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The right adjoint to the equivariant operadic forgetful

functor on incomplete Tambara functors

Andrew J. Blumberg and Michael A. Hill

Abstract. For N∞ operads O and O′ such that there is an inclusion of
the associated indexing systems, there is a forgetful functor from incomplete
Tambara functors over O′ to incomplete Tambara functors over O. Roughly
speaking, this functor forgets the norms in O′ that are not present in O.
The forgetful functor has both a left and a right adjoint; the left adjoint is
an operadic tensor product, but the right adjoint is more mysterious. We
explicitly compute the right adjoint for finite cyclic groups of prime order.

The complexity of G-equivariant stable homotopy theory is encoded in the
structure of the additive and multiplicative transfers that connect the stable homo-
topy groups π∗

(

(−)H
)

as the subgroupH ⊂ G varies. These are best understood for
when G is a finite group, so we restrict attention to this case. The compatibilities
between transfers can be encoded operadically, using equivariant generalizations
of the classical E∞ operad, referred to as N∞ operads [BH15]. At one extreme
is the non-equivariant E∞ operad regarded as a trivial G-operad; algebras have
a coherently commutative multiplication. At the other is a “genuine” G-E∞ op-
erad; algebras have transfers for all pairs of subgroups. In the category of based
G-spaces, N∞ operads structure different kinds of infinite loop spaces (or equiva-
lently connective G-spectra); the operadic transfers are the usual stable transfers.
In the category of G-spectra, N∞ operads structure variants of E∞ ring spectra;
the operadic transfers are the Hill-Hopkins-Ravenel multiplicative norms.

The operadic transfers of an N∞ algebra give rise to interesting algebraic struc-
tures; we focus on the case of N∞ algebras in spectra. Homotopy groups of gen-
uine equivariant spectra assemble into Mackey functors, and there is a symmetric
monoidal abelian category of Mackey functors. The zeroth homotopy group of an
algebra over a trivial E∞ operad is a commutative monoid object in Mackey func-
tors: a Green functor. In contrast, Brun showed that the zeroth homotopy group
of an algebra over a G-E∞ operad is a Tambara functor [Bru07], which loosely
speaking is a Green functor together with multiplicative transfers. Building on this
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76 A. J. BLUMBERG AND M. A. HILL

work, we defined for any N∞ operad O an O-Tambara functor, showing that the ze-
roth homotopy group of an O-algebra is naturally an O-Tambara functor [BH18].
Conceptually, an O-Tambara functor is a Green functor together with the norms
parameterized by O.

One of the most interesting aspects of the classification of N∞ operads is that it
is essentially algebraic. Specifically, the homotopy category of N∞ operads is very
simple: it is a finite poset [BH15, Theorem 3.24], [Rub17], [BP17, Corollary IV],
[GW17, Section 4]. The point is that N∞ operads are completely described by
algebraic data (“indexing systems”) which records exactly which norms are present.
As a consequence of the study of O-Tambara functors, we have an equivalent re-
formulation which makes this poset easier to digest.

Proposition 0.1 ([BH18, Theorem 3.18]). The homotopy category of N∞

operads is equivalent to the poset of pullback stable, finite coproduct complete, wide
(containing all the objects) subcategories of the category SetG of finite G-sets.

Because of this equivalence, we find it convenient to elide the distinction be-
tween the operad and the subcategory of SetG. In particular, we abuse notation by
using symbols like inclusions for operads and conversely referring to subcategories
as “operads”.

As we vary the operad, there are evident relationships between the categories
of algebras. The construction of the forgetful functor is clear.

Definition 0.2. If O ⊂ O′ is a pair of N∞ operads, then there is an operadic
forgetful functor

iO
′

O : O′-T amb → O-T amb

which “forgets the norms in O′ which are not in O”.

Moreover, this forgetful functor participates in two adjunctions.

Proposition 0.3 ([BH18, Proposition 5.16]). The forgetful functor iO
′

O has
both left and right adjoints:

O′-T amb O-T ambiO
′

O

O′⊗O(−)

FO(O′,−)

The left adjoint O′ ⊗O (−) is a familiar construction; it can be described as an
operadic tensor product. Moreover, it is conceptually simple: we formally put in
any of the norms we are missing. The right adjoint is much stranger.

Since Tambara functors are not yet a familiar object to many topologists, our
goal in this paper is to illustrate several aspects of computation with them by
working out explicit formulas describing the right adjoint to the operadic forgetful
functor iO

′

O from O′-Tambara functors to O-Tambara functors for G = C2.
The strategy of analysis is formal: there are enough “free” functors, and this

gives a canonical co-O-Tambara functor object in O-Tambara functors. Maps out
of this co-O-Tambara functor to an O-Tambara functor R then canonically recovers
R as an O-Tambara functor.

We begin in Section 1 with a quick review of incomplete Tambara functors.
In Section 2 we study the free incomplete Tambara functor for any group G; we
specialize to the case G = C2 in Section 3. Finally, we give explicit formulas for
the operadic right adjoint to the forgetful functor in Section 4.
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TAMBARA RIGHT ADJOINT 77

1. A crash course in O-Tambara functors

In this section, we quickly review the algebraic characterization of incomplete
Tambara functors we introduced in [BH18]. Let O be a wide, pullback stable, finite
coproduct complete subcategory of SetG. We can associate to such a category a
new category of “polynomials with exponents in O”.

Definition 1.1. Let PG
O denote the category of polynomials with exponents in

O in G-sets. The objects are finite G-sets, and the morphisms are isomorphism
classes of diagrams

S
f
←− U

g
−→ V

h
−→ T,

where g ∈ O and where two such diagrams are isomorphic if we have a commutative
diagram

U ′ g′

��

∼=
��

f ′

��❦❦❦
❦❦
❦

V ′

∼=
��

h′

��❚❚
❚❚

❚❚

S T.

U g
��f

��❙❙❙❙❙❙
V h

��❥❥❥❥❥❥

When O is simply all of SetG, the category of polynomials with exponent in
O is precisely the indexing category that gives Tambara functors. When O is a
proper subcategory, the fact that construction of PG

O actually forms a category is
not immediately obvious; we now explain the composition, giving a digest form
of [BH18, Section 2.2]. To describe the composition, it is useful to isolate a gener-
ating collection of morphisms.

Definition 1.2. Let f : S → T be a map of finite G-sets. Then let

Rf := [T
f
←− S

=
−→ S

=
−→ S]

Nf := [S
=
←− S

f
−→ T

=
−→ T ]

Tf := [S
=
←− S

=
−→ S

f
−→ T ]

Any polynomial with exponent in SetG can be written as a composite of these
basic generators:

Th ◦Ng ◦Rf = [S
f
←− U

g
−→ V

h
−→ T ].

(This decomposition motivated Tambara’s initial name for these as TNR func-
tors [Tam93].)

Furthermore, we have a series of commutation relations that allow us to turn
any composite into one of this form.

Proposition 1.3. R gives a contravariant functor from SetG into PG
O . N gives

a covariant functor from O to PG
O , and T gives a covariant functor from SetG.

Proposition 1.4. If we have a pullback diagram of finite G-sets

S′ f ′

��

g′

��

T ′

g

��
S

f
�� T,

then we have
Rg ◦Nf = Nf ′ ◦Rg′ and Rg ◦ Tf = Tf ′ ◦Rg′ .
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78 A. J. BLUMBERG AND M. A. HILL

Here is where the pullback stability of O first appears: since O is assumed to
be pullback stable, f being in O implies that its pullback f ′ also is.

The interchange of N and T is trickier. Recall that if f : S → T is a map of
finite G-sets, then the pullback functor

f∗ : SetG↓T → SetG↓S

has a right adjoint: the dependent product
∏

f . Heuristically, this is the product
of the fibers over the preimages of f , though we will never need the actual form.

Definition 1.5. An exponential diagram in SetG is a diagram (isomorphic to
one) of the form

S

h

��

A
g

�� S ×T

∏

h A
f ′

��

g′

��
T

∏

h A.
h′

��

Proposition 1.6. If we have an exponential diagram

S

g

��

A
h�� S ×T

∏

g A
f ′

��

g′

��
T

∏

g A,
h′

��

then
Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′ .

Again, pullback stability of O is all that is needed to guarantee that the sub-
scripts of any maps N are all drawn from O.

Proposition 1.7 ([BH18, Proposition 2.12]). Disjoint union of finite G-sets
is the categorical product in PG

O .

Definition 1.8 ([BH18, Definition 4.1]). An O-semi-Tambara functor is a
product preserving functor PG

O → Set. An O-Tambara functor is an O-semi-
Tambara functor whose value at each finite G-set is an abelian group.

Following Tambara’s original argument, the category of O-Tambara functors
as described in Definition 1.8 is equivalent to the category of additive functors to
abelian groups from the “additive completion” of PG

O , i.e., the category obtained
by group-completing the hom monoids of PG

O . We will use this equivalence in the
remainder of the paper without comment.

The role that the integers plays for abelian groups and commutative rings is
played by the Burnside Mackey functor in Mackey and Tambara functors.

Definition 1.9. The Burnside Mackey functor A assigns to each finite G-set T
the Grothendieck group of the comma category of finite G-sets over T . The transfer
map associated to f : T → T ′ is just the composition:

[S
g
−→ T ] �→ [S

f◦g
−−→ T ′],

while the restriction is given by the pullback. The norms are given by the dependent
product Πf .
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TAMBARA RIGHT ADJOINT 79

Unpacking this for orbits, we have that A(G/H) is group completion of the
category of finite H-sets (with respect to disjoint union). The restriction map is
the obvious forgetful map, and the transfer is given by induction. Here the norm
is given by coinduction. In particular, the group A(G/H) is the free abelian group
generated by the isomorphism classes of orbits H/K, and the multiplication is
determined by Frobenius reciprocity:

[H/K] · [H/L] = TrHKResHK [H/L] = TrHL ResHL [H/K].

In later sections, we will restrict attention to C2, so we give a shorter name to
the free orbit.

Notation 1.10. Let t ∈ A(C2/C2) be the element [C2].

2. Free O-Tambara functors

In this section, we give explicit formulas for the free Tambara functors asso-
ciated to an indexing system O. Here, we work with an arbitrary finite group G.
The formulas established here will subsequently provide key building blocks for
deducing an explicit expression for the right adjoint.

For any finite G-set T , we have a Tambara functor

AO[xT ] := PG
O (T,−)

co-representing the functor R �→ R(T ) via the Yoneda Lemma:

O-T amb(AO[xT ], R) ∼= R(T ).

In all that follows, when we say that an element in R is “adjoint to a map from a
free Tambara functor”, we mean via this Yoneda isomorphism.

We now unpack how naturality and the structure maps on R give a dual struc-
ture on T �→ AO[xT ].

Since for any Tambara functor R and for any finite G-set T , the value R(T ) is

naturally a commutative ring, AO[xT ] has a canonical co-ring structure. We begin
by identifying several distinguished elements in these O-Tambara functors.

Definition 2.1. If T is a finite G-set, then let xT ∈ AO[xT ](T ) denote the
element represented by the polynomial

[T
1
←− T

1
−→ T

1
−→ T ].

If T = T0 ∐ T1, then for i = 0, 1, let xTi
∈ AO[xT ](Ti) be the element:

[T ← Ti
1
−→ Ti

1
−→ Ti].

When T = T ′∐T ′, then we will use different lower-case Roman letters to denote
the two copies of xT .

Remark 2.2. The elements xTi
are the restrictions of xT to Ti along the natural

inclusions. These elements also freely generate the Tambara functor; for any O-
Tambara functor R, when T = T0 ∐ T1 we have a canonical isomorphism

R(T ) ∼= R(T0)×R(T1).

The elements xTi
represent the inclusions of the summands.

Having defined elements xT , we can now consider any combination of trans-
fers, norms, or restrictions on them. In particular, we have any polynomial in the
ordinary sense.
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80 A. J. BLUMBERG AND M. A. HILL

Definition 2.3. Let the co-addition and co-multiplication maps

Δ+ : AO[xT ] → AO[xT , yT ] and Δ× : AO[xT ] → AO[xT , yT ],

be the maps adjoint to the elements

xT + yT = [T ∐ T
1
←− T ∐ T

1
−→ T ∐ T

∇
−→ T ]

xT · yT = [T ∐ T
1
←− T ∐ T

∇
−→ T

1
−→ T ],

where ∇ is the fold map, in AO[xT , yT ](T ).
Let the co-additive and co-multiplicative counits

ǫ+ : AO[xT ] → A and ǫ× : AO[xT ] → A

be the maps adjoint to 0 and 1 respectively.
Finally, let the co-additive co-inversion

c : AO[xT ] → AO[xT ]

be the map adjoint to −xT .

Summarizing how these operations fit together, we have the following proposi-
tion.

Proposition 2.4. The maps Δ+, ǫ+, c, Δ×, and ǫ× make AO[xT ] into a
co-commutative co-ring object in O-Tambara functors.

Remark 2.5. We want to stress that in general, AO[xT ] is not flat over A, so
a reader versed in the Hopf-schools will at this point be sorely disappointed.

More generally, we have a full co-Tambara functor structure on AO[xT ], with
these co-ring maps being subsumed by co-transfer and co-norm maps and being
linked by co-restriction maps.

Definition 2.6. Let f : T → S be a map of finite G-sets. Then let the co-

restriction associated to f

ΔRf
: AO[xT ] → AO[xS ]

be the map adjoint to

Rf (xS) = [S
f
←− T

1
−→ T

1
−→ T ] ∈ AO[xS ](T ).

Let the co-transfer associated to f

ΔTf
: AO[xS ] → AO[xT ]

be the map adjoint to

Tf (xT ) = [T
1
←− T

1
−→ T

f
←− S] ∈ AO[xT ](S).

Let the co-norm associated to f

ΔNf
: AO[xS ] → AO[xT ]

be the map adjoint to

Nf (xT ) = [T
1
←− T

f
−→ S

1
−→ S] ∈ AO[xT ](S).
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TAMBARA RIGHT ADJOINT 81

The co-restriction map is a map of co-rings, since the dual statement is univer-
sally true. Since the transfer (norm) associated to the fold map is the addition (mul-
tiplication), the maps ΔTf

and ΔNf
subsume the co-addition and co-multiplication

maps described before. Additionally, naturality shows that these co-transfer (co-
norm) maps compose in the expected way.

Finally, we note that the universal formulae expressing the norm of a transfer
(Proposition 1.6) give an identity

ΔTh
◦ΔNg

= ΔRf′
◦ΔNg′

◦ΔTh′
,

where f ′, g′, and h′ are as in Proposition 1.6. We will not need this relation,
however. These observations and the Yoneda lemma thus imply the following result.

Proposition 2.7. The assignment

AO[x(−)] := T �→ AO[xT ]

together with the structure maps given by Definitions 2.3 and 2.6 gives a co-O-
Tambara functor object in O-Tambara functors.

For a fixed O-Tambara functor R, the O-Tambara functor

T �→ O-T amb
(

AO[xT ], R
)

is canonically isomorphic to R.

In the case when T is a trivial G-set, we simply obtain a polynomial ring; this
is easy to see as follows.

Definition 2.8. Let −⊗A be the left adjoint to the functor which evaluates a
Mackey functor on the finite G-set G/G.

Lemma 2.9. If M is an abelian group, then M ⊗A is the Mackey functor

T �→ M ⊗A(T ).

The structure maps are determined by those of A.

Proof. By definition, the left adjoint applied to Z gives A. Since left adjoints
commute with colimits, the result follows from choosing a free resolution of M and
viewing it as a reflexive coequalizer. �

Proposition 2.10. The functor −⊗A is a strong symmetric monoidal functor.

Proof. The symmetric monoidal product on Mackey functors is a closed sym-
metric monoidal structure. The internal Hom is closely connected to the ordinary
Hom in Mackey functors:

Hom(M,N) ∼= Hom(M,N)(G/G).

We then have

Hom
(

(M ⊗A)�(N ⊗A), B
)

∼= Hom
(

M ⊗A,Hom(N ⊗A,B)
)

∼= Hom
(

M,Hom(N ⊗A,B)(G/G)
)

∼= Hom
(

M,Hom(N ⊗A,B)
)

∼= Hom
(

M,Hom(N,B(G/G))
)

∼= Hom
(

M ⊗N,B(G/G)
)

∼= Hom
(

(M ⊗N)⊗A,B
)

. �
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82 A. J. BLUMBERG AND M. A. HILL

Corollary 2.11. If T is a finite set with trivial G-action, then

AO[xT ] ∼= Z[t | t ∈ T ]⊗A.

3. Free C2 Green and Tambara functors

We now specialize to the case where G = C2 and work out in detail what the
descriptions of the previous section look like. The more general case of G = Cp is
completely analogous.

Notation 3.1. Since there are only two subgroups of C2, Mackey, Green, and
Tambara functors are completely determined by their values on C2/C2 and C2/e.
We will refer to the value of a Mackey functor at C2/H as its value at level

C2/H. We will refer to elements in the value at C2/C2 as fixed and to elements
in the value at C2/e as underlying.

There are only two indexing systems for C2, since there are only 2 subgroups
of C2:

(1) O the trivial coefficient system, giving Green functors, and
(2) O′ the complete coefficient system, giving Tambara functors.

We begin with the free Green functor. In the formulae below we adopt the
convention that for a finite G-set T , a subscript of T on an element will indicate
that this is an element in R(T ).

3.1. Free C2 Green Functors. Corollary 2.11 describes the free Green func-
tor on a fixed generator. We need now only determine the free Green functor on
an underlying generator.

Lemma 3.2. We have isomorphisms of C2-rings

AO[xC2
](C2/e) ∼= Z[x, x̄],

where x̄ is the Weyl conjugate of x.
We have an isomorphism of rings

AO[xC2
](C2/C2) ∼=

A(C2/C2)
[

{ti,j |0 ≤ i, j}
]

/
(

ti,j = tj,i, t0,0 = t, ti,j · tk,ℓ = ti+k,j+ℓ + ti+ℓ,j+k

)

.

The restriction is determined by

resC2

e (ti,j) = xix̄j + xj x̄i,

while the transfer is given by

trC2

e (xix̄j) = ti,j .

Recall that the element t represents the free orbit [C2] in A(C2/C2).

Proof. The first part is simply the statement that when we restrict to C2-
rings, the free Green functor on a class xC2

is the free commutative algebra in
C2-rings on a class x. We can also express the generators easily in the language of
polynomials from Definition 1.1:

x =
[

C2
1
←− C2

1
−→ C2

1
−→ C2

]

and x̄ =
[

C2
1
←− C2

γ
−→ C2

1
−→ C2

]

.

The equivalence relation on polynomials shows that any span like this will represent
either x or x̄: we need only count the number of occurrences of γ.
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TAMBARA RIGHT ADJOINT 83

The elements of AO[xC2
](∗) are polynomials

(3.1) C2
f
←− S0

g
−→ S1

h
−→ ∗.

Since we are mapping to C2, the map f is of the form

C2 × f0 : C2 × S′ → C2 × ∗ ∼= C2,

where S′ has a trivial C2-action. Since we are considering only Green functors, we
know that the map g must preserve the stabilizers of points, and hence S1 must
be free. This forces h to be the composite of iterated fold maps with the canonical
map C2 → ∗, and since the fold map corresponds to the addition and the map
C2 → ∗ to the transfer, we understand exactly what the map Th gives.

The map g is more interesting. Our analysis of Th allows us to work one orbit
in S1 at a time, so without loss of generality, our polynomial is of the form

C2
f
←−

∐

S′

C2
g
−→ C2 → ∗.

On each summand, the map g is either the identity or multiplication by γ, a genera-
tor of C2. Folding these all together gives the product, and using the identifications
of x and x̄ above, we see that this polynomial represents

trC2

e (xix̄j),

where i is the number of summands on which g is the identity and where j is
the number on which it is multiplication by γ. Any other representative of this
polynomial will either be a rearranging of the summands (which clearly does not
change the result) or composing each map with multiplication by γ. This switches
the roles of i and j, giving the symmetry condition.

The final multiplicative relations are just Frobenius reciprocity. �

In words, everything at level C2/C2 besides the multiplicative unit is in the
image of the transfer, and all of the multiplicative relations are determined by the
Frobenius relation

a · trC2

e (b) = trC2

e

(

resC2

e (a) · b
)

.

Remark 3.3. The kernel of the restriction map is the ideal induced from the
augmentation ideal in the Burnside ring. If we consider the image of the restriction,
then it is exactly the image of the trace map x �→ x + x̄. In particular, we do not
see the norm class xx̄ in the image. In some sense, the free Tambara functor on
an underlying generator below exactly fixes this problem.

3.2. Free C2 Tambara functors. The free Tambara functor on one fixed
generator can be built out of the free Green functor by formally adding all of the
missing norms. In this case, the situation is greatly simplified: the underlying ring
is polynomial:

AO′

[x∗](C2/e) = Z[x].

The norm is multiplicative, so the norm of any monomial of the form axn with
a ∈ Z is determined by the norm of x and by the norm of a. The latter is given
by the formulae for norms in the Burnside Tambara functor. For more general
polynomials in x, we use a universal formula.
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84 A. J. BLUMBERG AND M. A. HILL

Lemma 3.4 ([Tam93], [Maz15, Theorem 3.5]). Let R be a C2-Tambara func-
tor, and let a, b ∈ R(C2/e). Then in R(C2/C2) we have

NC2

e (a+ b) = NC2

e (a) +NC2

e (b) + trC2

e (ab̄).

Since the Weyl action in our case is trivial, in fact a simpler formula holds.

Proposition 3.5. Let p(x) ∈ Z[x] be a polynomial of degree at most (k − 1).

Then in the free Tambara functor on one fixed generator AO′

[x∗], we have

NC2

e

(

axk + p(x)
)

= NC2

e (a)NC2

e (x)k +NC2

e

(

p(x)
)

+ t ·
(

axk · p(x)
)

.

We record all of this explicitly in the following lemma.

Lemma 3.6. We have an isomorphism of rings

AO′

[x∗](∗) ∼= A(∗)[x∗, n∗]/
(

t(x2
∗ − n∗)

)

.

We have an isomorphism of C2-rings

AO′

[x∗](C2/e) ∼= Z[x].

The restriction map sends x∗ to x and n∗ to x2. The transfer is multiplication by
t. The norm is given by Proposition 3.5, where NC2

e (x) = n∗.

Proof. The statement about the underlying ring is immediate. Also immedi-
ate from the Yoneda lemma is that the class x∗ is represented by the polynomial

x∗ = ∗ ← ∗ → ∗ → ∗.

This restricts to the class

x = ∗ ← C2
1
−→ C2

1
−→ C2.

Let n∗ be the polynomial

n∗ = ∗ ← C2 → ∗ → ∗.

When we restrict this to C2, we get

∗ ← C2 ∐ C2
∇
−→ C2

1
−→ C2,

which is the square of the class x (here we use that we are mapping to ∗ on the left
to show that the choice of ways to write C2×C2 as C2∐C2 does not matter). The
relation t(x2

∗ − n∗) actually follows from this:

t(x2
∗ − n∗) = trC2

e

(

resC2

e (x2
∗ − n∗)

)

= trC2

e

(

0
)

.

We again argue the rest via polynomials. Elements of the free Tambara functors
are polynomials

∗
f
←− S0

g
−→ S1

h
−→ ∗.

Consider an orbit decomposition of S1:

S1 =

⎛

⎝

∐

S′

1

∗

⎞

⎠∐

⎛

⎝

∐

S′′

1

C2

⎞

⎠ .

On the summand indexed by S′
1, the map Th gives the ordinary addition, while on

the summand indexed by S′′
1 , it gives the transfer. It therefore again suffices to

consider S1 a single orbit.
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TAMBARA RIGHT ADJOINT 85

When S1 = ∗, then we consider the decomposition of S0 into orbits:

S0 =

(

i
∐

k=1

C2

)

∐

(

j
∐

ℓ=1

∗

)

,

and our polynomial represents
ni
∗x

j
∗.

Moreover, these are all distinct and linearly independent.
When S1 = C2, then we must have that S0 is a union of copies of C2, and the

map is just composites of the fold and multiplication by γ maps. Here, since the
last term in the polynomial is also ∗, we have an isomorphism

(∗ ← C2
1
−→ C2 → ∗) ∼= (∗ ← C2

γ
−→ C2 → ∗).

In particular, we may assume that the map S0 → C2 is just an iterated fold map:

i
∐

k=1

C2 → C2.

The fold map gives the multiplication, so this polynomial is

trC2

e (xi).

Since
xi = resC2

e xi
∗,

the A-module structure allows us to rewrite this polynomial as

t · xi
∗.

This gives the result. �

Finally, we describe the structure of the free Tambara functor on a free gener-
ator.

Lemma 3.7. The ring underlying the free Tambara functor AO′

[xC2
] is Z[x, x̄].

The fixed ring for AO′

[xC2
] is

AO[xC2
][n]/

(

ti,j · n− ti+1,j+1

)

∼= Z[t]/(t2 − 2t)
[

ti | 0 ≤ i
]

[n]/
(

t0 − t, ti · tj − (ti+j + njti−j) | i ≤ j
)

.

The restriction map is that of AO[xC2
], together with

resC2

e n = xx̄.

The norms are determined by

NC2

e (x) = NC2

e (x̄) = n.

Proof. The underlying ring is the same as the ring underlying the free Green
functor on a class xC2

, so this part is clear.
For the fixed ring, we again argue via polynomials. The class n is represented

by

n =
(

C2
1
←− C2 → ∗ → ∗

)

,

which restricts to
(

C2
∇
←− C2 ∐ C2

1∐γ
−−→ C2 → C2

)

= xx̄

By definition, the class n is the norm of x and x̄.
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We now mirror the computations of Lemma 3.2. Since the source is C2, any
polynomial can be written as

C2
C2×q
←−−− C2 × S0

g
−→ S1

h
−→ ∗,

where q is the canonical quotient. Since we are considering the free Tambara
functor, we can have any isotropy for the points of S1, and again, the map Th gives
a sum of transfers, depending on the stabilizers of points in S1. We therefore again
are reduced to checking on individual orbits.

If S1 = ∗, then by definition, the polynomial is just n|S0|. If S1 = C2, then the
polynomial is exactly one of the ones considered in Lemma 3.2. In particular, any
class is a linear combination of an element of AO[xC2

](C2/C2) and an element of
Z[n], and these two rings sit as subrings. The products between them are given by
Frobenius reciprocity, from which the stated result follows. �

4. The operadic right adjoint

Using our abstract analysis of the free functor, we can easily give an abstract
description of the right adjoint. Let O ⊂ O′ be indexing systems, and let

iO
′

O : O′-T amb → O-T amb

be the restriction functor.

Theorem 4.1. We have a natural isomorphism for any finite G-set T

FO(O
′, R)(T ) ∼= O-T amb

(

iO
′

O

(

AO′

[xT ]
)

, R
)

.

The structure maps in R are dual to iO
′

O of the co-structure maps in AO′

[x(−)].

Proof. This is the composite of the isomorphism in Proposition 2.7 and the
adjunction:

FO(O
′, R)(T ) ∼= O′-T amb

(

AO[xT ], FO(O
′, R)

)

∼= O-T amb
(

iO
′

O

(

AO′

[xT ]
)

, R
)

.

The statement about structure maps is the second part of Proposition 2.7. �

To illustrate how this works, we work out explicitly what happens in the case
G = C2, the cyclic group of order 2, using our analysis from above. The answer
is again completely analogous for G = Cp, p an odd prime. However, there is one
point where the formulae are significantly prettier for p = 2 (indicated below), so
we focus on this case.

We describe the answer in the following two theorems. The first characterizes
the values of the right adjoint in terms of certain pullback diagrams of multiplica-
tive monoids. The second omnibus theorem describes formulas for the various
operations that are constituents of the Tambara functor structure. We prove these
results via a series of propositions and corollaries establishing various parts. For ex-
positional convenience, we indicate in the statements the supporting results which
prove the individual pieces.
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Theorem 4.2 (Corollaries 4.7 and 4.10). Let R be a Green functor. Then we
have pullback squares of multiplicative monoids

FO

(

O′, R
)

(C2/C2) ��

��

R(C2/C2)

res

��
R(C2/C2)

(res)2
�� R(C2/e),

where res is the restriction and (res)2 is the composite of the squaring map with
the restriction, and

FO

(

O′, R
)

(C2/e) ��

��

R(C2/C2)

res

��
R(C2/e) x�→x·x̄

�� R(C2/e),

where here x̄ denotes the Weyl conjugate of x and x �→ x ·γx is the map sending an
element to the product over the group of its Weyl conjugates. The multiplication in
each square is coordinate-wise.

Since the values of FO

(

O′, R
)

(C2/H) are pullbacks, we will name elements as
ordered pairs, the first element of which will always come from the top right set in
the square and the second will come from the bottom left set.

Theorem 4.3. If R is a commutative C2-Green functor, then the Tambara
structure on FO

(

O′, R
)

is given by the following series of results

(1) (Corollary 4.20) The addition on FO(O
′, R)(C2/C2) is given by

(n, x) + (n′, x′) = (n+ n′ + t · x · x′, x+ x′)

(2) (Corollary 4.18) The addition on FO(O
′, R)(C2/e) is given by

(n, x) + (n′, x′) =
(

n+ n′ + tr(x · x̄′), x+ x′
)

(3) (Corollary 4.14) The norm map

NC2

e : FO(O
′, R)(C2/e) → FO(O

′, R)(C2/C2)

is specified by
(n, x) �→ (n2, n).

(4) (Corollary 4.12) The restriction

resC2

e : FO(O
′, R)(C2/C2) → FO(O

′, R)(C2/e)

is given by
(n, x) �→

(

n, res(x)
)

.

(5) (Corollary 4.16) The transfer

trC2

e : FO(O
′, R)(C2/e) → FO(O

′, R)(C2/C2)

is specified by

(n, x) �→
(

2n+ tr(x2), tr(x)
)

.

Remark 4.4. The formula for the norm perhaps best exemplifies the weird-
ness of the right adjoint. Here, the coordinate actually coming from R(C2/e) (the
element x above) is completely ignored in forming the norm.
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88 A. J. BLUMBERG AND M. A. HILL

To prove this theorem, we repeatedly apply Theorem 4.1, which tells us that
we need only determine the restriction to Green functors of the two free Tambara
functors described in Section 3.2:

iO
′

OAO′

[x∗] and iO
′

OAO′

[xC2
],

together with the co-Tambara functor structure maps

Δ+,Δ×,Δr,Δt, and Δn,

where r, t, and n are the restriction, transfer, and norm associated to C2 → ∗. To
this end, we apply the work of Section 3.

Since the free Green functor on two fixed generators has fixed points

A(C2/C2)[x, n]

and underlying

Z[x, n],

we see the the restriction of AO′

[x∗] to a Green functor is just the quotient of the
free Green functor on two generators by the Green ideal generated by the class
x2 − n. This gives the following proposition.

Proposition 4.5. We have a pushout diagram of commutative Green functors

AO[yC2
] AO[n∗]

AO[x∗] iO
′

O AO′

[x∗],

Rn

Rx

where Rn is the map adjoint to the element

resC2

e n∗ ∈ AO[n∗](C2/e)

and where Rx is the map adjoint to the element

resC2

e (x2
∗) =

(

resC2

e x∗

)2
∈ AO[x∗](C2/e).

In the underlying Tambara functor structure, we have

n∗ = NC2

e

(

resC2

e x∗

)

.

The analysis for the free Tambara functor on an underlying generator is similar.
We again observe that although the fixed ring is quite messy, we have a simple
“generators and relations” way to interpret this Green functor. We have a map of
Green functors

AO[xC2
, n∗] → iO

′

O AO′

[xC2
]

which is a surjection upon evaluating at any finite C2-set. The complicated relations
we see in the fixed ring are again in the image of the transfer and arise from the
more basic formula

(4.1) resC2

e n = xx̄,

which is just the multiplicative double coset formula expressing the restriction of a
norm. This observation gives the following proposition.
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Proposition 4.6. We have a pushout diagram of commutative Green functors

AO[yC2
] AO[n∗]

AO[xC2
] iO

′

O AO′

[xC2
],

R

N

where R is the map adjoint to the element

resC2

e n∗ ∈ AO[n∗](C2/e)

and where N is the map adjoint to the element

xC2
· x̄C2

∈ AO[xC2
](C2/e),

where x̄C2
is the Weyl conjugate. In the underlying Tambara functor structure, we

have
n∗ = NC2

e xC2
.

Corollary 4.7. Let R be a commutative Green functor. Then we have two
pullback squares of sets

FO

(

O′, R
)

(C2/e) R(C2/C2)

R(C2/e) R(C2/e),

resC2
e

x�→x·x̄

and

FO

(

O′, R
)

(C2/C2) R(C2/C2)

R(C2/C2) R(C2/e).

resC2
e

x�→(resC2
e x)2

In particular for either subgroup H ⊂ C2, the elements of FO

(

O′, R
)

(C2/H) are
certain ordered pairs

(n, xC2/H) ∈ R(C2/C2)×R(C2/H).

Remark 4.8. In both pushouts describing the restriction of the free Tambara
functor, we have Green functor generators called n∗. The apparent collision in no-
tation is chosen to reflect that in both cases, this class is the norm of the underlying
algebra generator, which is either resC2

e x∗ or xC2
(and its Weyl conjugate). We

hope that this overloading of the notation will help reinforce the common role played
by both n∗.

The comultiplication maps are easily determined in the pullback description:
all of the structure maps in the pushouts for Propositions 4.6 and 4.5 commute
with products.

Proposition 4.9. The co-multiplication map respects the pushout decomposi-
tions of Propositions 4.6 and 4.5

Proof. The norm map commutes with products, and since all of the structure
maps in the pushouts are monomials, they all commute. �

Corollary 4.10. The pullback squares of sets in Corollary 4.7 is a pullback
in multiplicative monoids: the multiplication maps are done coordinatewise.

Proposition 4.11. Recall that the corestriction is the map

AO′

[xC2
] → AO′

[x∗]

adjoint to resC2

e (x∗). In terms of the pushout decomposition, we have

xC2
�→ resC2

e (x∗) and n∗ �→ n∗.
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90 A. J. BLUMBERG AND M. A. HILL

Proof. This is immediate from the description of the elements x? and n∗ in
Propositions 4.6 and 4.5. �

Corollary 4.12. In the notation of Corollary 4.7, the restriction map is given
by

resC2

e

(

(n, x∗)
)

= (n, resC2

e x∗).

Proposition 4.13. The co-norm map is the map

AO′

[x∗] → AO′

[xC2
]

adjoint to NC2

e xC2
. Thus in terms of the pushout generators x∗ and n∗ of iO

′

O AO[x∗]

and xC2
and n∗ of iO

′

O AO[xC2
], we have

x∗ �→ n∗

n∗ �→ n2
∗.

Proof. Only the second formula needs any justification; the first is essentially
the definition. Since the co-norm is a map of Tambara functors, we know that we
have

n∗ �→ NC2

e resC2

e (n∗) = NC2

e (xC2
x̄C2

),

where the last equality is again the multiplicative double coset formula for the
restriction of a norm. The result follows from multiplicativity and Weyl invariance
of the norm. �

Corollary 4.14. In the notation of Corollary 4.7, the norm map is given by

NC2

e

(

(n, xC2
)
)

= (n2, n).

It is much more interesting to determine the co-Mackey functor structure here.
Here we have to use the formulae for the norm of a sum, since that shows up in
the pushout decomposition. We begin with the coaddition. Here, the coaddition is
determined by the maps of Tambara functors

xC2
�→ yC2

+ zC2
and x∗ �→ y∗ + z∗.

For our analysis, we need the underlying map on Green functors given by the
pushout squares in Propositions 4.6 and 4.5. On the elements with same name, the
map is obvious. In both of the pushout squares, the elements n∗ are really norms of
the corresponding elements x?, so the image of these is determined by the universal
formulae.

Proposition 4.15. The co-transfer map is adjoint to trC2

e xC2
. In terms of the

pushout generators given, this gives

x∗ �→ trC2

e xC2
and n∗ �→ 2n∗ + trC2

e (x2
C2

).

Proof. Only the second part of the formula requires any justification. Since
the co-transfer is a map of Tambara functors, and since the class n∗ is the norm of
the restriction of x∗, we conclude

n∗ �→ NC2

e resC2

e trC2

e xC2
= NC2

e

(

xC2
+ x̄C2

)

.

The formula then follows from the observation that both xC2
and x̄C2

have the
same norm: n∗ together with Lemma 3.4. �
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Corollary 4.16. In the notation of Corollary 4.7, the transfer is given by

trC2

e

(

(n, xC2
)
)

=
(

2n+ trC2

e (x2
C2

), trC2

e xC2

)

.

There are two co-additions: the underlying one (for C2/e) and the fixed one
(for C2/C2). These also follow immediately from Lemma 3.4.

Proposition 4.17. Consider the coaddition map

AO[xC2
] → AO[yC2

, zC2
].

For the target, let ny
∗ and nz

∗ denote the corresponding norm classes in the pushout
description. Then in terms of these pushout generators, the underlying coaddition
is given by:

xC2
�→ yC2

+ zC2

n∗ �→ ny
∗ + nz

∗ + trC2

e (yC2
z̄C2

).

Corollary 4.18. In the notation of Corollary 4.7, the underlying addition is
given by

(n, xC2
) + (n′, x′

C2
) =

(

n+ n′ + trC2

e (xC2
x̄′
C2

), xC2
+ x′

C2

)

.

Proposition 4.19. Consider the coaddition map

AO[x∗] → AO[y∗, z∗].

For the target, let ny
∗ and nz

∗ denote the corresponding norm classes in the pushout
description. Then in terms of these pushout generators, the underlying coaddition
is given by:

x∗ �→ y∗ + z∗

n∗ �→ ny
∗ + nz

∗ + t(y∗z∗),

where t ∈ A(C2/C2) is the class represented by the C2-set C2.

Proof. The only surprising addition at this point is the element t in the
Burnside ring. This simply records a universal formula relating the restriction and
transfer to the module structure over the Burnside Mackey functor:

trC2

e resC2

e a = t · a.

�

Corollary 4.20. In the notation of Corollary 4.7, the fixed addition is given
by

(n, x∗) + (n′, x′
∗) =

(

n+ n′ + tx∗x̄
′
∗, x∗ + x′

∗

)

.
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