minimum queueing delay. In the special case of

p(∆t) = ∆t, Theorem 5 of [15] provided a sufficient and neces-

sary condition for characterizing the optimality of the zero-wait

sampling policy. We now generalize that result to the case of

non-linear age functions in the following corollary:

Corollary 1: If fmax = ∞, p(·) is non-decreasing, and the

service times Yi are i.i.d. with 0 < E[Yi] < ∞, then the zero-

wait sampling policy in (21) is optimal for solving (13) if and

only if

E [p(ess inf Yi + Yi+1)] ≥
E
[

∫ Yi+Yi+1

Yi
p(t)dt

]

E[Yi+1]
, (22)

where ess inf Yi = inf{y ∈ [0,∞) : Pr[Yi ≤ y] > 0}.

Proof: See Appendix D. 2

One can consider ess inf Yi as the minimum possible value of

Yi. It immediately follows from Corollary 1 that

Corollary 2: If fmax = ∞, p(·) is non-decreasing, and the

service times Yi are i.i.d. with 0 < E[Yi] < ∞, then the follow-

Algorithm 2 Bisection method for solving (27).

given l, u, tolerance ε > 0.

repeat

β := (l + u)/2.

o1 := E[Ti,min(β)− Si(β)].
o2 := E[Ti,max(β)− Si(β)].
if o1 > 1

fmax
, u := β;

else if o2 < 1
fmax

, l := β;

else return β.

until u− l ≤ ε.
return β.

ing assertions are true:

(a) If Yi is a constant, then (21) is optimal for solving (13).

(b) If ess inf Yi = 0 and p(·) is strictly increasing, then (21) is

not optimal for solving (13).

Proof: See Appendix E. 2

The condition ess inf Yi = 0 is satisfied by many commonly

used distributions, such as exponential distribution, geometric

distribution, Erlang distribution, and hyperexponential distribu-

tion. According to Corollary 2(b), if p(·) is strictly increasing,

the zero-wait sampling policy (21) is not optimal for these com-

monly used distributions.

B. Continuous-time Sampling with Rate Constraint

When the sampling rate constraint (14) is imposed, a solution

to (13) is presented in the following theorem:

Theorem 2 (Continuous-time sampling with rate constraint)

If p(·) is non-decreasing, E[p(t + Yi)] < ∞ for all finite t, and

the service times Yi are i.i.d. with 0 < E[Yi] < ∞, then (17)-

(18) is an optimal solution to (13), if

E[Si+1(β)− Si(β)] >
1

fmax
. (23)

Otherwise, (S1(β), S2(β), · · ·) with a parameter β is an optimal

solution to (13), where

Si+1(β)=

{

Ti,min(β) with probability λ,
Ti,max(β) with probability 1− λ.

(24)

Ti,min(β) and Ti,max(β) are given by

Ti,min(β)=inf{t ≥ Di(β) : E[p(∆t+Yi+1
)]≥β}, (25)

Ti,max(β)=inf{t ≥ Di(β) : E[p(∆t+Yi+1
)]>β}. (26)

Di(β) = Si(β) + Yi, ∆t = t − Si(β), β is determined by

solving

E[Ti,min(β)− Si(β)] ≤
1

fmax
≤ E[Ti,max(β)− Si(β)], (27)
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Fig. 4. Three cases of function f(t) = E [p(t+ Yi+1)].

and λ is given by5

λ =
E[Ti,max(β)− Si(β)]−

1
fmax

E[Ti,max(β)− Ti,min(β)]
. (28)

The proof of Theorem 2 will be provided in Section V. Ac-

cording to Theorem 2, the solution to (13) consists of two cases:

In Case 1, the deterministic threshold policy in Theorem 1 is an

optimal solution to (13), which needs to satisfy (23). In Case

2, the randomized threshold policy in (24)-(28) is an optimal

solution to (13), which needs to satisfy

E[Si+1(β)− Si(β)] =
1

fmax
. (29)

We note that the only difference between (25) and (26) is that

“≥” is used in (25) while “>” is employed in (26).6 If there

exists a time-interval [a, b] such that

E[p(t+ Yi+1)] = β for all t ∈ [a, b] (30)

As shown in Fig. 4(a), then Ti,min(β) < Ti,max(β). In this case,

the choices Si+1(β) = Ti,min(β) and Si+1(β) = Ti,max(β)
may not satisfy (29), but their randomized mixture in (24) can

satisfy (29). In particular, if β and λ are given by (27) and (28),

then (29) is satisfied.

We provide a low-complexity algorithm to compute the

randomized threshold policy in (24)-(28): As shown in Ap-

pendix C, there is a unique β satisfying (27). We use the bi-

section method in Algorithm 2 to solve (27) and obtain β. After

that, Si+1(β) and λ can be computed by substituting β into (24)-

(26) and (28). Because of the similarity between (25) and (26),

Si+1(β) and λ are quite sensitive to the numerical error in β.

This issue can be resolved by replacing Ti,min(β) in (24) and

(28) with T ′
i,min(β) and replacing Ti,max(β) in (24) and (28)

with T ′
i,max(β), where T ′

i,min(β) and T ′
i,max(β) are determined

by

T ′
i,min(β)=inf{t ≥ Di(β) : E[p(∆t+Yi+1

)]≥β − ε/2}, (31)

T ′
i,max(β)=inf{t ≥ Di(β) : E[p(∆t+Yi+1

)]>β + ε/2}, (32)

respectively, and ε > 0 is the tolerance in Algorithm 2. One

can improve the accuracy of this solution by (i) reducing the

tolerance ε and (ii) computing the expectations more accurately

by increasing the number of Monte Carlo realizations or using

5If Ti,min(β) = Ti,max(β) almost surely, then (24) becomes a deterministic
threshold policy and λ can be any number within [0, 1].

6Clearly, an important issue is the optimality of such a randomized threshold
policy, which is proven in Section V.

advanced techniques such as importance sampling.

As depicted in Figs. 4(b) and 4(c), if E[p(t+Yi+1)] is strictly

increasing on t ∈ [0,∞), then Ti,min(β) = Ti,max(β) almost

surely and (24) reduces to a deterministic threshold policy. In

this case, Theorem 2 can be greatly simplified, as stated in the

following corollary:

Corollary 3: In Theorem 2, if E[p(t + Yi+1)] is strictly in-

creasing in t, then (17) is an optimal solution to (13), where

Di(β) = Si(β) + Yi, ∆t = t − Si(β), and β is determined by

(18), if

E[Si+1(β)− Si(β)] >
1

fmax
. (33)

Otherwise, β is determined by solving

E[Si+1(β)− Si(β)] =
1

fmax
. (34)

The proof of Corollary 3 is omitted, because it follows im-

mediately from Theorem 2. If p(·) is strictly increasing or the

distribution of Yi is sufficiently smooth, E[p(t+Yi+1)] is strictly

increasing in t. Hence, the extra condition in Corollary 3 is sat-

isfied for a broad class of age penalty functions and service time

distributions.

A restrictive case of problem (13) was studied in [15], where

p(·) was assumed to be positive and non-decreasing. There is an

error in Theorem 3 of [15], because the condition “E[p(t+Yi+1)]
is strictly increasing in t" is missing. Further, the solution in

Theorem 3 of [15] is more complicated than that in Corollary 3.

A special case of Corollary 3 with p(t) = t was derived in The-

orem 4 of [15].

C. Discrete-time Sampling

We now move on to the discrete-time sampling problem (15).

When there is no sampling rate constraint (i.e., fmax = ∞), the

solution to (15) is provided in the following theorem:

Theorem 3 (Discrete-time sampling without rate constraint)

If fmax = ∞, p(·) is non-decreasing, and the service times Yi

are i.i.d. with 0 < E[Yi] < ∞, then (S1(β), S2(β), · · ·) is an

optimal solution to (15), where

Si+1(β)=min{t ∈ N : t ≥ Di(β),E
[

p(∆t+Yi+1
)
]

≥ β},
(35)

N = {0, 1, 2, · · ·} denotes the set of non-negative integers,

Di(β) = Si(β) + Yi, ∆t = t− Si(β), and β is the root of

β =
E
[

∑Di+1(β)−1
t=Di(β)

p(∆t)
]

E[Di+1(β)−Di(β)]
. (36)

Further, β is exactly the optimal value to (15), i.e., β = p̄opt,2.

The proofs of the discrete-time sampling results will be dis-

cussed in Subsection V.G. Theorem 3 is quite similar to The-

orem 1, with two minor differences: (i) The sampling time

Si+1(β) in (17) is a real number, which is restricted to an in-

teger in (35). (ii) The integral in (18) becomes a summation in

(36).

In the discrete-time case, the optimality of the zero-wait sam-

pling policy is characterized as follows.
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Corollary 4: If fmax = ∞, p(·) is non-decreasing, and the

service times Yi are i.i.d. with 0 < E[Yi] < ∞, then the zero-

wait sampling policy (21) is optimal for solving (15) if and only

if there exists e < 1 such that

E [p(ess inf Yi + Yi+1 + e)] ≥
E
[

∑Yi+Yi+1−1
t=Yi

p(t)
]

E[Yi+1]
, (37)

where ess inf Yi = min{y ∈ N : Pr[Yi ≤ y] > 0}.

When the sampling rate constraint (16) is imposed, the solu-

tion to (15) is provided in the following theorem.

Theorem 4 (Discrete-time sampling with rate constraint) If p(·)
is non-decreasing, E[p(t+ Yi)] < ∞ for all finite t, and the ser-

vice times Yi are i.i.d. with 0 < E[Yi] < ∞, then (35)-(36) is an

optimal solution to (15), if

E[Si+1(β)− Si(β)] >
1

fmax
. (38)

Otherwise, (S1(β), S2(β), . . .) is an optimal solution to (15),

where

Si+1(β)=

{

Ti,min(β) with probability λ,
Ti,max(β) with probability 1− λ.

(39)

Ti,min(β) and Ti,max(β) are given by

Ti,min(β)=min{t ∈ N : t ≥ Di(β),E
[

p(∆t+Yi+1
)
]

≥β}, (40)

Ti,max(β)=min{t ∈ N : t ≥ Di(β),E
[

p(∆t+Yi+1
)
]

>β}, (41)

Di(β) = Si(β) + Yi, ∆t = t − Si(β), β is determined by

solving

E[Ti,min(β)− Si(β)] ≤
1

fmax
≤ E[Ti,max(β)− Si(β)], (42)

and λ is given by

λ =
E[Ti,max(β)− Si(β)]−

1
fmax

E[Ti,max(β)− Ti,min(β)]
. (43)

Theorem 4 is similar to Theorem 2, but there are two differ-

ences: (i) Ti,min(β) and Ti,max(β) are real numbers in (25)-(26),

which are restricted to integers in (40)-(41). (ii) If E[p(t+Yi+1)]
is strictly increasing in t, then Ti,min(β) = Ti,max(β) holds al-

most surely in (25)-(26) and Theorem 2 can be greatly simpli-

fied. However, in the discrete-time case, even if E[p(t + Yi+1)]
is strictly increasing in t, Ti,min(β) < Ti,max(β) may still oc-

cur in (40)-(41). In fact, it is rather common that Ti,min(β) <
Ti,max(β) holds for the optimal β, because of the following rea-

son: If Ti,min(β) = Ti,max(β) almost surely, then (39) becomes

a deterministic threshold policy that needs to ensure (29). How-

ever, because Si+1(β) and Si(β) are integers, such a determin-

istic threshold policy is difficult to satisfy (29) for certain values

of fmax. On the other hand, if Ti,min(β) < Ti,max(β), the ran-

domized threshold policy in (39)-(43) can satisfy (29). Hence,

even though E[p(t+Yi+1)] is strictly increasing in t, Theorem 4

cannot be further simplified. This is a key difference between

continuous-time and discrete-time sampling.

The computation algorithms of the optimal discrete-time sam-

pling policies are similar to their counterparts in the continuous-

time case, and hence are omitted.

D. An Example: Mutual Information Maximization

Next, we provide an example to illustrate the above theoreti-

cal results. Suppose that Xt is a stationary, time-homogeneous

Markov chain and the sampling times Si are independent of

{Xt, t ≥ 0}. The optimal sampling problem that maximizes

the time-average expected mutual information between Xt and

Wt is formulated as

Īopt = sup
π∈Π

lim inf
n→∞

1

n
E

[

n
∑

t=1

I(Xt;Wt)

]

, (44)

where Īopt is the optimal value of (44). We assume that Īopt is

finite. Problem (44) is a special case of (15) satisfying p(∆t) =
−u(∆t) = −I(Xt;Wt) and fmax = ∞. The following result

follows immediately from Theorem 3.

Corollary 5: If the service times Yi are i.i.d. with 0 <
E[Yi] < ∞, then (S1(β), S2(β), · · ·) is an optimal solution to

(15), where

Si+1(β)=min{t∈N : t ≥ Di(β),

I(Xt+Yi+1
;XSi(β)|Yi+1)≤β}. (45)

Di(β) = Si(β) + Yi, and β ≥ 0 is the root of

β =

E

[

Di+1(β)−1
∑

t=Di(β)

I(Xt;XSi(β))

]

E[Di+1(β)−Di(β)]
. (46)

Further, β is exactly the optimal value of (44), i.e., β = Īopt.

In Corollary 5, the next sampling time Si+1(β) is deter-

mined based on the mutual information between the freshest

received sample XSi(β) and the source value XDi+1(β), where

Di+1(β) = Si+1(β) +Yi+1 is the delivery time of the (i+1)th
sample. Because Yi+1 will be known by both the transmit-

ter and receiver at time Di+1(β) = Si+1(β) + Yi+1, Yi+1

is the side information in the conditional mutual information

I[Xt+Yi+1
;XSi(β)|Yi+1]. The conditional mutual information

I[Xt+Yi+1
;XSi(β)|Yi+1] decreases as time t grows. According

to (45), the (i + 1)-th sample is generated at the smallest inte-

ger t satisfying two conditions: (i) the ith sample has already

been delivered by time t and (ii) the conditional mutual infor-

mation I[Xt+Yi+1
;XSi(β)|Yi+1] has reduced to be no greater

than Īopt, i.e., the optimum of the time-average expected mutual

information lim infn→∞(1/n) E [
∑n

t=1 I(Xt;Wt)] that we are

maximizing.

The optimal sampling policy is illustrated in Fig. 5, where

β = 0.1 and Yi is equal to either 1 or 5 with equal probability.

The sampling time Si(β), delivery time Di(β), and conditional

mutual information I[Xt+Yi+1
;XSi(β)|Yi+1] are depicted in the

figure. One can observe that if the service time of the previous

sample is Yi = 1, the sampler will wait until the conditional

mutual information drops below the threshold β and then take

the next sample; if the service time of the previous sample is
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Fig. 5. A sample-path illustration of the optimal sampling policy (45) and (46),

where β = 0.1, Yi is either 1 or 5 with equal probability, Si and Di are

sampling time and delivery time of the i-th sample. On this sample-path, the

service times are Y0 = 1, Y1 = 1, Y2 = 5, Y3 = 5, Y4 = 1, Y5 = 1, Y6 = 5.

Yi = 5, the next sample is taken once the previous sample is

delivered, because the conditional mutual information is already

below β then.

E. Alternative Expressions of the Threshold Sampling Policy

Finally, we present two alternative expressions of the sam-

pling policy (17). Define

w(β) =inf{∆ ≥ 0 : E[p(∆ + Yi+1)]≥ β}, (47)

then (17) can be rewritten as

Si+1(β)=inf{t ≥ Di(β) : ∆t ≥ w(β)}, (48)

which is a threshold policy on the age ∆t. Threshold policies

similar to (48) were discussed in age minimization for status

update systems with an energy harvesting constraint, e.g., [23],

[25], [27], [28], [30]. The technical tools therein are signifi-

cantly different from ours, because of the energy harvesting con-

straint. Further, from (3) and (48), we get

Si+1(β)=inf{t ≥ Di(β) : ∆t ≥ w(β)},

=inf{t ≥ Di(β) : t ≥ w(β) +Di(β)− Yi},

= Di(β) + max{w(β)− Yi, 0}. (49)

We use Zi(β) = Si+1(β) − Di(β) ≥ 0 to denote the waiting

time from the delivery time of the ith sample to the generation

time of the (i + 1)th sample. By (49), Zi(β) can be expressed

as a simple water-filling solution, i.e.,

Zi(β) = max{w(β)− Yi, 0}, (50)

where w(β) is the water level. Hence, the waiting time Zi(β)
decreases linearly with the service time Yi, until Zi(β) drops to

zero. The water-filling solution was shown to be age-optimal

for a special case that p(∆t) = ∆t [15], [24]. Recently, it was

observed via simulations that the water-filling solution comes

very close to the optimal age performance in symmetric multi-

source networks [77].

V. PROOFS OF THE MAIN RESULTS

In this section, we prove the main results in Section IV, by

using the technical tools recently developed in [47], [48], as

well as some additional proof ideas that are needed for show-

ing Lemma 5, Theorem 5, and Lemma 7 below.

We begin with the proof of Theorem 2, because its proof

procedure is helpful for presenting and understanding the other

proofs.

A. Suspend Sampling when the Server is Busy

In [15], it was shown that no new sample should be taken

when the server is busy. The reason is as follows: If a sample

is taken when the server is busy, it has to wait in the queue for

its transmission opportunity, during which time the sample is

becoming stale. A better strategy is to take a new sample just

when the server becomes idle, which yields a smaller age pro-

cess on sample path. This comparison leads to the following

lemma:

Lemma 2: In the optimal sampling problem (13), it is sub-

optimal to take a new sample before the previous sample is de-

livered.

By Lemma 2, the queue in Fig. 1 should be always kept

empty. In addition, we only need to consider a sub-class of sam-

pling policies Π1 ⊂ Π in which each sample is generated after

the previous sample is delivered, i.e.,

Π1 = {π ∈ Π : Si+1 ≥ Di = Si + Yi for all i}. (51)

Let Zi = Si+1 − Di ≥ 0 represent the waiting time be-

tween the delivery time Di of the ith sample and the gener-

ation time Si+1 of the (i + 1)th sample. Since S0 = 0, we

have Si = S0 +
∑i

j=0(Yj + Zj) =
∑i

j=0(Yj + Zj) and Di =
Si+Yi. Given (Y1, Y2, · · ·), (S1, S2, · · ·) is uniquely determined

by (Z1, Z2, · · ·). Hence, one can also use π = (Z1, Z2, · · ·) to

represent a sampling policy in Π1.

Because Ti is a regenerative process, by using the re-

newal theory in [78] and [75, Section 6.1], one can show that

(1/i)E[Si] and (1/i)E[Di] in (13) are convergent sequences and

lim sup
T→∞

1

T
E

[

∫ T

0

p(∆t)dt

]

= lim
i→∞

E
[

∫Di

0
p(∆t)dt

]

E[Di]

= lim
i→∞

∑i

j=1 E
[

∫Dj+1−1

Dj
p(∆t)dt

]

∑i

j=1 E [Yj + Zj ]
. (52)

On the other hand, it follows from (3) that

∫ Dj+1

Dj

p(∆t)dt =

∫ Dj+1

Dj

p(t− Si)dt

=

∫ Yi+Zi+Yi+1

Yi

p(t)dt, (53)
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which is a function of (Yi, Zi, Yi+1). Define

q(yi, z, y
′) =

∫ y+z+y′

y

p(t)dt, (54)

then (13) can be rewritten as

p̄opt1
= inf

π∈Π1

lim
i→∞

∑i

j=1 E [q(Yj , Zj , Yj+1)]
∑i

j=1 E [Yj + Zj ]
(55)

s.t. lim
i→∞

1

i

i
∑

j=1

E [Yj + Zj ] ≥
1

fmax
. (56)

B. Reformulation of Problem (55)

In order to solve (55), we consider the following MDP with a

parameter c ≥ 0:

h(c), inf
π∈Π1

lim
i→∞

1

i

i−1
∑

j=0

E [q(Yj , Zj , Yj+1)− c(Yj + Zj)] (57)

s.t. lim
i→∞

1

i

i
∑

j=1

E [Yj + Zj ] ≥
1

fmax
, (58)

where h(c) is the optimum value of (57). Similar with Dinkel-

bach’s method [79] for nonlinear fractional programming, the

following lemma holds for the MDP (55):

Lemma 3: [48, Lemma 2] The following assertions are true:

(a) p̄opt1
T c if and only if h(c) T 0.

(b) If h(c) = 0, the solutions to (55) and (57) are identical.

Hence, the solution to (55) can be obtained by solving (57)

and seeking p̄opt1
∈ R that satisfies

h(p̄opt1
) = 0. (59)

C. Lagrangian Dual Problem of (57) when c = p̄opt1

Although (57) is a continuous-time MDP with a continuous

state space, rather than a convex optimization problem, it is pos-

sible to use the Lagrangian dual approach to solve (57) and show

that it admits no duality gap.

When c = p̄opt1
, define the following Lagrangian

L(π;α)= lim
n→∞

1

n

n−1
∑

i=0

E
[

q(Yj , Zj , Yj+1)−(p̄opt1
+α)(Yi+Zi)

]

+
α

fmax
, (60)

where α ≥ 0 is the dual variable. Let

g(α) , inf
π∈Π1

L(π;α). (61)

Then, the Lagrangian dual problem of (57) is defined by

d , max
α≥0

g(α), (62)

where d is the optimum value of (62). Weak duality [80], [81]

implies that d ≤ h(p̄opt1
). Next, we will solve (61) and establish

strong duality, i.e., d = h(p̄opt1
).

D. Optimal Solutions to (61)

We solve (61) in two steps: First, we use a sufficient statis-

tic argument to show that (61) can be decomposed into a series

of per-sample optimization problems. Second, each per-sample

optimization problem is reformulated as a convex optimization

problem, which is solved in closed-form. The details are pro-

vided as follows.

Lemma 4: If the service times Yi are i.i.d., then Yi is a suffi-

cient statistic for determining the optimal Zi in (61).

Proof: In (61), the minimization of the term

E
[

q(Yi, Zi, Yi+1)− (p̄opt1
+ α)(Yi + Zi)

]

(a)
=E

[

q(Yi, Zi, Yi+1)− (p̄opt1
+ α)(Zi + Yi+1)

]

(63)

over Zi depends on (Y1, · · ·, Yi, Z1, · · ·, Zi−1) via Yi, where

Step (a) is due to E[Yi] = E[Yi+1]. Hence, Yi is a sufficient

statistic for determining Zi in (61). 2

By Lemma 4, (61) can be decomposed into a series of per-

sample optimization problems. In particular, after observing the

realization Yi = yi, Zi is determined by solving

min
Pr[Zi∈A|Yi=yi]

Zi≥0

E
[

q(yi, Zi, Yi+1)−(p̄opt1
+α)(Zi+Yi+1)

]

, (64)

where the rule for determining Zi is represented by Pr[Zi ∈
A|Yi = yi], i.e., the conditional distribution of Zi given the

occurrence of Yi = yi. To find all possible solutions to (64), let

us consider the following problem

min
z≥0

E
[

q(yi, z, Yi+1)−(p̄opt1
+α)(z+Yi+1)

]

. (65)

Because p(·) is non-decreasing, the functions z → q(yi, z, y
′)

and z → E [q(yi, z, Yi+1)] are both convex. Hence, (65) is a

convex optimization problem.

Lemma 5: If p(·) is non-decreasing, then the set of optimal

solution to (65) is [zmin(yi, α), zmax(yi, α)] where

zmin(y, α) =inf{t ≥ 0 : E[p(y + t+ Yi+1]≥ p̄opt1
+α}, (66)

zmax(y, α) =inf{t ≥ 0 : E[p(y + t+ Yi+1]>p̄opt1
+α}. (67)

Proof: See Appendix B. 2

By Lemma 5, z is an optimal solution to (65) if and only if z ∈
[zmin(yi, α), zmax(yi, α)]. Hence, the set of optimal solutions to

(64) is

{Pr[Zi∈A|Yi=yi] :Zi ∈ [zmin(yi, α), zmax(yi, α)]

almost surely}.

Combining this with Lemma 4, yields

Lemma 6: If p(·) is non-decreasing and the service times Yi

are i.i.d. with 0 < E[Yi] < ∞, then the set of optimal solutions

to (61) is

Γ(α) = {π : Zi ∈ [zmin(Yi, α), zmax(Yi, α)] for almost all i},
(68)

where zmin(y, α) and zmax(y, α) are given in (66)-(67).
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E. Zero Duality Gap and Optimal Solution to (57)

Strong duality and an optimal solution to (57) are obtained in

the following theorem:

Theorem 5: If c = p̄opt1
, p(·) is non-decreasing, E[p(t +

Yi)] < ∞ for all finite t, and the service times Yi are i.i.d. with

0 < E[Yi] < ∞, then the duality gap between (57) and (62) is

zero. Further, Zi = zmin(Yi, 0) is an optimal solution to (57)

and (62), if

E[Yi + zmin(Yi, 0)] >
1

fmax
. (69)

Otherwise, (Z1, Z2, . . .) is an optimal solution to (57) and (62),

where

Zi =

{

zmin(Yi, α) with probability λ,
zmax(Yi, α) with probability 1− λ.

(70)

α ≥ 0 is determined by solving

E [Yi + zmin(Yi, α)] ≤
1

fmax
≤ E [Yi + zmax(Yi, α)] ,

and λ is given by

λ =
E[Yi + zmax(Yi, α)]−

1
fmax

E[zmax(Yi, α)− zmin(Yi, α)]
. (71)

Proof: We use [80, Prop. 6.2.5] to find a geometric mul-

tiplier for (57). This suggests that the duality gap between (57)

and (62) must be zero, because otherwise there exists no geo-

metric multiplier [80, Prop. 6.2.3(b)]. The details are provided

in Appendix C. 2

By choosing

β = p̄opt1
+ α. (72)

Theorem 2 follows from Theorem 5.

We note that the extension of Dinkelbach’s method in Lemma

3 and the geometric multiplier technique used in Theorem 5 are

the key technical tools that make it possible to simplify (13) as

the convex optimization problem in (65). These technical tools

were also used in a recent study [48], where a quite different

sampling problem is solved. Further, (72) implies that the opti-

mal threshold β is equal to the optimum objective value of the

MDP p̄opt1
plus the optimal Lagrangian dual variable α. By us-

ing these results, bisection search algorithms are developed in

Section IV to compute β, and the curse of dimensionality is cir-

cumvented.

F. Proofs of Other Continuous-time Sampling Results

Theorem 1 follows immediately from Theorem 2, because it

is a special case of Theorem 2. In particular, because the Yi’s

are i.i.d., the optimal objective value to (13) is

p̄opt1
= lim

n→∞

∑n

i=1 E [q(Yi, zmin(Yi, 0), Yi+1)]
∑n

i=1 E [Yi + zmin(Yi, 0)]

=
E [q(Yi, zmin(Yi, 0), Yi+1)]

E [Yi + zmin(Yi, 0)]

=
E
[

∫ Yi+zmin(Yi,0)+Yi+1

Yi
p(t)dt

]

E [Yi + zmin(Yi, 0)]
, (73)

from which (18) follows. We note that the root of (18) must be

unique; otherwise, one can follow the arguments in Appendix C

to show that the optimal objective value to (13) is non-unique,

which cannot be true. Further, as shown in Appendix C, the

condition “E[p(t+Yi)] < ∞ for all finite t” is not needed in the

case of Theorem 1.

G. Proofs of Discrete-time Sampling Results

The proofs of the discrete-time sampling results are quite sim-

ilar to their continuous-time counterparts. One difference is that

(65) of the continuous-time case becomes the following integer

optimization problem in the discrete-time case:

min
z∈N

E
[

q(yi, z, Yi+1)−(p̄opt1
+α)(z+Yi+1)

]

, (74)

where

q(yi, z, y
′) =

y+z+y′−1
∑

t=y

p(t). (75)

By adopting an idea in [82, Problem 5.5.3], we obtain

Lemma 7: If p(·) is non-decreasing, then the set of optimal

solution to (74) is {zmin(yi, α), zmin(yi, α) + 1, zmin(yi, α) +
2, · · ·, zmax(yi, α)}, where

zmin(y, α) =inf{t ∈ N : E[p(y + t+ Yi+1]≥ p̄opt1
+α}, (76)

zmax(y, α) =inf{t ∈ N : E[p(y + t+ Yi+1]>p̄opt1
+α}. (77)

Proof: See Appendix F. 2

By replacing Lemma 5 with Lemma 7 and following the proof

arguments in Subsections V.A–V.F, the discrete-time optimal

sampling results can be proven readily.

VI. NUMERICAL RESULTS

In this section, we compare the age performance of the fol-

lowing three sampling policies:
• Uniform sampling: Periodic sampling with a period given by

Si+1−Si = 1/fmax for continuous-time sampling, or Si+1−
Si = d1/fmaxe for discrete-time sampling where dxe is the

smallest integer larger than or equal to x.

• Zero-wait: The sampling policy in (21), which is infeasible

when fmax < 1/E[Yi].
• Optimal policy: The sampling policy given by Theorem 2

for continuous-time sampling, or Theorem 4 for discrete-time

sampling.
As the numerical results for continuous-time sampling have

been reported in our earlier work [15], we will focus on the case

of discrete-time sampling.
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Fig. 6. Average mutual information of the Gauss-Markov source versus the

coefficient a in (9), where the service times Yi are equal to either 1 or 21 with

probability 0.5.
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Fig. 7. Average mutual information of the Gauss-Markov source versus fmax,

where the service times Yi are equal to either 1 or 21 with probability 0.5.

In Fig. 6, we plot the time-average expected mutual infor-

mation of the Gauss-Markov source versus the coefficient a in

(9), where fmax = 0.095 and Yi is equal to either 1 or 21 with

probability 0.5. Hence, E[Yi] = 11 and the zero-wait sampling

policy is infeasible when fmax < 1/11. Fig. 7 depicts the trade-

off between the time-average expected mutual information of

the Gauss-Markov source Xt in (9) and fmax, where the mutual

information is given by (10) with a = 0.9. As the coefficient a
grows from 0 to 1, the source Xt becomes more correlated over

time. Therefore, the amount of mutual information grows with

respect to a. In addition, the mutual information of the optimal

sampling policy is higher than that of zero-waiting sampling and

uniform sampling. When fmax is large, the queue length is high

and the samples become stale during the long waiting time in

the queue. As a result, uniform sampling is far from optimal for

large fmax.

Fig. 8 illustrates the time-average expectation of an exponen-

tial penalty function pexp(∆t) = eα∆t − 1 versus the coeffi-

cient α, where Yi follows a discretized log-normal distribution.

In particular, Yi can be expressed as Yi = deσXi/E[eσXi ]e,

where the Xi’s are i.i.d. Gaussian random variables with zero
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Fig. 8. Average age penalty of an exponential penalty function

pexp(∆t) = eα∆t − 1 versus the coefficient α, where the service times Yi

follow a discretized log-normal distribution.
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Fig. 9. Average age penalty of an exponential penalty function

pexp(∆t) = eα∆t − 1 versus the coefficient σ of discretized log-normal

service time distribution.

mean and unit variance, and σ = 1.5. Fig. 9 shows the time-

average expectation of pexp(∆t) versus the coefficient σ of the

discretized log-normal service time distribution. If α = 0,

pexp(∆t) is a constant function. If σ = 0, the service time

Yi is constant. Corollary 4 tells us that zero-waiting sampling is

optimal in these two cases, which is in consistent with Figs. 8

and 9. On the other hand, if α and σ are large, one can observe

from Figs. 8 and 9 that zero-waiting sampling is far from opti-

mal. Hence, zero-wait sampling is far from optimal if the age

penalty function grows quickly with the age (i.e., α relatively is

large) or the service times Yi are highly random.

VII. CONCLUSION

In this paper, we have studied a sampling problem, where

samples are taken from a data source and sent to a remote re-

ceiver that is in need of fresh data. We have developed the opti-

mal sampling policies that maximize various data freshness met-

rics subject to a sampling rate constraint. These sampling poli-

cies have nice structures and are easy to compute. Their optimal-

ity is established under quite general conditions. Our numerical
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results show that the optimal sampling policies can be much bet-

ter than zero-wait sampling and the classic uniform sampling.

APPENDIX A

PROOF OF LEMMA 1

If the Si’s are independent of {Xt, t ≥ 0}, the sampling

times {Si : Di ≤ t} of delivered packet contain no infor-

mation about Xt. In addition, because Xt is a Markov chain,

Xmax{Si:Di≤t} = Xt−∆t
contains all the information in Wt =

{(XSi
, Si) : Di ≤ t} about Xt. In other words, Xt−∆t

is a suf-

ficient statistic of Wt for inferring Xt. Then, (8) follows from

[ [73], (2.124)].

Next, because Xt is stationary, I(Xt;Xt−∆) = I(X∆;X0)
for all t, which is a function of ∆. Further, because Xt is a

Markov chain, owing to the data processing inequality [73, The-

orem 2.8.1], I(X∆;X0) is non-increasing in ∆. Finally, mutual

information is non-negative. This completes the proof.

APPENDIX B

PROOF OF LEMMA 5

The one-sided derivative of a function h in the direction of w
at z is denoted as

δh(z;w) , lim
ε→0+

h(z + εw)− h(z)

ε
. (78)

Because the function h(z) = E [q(yi, z, Yi+1)] is convex, the

one-sided derivative δh(z;w) of h(z) exist [82, p. 709]. Be-

cause z → q(yi, z, y
′) is convex, the function ε → [q(yi, z +

εw, y′) − q(yi, z, y
′)]/ε is non-decreasing and bounded from

above on (0, a] for some a > 0 [83, Proposition 1.1.2(i)]. By

monotone convergence theorem [84, Theorem 1.5.6], we can in-

terchange the limit and integral operators in δh(z;w) such that

δh(z;w) = lim
ε→0+

1

ε
E [q(yi, z + εw, Yi+1)− q(yi, z, Yi+1)]

=E

[

lim
ε→0+

1

ε

{

q(yi, z + εw, Yi+1)− q(yi, z, Yi+1)
}

]

=E

[

lim
t→z+

p(yi + t+ Yi+1)w1{w>0}

+ lim
t→z−

p(yi + t+ Yi+1)w1{w<0}

]

= lim
t→z+

E
[

p(yi + t+ Yi+1)w1{w>0}

]

+ lim
t→z−

E
[

p(yi + t+ Yi+1)w1{w<0}

]

, (79)

where 1A is the indicator function of event A. According to [82,

p. 710] and the convexity of h(z), z is an optimal solution to

(65) if and only if the following assertion is true: If z > 0, then

δh(z;w)− (p̄opt1
+α)w ≥ 0, ∀ w ∈ R, (80)

otherwise, z = 0. Because w in (80) is an arbitrary real number,

if we choose w = 1, then (80) becomes

lim
t→z+

E [p(yi + t+ Yi+1)]−(p̄opt1
+α) ≥ 0. (81)

Similarly, if we choose w = −1, then (80) implies

lim
t→z−

E [p(yi + t+ Yi+1)]−(p̄opt1
+α) ≤ 0. (82)

Because p(·) is non-decreasing, we can obtain from (80)-(82)

that if z > 0, then z satisfies (83)-(84):

E [p(yi + t+ Yi+1)]−(p̄opt1
+α) ≥ 0, if t > z, (83)

E [p(yi + t+ Yi+1)]−(p̄opt1
+α) ≤ 0, if t < z, (84)

otherwise, z = 0. The smallest z satisfying (83)-(84) is

zmin(yi, α) = inf{t ≥ 0 : E [p(yi + t+ Yi+1)] ≥ p̄opt1
+α},

and the largest z satisfying (83)-(84) is

zmax(y, α) = sup{t ≥ 0 : E [p(yi + t+ Yi+1)] ≤ p̄opt1
+α}

= inf{t ≥ 0 : E [p(yi + t+ Yi+1)] > p̄opt1
+α}.

Hence, the set of optimal solutions to (65) is given by Lemma 5.

This completes the proof.

APPENDIX C

PROOF OF THEOREM 5

According to [80, Prop. 6.2.5], if we can find π? =
(Z?

1 , Z
?
2 , · · ·) and α? that satisfy the following conditions:

π? ∈ Π1, lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Z?
i ]−

1

fmax
≥ 0, (85)

α? ≥ 0, (86)

L(π?;α?) = inf
π∈Π1

L(π;α?), (87)

α?

{

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Z?
i ]−

1

fmax

}

= 0, (88)

then π? is an optimal solution to (57) and α? is a geometric

multiplier [80] for (57). Further, if we can find such π? and α?,

then the duality gap between (57) and (62) must be zero, because

otherwise there is no geometric multiplier [80, Prop. 6.2.3(b)].

The remaining task is to find π? and α? that satisfy (85)-(88).

According to Lemma 6, the set of optimal solutions to (87) is

given by Γ(α?). Hence, we only need to find α? and π? ∈ Γ(α?)
that satisfy (85), (86), and (88). The search for such α? and π?

falls into the following two cases:

Case 1: If (69) is satisfied, then α?
1 = 0 and π?

1 =
(zmin(Y1, 0), zmin(Y2, 0), · · ·) satisfy the conditions (85)-(88).

Case 2: If (69) is not satisfied, we seek α?
2 ≥ 0 and π?

2 =
(Z?

1 , Z
?
2 , · · ·) ∈ Γ(α?

2) that satisfy

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Z?
i ] =

1

fmax
. (89)
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By Lemma 6, we can get from (89) that

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + zmin(Yi, α
?
2)] ≤

1

fmax

≤ lim
n→∞

1

n

n−1
∑

i=0

E [Yi + zmax(Yi, α
?
2)] . (90)

Because the Yi’s are i.i.d., (90) is equivalent to

E [Yi + zmin(Yi, α
?
2)] ≤

1

fmax
≤ E [Yi + zmax(Yi, α

?
2)] . (91)

Next, we will find α?
2 ≥ 0 that satisfies (91). Accord-

ing to (66)-(67), zmin(y, α) and zmax(y, α) are non-decreasing

in α. Hence, E[zmin(Yi, α)] and E[zmax(Yi, α)] are also non-

decreasing in α. In addition, it holds that for all α0 > 0

lim
α→α

−

0

zmax(y, α) = zmin(y, α0)

≤ zmax(y, α0) = lim
α→α

+

0

zmin(y, α). (92)

By invoking the monotone convergence theorem [84, Theorem

1.5.6], we obtain that for all α0 > 0

lim
α→α

−

0

E[zmax(Yi, α)] = E[zmin(Yi, α0)]

≤ E[zmax(Yi, α0)] = lim
α→α

+

0

E[zmin(Yi, α)]. (93)

Because E[p(t+ Yi)] < ∞ for all finite t, it holds for all y ≥ 0
that zmax(y, α) will increase to ∞ as α grows from 0 to ∞. By

invoking the monotone convergence theorem again, we obtain

that E[zmax(Yi, α)] will increase to ∞ as α grows from 0 to ∞.

Hence,

[E[zmin(Yi, 0)],∞) =
⋃

α≥0

[

E[zmin(Yi, α)],E[zmax(Yi, α)]
]

.

(94)

In Case 2, (69) is not satisfied, which implies

1

fmax
∈ [E[zmin(Yi, 0)],∞). (95)

Hence, (93)-(95) tell us that there exists a unique α?
2 ≥ 0 satis-

fying (91). Further, policy π? ∈ Γ(α?
2) is chosen as

Z?
i =

{

zmin(Yi, α
?
2) with probability λ,

zmax(Yi, α
?
2) with probability 1− λ,

(96)

where λ is given by

λ =
E[Yi + zmax(Yi, α

?
2)]−

1
fmax

E[zmax(Yi, α?
2)− zmin(Yi, α?

2)]
. (97)

By combining (91), (95), and (96), (89) follows. Hence, the α?
2

and π?
2 selected above satisfy the conditions (85)-(88).

In both cases, (85)-(88) are satisfied. By [80, Prop. 6.2.3(b)],

the duality gap between (57) and (62) is zero. A solution to (57)

and (62) is provided in the arguments above. This completes the

proof.

APPENDIX D

PROOF OF COROLLARY 1

We note that the zero-wait sampling policy can be expressed

as (17) with E [p(ess inf Yi + Yi+1)] ≥ β.

In the one direction, if the zero-wait sampling policy is opti-

mal, then the root of (18) must satisfy E [p(ess inf Yi + Yi+1)] ≥
β. Substituting this into (17), yields Di+1(β) = Di(β) +
Yi+1 = Si(β) + Yi + Yi+1. Combining this with (18), we get

E [p(ess inf Yi + Yi+1)] ≥ β =
E
[

∫ Yi+Yi+1

Yi
p(t)dt

]

E[Yi+1]
, (98)

which implies (22).

In the other direction, if (22) holds, then by choosing

β =
E
[

∫ Yi+Yi+1

Yi
p(t)dt

]

E[Yi+1]
, (99)

we get E [p(ess inf Yi + Yi+1)] ≥ β. According to (99), such a

β is a root of (18). Therefore, the zero-wait sampling policy is

optimal. This completes the proof.

APPENDIX E

PROOF OF COROLLARY 2

We first prove Part (a). If Yi = y almost surely, then

E [p(ess inf Yi + Yi+1)] = p(2y) ≥

∫ 2y

y
p(t)dt

y
(100)

holds for all non-decreasing p(·). Hence, (22) is satisfied and

the zero-wait sampling policy is optimal.

Next, we consider Part (b). If ess inf Yi = 0, then

E [p(ess inf Yi + Yi+1)] = E [p(Yi+1)] = E [p(Yi)] . (101)

Because E[Yi+1] = E[Yi] > 0, then the event Yi+1 > 0 has a

non-zero probability. Further, because p(·) is strictly increasing,

the event p(t) > p(Yi) for t ∈ (Yi, Yi + Yi+1) has a non-zero

probability. Hence,

E

[

∫ Yi+Yi+1

Yi

p(t)dt

]

>E

[

∫ Yi+Yi+1

Yi

p(Yi)dt

]

=E[Yi+1]E [p(Yi)] . (102)

By combining (101) and (102), (22) is not true and the zero-wait

sampling policy is not optimal. This completes the proof.

APPENDIX F

PROOF OF LEMMA 7

Using (75), (74) can be expressed as

min
z∈N

E





z+Yi+1−1
∑

t=0

[p(t+ yi)− (p̄opt1
+α)]



 . (103)
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It holds that for m = 1, 2, 3, · · ·.

E





m+Yi+1
∑

t=0

[p(t+ yi)− (p̄opt1
+α)]

−

m+Yi+1−1
∑

t=0

[p(t+ yi)− (p̄opt1
+α)]





=E
[

p(yi +m+ Yi+1)− (p̄opt1
+α)

]

. (104)

Because p(·) is non-decreasing, if z is chosen according to

Lemma 7, we can obtain

E
[

p(yi + t+ Yi+1)− (p̄opt1
+α)

]

≤ 0, t = 0, · · ·, z − 1,
(105)

E
[

p(yi + t+ Yi+1)− (p̄opt1
+α)

]

≥ 0, t = z, z + 1, · · ·.
(106)

Using (104)-(106), one can see that {zmin(yi, α), zmin(yi, α) +
1, zmin(yi, α) + 2, · · ·, zmax(yi, α)} is the set of optimal solu-

tions to (74). This completes the proof.

REFERENCES

[1] Y. Sun and B. Cyr, “Information aging through queues: A mutual infor-
mation perspective,” in Proc. IEEE SPAWC Workshop, June 2018.

[2] C. Shapiro and H. Varian, Information Rules: A Strategic Guide to the
Network Economy. Harvard Business Press, 1999.

[3] X. Song and J. W. S. Liu, “Performance of multiversion concurrency con-
trol algorithms in maintaining temporal consistency,” in Proc. COMSAC,
Oct. 1990.

[4] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE INFOCOM, Mar. 2012.

[5] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web
crawlers,” ACM Trans. Database Syst., vol. 28, no. 4, pp. 390–426, Dec.
2003.

[6] A. Even and G. Shankaranarayanan, “Utility-driven assessment of data
quality,” SIGMIS Database, vol. 38, no. 2, pp. 75–93, May 2007.

[7] B. Heinrich, M. Klier, and M. Kaiser, “A procedure to develop metrics for
currency and its application in CRM,” J. Data and Information Quality,
vol. 1, no. 1, pp. 5:1–5:28, June 2009.

[8] S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and scalable dis-
tribution of content updates over a mobile social network,” in Proc. IEEE
INFOCOM, Apr. 2009.

[9] E. Altman, R. El-Azouzi, D. S. Menasche, and Y. Xu, “Forever young:
Aging control for smartphones in hybrid networks,” 2011, Available:
https://arxiv.org/abs/1009.4733.

[10] S. Razniewski, “Optimizing update frequencies for decaying information,”
in Proc. ACM CIKM, Oct. 2016.

[11] T. Soleymani, S. Hirche, and J. S. Baras, “Optimal self-driven sampling for
estimation based on value of information,” in Proc. WODES, May 2016.

[12] T. Soleymani, S. Hirche, and J. S. Baras, “Maximization of information in
energy-limited directed communication,” in Proc. ECC, June 2016.

[13] T. Soleymani, S. Hirche, and J. S. Baras, “Optimal stationary self-triggered
sampling for estimation,” in Proc. IEEE CDC, Dec. 2016.

[14] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in Proc. IEEE INFOCOM,
Apr. 2016.

[15] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[16] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age and value of
information: Non-linear age case,” in Proc. IEEE ISIT, June 2017.

[17] T. Z. Ornee and Y. Sun, “Sampling for remote estimation through queues:
Age of information and beyond,” in Proc. IEEE WiOpt, June 2019.

[18] J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross, “Per-
formance characterization using AoI in a single-loop networked control
system,” in Proc. IEEE INFOCOM AoI Workshop, Apr. 2019.

[19] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty
minimization for networked control systems with packet loss,” in Proc.
IEEE INFOCOM, Apr. 2019.

[20] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of mes-
sage transmission path diversity on status age,” IEEE Trans. Inf. Theory,
vol. 62, no. 3, pp. 1360–1374, Mar. 2016.

[21] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides,
“On the age of information with packet deadlines,” IEEE Trans. Inf. The-
ory, vol. 64, no. 9, pp. 6419–6428, Sept. 2018.

[22] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, in press, 2018.

[23] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information
under energy replenishment constraints,” in Proc. IEEE ITA, Feb. 2015.

[24] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE ISIT, June 2015.

[25] B. T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to
minimize age of information with an energy harvesting sensor,” in Proc.
IEEE ISIT, June 2017.

[26] A. Arafa and S. Ulukus, “Age-minimal transmission in energy harvesting
two-hop networks,” in Proc. IEEE GLOBECOM, Dec. 2017.

[27] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of informa-
tion minimization with an energy harvesting source,” IEEE Trans. Green
Commun. Netw., vol. 2, no. 1, pp. 193–204, Mar. 2018.

[28] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies,” 2018,
Available: https://arxiv.org/abs/1806.07271.

[29] S. Feng and J. Yang, “Age of information minimization for an energy har-
vesting source with updating erasures: With and without feedback,” 2018,
Available: https://arxiv.org/abs/1808.05141.

[30] B. T. Bacinoglu, Y. Sun, E. Uysal-Bivikoglu, and V. Mutlu, “Achieving
the age-energy tradeoff with a finite-battery energy harvesting source,” in
Proc. IEEE ISIT, June 2018.

[31] J. Zhong and R. D. Yates, “Timeliness in lossless block coding,” in Proc.
IEEE DCC, Mar. 2016.

[32] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong, “Timely updates over an
erasure channel,” in Proc. IEEE ISIT, June 2017.

[33] E. T. Ceran, D. Gunduz, and A. Gyorgy, “Average age of information
with hybrid ARQ under a resource constraint,” in Proc. IEEE WCNC, Apr.
2018.

[34] P. Mayekar, P. Parag, and H. Tyagi, “Optimal lossless source codes for
timely updates,” in Proc. IEEE ISIT, June 2018.

[35] Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age
minimization in wireless systems,” IEEE Trans. Inf. Theory, vol. 64, no. 7,
pp. 5381–5394, July 2018.

[36] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing the
age of information in broadcast wireless networks,” in Proc. IEEE Aller-
ton, Sept. 2016.

[37] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness
and synchrony: Drift-based design and heavy-traffic analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2556–2568, Dec. 2018.

[38] Y. Hsu, E. Modiano, and L. Duan, “Age of information: Design and anal-
ysis of optimal scheduling algorithms,” in Proc. IEEE ISIT, June 2017.

[39] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information in
wireless networks with throughput constraints,” in Proc. IEEE INFOCOM,
Apr. 2018.

[40] N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data freshness
for wireless real-time traffic,” in Proc. ACM MobiHoc, June 2018.

[41] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Decentral-
ized status update for age-of-information optimization in wireless multi-
access channels,” in Proc. IEEE ISIT, June 2018.

[42] B. Zhou and W. Saad, “Joint status sampling and updating for mini-
mizing age of information in the Internet of Things,” 2018, Available:
https://arxiv.org/abs/1807.04356.

[43] Y. Xiao and Y. Sun, “A dynamic jamming game for real-time status up-
dates,” in Proc. IEEE INFOCOM, Apr. 2018.

[44] S. Gopal and S. K. Kaul, “A game theoretic approach to DSRC and WiFi
coexistence,” in Proc. IEEE INFOCOM, Apr. 2018.

[45] T. Soleymani, J. S. Baras, and K. H. Johansson, “Stochastic control with
stale information–part i: Fully observable systems,” 2018, Available:
https://arxiv.org/abs/1810.10983.

[46] C. Sonmez, S. Baghaee, A. Ergisi, and E. Uysal-Biyikoglu, “Age-of-
information in practice: Status age measured over TCP/IP connections
through WiFi, Ethernet and LTE,” in Proc. IEEE BlackSeaCom, June 2018.

[47] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Remote estimation of the
Wiener process over a channel with random delay,” in Proc. IEEE ISIT,
June 2017.

[48] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Sampling of the Wiener
process for remote estimation over a channel with random delay,” 2017,
Available: https://arxiv.org/abs/1707.02531.

[49] A. Segev and W. Fang, “Optimal update policies for distributed material-
ized views,” Manage. Sci., vol. 37, no. 7, pp. 851–870, July 1991.



SUN et al.: SAMPLING FOR DATA FRESHNESS OPTIMIZATION: NON-LINEAR ... 219

[50] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams in
a soft real-time database system,” in Proc. ACM SIGMOD, May 1995.

[51] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve fresh-
ness,” in Proc. ACM SIGMOD, 2000, pp. 117–128.

[52] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information in
status update systems with packet management,” IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1897–1910, Apr. 2016.

[53] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE ISIT, June 2015.

[54] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “The stationary distri-
bution of the age of information in FCFS single-server queues,” in Proc.
IEEE ISIT, June 2017.

[55] R. D. Yates, “The age of information in networks: Moments, distributions,
and sampling,” 2018, Available: https://arxiv.org/abs/1806.03487.

[56] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. IEEE ISIT, June 2016.

[57] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information up-
dates in multihop networks,” in Proc. IEEE ISIT, June 2017.

[58] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of informa-
tion through queues,” accepted by IEEE Trans. Inf. Theory, 2019.

[59] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in mul-
tihop networks,” ACM/IEEE Trans. Netw., vol. 27, no. 3, pp. 1248–1257,
June 2019.

[60] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” in Proc. IEEE INFOCOM, Apr. 2018.

[61] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in Proc. IEEE Allerton, Oct. 2017.

[62] R. Talak, S. Karaman, and E. Modiano, “Optimizing information freshness
in wireless networks under general interference constraints,” in Proc. ACM
MobiHoc, June 2018.

[63] G. D. Nguyen, S. Kompella, C. Kam, J. E. Wieselthier, and A. Ephremides,
“Impact of hostile interference on information freshness: A game ap-
proach,” in Proc. IEEE WiOpt, May 2017.

[64] G. D. Nguyen, S. Kompella, C. Kam, J. E. Wieselthier, and A. Ephremide,
“Information freshness over an interference channel: A game theoretic
view,” in Proc. IEEE INFOCOM, Apr. 2018.

[65] K. T. Truong and R. W. Heath, “Effects of channel aging in massive MIMO
systems,” J. Commun. Netw., vol. 15, no. 4, pp. 338–351, Aug. 2013.

[66] M. Costa, S. Valentin, and A. Ephremides, “On the age of channel state
information for non-reciprocal wireless links,” in Proc. IEEE ISIT, June
2015.

[67] S. Farazi, A. G. Klein, and D. R. Brown, “On the average staleness of
global channel state information in wireless networks with random trans-
mit node selection,” in Proc. IEEE ICASSP, Mar. 2016.

[68] J. Zhang and C. Wang, “On the rate-cost of Gaussian linear control systems
with random communication delays,” in Proc. IEEE ISIT, June 2018.

[69] C. Kam, S. Kompella, and A. Ephremides, “Experimental evaluation of the
age of information via emulation,” in Proc. IEEE MILCOM, Oct. 2015.

[70] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides,
“Modeling the age of information in emulated ad hoc networks,” in Proc.
IEEE MILCOM, Oct. 2017.

[71] T. Shreedhar, S. K. Kaul, and R. D. Yates, “ACP: Age control protocol for
minimizing age of information over the Internet,” in Proc. ACM MobiCom,
Oct. 2018.

[72] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Belmont, MA: Athena Scientific, 2005, vol. 1.

[73] T. Cover and J. Thomas, Elements of Information Theory. John Wiley and
Sons, 1991.

[74] I. M. Gel’fand and A. M. Yaglom, “Calculation of the amount of informa-
tion about a random function contained in another such function,” Ameri-
can Mathematical Society Translations, vol. 12, pp. 199–246, 1959.

[75] P. J. Haas, Stochastic Petri Nets: Modelling, Stability, Simulation. New
York, NY: Springer New York, 2002.

[76] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[77] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal sam-

pling and transmission scheduling in multi-source systems,” in Proc. ACM
MobiHoc, July 2019.

[78] S. M. Ross, Stochastic Processes, 2nd ed. John Wiley & Sons, 1996.
[79] W. Dinkelbach, “On nonlinear fractional programming,” Management Sci-

ence, vol. 13, no. 7, pp. 492–498, 1967.
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