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Abstract. We consider computational games, sequences of games G =
(G1, G2, . . .) where, for all n, Gn has the same set of players. Computa-
tional games arise in electronic money systems such as Bitcoin, in crypto-
graphic protocols, and in the study of generative adversarial networks in
machine learning. Assuming that one-way functions exist, we prove that
there is 2-player zero-sum computational game G such that, for all n, the
size of the action space in Gn is polynomial in n and the utility function
in Gn is computable in time polynomial in n, and yet there is no ε-Nash
equilibrium if players are restricted to using strategies computable by
polynomial-time Turing machines, where we use a notion of Nash equi-
librium that is tailored to computational games. We also show that an
ε-Nash equilibrium may not exist if players are constrained to perform
at most T computational steps in each of the games in the sequence.
On the other hand, we show that if players can use arbitrary Turing
machines to compute their strategies, then every computational game
has an ε-Nash equilibrium. These results may shed light on competitive
settings where the availability of more running time or faster algorithms
can lead to a “computational arms race”, precluding the existence of
equilibrium. They also point to inherent limitations of concepts such as
“best response” and Nash equilibrium in games with resource-bounded
players.
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1 Introduction

One of the most widely used solution concepts in game theory is Nash equilib-
rium (NE). In a Nash equilibrium, no player can improve his utility by deviating
unilaterally from his strategy. A key property of NE is that it exists in every
normal-form game, making it a potential candidate for an equilibrium rational
players may end up in. However, the proof of existence of NE is silent with
respect to the computational resources players may or may not have. But if a
Nash equilibrium is hard to compute, it is hard to imagine how computationally
bounded players could play it 3. The importance of taking computational con-
cerns into account in game theory has been recognized since at least the work

3 The celebrated PPAD-completeness results [3, 5] indicate that finding a NE in a fixed
game is intractable. Our setting is very different from the setting that is considered
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of Simon [26]. Our goal here is to examine how considering computationally
bounded players influences notions such as best response and NE.

We will be mainly interested in players that are polynomially bounded, con-
tinuing a long line of work in game theory on resource-bounded players (e.g.,
[16, 19, 21, 23]). To make sense of polynomial-time players, we need to have a
set of inputs that grow as a function of n. But game theorists typically study
individual games, which have a fixed size. To deal with this, we consider not
single games, but computational games [12], which have the form (G1, G2, . . .),
where for all n, Gn is a finite game. We assume that each player chooses a Tur-
ing machine (TM) that, given n, computes a strategy for the player in Gn. If
a player is polynomial-time bounded, then the player’s action in the nth game
can be computed in time polynomial in n.

Computational games arise in a number of settings of interest. One example
is “crypto-currencies” such as Bitcoin. An essential ingredient of Bitcoin [17]
is miners who solve challenging cryptographic problems, whose solution is later
used in verifying transactions in the system. Bitcoin keeps the average time at
which puzzles are solved a constant, despite technological advances, by making
the cryptographic problem needed to be solved harder and harder over time,
forcing miners to examine a larger number of possible solutions. This can be
modeled by viewing Bitcoin as a sequence of games, where in the nth game the
miner is required to solve a cryptographic puzzle Pn such that the number of
candidate solutions that need to be examined in order to solve Pn is a function
of n.

Cryptographic protocols such as commitment schemes [2] provide another
example of computational games. A commitment scheme consists of two parties;
a sender and a receiver. In the first step of this protocol, the sender chooses a
bit b and sends an encryption of b to the receiver, committing the sender to b
without revealing b to the receiver. Next, the receiver chooses a bit. Finally the
sender reveals the bit to the receiver. This protocol can be viewed as a game
where the receiver wins if the bit he chooses matches the bit revealed; the sender
wins if they do not match. Clearly, if the receiver can break the scheme and
deduce the sender’s bit, the receiver wins; if the sender can cheat (“reveal” a
bit that does not necessarily match what he committed to), the sender wins.
The encryption at the first step involves a security parameter k, where larger
security parameters provide more security (i.e., more running time is required
to break the scheme). This can be modeled as a sequence of games, where in the
kth game the sender encrypts the bit using a security parameter k [12]. Many
cryptographic protocols, including secret sharing and multiparty computation,
can be viewed as computational games in this way.

Yet one more example of computational games arises in the study of GANs
generative advsersarial networks in machine learning; as argued by Oliehook et
al. [22], GANs can be viewed as computational games that end up converging
to a “local resource-bounded NE”.

in these PPAD-hardness results. For more details see the discussion of related work
in the end of this section.
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The computational games that we consider are actually sequences of Bayesian
games, where the action of a player may depend on his type, which encodes
some private information that the player may have. In a computational game,
the action spaces and types spaces all have to be finite, and the utility functions
and probability distribution over types have to be computable. We focus here
on a subclass of computational games that we call polynomial games; these are
sequences of games where the action space and type space in the nth game
have size polynomial in n, and the utility function and probability distribution
over types in the nth game can be computed in time polynomial in n. These
restrictions all apply to the games that we are interested in, such as Bitcoin.4

An analogue of NE can be defined in computational games (G1, G2, . . .) [12].
We assume that every game Gj is a k-player game and that for 1 ≤ i ≤ k, player
i uses a TM Mi that computes his actions in Gj given j. Roughly speaking,
a machine profile (M1, . . . ,Mk) consisting of TMs is a NE if, for every player,
replacing his TM by a different TM gives him at most a negligible improvement
to his utility. We can get a notion of polynomial-time NE by replacing “TM”
with “polynomial-time TM” everywhere in the definition. (There are certain
subtleties in this definition; see Definition 5 and the discussion thereafter for
more detail.)

In contrast to fixed games, where NE always exists, we show that in com-
putational games, NE may not exist. Specifically, we show (Theorem 1) that,
assuming the existence of one-way functions, there are polynomial 2-player zero-
sum games for which no polynomial-time Nash equilibrium exists. This is done
by simulating the “largest integer game” in this setting, the game where players
simultaneously output an integer, and the player who chooses the largest integer
wins. Clearly this game has no Nash equilibrium [15]. We can effectively simulate
this game by presenting players with multiple one-way function puzzles, requir-
ing players to invert as many puzzles as possible. We can ensure that a player
with sufficiently more (but only polynomially more) running time can invert
more puzzles. Thus, we get an “arms race” with no equilibrium. This example
points to an inherent difficulty in analyzing games with polynomially-bounded
players. Namely, in such games, there is often no best response; players can use
longer and longer running times to improve their payoffs. Interestingly, a similar
phenomenon has been observed in Bitcoin, where miners use increasingly more
sophisticated computational devices for the mining operation (see [4] and the
reference therein).

We then demonstrate (Theorem 2) that Nash equilibrium may fail to exist
even if players are constrained to run for at most T steps for a fixed integer
T , without asymptotics kicking in. The idea is to let players first play a game
(matching pennies) that requires randomization to achieve equilibrium, and then

4 The games used to model protocols such as Bitcoin are actually extensive-form
games, which are played over time. Our impossibility results show that there are
computational Bayesian games where there is no NE when we restrict to polynomial-
time players. Since Bayesian games are a special case of extensive-form games, our
non-existence results carry over to extensive-form games.
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effectively give the player with greater remaining running time an additional
bonus. Assuming that the generation of a random bit requires computational
effort, this game cannot have a Nash equilibrium. Our impossibility results hold
even if we replace “Nash equilibrium” by “ε-Nash equilibrium”. By way of con-
trast, we show (Theorem 3) that if players are not computationally bounded
(i.e., can use arbitrary Turing machines), then there is always an ε-NE in a com-
putational game. The key idea behind Theorem 3 is that an algorithm similar
to that of Lipton and Markakais [14] for finding an ε-NE in a fixed game can be
used by the players to find ε-NE in computational games.

It is worthwhile at this point to examine our result in the context of the
literature on bounded rationality in game theory. Two high-level approaches to
incorporating complexity-theoretic considerations into game theory have been
considered:

– Rubinstein [24] did not limit the complexity, but charged for it.

– Neyman [20] limited the players (e.g., to being finite automata).

Halpern and Pass [10] extended Rubinstein’s approach to TMs: players choose
a TM, and then they are charged for the running time/space used/amount of
randomization used by the TM on a given input. The approach of charging for
complexity of Turing machines was also considered by Fortnow and Santhanam
[9], who discount the payoffs of players by the amount of time they use to com-
pute their response. The effect of charging players for the strategies they use on
the convergence of learning dynamics to Nash Equilibrium was considered by
Ben-Sasson, Tauman-Kalai, and Kalai [1].

In this work we follow the approach of Neyman [20]: we limit players to using
polynomial-time TMs, but don’t charge for computation. Thus, unlike Halpern
and Pass [10] and Fortnow and Santhamam [9], we limit computation, rather
than charging for it. Just as we do, Halpern and Pass [10] prove both the existence
and non-existence of NE, depending on assumptions. However, the reasons for
these results are very much framework-dependent. For example, Halpern and
Pass [10] show that NE may not exist if we charge players for randomness and
it does exist in their framework if we do not charge for randomness. By way
of contrast, our main result concerning the non-existence of NE (Theorem 1)
holds even if we do not charge for the time taken to generate a random bit.
Fortnow and Samantham’s result on the existence of ε-NE in their version of
computational games [9] depends heavily on their assumption that utilities are
discounted; we have no analogue of this assumption, and thus must use quite
different techniques in our proof of the existence of ε-NE.

Despite all the work on resource-bounded players, to the best of our knowl-
edge, very little work has been done on games where players are limited to using
polynomial-time Turing Machines. One exception is the work of Megiddo and
Wigderson [16], who consider playing repeated prisoner dilemma (for finitely
many rounds) with TMs. Their main interest is whether, in finitely repeated
prisoners dilemma, there exist “almost cooperative” equilibria (where “defect”
is played o(n) times). They restrict attention to deterministic TM. With this re-
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striction it is not difficult to give examples of games (with polynomially-bounded
players) for which an ε-NE does not exist.

Polynomial games bear some similarities to succinct games. In succinct games,
there exists a circuit C that calculates the utility C(x1, x2, . . . , xk) of the players
once they choose the actions x1, x2, . . . , xk ∈ {0, 1}m. It is known that, given
a 2-player zero-sum succinct game, it is EXP-hard to find a NE [7, 8] (see also
[25]). Our results regarding the non-existence of NE in polynomial games are in-
comparable to these results. We are concerned with polynomial-time computable
strategies. Considering polynomially-bounded players (as opposed to unbounded
players) may drastically change the set of Nash equilibria in succinct games. In-
deed, a NE for a computational game (G1, G2, . . .) with polynomially-bounded
players may fail to be a Nash equilibrium for Gn for all n ≥ 1: for an example,
see the end of Section 3. Moreover, for any fixed game G, a computational NE
for the computational game (G,G,G, . . .) can always be found in polynomial
time. Thus, the PPAD-hardness results of finding a Nash equilibrium in a fixed
game [3, 5] cannot be applied in our setting either.

2 Preliminaries

We begin by defining Bayesian games.

Definition 1. A k-player normal-form Bayesian game is described by a tuple
(J,B, T, P, v), where

– J is a set of k players (we identify J with [k] = {1, . . . , k});

– B =
∏k

i=1Bi, where Bi is a finite set for all i ∈ [k] consisting of the available
actions of player i;

– T =
∏k

i=1 Ti, where Ti is a finite set called the type space of player i;

– P is a probability distribution over T ;

– v = (v1, . . . , vk), where for all i, vi is a function from B × T to the real
numbers.

In our settings, it will often be the case that all types are perfectly correlated:
all players have the same type and all players know the type of every other player.
Observe that normal-form games can be viewed as a special case of Bayesian
games (where the type space is a singleton). Finally, since we are concerned here
mainly with Bayesian games, when we write “game” we mean “Bayesian game”,
unless explicitly stated otherwise.

A pure strategy si for player i is a map si : Ti → Bi; a strategy si maps the
type ti ∈ Ti of player i to an action si(ti) ∈ Bi. We denote by ∆(Bi) the set
of all probability distribution over Bi; let ∆ = Πk

i=1∆(Bi). A mixed-strategy
si for player i is a function mapping type ti ∈ Ti to an element of ∆(Bi). We
denote by si(ti, bi) the probability assigned by a mixed strategy si(ti) to bi ∈ Bi.
The expected utility of player i with the mixed strategy profile s = (s1, . . . , sk)
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(where t = (t1, . . . , tk) ∈ T , b = (b1, . . . , bk) ∈ B, and (s1(t1), . . . , sk(tk)) ∈ ∆)
is given by

Vi(s) =
∑
t∈T

P (t)
∑
b∈B

 k∏
j=1

sj(tj , bj)

 vi(t, b). (1)

Note that there are two sources of uncertainty in the utility of a player choosing
a mixed action: the probability distribution over other players actions and the
distribution P over the type space.

Definition 2. Let G = (J,B, T, P, v) be a k-player Bayesian game and suppose
that ε ≥ 0. A mixed-strategy profile s = (s1, . . . , sk) is an ε-Nash equilibrium
(ε-NE for short) if, for all players i and all mixed strategies s′i, we have that

Vi(s) ≥ Vi(s′i, s−i)− ε.

(As usual, if s = (s1, . . . , sk) then s−i = (s1, . . . , si−1, si+1, . . . , sk) is the tuple
excluding si.) When ε = 0, we have a Nash equilibrium.

To reason about resource-bounded players in games, we consider a sequence
(G1, G2, . . .) of games where, for all n, Gn = (J,Bn, Tn, Pn, vn) is a k-player
game (k is fixed and does not depend on n). We adapt the definition of [12],
which in turn is based on earlier definitions by Dodis, Halevy and Rabin [6] and
is applied to Bayesian games. For an integer s, recall that {0, 1}≤s is the set of
all bit strings of length at most s.

Definition 3. A computational game G = (G1, G2, . . .) is a sequence of normal-
form Bayesian games, where Gn = ([k], Bn, Tn, Pn, vn) , such that

– The set of players in Gn, [k], is the same for all n.5

– For all n and all i, Bn
i ⊆ {0, 1}≤m for some finite m (that may depend on

n).
– For all n and all i, Tn

i ⊆ {0, 1}≤r for some finite r (that may depend on n).
– For all i ∈ [k] and n, there is a TM M such that, given b ∈ Bn, t ∈ Tn, and

1n, computes vni (b, t).
– For all i ∈ [k] and n, there is a TM M ′ such that given t ∈ Tn and 1n,

computes Pn(t).6

G is bounded if there exist constants 0 < c < C such that for all n, b ∈ Bn, and
t ∈ Tn we have that vni (b, t) 6= 0⇒ |vni (b, t)| ∈ [c, C].

When dealing with games with polynomial-time players, we require slightly
stronger properties summarized in the definition below. Following the definition
of polynomial games for extensive- form games [12], we define polynomial games
for a sequence of Bayesian games.

5 It is also possible to allow k to depend on n, but we focus on the case where k is a
constant for concreteness.

6 We restrict our attention to utilities and probabilities that are rational numbers.
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Definition 4. A computational game G = (G1, G2, . . .) is a polynomial game if
the following conditions hold:

– There exist a polynomial p such that, for all n and all i, Bn
i = {0, 1}≤p(n).

– There exist a polynomial q such that, for all n and all i, Tn
i = {0, 1}≤q(n).

– For all i ∈ [k] and n, there is a TM M such that, given b = (b1, . . . , bk) ∈ Bn,
t ∈ Tn, and 1n, computes vni (b, t) and runs in time polynomial in n.

– For all i ∈ [k] and n, there is a TM M ′ such that given t ∈ Tn and 1n,
computes Pn(t) in time polynomial in n.

Throughout, we take the size of the action set (or type set) to be the maximal
number of bits needed to encode an action (or type). Observe that while we
require that size in polynomial games to be polynomial in n for every n, the
cardinality of the action or type set can be exponential.

A strategy for player j in a computational game G is a TM Mj that, given
1n and the type tj ∈ Tn

j , outputs a distribution Mj(1
n, tj) over actions in Bn

j in
the game Gn (so that, given some additional random bits, it outputs an action
in Bn

j ).7 Mj(1
n) is the strategy defined by taking Mj(1

n)(tj) = Mj(1
n, tj).

Observe that there are two sources of randomness in Mj(1
n): the distribution of

the type tj and the randomness of Mj once tj has been determined. We stress
that randomized strategies in our setting are obtained by using probabilistic
TMs rather than by mixing over TMs. That is, the randomization is part of the
computation, not external to it. The utility of player i in Gn given a machine
profile (M1 . . .Mk) is V n

i (M1(1n), . . . ,Mk(1n)) (as defined in (1)).
To analyze computational games G = (G1, G2, . . .), we would like to be able

to apply classical game-theoretic notions, such as best response and Nash equi-
librium, to sequences of games. However, there are certain difficulties in gener-
alizing these notions to computational games. A first obstacle is that sequences
of infinite games may allow resource-bounded players to improve over any strat-
egy by doing additional polynomial-time computations. For example, consider
a player who gets a payoff of 1 by breaking an encrypted massage E(s) with
s ∈ {0, 1}n and a payoff of 0 if he does not break it, where the player’s running
time is polynomial in n. Assuming that there is no polynomial-time algorithm
(in n) for finding s given E(s), there is no best response in this game, as a
player can always make polynomially many additional “guesses” on top of his
current action, increasing his expected utility. As pointed out by Dodis, Halevi,
and Rabin [6], this observation applies to many problems of interest, such as
those arising from cryptographic protocols.

One way around this problem, suggested by Dodis, Haley and Rabin [6] and
Halpern, Pass, and Seeman [12], is to ignore negligible additive changes in the

7 One question is how to deal with players who use Turing machines that fail to halt
or return an action that does not belong to the action space. We deal with this issue
by assigning to each player i a special action ai0 that we take to be the action played
if i’s TM does not halt or if i’s output is not an action in the action space. Any
profile that includes ai0 gives utility −∞ to all players, thus discouraging players
from using TMs that fail to halt or return inappropriate actions.
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utility of players, where a sequence δ(n) is negligible if for every polynomial
p, p(n) = o(δ(n)−1). That is, deviations that result in a negligible increase in
utility are not considered to be improvements. Ignoring negligible terms suffices
to ensure the existence of equilibrium in a number of games of interest for which
there would not be an equilibrium otherwise [6].

If we ignore negligible change, then given a machine profile M , changing the
behavior of a TM M in finitely many games will not be a deviation breaking
an alleged equilibrium, as altering a sequence δ(n) on finitely many n’s does
not change the fact that δ(n) is negligible. On the other hand, a deviation that
improves a given player utility on infinitely many n’s by a constant δ > 0 implies
that the machine profile is not a NE. Finally, it is worth noting that if the utilities
of players are exponentially small (say, on the order of 1/2n in the game Gn),
a negligible additive term can have a noticeable effect on the utility of players;
on the other hand, if utilities are exponentially large, even a (non-negligible)
constant change in utilities would be viewed as negligible. In order to avoid such
scaling issues, we deal exclusively with bounded games when considering solution
concepts for computational games.8

Definition 5. Let M be a set of TMs and let ε ≥ 0 be a constant independent
of n. A profile M = (M1, . . . ,Mk) of TMs is an ε-M-NE for a bounded com-
putational game G with respect to M, if (a) for all i, Mi ∈ M, and (b) there
exists a negligible sequence δ(n) such that, for all M ′i ∈M and all n > 0 and all
i ∈ [k] we have that

Vi(Mi(1
n),M−i(1

n)) ≥ Vi(M ′i(1n),M−i(1
n))− ε− δ(n). (2)

When ε = 0, we say that M is a M-Nash equilibrium. If M is the set of all
probabilistic polynomial-time TMs, we say M is a polynomial ε-NE.

We can consider polynomial-time players, best response, and equilibrium even
if the action space of every player is of super-polynomial size. However, in this
case, there are trivial examples showing that a NE may not exist. For example,
one can take Gn to be the 2-player zero-sum game where each player outputs an
integer of length at most 22

n

(written in binary) and the player outputting the
larger integer receives payoff 1, with both players getting 0 in case of equality.
Clearly this sequence of games does not have a polynomial equilibrium.

In contrast to previous work [9], we require the utilities of players to be
computable. Without this requirement, it is not difficult to give examples of
polynomial games that do not have a NE. Indeed, let x1, x2 . . . be an enumeration
of {0, 1}∗ and let L be an arbitrary non-recursive language. Furthermore, suppose
that for all i, j, i < j implies that |xi| ≤ |xj | (ensuring that for every n the
type xn can be represented by at most poly(n) bits). Consider the sequence
G = (G1, G2, . . .) of two-player games such that the type of each player in Gn is
xn and a player gets a payoff of 1 if it correctly determines whether xn belongs
to L and 0 otherwise. Clearly, G does not have a polynomial-time NE (and the
utility function in G is not computable).

8 Our results also hold in a more general setting where the absolute value of a (nonzero)
utility is at most polynomial and at least inversely polynomial in n.
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3 Polynomial Games With No Polynomial Equilibrium

As we now show, there is a polynomial game for which there is no polynomial
NE, assuming one-way functions exist. We find it convenient to use the definition
of one-way function given in [13].

Definition 6. Given s : IN → IN , t : IN → IN , a one-way function with security
parameter s against a t-bounded inverter is a family of functions fk : {0, 1}k →
{0, 1}m, k = 1, 2, 3, . . ., satisfying the following properties:

– m = kb for some positive constant b;
– there is a TM M such that, given x with |x| = k computes fk(x) in time

polynomial in k;
– for all but finitely many k’s and all probabilistic TM M ′, running in time at

most t(k) for a given input fk(x),

Pr[fk(M ′(fk(x))) = fk(x)] <
1

s(k)
,

where the probability Pr is taken over x sampled uniformly from {0, 1}k and
the randomness of M ′.

We assume that exponential one-way functions exist. Specifically, we assume
that there exists a one-way function that is 2k/10-secure against a 2k/30-bounded
inverter. The existence of a one-way function with these parameters follows from
an assumption made by Wee [27] regarding the existence of exponential non-
uniform one-way functions. Given fk(x), we say an algorithm inverts fk(x) if it
finds some z such that fk(x) = fk(z).

We can now demonstrate the non-existence of polynomial-time computable
equilibrium in a polynomial game.

Theorem 1. If there exists a one-way function that is 2k/10-secure against a
2k/30-inverter, then, for all ε > 0, there exists a 2-player zero-sum polynomial
game G that has no polynomial ε-NE.

Proof. Let G = (G1, G2, . . .) be the following polynomial game, which we call
the one-way function game. For all n, we define Gn as follows. There are two
players, 1 and 2. Fix a one-way function {fk}k≥1 that is 2k/10-secure against a
2k/30-bounded inverter. The type space is the same for each player, and consists
of tuples of l = dlog ne bitstrings of the form (fdlogne(x1), . . . , fdlogne2(xl)). The

distribution on types is generated by choosing xi ∈ {0, 1}idlogne uniformly at
random, and choosing the xi’s independently. Given his type tn, player j outputs
yj1, . . . , y

j
l . A hit for player j is an index i such that fidlogne(y

j
i ) = fidlogne(xi). Let

aj denote how many hits player j gets. The payoff of player j is 1 if aj−a3−j > 0.
If aj − a3−j = 0, both players receive a payoff of 0. Observe that the utility
function of each player is polynomial-time computable in n. Clearly the length
of every action of Gn is polynomial in n and so is the length of the type tn.
Hence the one-way function game is a polynomial game. In the full paper [11],
we prove that there cannot be a polynomial-time ε-NE for G.
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Similar ideas can be applied to show there is a 2-player extensive-form poly-
nomial game that has no polynomial ε-NE, where we no longer need to use a
type space. (See [12] for the definition of extensive-form polynomial game and
polynomial ε-NE in extensive-form polynomial games; we hope that our discus-
sion suffices to give the reader an intuitive sense.) In the game Gn, instead of
the tuple (fdlogne(x

j
1), . . . , fldlogne(x

j
l )) being player j’s type, player j chooses

xj1, . . . , x
j
l at random and sends this tuple to player 3−j. Again, player j attempts

to invert as many of fdlogne(x
3−j
1 ), . . . , fldlogne(x

3−j
l ) as it can; their payoffs are

just as in the Bayesian game above. A proof similar to that of Theorem 1 shows
that this game does not have a polynomial NE.

The one-way function game also shows the effect of restricting strategies to
be polynomial-time computable. Clearly, without this restriction, the game has a
trivial NE: all players correctly invert every element of their tuple. On the other
hand, consider a modification of the game where in Gn, a player’s type consists
of a single element fn(xn), with xn a bitstring of length n chosen uniformly at
random. If both players simultaneously invert or fail to invert fn(xn), then both
get zero. Otherwise, the player who correctly inverts gets 1 and the other player
gets −1. Again, it is easy to see that if we take M to be the family of all TMs,
the only Nash equilibrium is to find yn, zn such that fn(yn) = fn(zn) = f(xn).
But ifM consists of only polynomial-time TMs, then it is a polynomial-time NE
for both players to simply output a random string, as neither player can invert
f with non-negligible probability, and we ignore negligible additive increase to
the utilities of players.

4 Equilibrium With Respect to Concrete Time Bounds

The previous example may lead one to speculate that lack of Nash equilibrium in
computational games hinges on asymptotic issues, namely, our ability to consider
larger and larger action and type spaces. This raises the question of what happens
if we restrict our attention to games where players are constrained to execute at
most T computational steps, where T > 0 is a fixed integer. It turns out that
if the use of randomness is counted as a computational action, then there may
not be Nash equilibria, as the following example shows. We assume from now on
that T > 2.

In our computational game, the family of admissible TMs, which we denote
byMT , is the set of all probabilistic TMs whose running time is upper-bounded
by T . The operation of printing a character takes one computational step, and
so does the movement of the cursor to a different location on the tape. The
generation of a random bit (or alternatively querying a bit in a designated tape
that contains random bits) requires at least one computational step (we allow
arbitrary bias of a bit, as it does not affect the proof).

Consider the following 2-player zero-sum normal-form computational game F
between Alice (A) and Bob (B). For every n, Fn is the same game F . The action
space of each player is {0, 1}T . By our choice ofMT , both players are constrained
to perform at most T computational steps. The game proceeds as follows. A
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and B use TMs MA,MB ∈ MT respectively, to compute their strategies. MA

outputs a single bit a1. MB outputs b1 ∈ {0, 1}. Based on a1 and b1, a game of
matching pennies is played. Namely, if a1 = b1, A gets 1, otherwise B gets 1. In
the second phase of the game, the TM of each player prints as many characters
as possible without violating the constraint of performing at most T steps. If
the final number of characters is the same for both players, then both get a
payoff of 0 for the second phase. Otherwise the player with a larger number
of printed characters gets an additional bonus of 1, and the player with fewer
printed characters incurs a loss of 1.

Theorem 2. The computational game F does not have an ε-MT -NE, for all
ε < 1.

Proof. Assume, by way of contradiction, that (MA,MB) is a Nash equilibrium
for F . Since TMs inMT are constrained to query at most T bits, it follows that
the strategy computed by MA (or MB) given 1n, will be the same for all n > T .
As the outcomes of the games Fm, m ≤ T , do not effect, by our definition of NE
in computational games, whether (MA,MB) is an equilibrium, we can assume
w.l.o.g that both MA and MB compute the same strategy (whether mixed or
pure) in all games Fn, n ≥ 1.

Suppose that one of the players uses randomization. Assume this is player A.
Namely, MA generates a random bit before outputting a1. Then A can guarantee
a payoff for the first phase (the matching pennies game) that is no smaller than
his current payoff by choosing a TM M ′A that outputs a deterministic best
response a1 against the strategy of B in the matching penny game. Observe
that we can assume that a1 is “hardwired” to M ′A. In particular outputting a1
can be done in a single computational step. Then A can print strictly more 1’s
in the second phase of the game by configuring M ′A to print T − 1 1’s (which
can be done in T − 1 steps). If B prints T − 1 in the second phase of the game,
we have that A can increase its payoff in Fn for all n by switching to M ′A. If,
on the other hand, MB prints less than T − 1 characters in the second step, an
analogous argument shows that B can strictly increase its payoff in Fn for all n,
by using a TM that runs in at most T steps. In any event, we get a contradiction
to the assumption that (MA,MB) is a NE.

Suppose now that A does not use randomization. In this case, it follows im-
mediately by the definition of matching-pennies that either A or B can strictly
improve their payoff in the first phase of Fn for all n, by outputting the (deter-
ministic) best response to their opponent and printing T − 1 characters after-
wards. As before, we can assume this response is hardwired to the appropriate
TM, such that outputting it consumes one computational step, allowing players
to print T − 1 characters in the second phase of the game.

Finally, it is not difficult to verify that the argument above establishes that
F does not have an ε-NE for ε-NE for all ε ∈ (0, 1). This concludes the proof.

One might wonder whether the non-existence of NE in computational games
follows from the fact that we are dealing with an infinite sequence of games with
infinitely many possible TMs (e.g., |M| = ∞). Nash Theorem regarding the
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existence of NE requires that the action space of every player is finite; without
this requirement a NE may fail to exist. Hence it is natural to ask whether
limiting |M| to be finite (for example, taking M to be the family of all TMs
over a fixed alphabet with at most S states for some bound S) may force the
existence of NE in computational games. Theorem 2 illustrates that this is not
the case: F will not have a NE even if we take M to consist only of TMs
whose number of states is upper bounded by a large enough positive number S
(S should allow for using the TM that is hardwired to output the appropriate
best response in the matching pennies game and print T − 1 characters in the
second phase). The reason why NE does not exist despite the finiteness of M,
is that in contrast to ordinary games, where a mixed actions of best responses
is a best response, in our setting this is not necessarily true: mixing over actions
may consume computational resources, forcing players to choose actions that are
suboptimal when using randomized strategies.

5 The Existence of ε-NE in Computational Games

Our previous results show that if we restrict players to be computationally
bounded, then there are polynomial games with no ε-NE. Here we demonstrate
that the restriction to computationally bounded players is critical. If we allow
players to choose arbitrary TMs (or TMs that are guaranteed to halt on every
input), we show that for all ε > 0, there is an ε-NE in every computational game
(and thus, a fortiori, in every polynomial game). The reason that we need ε-NE
rather than NE (although ε can be arbitrarily small) is that there are 3-player
games in which, in every NE, some actions are chosen with irrational probabili-
ties (even if all utilities are rational and nature’s moves are made with rational
probabilities) [18]. By considering ε-NE, we can avoid representational issues
involving irrational numbers.

Let ε > 0 be a fixed constant. Suppose that G = (G1, G2, . . .) is a computa-
tional game. LetM be any set of TMs that includes all TMs that are guaranteed
to halt on every input (thus, M could consist of all TMs). At a high level, the
argument for the existence of ε-NE is a straightforward application of ideas of
Lipton and Markakis [14]. As they observe, given a game G, we can represent the
conditions required for a strategy to be a NE using a single algebraic equation (in
several variables), where a NE must be a root of the equation. We can compute
a strategy profile that is arbitrarily close to a root of this algebraic equation; it
can be shown that a strategy vector that is sufficiently close to a root is an ε-NE.
We can now obtain an ε-NE for the computational game G = (G1, G2, . . .) as
follows: Given ε, the nth game Gn, and type t ∈ Ti, player i computes a profile
(sn1 , s

n
2 . . . s

n
k ) of distributions over actions that is an ε-NE of Gn (conditional on

t) and plays according to sni (t). (If there are several ε-NEs, one is chosen in a
consistent way, so that all players are playing a component of the same profile.)
Using these ideas we can prove the following result, whose proof can be found
in the full paper [11].
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Theorem 3. If G = (G1, G2 . . .) is a computational game, ε > 0, and M in-
cludes all TMs that halt on all inputs, then G has an ε-M-NE.

6 Conclusion

We have considered computational games, where TMs compute strategies of
players. We showed that a NE for polynomial-time players may not exist. This
suggests that classic notions in game theory, such as best response, must be
treated carefully when considering computational games with resource-bounded
players.

As we showed, for unbounded players, an ε-NE always exists in a compu-
tational game. Even for bounded players, there may exist circumstances under
which an ε-NE exists. For example, it may be that there exists an equilibrium
if we bound the number of states in TMs used by players. Studying properties
of games or TMs used by players that ensure the existence of (ε)-NE in com-
putational games is an interesting direction for future research. It might also
prove worthwhile to study the effect of limiting resources other than time, such
as space or the amount of randomness used by players. Finally, our paper also
leaves open the question as to whether there exists a NE in our model when we
restrict players to TM whose running time is at most nr for a fixed integer r.
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