

1 *Type of the Paper (Article.)*
2 Carbon Nanotube Yarn Microelectrodes Promote the High Temporal Measurements of Serotonin
3 using Fast Scan Cyclic Voltammetry
4 **Alexander Mendoza, Thomas Asrat, Favian Liu, Pauline Wonnenberg and Alexander G. Zestos^{1*}**

5 ¹ Affiliation; zestos@american.edu
6 * Correspondence: zestos@american.edu; Tel.: 202-885-1730
7 Department of Chemistry and Center for Behavioral Neuroscience
8 American University
9 4400 Massachusetts Ave, NW
10 Washington, D.C. 20016

11 Received: date; Accepted: date; Published: date
12

13 **Abstract:** Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter
14 detection for over forty years. However, in recent years, there have been many in advances of
15 utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry
16 (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode
17 materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry. Carbon
18 nanotubes are ideal for neurotransmitter detection because they have higher aspect ratios enabling
19 monoamine adsorption and lower limits of detection, faster electron transfer kinetics, and a
20 resistance to surface fouling. Several methods to modify CFMEs with CNTs have resulted in
21 increases in sensitivity, but have also increased noise and led to irreproducible results. In this study,
22 we utilize commercially available CNT-yarns to make microelectrodes as enhanced
23 neurotransmitter sensors for neurotransmitters such as serotonin. CNT-yarn microelectrodes have
24 significantly higher sensitivities (peak oxidative currents of the cyclic voltammograms) than CFMEs
25 and faster electron transfer kinetics as measured by peak separation (Δ_{EP}) values. Moreover, both
26 serotonin and dopamine are adsorption controlled to the surface of the electrode as measured by
27 scan rate and concentration experiments. CNT yarn microelectrodes also resisted surface fouling of
28 serotonin onto the surface of the electrode over thirty minutes and had a wave application frequency
29 independent response to sensitivity at the surface of the electrode.

30

31 **Keywords:** carbon nanotube yarn; fast scan cyclic voltammetry; serotonin; electrochemistry; carbon
32 nanotube
33

34 1. Introduction

35 Neurochemical detection has proven to be important for the understanding and treatment of
36 several diseases, behaviors, and pharmacological drug states. The detection of dopamine is crucial
37 for understanding Parkinson's disease and drug abuse[1], while selective serotonin reuptake
38 inhibitors (SSRIs) are used as treatments for depression[2]. Neurochemical measurements are also
39 important in studying other disease states such as epilepsy[3, 4] and obesity.[5] In order to study
40 neurochemical dynamics *in vivo*, scientists have used several bioanalytical assays such as
41 microdialysis[6], positron emission tomography (PET) imaging[7], enzymatic biosensors[8], and

42 carbon electrodes[9]. In comparison to the other techniques, carbon electrodes are biocompatible,
43 have relatively high spatiotemporal resolution[10], are minimally invasive[11], and do not elicit an
44 immune response after implantation. However, carbon fiber-microelectrodes (CFMEs) do have
45 certain drawbacks. CFMEs have been known to have relatively low sensitivities, temporal
46 resolutions, and are susceptible to analyte fouling at the surface of the electrode. To address these
47 issues, novel carbon nanomaterials have been utilized as alternative electrode materials for
48 enhanced neurochemical detection.

49 Carbon nanotubes, discovered by Iijima and colleagues, were formed by arc discharge synthesis
50 and have served many applications due to their superior mechanical and electrical properties due to
51 high electron delocalization.[12, 13] Functionalized carbon nanotube modified microelectrodes were
52 shown to enhance dopamine detection due to the electrostatic interactions of negatively charged end
53 groups with positively charged neurochemicals.[14] Moreover, iron chloride functionalized CNT
54 “forest” microelectrodes that displayed vertically aligned CNTs modifying the surface of a carbon
55 fiber-microelectrode. This increased both conductivity and sensitivity at the surface of the
56 electrode.[15] CNT-polymer[16] modified microelectrodes such as Nafion and
57 overoxidized-polyppyrrole enhanced the sensitivity dopamine detection and reduced selectivity for
58 anionic ascorbic acid by increasing the negative charge of the surface of the electrode to create and
59 electrostatic repulsion.[17] Furthermore, gold nanoparticles[18], carbon nanospikes[19] and carbon
60 nanotubes[20] were grown on highly conductive metals to create novel sensors for neurotransmitter
61 detection with fast scan cyclic voltammetry. Despite the great increases in sensitivity afforded by the
62 CNT-modified microelectrodes, there was also a great increase in noise of the measurements due to
63 the heterogeneous surface of the CNT and carbon fiber (loose sheets of graphene) interface. To
64 overcome this issues, novel electrode materials were sought to be constructed solely from carbon
65 nanotube sources, not simply CNT modified carbon fiber electrodes.

66 Recently, CNT fiber and CNT yarn microelectrodes have been developed as electrode materials
67 for neurotransmitter detection. CNT fibers can be wetspun with the use of surfactants and polymers
68 such as poly(vinyl alcohol) (PVA)[21] and polyethylenimine (PEI)[22, 23]. PVA-CNT fiber
69 microelectrodes were shown to be efficient sensors for biomolecules[11] and showed a resistance
70 towards dopamine fouling[24], but had relatively poor sensitivities.[10] PEI-CNT fiber
71 microelectrodes were significantly more conductive than PVA-CNT fiber microelectrodes due to the
72 physisorption of the lone pair of electrons from the amine group to the surface of the CNT fiber,
73 which increased conductivity and enhanced serotonin adsorption to the surface of the electrode.
74 Commercial CNT yarns were utilized as microelectrodes to detect dopamine with fast scan cyclic
75 voltammetry and were found to have a response towards dopamine that was independent of the
76 wave application frequency.[25] It was shown that the increased surface roughness allows for the
77 trapping of dopamine at the surface of the electrode, which prevents desorption of dopamine from
78 the surface of the electrode.[26, 27] Comparisons of CNT fiber microelectrodes to CNT yarn
79 microelectrodes also exhibited this property, which illustrates that it is a function of the CNT
80 materials.[28] CNTs were also synthesized via chemical vapor deposition and spun into yarns for
81 the enhanced detection of dopamine in rat brain tissue.[29] Moreover, mechanistic studies were also
82 performed with CNT yarn microelectrodes where defect sites were found to promote the
83 anti-fouling properties of CNT-yarn microelectrodes for serotonin detection with fast scan cyclic
84 voltammetry.[30]

85 Here, we illustrate the use of CNT yarn microelectrodes as enhanced sensors for serotonin and
86 other biomolecules with fast scan cyclic voltammetry. CNT yarn microelectrodes had enhanced
87 sensitivity for serotonin, dopamine, uric acid, ascorbic acids, and other biomolecules. Moreover,
88 they had significantly reduced peak separation (Δ_{EP}) than CFMEs, illustrating faster electron transfer
89 kinetics at the surface of a more conductive electrode material. The cyclic voltammograms of
90 dopamine and serotonin were also more easily distinguishable at the surface of CNT yarn
91 microelectrodes than carbon fiber microelectrodes through artifacts of the cyclic voltammograms
92 such as the shape and position (voltage) of their respect reduction peaks. Furthermore, the peak
93 oxidative current for serotonin did not decrease upon repeated injections at the surface of the
94 electrode, thus illustrating the anti-fouling properties at the surface of the electrode. Also, the peak
95 oxidative current for the CVs of serotonin, did not decrease upon increasing the wave application
96 frequency indicating that serotonin was trapped at the surface of the electrode with higher surface
97 roughness. All of this illustrates that CNT yarn microelectrodes serve as enhanced electrode
98 materials for neurotransmitter detection.

99 2. Materials and Methods

100 2.1 Materials

101 Dopamine, serotonin, ascorbic acid, and uric acid (Sigma-Aldrich, Milwaukee, WI) were used as
102 received. Each 10mM stock solution was prepared in 0.1 M perchloric acid and diluted with artificial
103 cerebral spinal fluid buffer (aCSF; 145 mM NaCl, 2.68 mM KCl, 1.4 mM CaCl₂, 1.01 mM MgSO₄, 1.55
104 mM Na₂HPO₄, and 0.45 mM NaH₂PO₄ with pH adjusted to 7.4). Epon 828 Epoxy was obtained from
105 Miller-Stephenson and diethylenetriamine hardener was obtained from Sigma Aldrich. All aqueous
106 solutions were made with deionized water (Millipore, Billerica, MA).

107 2.2. Methods

108 Carbon fibers (7 μ m, Goodfellow, Huntingdon, England) or CNT Yarns (25 μ m, obtained from Dr.
109 Vesselin Shanov, University of Cincinnati, Cincinnati, OH) were aspirated into cylindrical glass
110 capillaries (1.2 mm by 0.68 mm, A-M Systems, Inc., Carlsborg, WA) using a vacuum pump
111 (DOA-P704-AA, GAST, Benton Harbor, MI) to prepare carbon-fiber microelectrodes. The obtained
112 carbon-fiber microelectrodes were pulled to form two electrodes on a vertical pipette puller
113 (Narishige, model PC-100 and PE-22, Tokyo, Japan), followed by cutting the fiber to lengths of
114 approximately 100–150 microns. CNT yarns were polished at a 90° angle for 30 minutes with a
115 BV-10 Microelectrode Beveler (Sutter Instruments, San Diego, CA). Then, protruding carbon-fiber or
116 CNT yarn microelectrode tips were dipped in the epoxy hardener mixture (Epon 828 epoxy
117 (Miller-Stephenson, Morton Grove, IL) and diethylenetriamine (Sigma Aldrich), 0.8% by mass resin)
118 for approximately 15 seconds and then rinsed in acetone to wash away any excess residual epoxy.
119 The electrodes were cured in the oven for 4 h at 125 °C.

120 Fast Scan Cyclic Voltammetry (FSCV) was performed with the WaveNeuro FSCV system
121 with a 5 M Ω headstage (Pine Instruments, Durham, NC, USA). Data was collected using HDCV
122 software (University of North Carolina Chapel Hill, Mark Wightman) and a computer interface
123 board (National Instruments PC1e-6363, Austin, TX, USA). A triangle waveform was applied to the
124 electrode from a holding potential of -0.4 V to 1.3 V and back at a scan rate of 400 V/s and a
125 frequency of 10 Hz. The gain of the amplifier was 200 nA/V. A silver–silver chloride wire was used
126 as the reference electrode. Samples were tested in a flow injection analysis system (In Vitro/FSCV
127 Microelectrode Flow Cell with xyz micromanipulator Translational Stage, Pine Instruments,
128 Durham, NC). Buffer and samples were pumped through the flow cell at 1mL/min using the NE-300

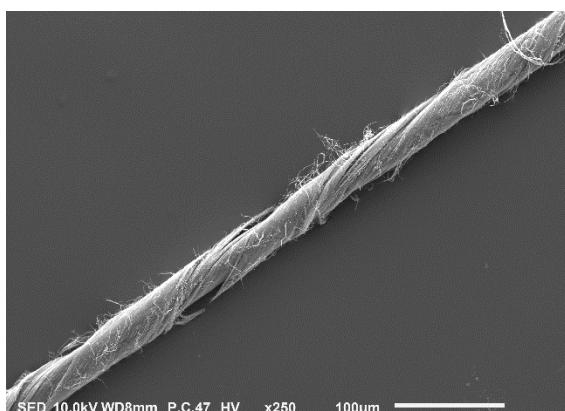
129 Just Infusion™ Syringe Pump (New Era Pump Systems, Farmingdale, NY). For the traditional
130 waveform, the electrode was scanned from -0.4 to 1.3 V vs. silver–silver chloride (Ag/AgCl, 0.197)
131 reference electrode and back at a scan rate of 400 V/s and a wave application frequency of 10 Hz.
132 Electrodes were allowed to equilibrate for approximately 10 min to allow the CFME to equilibrate at
133 the waveform applied and prevent electrode drift between each run. All data was background
134 subtracted to remove any non-faradaic currents by averaging 10 CVs. Electrodes were tested at a
135 flow rate of 1 mL/min using the aforementioned syringe pump.

136 Scanning electron microscopy images (SEM) images were obtained with a JEOL JSM-IT100
137 (JEOL, Tokyo, Japan). CNT yarn microelectrodes were gold sputtered to prevent charging. The
138 working distance was set to 10 mm and the accelerating voltage was 10 kV. Energy-dispersive X-ray
139 spectroscopy (EDS/EDX) measurements was also performed to identify chemical compositions of
140 the CNT yarn microelectrodes.

141 All data analysis was performed by using Graph Pad Prism 7. Statistical analysis was
142 performed with a student's t-test. Statistical significance was set to $p < 0.5$. All error bars are standard
143 error of the mean (SEM) unless otherwise noted.

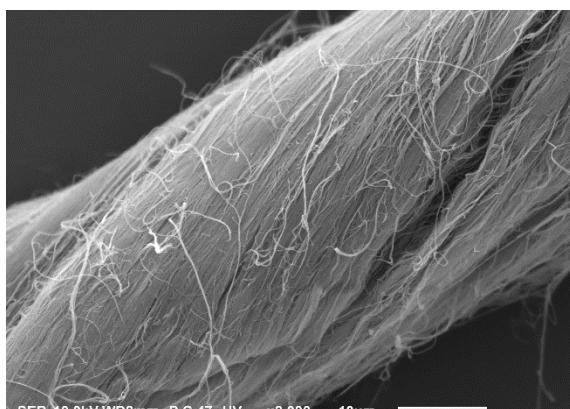
144

145 3. Results

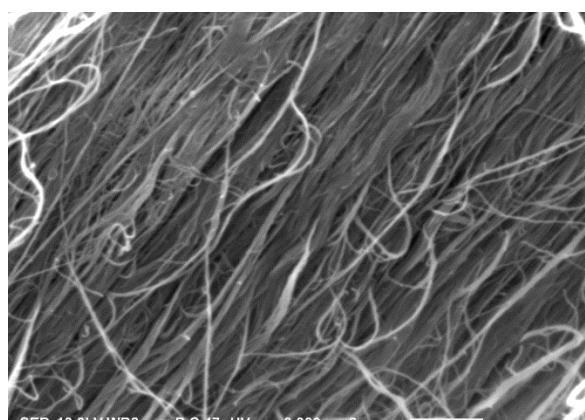

146 The optical and chemical characterization of CNT-yarn microelectrodes was performed with
147 scanning electron microscopy (SEM) imaging and EDS/EDX characterization using a JEOL
148 JSM-IT100 electron microscope. Before the CNT yarn could be utilized as an electrode for the
149 electrochemical sensing of neurotransmitters with fast scan cyclic voltammetry, it has to be
150 characterized optically to examine the surface features to determine whether it was suitable for
151 neurotransmitter adsorption. Most of the CNT yarns are either formed from liquid-state spinning
152 and solid-state spinning as previously described.[31, 32] Synthetic fibers are formed from a
153 concentrated, viscous liquid. However, in liquid based spinning, CNTs are dispersed into fluids
154 and either extruded or coagulation spun into fibers. In either process, long vertical arrays of
155 CNT-yarns are formed from individual fibers of “fibrils” twisted together to form CNT yarns.

156 SEM imaging of CNT yarns reveals fine surface features that appear efficacious for
157 neurotransmitter sensing measurements. At a relatively low magnification ($\times 250$), we show an
158 entire CNT yarn. As opposed to the carbon fiber microelectrode, the CNT yarn microelectrode is
159 approximately three times as large (25 microns in diameter) in comparison to the carbon fiber
160 microelectrode (7 microns in diameter). This is primarily important because the surface of the
161 microelectrode surface is directly proportional to the sensitivity Randles-Sevcik equation for
162 voltammetry experiments. In other words, larger electrodes with higher surface areas will be able to
163 detect lower concentrations (lower limits of detection) of biomolecules. This is important as
164 biomolecules are usually found in low (sub-micromolar and nanomolar concentrations) levels in
165 biological tissue and other samples.

166 In Figures 1B and 1C, we show zoomed-in magnifications of the CNT yarn microelectrodes at \times
167 2,000 and \times 6,000, respectively. The surface features of the CNT yarn microelectrodes are
168 significantly different than the carbon fiber microelectrodes. First and foremost, the carbon fibers
169 are primarily smooth with only mild indentations (data not shown). However, the CNT yarn
170 microelectrodes show the individual wrapping of tiny fibrils that are woven into yarns. It is
171 hypothesized that these fibers or fibrils (approximately 50 nm in diameter) are actually individual
172 bundles of carbon nanotubes drawn out through an extrusion process and wet spinning with the


173 help of a graphite furnace. These fibrils are then twisted individually together to form Carbon
174 nanotube yarns. The aspect (surface to volume) ratio and surface roughness is also efficacious for
175 neurotransmitter detection. The more pronounced surface features promote neurotransmitter
176 adsorption to the surface of the microelectrode, thus enhancing neurochemical detection at the
177 surface of the microelectrode. Also, CNT yarn microelectrodes have a higher concentration of
178 edge-plane carbon, which is the catalytic site for neurotransmitter adsorption as opposed to basal
179 plane of carbon.[33]

180 A.


181

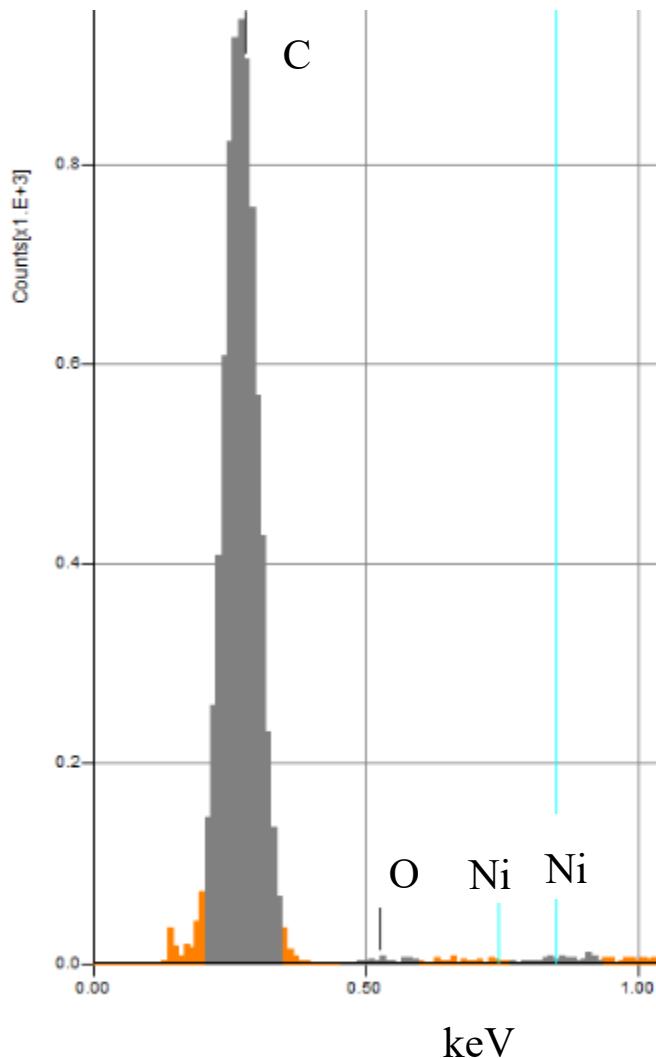
182 B.

183

184 C.

185

186 **Figure 1:** Scanning Electron Microscope (SEM) images of CNT yarn fibers at various zoomed-in
187 magnitudes displaying (A)Zoomed-Out magnification display (x250) of microelectrode. (C).


188 Cross-section of CNT yarn microelectrode and presence of individual fibrils twisted to form the
189 CNT yarn surface (x6,000 magnification).

190

191 In Figure 2, below, we show the surface chemical functionalization of CNT yarn
192 microelectrodes. As expected, the most prevalent element is carbon as carbon nanotubes are formed
193 primarily from carbon usually derived from acetylene gas during the chemical vapor deposition
194 process. Also, there were trace amounts of surface functionalities present such as oxygen and
195 nickel. Primarily, nickel is utilized as a catalyst for the growth of vertically aligned carbon
196 nanotubes, which could be the reason for presence of trace amounts of this heavy metal.[34, 35]
197 Moreover, oxygen could be found to the oxidation of carbon-carbon bonds either in air or
198 electrochemically. The presence of oxygen is fundamentally important in creating a novel
199 neurotransmitter sensor. Carbon modified with negatively charged oxide, hydroxy, ketone,
200 carboxylic acid, and other moieties makes the electrode more negatively charged. Therefore, the
201 electrodes are more sensitive to positively charged catecholamines and monoamines such as
202 dopamine and serotonin for example. The monoamines are protonated at a physiological pH of 7.4,
203 which makes them positively charged and allows them adsorb onto the surface of the negatively
204 charged microelectrode surfaces through an electrostatic attraction of opposite charges, which
205 enhances neurotransmitter detection.[36, 37]

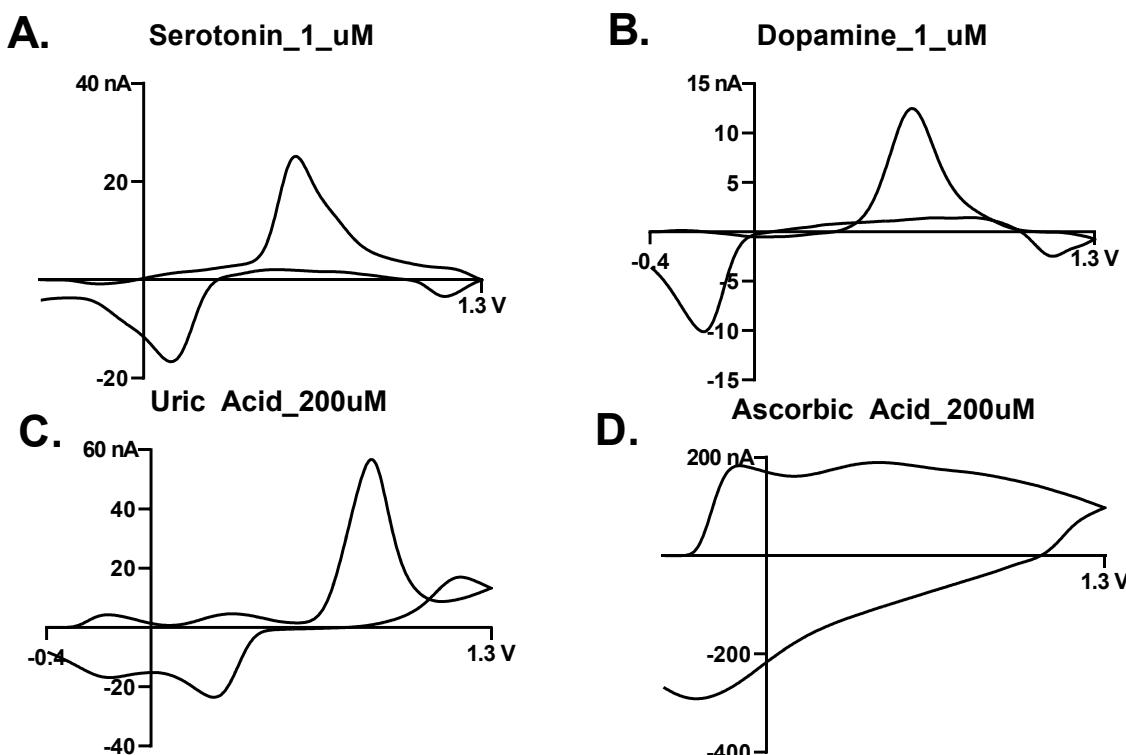
206

207

208

209 **Figure 2:** EDS/EDX measurements of chemical functionalities at the surface of the Carbon Nanotube
210 Yarn Microelectrodes. The most abundant elements present are Carbon, Oxygen, and Nickel.

211


212 **Electrochemical Measurements**

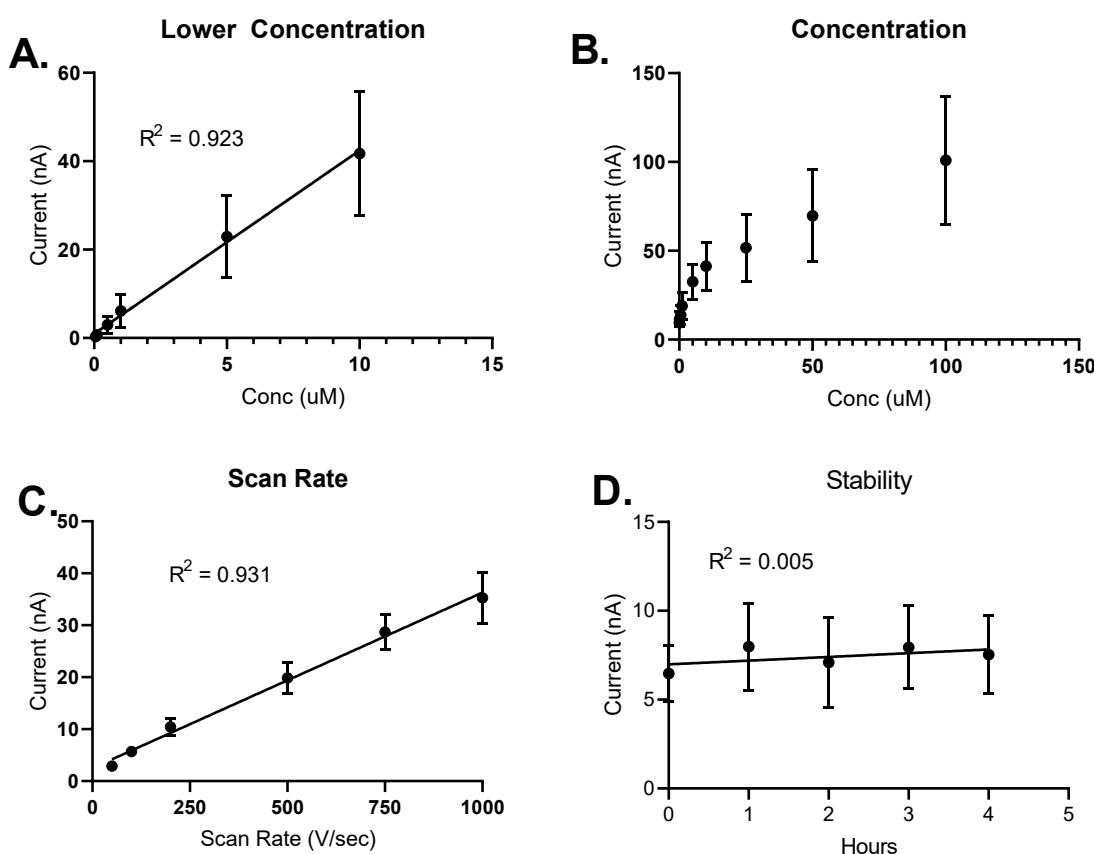
213 The CNT yarn microelectrodes were then utilized as electrochemical sensors for the detection
214 of several biomolecules. The neurotransmitters that we chose were the catecholamine dopamine,
215 the monoamine serotonin, and the anionic interferants ascorbic acid, and uric acid. Dopamine is an
216 important catecholamine and monoamine neurotransmitter important for understanding
217 Parkinson's Disease[38], amphetamine abuse[39, 40], cocaine abuse[1], and other decision making
218 capabilities. Serotonin regulates mood and behavior and the depletion of serotonin in the synaptic
219 cleft causes depression.[41] The administration of selective serotonin reuptake inhibitors (SSRIs)
220 such as escitalopram help treat depression by increasing serotonin levels in the synaptic cleft.[42-44]
221 Therefore, the detection of these neurotransmitters with fast scan cyclic voltammetry and CNT-yarn
222 microelectrodes will further help understand their physiological roles.

223 In Figure 3 we show the cyclic voltammograms of A). 1 μ M serotonin, B). 1 μ M dopamine, C).
224 200 μ M Uric Acid, and D). 200 μ M ascorbic acid. The monoamines (serotonin and dopamine) have
225 higher sensitivities at the surface of the electrode because the amines are protonated, and hence
226 positively charged, and thus, adsorb to the negatively charged electrode surface through the

227 electrostatic interaction of opposite charges. The sharp peak shaped currents denote adsorption of
 228 the monoamines to the surface of the electrode as opposed to diffusion control. CNT yarn
 229 microelectrodes are also more conductive than the conventional graphitic carbon fiber
 230 microelectrodes, thus explaining the faster electron transfer and faster Δ_{EP} (peak separation) with
 231 respect to CFMEs. The electrodes are also larger, explaining the increased sensitivity as well with
 232 respect to CFMEs.

233 On the other hand, negatively charged biomolecules C). uric acid and D). ascorbic acid have to
 234 be tested at significantly higher concentrations in order to be detected by the CNT-yarn
 235 microelectrode. It is hypothesized that they are diffusion controlled to the surface of the negatively
 236 charged CNT-yarn microelectrode that is functionalized with negatively charged oxide groups.
 237 This creates an electrostatic repulsion at the surface of the electrode with the anionic analytes,
 238 which will prevent adsorption at the surface of the CNT yarn microelectrode, hence the lower
 239 sensitivity.

240
 241 **Figure 3:** Cyclic Voltammograms (CVs) of biomolecular neurotransmitters and other analytes using
 242 fast scan cyclic voltammetry (FSCV) with CNT-yarn microelectrodes. The CNT yarn
 243 microelectrodes were able to detect A). 1 μ M serotonin, B). 1 μ M dopamine, C). 200 μ M Uric Acid,
 244 and D). 200 μ M ascorbic acid.


245

246 Adsorption Control

247 We then performed a series of FSCV experiments on CNT yarns to examine the adsorptive
 248 properties of serotonin to the surface of the CNT-yarn microelectrode. First, we varied the
 249 concentration of serotonin from 100 nM – 100 μ M. As expected we saw a linear relationship with
 250 respect to peak oxidative current (Figure 4A, $n = 4$, $R^2 = 0.923$). At concentrations higher than 10 μ M,

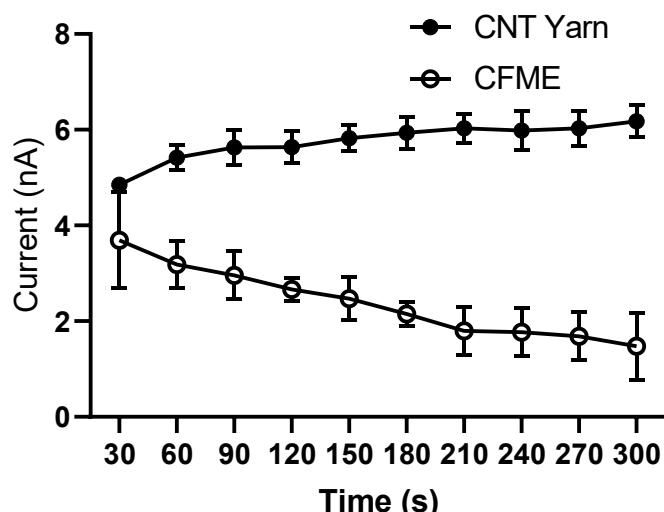
251 serotonin became saturated at the surface of the electrode, hence producing the asymptotic curve
 252 (Figure 4B), which denoted more diffusion controlled at the surface of the electrode.

253 We further altered the scan rate from 50 V/sec – 1,000 V/sec. We also observed a linear
 254 relationship between peak oxidative current and scan rate (Figure 4C, $n = 4$, $R^2 = 0.931$) indicating
 255 adsorption control at the surface of the electrode. Moreover, we performed a stability experiment
 256 where we injected 1 μ M serotonin repeatedly onto the surface of the CNT yarn microelectrode once
 257 per hour for a total of four hours. There was no significant difference in the peak oxidative current
 258 for serotonin detection over four hours (Figure 4D) indicating a stability of the CNT yarn
 259 microelectrode response over a four time period.
 260

261
 262 **Figure 4: Adsorption Properties.** For CNT yarn microelectrodes, A). The peak oxidative current
 263 response with respect to serotonin was stable over four hours. B). Peak oxidative current for
 264 serotonin CVs were linear with respect to scan rate. C). Serotonin is saturated at the surface of the
 265 electrode after 10 μ M denoting an asymptotic curve. D). The linear range for serotonin
 266 measurements is from 100 nM – 10 μ M, $n=4$.
 267

268 Anti-Fouling Properties

269 Moreover, we also studied the anti-fouling properties of the CNT-yarn microelectrodes. At the
 270 surface of the carbon fiber-microelectrodes (CFMEs), serotonin is known to polymerize (or foul) the
 271 surface of the electrode by becoming a dimer and then undergoing a free-radical polymerization at
 272 the surface of the electrode. The subsequent polymer creates a non-conductive coating on the


273 surface of the carbon fiber microelectrode, which blocks the further adsorption and electron transfer
 274 of serotonin and other biomolecules to the surface. Also, the breakdown metabolite product of
 275 serotonin, 5-hydroxyindoleacetic acid (5-HIAA), also fouls the surface of electrode like serotonin
 276 and is found *in vivo* at concentrations almost 10x higher than serotonin in certain brain regions.
 277

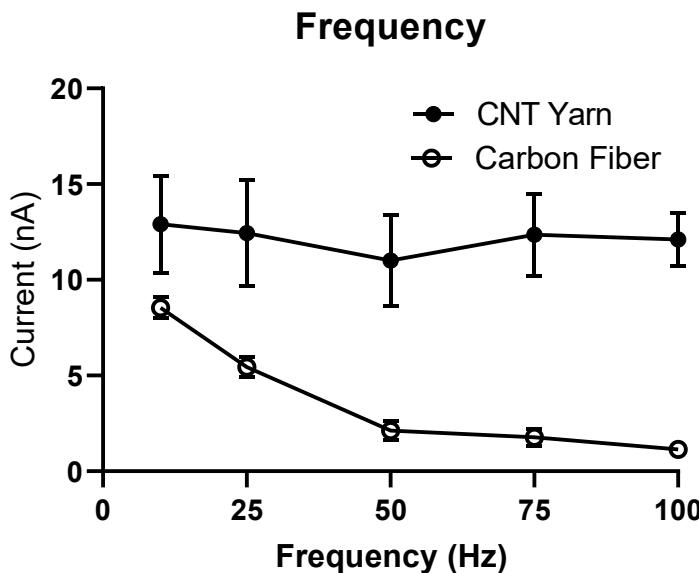
278 Usually, it is necessary to electrodeposit a negatively charged ion exchange polymer such as
 279 Nafion to the surface of the electrode to make it negatively charged to electrostatically repel the
 280 anionic 5-HIAA from the surface of the electrode. However, this decreases the temporal resolution
 281 and, hence, increases the response time for serotonin measurements by creating an extra polymer
 282 layer that the analyte must diffuse through before reaching the electrode surface. Therefore, other
 283 electrode materials must be utilized to enhance serotonin detection such as CNT yarn
 284 microelectrodes.

285 We compared CNT yarn microelectrodes to carbon fiber microelectrodes for their anti-fouling
 286 properties with respect to repeated instantaneous injections of 1 μ M serotonin for over five minutes
 287 or approximately 10 injections (approximately 30 seconds per run). As shown in Figure 5, for
 288 CFMEs, there was an over 50% decrease in peak oxidative current of the cyclic voltammograms for
 289 1 μ M serotonin detection between the first and the tenth run. However, there was no marked
 290 decrease in the sensitivity for CNT-yarn microelectrodes that underwent the same experiment. We
 291 hypothesize that serotonin fouled the surface of the CFMEs, but not the surface of the CNT yarn
 292 microelectrodes. The most likely cause for this phenomenon was the presence of more edge plane
 293 carbon (sp^3 hybridized at the surface), which is the catalytic site for neurotransmitter oxidation, and
 294 defect sites at the surface of the CNT yarn microelectrodes, which prevented surface fouling on
 295 CNT yarn microelectrodes.[30, 33, 45]

296

Fouling Experiment

297


298 **Figure 5: Fouling Experiment.** Increasing the injection number decreases the peak oxidative current
 299 for serotonin detection by over 50% for CFMEs, but remains unchanged for CNT yarn
 300 microelectrodes, n=5.

301

302 **High Temporal Measurements (Wave application frequency independence)**

303 Lastly, we have shown that CNT yarn microelectrodes have a frequency independent response
304 with respect to serotonin detection (Figure 6). Usually, increasing the wave application frequency
305 (i.e. from 10 Hz – 100 Hz) lowers the amount of time at the negative holding potential, which
306 decreases the time for adsorption onto the electrode surface and, hence, decreases sensitivity as
307 well. Previous studies have shown that the peak oxidative current on the cyclic voltammograms of
308 dopamine detection for CNT yarn microelectrodes was independent of the wave application
309 frequency. However, up until now, this has not been studied with other monoamines such as
310 serotonin. The rationale is that CNT yarn microelectrodes are more sp^2 hybridized than carbon fiber
311 electrodes, which are primarily composed of loosely ordered sheets of that are partially sp^2 and sp^3
312 hybridized. Therefore, the mechanism of adsorption onto CFMEs for dopamine or serotonin is
313 primarily thought to be charge-related. In other words, the protonated amine of dopamine or
314 serotonin causes it to be positively charged, which is electrostatically attracted to and, hence
315 adsorbs, onto the negatively charged oxide groups on surface of the surface of the CFME. However,
316 another mechanism of adsorption may occur onto the more sp^2 hybridized CNT yarn
317 microelectrode including $\pi-\pi$ stacking from the phenyl group of the catechol dopamine to the
318 surface of the carbon electrode in addition to hydrogen-bonding from catechol group to the oxide
319 functionalized electrode surface as well.

320 Recently, the Venton group has shown that CNT-yarn and fiber microelectrodes have higher
321 surface roughness than CFMEs and have been shown to trap dopamine in micro-crevices that
322 prevents desorption from the surface, which can explain the peak oxidative current independence
323 from frequency.[26, 27] As shown in this work, increasing the wave application frequency from 10
324 Hz – 100 Hz decreases the peak oxidative current for serotonin detection on CFMEs by over 90%.
325 However, increasing the wave application frequency from 10 – 100 Hz has no significant effect on
326 the sensitivity (peak oxidative current) for serotonin detection onto CNT-yarn microelectrodes. If
327 anything, the peak oxidative current slightly increases as the electrode oxidizes and equilibrates
328 when scanning at higher wave application frequencies. We hypothesize that, like dopamine,
329 serotonin is trapped at the surface of the micro-crevices of the increased surface roughness of the
330 CNT yarn microelectrode, which causes the serotonin to be stuck at the surface of the CNT yarn
331 electrode and prevents desorption, thus explaining this phenomenon. As far as we know, this is the
332 first study that has shown the wave application frequency independence for serotonin detection on
333 CNT yarn microelectrodes.

334

335 **Figure 6:** Frequency Experiment. Increasing the wave application frequency decrease the peak
 336 oxidative current for serotonin detection on CFMEs, but not on CNT yarn microelectrodes, n=5.

337

338 Conclusion and Future Work

339 In this study, we have shown a novel application for CNT-yarn microelectrodes and further
 340 characterization for serotonin detection. CNT yarn microelectrodes had high surface roughness and
 341 were functionalized with negatively charged oxide groups, which made them ideal for electrode
 342 materials for neurotransmitter detection. They also had higher sensitivities towards cationic
 343 monoamines dopamine and serotonin with respect to anionic interferants. CNT-yarn
 344 microelectrodes displayed an adsorption control dependence with respect to serotonin oxidation
 345 detection in addition to anti-fouling properties in comparison to traditional CFMEs. Moreover, high
 346 temporal measurements for serotonin were illustrated for the first time as CNT yarn
 347 microelectrodes displayed a frequency independent response with respect to serotonin. This work
 348 could allow for the improved measurement of serotonin at high temporal resolution in biological
 349 tissue, which could help enhance the understanding of depression and other disease states through
 350 the rapid measurements of serotonin.

351 Acknowledgements

352 We acknowledge the following funding sources: American University Faculty Research Support
 353 Grant (AGZ, TA, FL, AM), NIH 1R41NS113702-01 (AGZ), NSF-MRI #1625977, and NSF
 354 I-Corps #1936173 (AGZ).

355 References

1. Zestos, A.G., et al., *Ruboxistaurin Reduces Cocaine-Stimulated Increases in Extracellular Dopamine by Modifying Dopamine-Autoreceptor Activity*. ACS Chemical Neuroscience, 2019. **10**(4): p. 1960-1969.
2. Hashemi, P., et al., *Voltammetric detection of 5-hydroxytryptamine release in the rat brain*. Analytical chemistry, 2009. **81**(22): p. 9462-9471.
3. Zestos, A.G., et al., *Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies*. ACS chemical neuroscience, 2018. **10**(4): p. 1875-1883.

362 4. Luna-Munguia, H., et al., *Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy*.
363 *Neurobiology of disease*, 2019. **121**: p. 177-186.

364 5. Jun, H., et al., *An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling*.
365 *Nature Medicine*, 2018.

366 6. Zestos, A.G. and R.T. Kennedy, *Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical*
367 *Monitoring*. *The AAPS journal*, 2017. **19**(5): p. 1284-1293.

368 7. Yokoi, F., et al., *Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic*
369 *drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C] raclopride*.
370 *Neuropsychopharmacology*, 2002. **27**(2): p. 248-259.

371 8. Ribeiro, J.A., et al., *Electrochemical sensors and biosensors for determination of catecholamine*
372 *neurotransmitters: a review*. *Talanta*, 2016. **160**: p. 653-679.

373 9. Raju, D., et al., *Polymer modified carbon fiber-microelectrodes and waveform modifications enhance*
374 *neurotransmitter metabolite detection*. *Analytical Methods*, 2019. **11**(12): p. 1620-1630.

375 10. Zestos, A.G., et al., *Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes*. *Sensors and*
376 *Actuators B: Chemical*, 2013. **182**: p. 652-658.

377 11. Wang, J., et al., *Carbon nanotube fiber microelectrodes*. *Journal of the American Chemical Society*, 2003.
378 **125**(48): p. 14706-14707.

379 12. Iijima, S. and T. Ichihashi, *Single-shell carbon nanotubes of 1-nm diameter*. *nature*, 1993. **363**(6430): p. 603.

380 13. Iijima, S., *Helical microtubules of graphitic carbon*. *nature*, 1991. **354**(6348): p. 56.

381 14. Jacobs, C.B., T.L. Vickrey, and B.J. Venton, *Functional groups modulate the sensitivity and electron transfer*
382 *kinetics of neurochemicals at carbon nanotube modified microelectrodes*. *Analyst*, 2011. **136**(17): p. 3557-3565.

383 15. Xiao, N. and B.J. Venton, *Rapid, sensitive detection of neurotransmitters at microelectrodes modified with*
384 *self-assembled SWCNT forests*. *Analytical chemistry*, 2012. **84**(18): p. 7816-7822.

385 16. Zestos, A.G., *Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters*. *International*
386 *Journal of Electrochemistry*, 2018. **2018**.

387 17. Pairs, M.J., A.E. Ross, and B.J. Venton, *Comparison of Nafion-and overoxidized polypyrrole-carbon nanotube*
388 *electrodes for neurotransmitter detection*. *Analytical Methods*, 2011. **3**(10): p. 2379-2386.

389 18. Mohanaraj, S., et al., *Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical*
390 *Detection*. *JoVE (Journal of Visualized Experiments)*, 2019(147): p. e59552.

391 19. Zestos, A.G., et al., *Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine*. *Analyst*,
392 2015. **140**(21): p. 7283-7292.

393 20. Yang, C., et al., *Carbon nanotubes grown on metal microelectrodes for the detection of dopamine*. *Analytical*
394 *chemistry*, 2015. **88**(1): p. 645-652.

395 21. Vigolo, B., et al., *Macroscopic fibers and ribbons of oriented carbon nanotubes*. *Science*, 2000. **290**(5495): p.
396 1331-1334.

397 22. Muñoz, E., et al., *Highly conducting carbon nanotube/polyethyleneimine composite fibers*. *Advanced*
398 *Materials*, 2005. **17**(8): p. 1064-1067.

399 23. Zestos, A.G., et al., *Polyethyleneimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of*
400 *Neurotransmitters*. *Analytical chemistry*, 2014. **86**(17): p. 8568-8575.

401 24. Harreither, W., et al., *Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling*.
402 *Analytical chemistry*, 2013. **85**(15): p. 7447-7453.

403 25. Jacobs, C.B., et al., *High temporal resolution measurements of dopamine with carbon nanotube yarn*
404 *microelectrodes*. *Analytical chemistry*, 2014. **86**(12): p. 5721-5727.

405 26. Yang, C., et al., *Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation*

406 of electrochemical performance and surface properties. *Analytica chimica acta*, 2017. **965**: p. 1-8.

407 27. Yang, C., et al., *O₂ Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode*

408 *Improve Sensitivity and Antifouling Properties*. *Analytical chemistry*, 2017. **89**(10): p. 5605-5611.

409 28. Zestos, A.G. and B.J. Venton, *Communication—Carbon Nanotube Fiber Microelectrodes for High Temporal*

410 *Measurements of Dopamine*. *Journal of The Electrochemical Society*, 2018. **165**(12): p. G3071-G3073.

411 29. Schmidt, A.C., et al., *Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in*

412 *live brain tissue*. *ACS nano*, 2013. **7**(9): p. 7864-7873.

413 30. Weese, M.E., et al., *Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes*. *ACS*

414 *sensors*, 2019. **4**(4): p. 1001-1007.

415 31. Jakubinek, M.B., et al., *Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns*. *Carbon*, 2012. **50**(1): p. 244-248.

416 32. Abot, J.L., et al., *Delamination detection with carbon nanotube thread in self-sensing composite materials*. *Composites Science and Technology*, 2010. **70**(7): p. 1113-1119.

417 33. Patel, A.N., et al., *Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine*. *Analytical chemistry*, 2013. **85**(24): p. 11755-11764.

418 34. Huang, Z., et al., *Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes*. *Applied Physics A*, 2002. **74**(3): p. 387-391.

419 35. Deck, C.P. and K. Vecchio, *Prediction of carbon nanotube growth success by the analysis of carbon–catalyst*

420 *binary phase diagrams*. *Carbon*, 2006. **44**(2): p. 267-275.

421 36. Heien, M.L., et al., *Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases*

422 *sensitivity*. *Analyst*, 2003. **128**(12): p. 1413-1419.

423 37. Takmakov, P., et al., *Carbon microelectrodes with a renewable surface*. *Analytical chemistry*, 2010. **82**(5): p.

424 2020-2028.

425 38. Goldstein, D.S., et al., *Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson's*

426 *disease*. *Journal of neurochemistry*, 2013. **126**(5): p. 591-603.

427 39. Carpenter, C., et al., *Direct and systemic administration of a CNS-permeant tamoxifen analog reduces*

428 *amphetamine-induced dopamine release and reinforcing effects*. *Neuropsychopharmacology*, 2017. **42**(10): p.

429 1940.

430 40. Zestos, A.G., et al., *PKC β inhibitors attenuate amphetamine-stimulated dopamine efflux*. *ACS chemical*

431 *neuroscience*, 2016.

432 41. Breuer, B. and R. Anderson, *The relationship of tamoxifen with dementia, depression, and dependence in*

433 *activities of daily living in elderly nursing home residents*. *Women & health*, 2000. **31**(1): p. 71-85.

434 42. Abdalla, A., et al., *In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes*. *Analytical*

435 *chemistry*, 2017. **89**(18): p. 9703-9711.

436 43. Wood, K.M. and P. Hashemi, *Fast-scan cyclic voltammetry analysis of dynamic serotonin responses to acute*

437 *escitalopram*. *ACS chemical neuroscience*, 2013. **4**(5): p. 715-720.

438 44. Wood, K.M., et al., *Voltammetric and mathematical evidence for dual transport mediation of serotonin clearance*

439 *in vivo*. *Journal of neurochemistry*, 2014. **130**(3): p. 351-359.

440 45. Güell, A.G., et al., *Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon,*

441 *boron doped diamond and carbon nanotube network electrodes*. *Physical Chemistry Chemical Physics*, 2010.

442 **12**(34): p. 10108-10114.

443

444

445

446

447

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).