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We examine sequential equilibrium in the context of computational games [Halpern and Pass 2015], where agents are charged for

computation. In such games, an agent can rationally choose to forget, so issues of imperfect recall arise. In this setting, we consider

two notions of sequential equilibrium. One is an ex ante notion, where a player chooses his strategy before the game starts and is

committed to it, but chooses it in such a way that it remains optimal even off the equilibrium path. The second is an interim notion,

where a player can reconsider at each information set whether he is doing the “right” thing, and if not, can change his strategy. The

two notions agree in games of perfect recall, but not in games of imperfect recall. Although the interim notion seems more appealing,

in a companion paper [Halpern and Pass 2016] we aregue that there are some deep conceptual problems with it in standard games

of imperfect recall. We show that the conceptual problems largely disappear in the computational setting. Moreover, in this setting,

under natural assumptions, the two notions coincide.
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1 INTRODUCTION

In earlier work [Halpern and Pass 2015], we introduced a framework to capture the idea that doing costly computation

affects an agent’s utility in a game. The approach, a generalization of an approach taken by Rubinstein [1986], assumes

that players choose a Turing machine (TM) to play for them. We consider Bayesian games, where each player has a

type) (i.e., some private information); a player’s type is viewed as the input to his TM. Associated with each TM M

and input (type) t is its complexity. The complexity could represent the running time of or space used byM on input t .

While this is perhaps the most natural interpretation of complexity, it could have other interpretations as well. For
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2 Joseph Y. Halpern and Rafael Pass

example, it can be used to capture the complexity ofM itself (e.g., the number of states inM , which is essentially the

complexity measure considered by Rubinstein, who assumed that players choose a finite automaton to play for them

rather than a TM) or to model the cost of searching for a better strategy (so that there is no cost for using a particular

TMM , intuitively, the strategy that the player has been using for years, but there is a cost to switching to a different

TMM ′). A player’s utility depends both on the actions chosen by all the players’ machines and the complexity of these

machines.

This framework allows us to, for example, consider the tradeoff in a game like Jeopardy between choosing a strategy

that spends longer thinking before pressing the buzzer and one that answers quickly but is more likely to be incorrect.

Note that if we take “complexity” here to be running time, an agent’s utility depends not only on the complexity of

the TM that he chooses, but also on the complexity of the TMs chosen by other players. We defined a straightforward

extension of Bayesian-Nash equilibrium in such machine games, and showed that it captured a number of phenomena

of interest.

Although in Bayesian games players make only one move, a player’s TM must do some computation to compute

what that move should be. This means that solution concepts more traditionally associated with extensive-form games,

specifically, sequential equilibrium [Kreps and Wilson 1982], also turn out to be of interest, since we can ask whether

an agent wants to switch to a different TM during the computation of the TM that he has chosen. We can certainly

imagine that, at the beginning of the computation, an agent may have decided to invest in doing a lot of computation,

but part of the way through the computation, he may have already learned enough to realize that further computation

is unnecessary. In a sequential equilibrium, intuitively, the TM he chose should already reflect this. It turns out that,

even in this relatively simple setting, there are a number of subtleties.

Essentially, we consider an extension of the underlying Bayesian game to a game that includes the computation

of the move. The “moves” of this extended game are the transitions of the TM, followed by a move in the underlying

game. But what are the information sets? We take them to be determined by the states of the TM. While this is a

natural interpretation, since we can view the TM’s state as characterizing the knowledge of the TM, it means that the

information sets of the game are not given exogenously, as is standard in game theory; rather, they are determined

endogenously by the TM chosen by the agent.
1
Moreover, in general, the game is one of imperfect recall. An agent can

quite rationally choose to forget (by choosing a TM with fewer states, that is thus not encoding the whole history) if

there is a cost to remembering.

Thinking of players as TMs can help clarify some issues when considering games of imperfect information. Consider

the game in Figure 1, which was introduced by Piccione and Rubinstein [1997]. It is not hard to show that the strategy

that maximizes expected utility chooses action S at node x1, action B at node x2, and action R at the information set X

consisting of x3 and x4. Call this strategy f . Suppose that the agent uses strategy f . If the agent knows his strategy (the

typical assumption in game theory), then the agent knows, when he is at the information set X , then he must be at x4.

So in what sense are x3 and x4 in the same information set?

Halpern [1997] already observes that, in order to analyze games of imperfect recall, we must make explicit what

an agent knows (including things like whether he knows his strategy, and whether he recalls that he has switched

strategies). These issues are made explicit when we consider TMs, and take an agent’s information set to be determined

by the state of his TM—the state explicitly determines what the agent knows (and remembers). Furthermore, although

the information sets are determined by the TM chosen by the agent, we can force the agent into a situation of imperfect

1
We could instead consider a “supergame”, where at the first step the agent chooses a TM, and then the TM plays for the agent. In this supergame, the

information can be viewed as exogenous, but this seems to us a less natural model.
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Fig. 1. A game of imperfect recall.

recall by “charging” a lot for memory. Thus, our computational model generalizes standard models of imperfect recall

(and also perfect recall) while providing, in our view, a more natural and explicit formalization of the game.

Games like that in Figure 1 are just an example of the subtleties that must be dealt with when defining sequential

equilibrium. We give a definition of sequential equilibrium in a companion paper [Halpern and Pass 2016] for standard

games of imperfect recall that we extend here to take computation into account.
2
We show that, in general, sequential

equilibrium does not exist, but give simple conditions that guarantee that it exists, as long as a NE (Nash equilibrium)

exists. (As we showed by a simple example in our earlier [Halpern and Pass 2015], reviewed below, NE is not guaranteed

to exist in machine games, although sufficient conditions were given to guarantee existence.)

The definition of sequential equilibrium in our companion paper [Halpern and Pass 2016] views sequential equilibrium

as an ex ante notion. The idea is that a player chooses his strategy before the game starts and is committed to it, but he

chooses it in such a way that it remains optimal even off the equilibrium path. This, unfortunately, does not correspond

to the more standard intuitions behind sequential equilibrium, where players are reconsidering at each information

set whether they are doing the “right” thing, and if not, can change their strategies. This interim notion of sequential

rationality agrees with the ex ante notion in games of perfect recall, but the two notions differ in games of imperfect

recall. We argue the companion paper that there are some deep conceptual problems with the interim notion in standard

games of imperfect recall. We consider both an ex ante and interim notion of sequential equilibrium here. We show that

the conceptual problems when the game tree is given (as it is in standard games) largely disappear when the game tree

(and, in particular, the information sets) are determined by the TM chosen, as is the case in machine games. Moreover,

we show that, under natural assumptions regarding the complexity function, the two notions coincide.

The rest of this paper is organized as follows. In Section 2, we review the relevant definitions of Bayesian machine

game from our earlier paper [Halpern and Pass 2015]. In Section 3 we show how we can view these Bayesian machine

games as extensive-form games, where the players moves involve computation. In Sections 4 we define beliefs in

Bayesian machine games; using this definition, we define interim and ex ante sequential equilibrium in Section 5, and

provide a natural condition under which they are equivalent. In Section 6, we relate Nash equilibrium and sequential

2
There have been other attempts to define sequential equilibrium in games of imperfect recall [Battigalli 1997; Hillas and Kvasov 2017; Lambert et al. 2018;

Piccione and Rubinstein 1997]; see our companion paper for a discussion of these approaches and how they compare to our definition. We have based

our definition of computational sequential equilibrium on our earlier definition since we thought that it lent itself naturally to such a computational

definition. We believe that it would be harder to define a notion of computational sequential equilibrium based on one of the other definitions, but have

not investigated the matter carefully.
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4 Joseph Y. Halpern and Rafael Pass

equilibrium. Not surprisingly, every sequential equilibrium is a Nash equilibrium; we provide a natural condition under

which a Nash equilibrium is an ex ante sequential equilibrium. In Section 7, we consider when sequential equilibrium

exists. Since, as shown in our earlier paper, even Nash equilibria may not exist in Bayesian machine games, we clearly

cannot expect a sequential equilibrium to exist in general. We show that if the set of TMs that the agents can choose

from is finite, then an ex ante sequential equilibrium exists whenever a Nash equilibrium does; we also provide a natural

sufficient condition for an ex ante sequential equilibrium to exist even if the set of TMs the agents can choose from is

infinite. Up to this point in the paper, we have considered only extensive-form games determined by Bayesian machine

games, where players make only one move in the underlying Bayesian game, and the remaining moves correspond to

computation steps. In Section 8, we extend our definitions to cases where the underlying game is an extensive-form

game. This allows us to relate our framework to work on the use of extensive-form games with imperfect information

in analyzing games like poker [Sandholm 2015]. As we point out in Section 9 (where we also discuss other issues related

to imperfect recall), while there are similarities between our goals, there are also significant technical differences. For

example, in the poker literature, the information sets are given exogenously and the focus is on Nash equilibrium; for

us, the information sets are determined by the choice of TM and the focus is on sequential equilibrium.

2 COMPUTATIONAL GAMES: A REVIEW

This review is largely taken from our earlier paper [Halpern and Pass 2015]. We model costly computation using

Bayesian machine games. Formally, a Bayesian machine game is given by a tuple ([m],M,T , Pr,C1, . . . ,Cm ,u1, . . . ,um ),

where

• [m] = {1, . . . ,m} is the set of players;

• M is a set of TMs;

• T ⊆ ({0, 1}∗)m is the set of type profiles (m-tuples consisting of one type for each of them players);
3

• Pr is a distribution on T ;

• Ci is a complexity function (see below);

• ui is i’s utility function.

If we ignore the complexity function, define the utility function appropriately, and drop the requirement that an

agent’s type is in {0, 1}∗, then we have the standard definition of a Bayesian game. We assume that TMs take as input

strings of 0s and 1s and output strings of 0s and 1s. Thus, we assume that both types and actions can be represented

as elements of {0, 1}∗. We allow machines to randomize, so given a type as input, we actually get a distribution over

strings. To capture this, we take the input to a TM to be not only a type, but also a string chosen with uniform

probability from {0, 1}∞ (which we view as the outcome of an infinite sequence of coin tosses). The TM’s output is

then a deterministic function of its type and the infinite random string. We use the convention that the output of a

machine that does not terminate is a fixed special symbol ω. We define a view to be a pair (t , r ), where t ∈ {0, 1}∗ is a

representation of the agent’s type and r ∈ {0, 1}∞ is an infinite sequence of random bits. A complexity function is a

function that takes as input a Turing machine and a type, and returns a natural number; formally, a complexity function

C : M × {0, 1}∗ × {0, 1}∞ → IN , whereM denotes the set of Turing machines. Of course, at any time, a TM with view

(t , r ) may have read only a portion of the string t that represents its type and will have seen only a finite prefix of r . Its

action at that time can depend only on what it has seen/read. Moreover, we assume that the complexity depends only

on that part of the view that the TM has seen/read by the time it terminates. Thus, for example, if with view (t , r ) a TM

3
We have slightly simplified the definition in our earlier paper, by ignoring the type of nature, which gives the formalism a little more power. These

changes are purely for ease of exposition, to get across the main ideas.
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M reads only the first N random bits by the time it terminates, then C (M, t , r ) = C (M, t , r ′) if r and r ′ agree on the

first N bits.

In a standard Bayesian game, a player’s utility depends on the type profile and the action profile. In a computational

Bayesian game, a player’s utility depends on the type profile, the action profile, and the profile of complexities. This

allows us to “charge” for using a strategy that has high complexity (e.g., a long running time) and to say, for example,

that i gets high utility if performs a “good” action and his complexity is less than that of j. Formally, i’s utility function

ui : T × ({0, 1}
∗)m × INm → IR; thus, ui (⃗t , a⃗, c⃗ ) is the utility of player i if t⃗ is the type profile, a⃗ is the action profile (where

we identify i’s action with Mi ’s output), and c⃗ is the profile of machine complexities. We can now define player i’s

expected utilityUi (M⃗ ) if a profile M⃗ of TMs is played; we omit the standard details here. We then define a (computational)

NE of a machine game in the usual way:

Definition 2.1. Given a Bayesian machine game G = ([m],M,T , Pr, C⃗ , u⃗), a machine profile M⃗ ∈ Mm is a (compu-

tational) Nash equilibrium if, for all players i ,Ui (M⃗ ) ≥ Ui (M
′
i , M⃗−i ) for all TMsM ′i ∈ M.

Although a NE always exists in standard games, a computational NE may not exist in machine games, as shown by

the following example, taken from our earlier paper [Halpern and Pass 2015].

Example 2.2. Consider rock-paper-scissors. As usual, rock beats scissors, scissors beats paper, and paper beats rock.

A player gets a payoff of 1 if he wins, −1 if he loses, and 0 if it is a draw. But now there is a twist: since randomizing is

cognitively difficult, we charge players ϵ > 0 for using a randomized strategy (but do not charge for using a deterministic

strategy). Thus, a player’s payoff is 1 − ϵ if he beats the other player but uses a randomized strategy. It is easy to see

that every strategy has a deterministic best response (namely, playing a best response to whatever move of the other

player has the highest probability); this is a strict best response, since we now charge for randomizing. It follows that,

in any equilibrium, both players must play deterministic strategies (otherwise they would have a profitable deviation).

But there is clearly no equilibrium where players use deterministic strategies.

Interestingly, it can also be shown that, in a precise sense, if there is no cost for randomization, then a computational

NE is guaranteed to exist in a computable Bayesian machine game (i.e., one where all the relevant probabilities are

computable); see our earlier paper for details.

3 COMPUTATION AS AN EXTENSIVE-FORM GAME

Recall that a deterministic TM M = (τ ,Q,q0,H ) consists of a read-only input tape, a write-only output tape, a

read-write work tape, 3 machine heads (one reading each tape), a set Q of machine states, a transition function

τ : Q × {0, 1,b}2 → Q × {0, 1,b}2 × {L,R, S }3, an initial state q0 ∈ Q , and a setH ⊆ Q of “halt” states. We assume that

all the tapes are infinite, and that only 0s, 1s, and blanks (denoted b) are written on the tapes. We think of the input to a

TM as a string in {0, 1}∗ followed by blanks. Intuitively, the transition function τ says what the TM will do if it is in a

state s and reads i on the input tape and j on the work tape. Specifically, τ describes what the new state is, what symbol

is written on the work tape and the output tape, and which way each of the heads moves (L for one step left, R for one

step right, or S for staying in the same place). The TM starts in state q0, with the input written on the input tape, the

other tapes blank, the input head at the beginning of the input, and the other heads at some canonical position on the

tapes. The TM then continues computing according to τ . The computation ends if and when the machine reaches a halt

state q ∈ H . To simplify the presentation of our results, we restrict attention to TMs that include only states q ∈ Q that

can be reached from q0 on some input. We also consider randomized TMs, which are identical to deterministic TMs
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6 Joseph Y. Halpern and Rafael Pass

except that the transition function τ now maps Q × {0, 1,b}2 to a probability distribution over Q × {0, 1,b}2 × {L,R, S }3.

As is standard in the computer science literature, we restrict attention to probability distributions that can be generated

by tossing a fair coin; that is, the probability of all outcomes has the form c/2k for c,k ∈ IN .

In a standard extensive-form game, a strategy is a function from information sets to actions. Intuitively, in a state

s in an information set I for player i , the states in I are the ones that i considers possible, given his information at s;

moreover, at all the states in I , i has the same information. In the “runs-and-systems” framework of Fagin et al. [1995],

each agent is in some local state at each point in time. A protocol for agent i is a function from i’s local states to actions.

We can associate with a local state ℓ for agent i all the histories of computation that end in that local state; this can be

thought of as the information set associated with ℓ. With this identification, a protocol can also be viewed as a function

from information sets to actions, just like a strategy.

In our setting, the closest analogue to a local state in the runs-and-systems framework is the state of the TM.

Intuitively, the TM’s state describes what the TM knows.
4
The transition function τ of the TM determines a protocol,

that is, a function from the TM’s state to a “generalized action”, consisting of reading the symbols on its read and work

tapes, then moving to a new state and writing some symbols on the write and work tapes (perhaps depending on what

was read). We can associate with a state q of player i’s TM the information set Iq consisting of all histories h where

player i is in state q at the end of the history. (Here, a history is just a sequence of extended state profiles, consisting

of one extended state for each player, and an extended state for player i consists of the TM that i is using, the TM’s

state, and the content and head position of each of i’s tapes.) Thus, player i implicitly chooses his information sets (by

choosing the TM), rather than the information set being given exogenously.

A little more formally, the nodes in the game tree defined by a Bayesian machine game are labeled by extended

state profiles. The root is labeled by an extended state profile with the TMs and their states omitted, each player’s

type is written on its input tape, the output and work tapes are empty, and all the heads are at the leftmost position

on each tape. We can think of this as describing the situation before any player has chosen a TM. We assume that all

players move simultaneously at each node in the tree. At the first step, each player chooses a TM (perhaps from some

prespecified set of TMs), so in the extended state at the nodes immediately following the root of the tree, each player

has a TM, the TM is in its initial state, and the tapes and the heads are just as in the root. From then on, each player

moves according to its TM; the transition functions of the players’ TMs thus determine how the extended state profile

changes. After a player’s TM has halted, it does not move (so its extended state does not change) until all the players’

TMs have halted. We assume for simplicity that all the TMs eventually halt. Once all the TMs have halted, then all

players make the move in the underlying game specified by the action on the output state, and get the corresponding

payoff. As we said above, player i’s information sets are determined by the state of i’s TM. Specifically, for each state q

of the TMMi that i chose in the first step of the computation such that q is reachable fromMi ’s initial state, there is an

information set consisting of all nodes where the extended state profile is such thatMi is in state q. (Note that if another

TMM ′i also has a state q, the nodes whereM ′i is in state q are in a different information set. That is, i’s information sets

are characterized by pairs (Mi ,q).)

The extensive-form game defined by computation in a Bayesian machine game is really just a collection ofm single-

agent decision problems. Of course, sequential equilibrium becomes even more interesting if we consider computational

extensive-form games, where there is computation going on during the game, and we allow for interaction between the

4
We could also take a local state to be the TM’s state and the content of the tapes at the position of the heads. However, taking the local state to be just

the TM’s state seems conceptually simpler. Taking the alternative definition of local state would not affect our results.
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agents. We extend our approach to sequential equilibrium in extensive-form computational games in Section 8. As we

shall see, many of the issues of interest already arise in computational Bayesian games.

4 BELIEFS

Viewing machine games as extensive-form games, we can define sequential equilibrium. The first step to doing so

involves defining a player’s beliefs at an information set. But now we have to take into account that the information set

is determined by the TM chosen. In the spirit of Kreps and Wilson [1982], define a belief system µ for a game G to be a

function that associates with each player i , TMMi for player i , and a state q forMi a probability on the histories in the

information set Iq . Following our companion paper [Halpern and Pass 2016], we interpret µq,Mi (x ) as the probability

of going through history x conditional on reaching the local state q.

We do not expect

∑
x ∈Iq µq,Mi (x ) to be 1; in general, it is greater than 1. This point is perhaps best explained in the

context of games of imperfect recall. Given a set Y of histories, let the upper frontier of Y , denoted Ŷ , consist of all those

histories h ∈ Y such that there is no history h′ ∈ Y that is a prefix of h. Note that in a game of perfect recall, Y = Ŷ ;

however, in a game of imperfect recall, Ŷ may be a strict subset of Y .

In our companion paper, we considered belief systems that associated with each information set X a probability

µX on the histories in X . Again, we did not require

∑
h∈X µX (h) = 1. For example, if all the histories in X are prefixes

of same complete history h∗, then we might have µX (h) = 1 for all histories h ∈ X . However, we did require that

Σh∈X̂ µX (h) = 1. We make the analogous requirement here. Let Îq denote the upper frontier of Iq . The following lemma,

essentially already proved in our companion paper, justifies the requirement.

Lemma 4.1. If q is a local state for player i that is reached by M⃗ with positive probability, and µ ′q (h) is the probability of

going through history h when running M⃗ conditional on reaching q, then
∑
h∈Îq

µ ′q (h) = 1.

Given a belief system µ and a machine profile M⃗ , define a probability distribution µM⃗q over terminal histories in

the obvious way: for each terminal history z, let hz be the history in Îq generated by M⃗ that is a prefix of z if there is

one (there is clearly at most one), and define µM⃗q (z) as the product of µq,Mi (hz ) and the probability that M⃗ leads to

the terminal history z when started in hz ; if there is no prefix of z in Iq , then µM⃗q (z) = 0. Following Kreps and Wilson

[1982], let Ui (M⃗ | q, µ ) denote the expected utility for player i , where the expectation is taken with respect to µM⃗q .

Note that utility is well-defined, since a terminal history determines both the input and the random-coin flips of each

player’s TM (or, at least, the part that has been read by the time the computation terminates), and thus determines both

its output and complexity.

5 DEFINING SEQUENTIAL EQUILIBRIUM

If q is a state of TM Mi , we want to capture the intuition that a TM Mi for player i is a best response to a machine

profile M⃗−i for the remaining players at q (given beliefs µ). Roughly speaking, we capture this by requiring that the

expected utility of using another TMM ′i starting at a node where the TM’s state is q to be no greater than that of using

Mi . “Using a TMM ′i starting from q” means using the TM (Mi ,q,M
′
i ), which, roughly speaking, is the TM that runs

likeMi up to q, and then runs likeM ′i .
5

5
We remark that, in the definition of sequential equilibrium in our companion paper [Halpern and Pass 2016], the agent was allowed to change strategy

not just at a single information set, but at a collection of information sets. Allowing changes at a set of information sets seems reasonable for an ex ante

notion of sequential equilibrium, but not for an interim notion; thus, we consider changes only at a single state here. Allowing changes at a set of states

here, the analogue of what was done in our companion paper [Halpern and Pass 2016] would give a refinement of our definition (i.e., we would have
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8 Joseph Y. Halpern and Rafael Pass

In the standard setting, all the subtleties in the definition of sequential equilibrium involve dealing with what happens

at information sets that are reached with probability 0. When we consider machine games, as we shall see, under some

reasonable assumptions, all states are reached with positive probability in equilibrium, so dealing with probability 0 is

not a major concern (and, in any case, the same techniques that are used in the standard setting can be applied). But

there are several new issues that must be addressed in making precise what it means to “switch” fromMi toM
′
i at q.

To understand the issue, consider a state q′ that is reached before q is first reached for some view (t1, r1) when using

Mi (more precisely,Mi reaches q under view (t1, r1) and reaches q′ before q is first reached), and q′ is reached byM ′i
starting in state q under some view (t2, r2). Call such a state q′ a troublesome state for (Mi ,q,M

′
i ). IfMi andM ′i have

different transitions at such a troublesome state q′, then we have a problem in defining (Mi ,q,M
′
i ). For if we take the

transition at q′ according to (Mi ,q,M
′
i ) to be the same as that ofM ′i , then under view (t1, r1), we are switching toM ′i

too soon (before q is first reached by Mi ), while if we take the transition at q′ to be anything other than that of M ′i ,

under view (t2, r2), we are not consistently usingM ′i after q.

Given TMs Mi = (τ ,Q,q0,H ) and M ′i = (τ ′,Q ′,q′,H ′), and q ∈ Q , M ′i is compatible with Mi given q if q′ = q

(so that q is the start state of M ′i ) and τ and τ ′ agree on all states that are troublesome for (Mi ,q,M
′
i ). If M

′
i is not

compatible withMi given q, then (Mi ,q,M
′
i ) is not well defined. IfM

′
i is compatible withMi given q, then (Mi ,q,M

′
i ) is

the TM (Q ′′, [τ ,q,τ ′],q0,H
′′), where Q ′′ = Q ∪Q ′; [τ ,q,τ ′] is the transition function that agrees with τ ′ on all states

reachable from q by M ′i under some view (t , r ) and agrees with τ on the remaining states; H ′′ = (H −H+) ∪ H ′,

whereH+ consists of all states inH reachable byM ′i for some view (t , r ). Intuitively, [Mi ,q,M
′
i ] acts likeMi until q is

encountered, and then acts likeM ′i . In particular, ifMi halts before reaching a state q, then [Mi ,q,M
′
i ] halts as well;

after reaching q, the rules forM ′i determine when [Mi ,q,M
′
i ] halts.

We need a few more definitions before we can define sequential equilibrium. (Mi ,q,M
′
i ) is a local variant ofMi if

the complexity of (Mi ,q,M
′
i ) is the same as that of Mi on views that do not go through q; that is, if for every view

v such that the computation of Mi (v ) does not reach q, C (Mi ,v ) = C ((Mi ,q,M
′
i ),v ). Since (Mi ,q,M

′
i ) is a TM, its

complexity given a view is well defined. In general, the complexity of (Mi ,q,M
′
i ) may be different from that ofMi even

on histories that do not go through q. For example, consider a one-person decision problem where the agent has an

input (i.e., type) of either 0 or 1. Consider four TMs:M ,M0,M1, andM
∗
. Suppose thatM embodies a simple heuristic

that works well on both inputs,M0 andM1 give better results thanM if the inputs are 0 and 1, respectively, andM∗

acts likeM0 if the input is 0 and likeM1 if the input is 1. Clearly, if we do not take computational costs into account,

M∗ is a better choice thanM ; however, suppose that with computational costs considered,M is better thanM0,M1, and

M∗. Specifically, suppose thatM0,M1, andM
∗
all use more states thanM , and the complexity function charges for the

number of states used. Now suppose that the agent moves to state q if he gets an input of 0. In state q, usingM0 is better

than continuing withM : the extra charge for complexity is outweighed by the improvement in performance. Should we

say that usingM is then not a sequential equilibrium? The TM (M, {q},M0) acts just likeM0 if the input is 0. From the

ex ante point of view,M is a better choice thanM0. However, having reached q, the agent arguably does not care about

the complexity ofM0 on input 1. Our definition of ex ante sequential equilibrium (Definition 5.1) restricts the agent to

considering only TMs that are local variants of the original TM, and thus to making changes that leave unchanged the

complexity of paths that do not go through q. Therefore, it does not allow a change toM0 at q. Our definition of interim

fewer sequential equilibria), but all our basic results would hold with the proofs essentially unchanged. One reason for considering a set of information

sets in our companion paper was to ensure that every sequential equilibrium is a NE. As we shall see, we already have that property in the computational

setting.
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sequential equilibrium does not make this restriction; this is the only way that the two definitions differ. Note that this

makes it easier for a strategy to be an ex ante sequential equilibrium (since fewer deviations are considered).

A TMMi = (τ ,Q,q0,H ) for player i is completely mixed if, for all states q ∈ Q −H , q′ ∈ Q , and bits k,k ′ ∈ {0, 1},

τ (q,k,k ′) assigns positive probability to making a transition to q′. A machine profile M⃗ is completely mixed if, for

each player i ,Mi is completely mixed. Following Kreps and Wilson [1982], we would like to say that a belief system µ

is compatible with a machine profile M⃗ if there exists a sequence of completely-mixed machine profiles M⃗1, M⃗2, . . .

converging to M⃗ such that if q is a local state for player i that is reached with positive probability by M⃗ (that is, there is a

type profile t⃗ that has positive probability according to the type distribution inG and a profile r⃗ of random strings such

that M⃗ (⃗t , r⃗ ) reaches q), then µq,Mi (h) is just the probability of M⃗ going through h conditional on M⃗ reaching q (denoted

πM⃗ (h | q)); and if q is a local state that is reached with probability 0 by M⃗ , then µq,Mi (h) is limn→∞ πM⃗n (h | q). To

make this precise, we have to define convergence. We say that M⃗1, M⃗2, . . . converges to M⃗ if, for each player i , all the

TMsM1

i ,M
2

i , . . . ,Mi have the same state space, and the transition functions of the TMs in the sequence converge to

that ofMi . Note that we place no requirement on the complexity functions. We could require the complexity function

ofMk
i to converge to that ofMi in some reasonable sense. However, this seems to us unreasonable. If we assume that

randomization is free (in the sense hinted at after Example 2.2), then the convergence of the complexity functions

follows from the convergence of the transition functions. On the other hand, if we have a complexity function that

charges for randomization, as in Example 2.2, then the complexity functions ofMn
i may not converge to the complexity

function ofMi . Thus, if we require the complexity functions to converge, there will not be a sequence of completely

mixed strategy profiles converging to a deterministic strategy profile M⃗ . If we think of the sequence of TMs as arising

from “trembles” in the operation of some fixed TM (e.g., due to machine failure), then requiring that the complexity

functions converge seems unreasonable.

Definition 5.1. A pair (M⃗, µ ) consisting of a machine profile M⃗ and a belief system µ is called a belief assessment. A

belief assessment (M⃗, µ ) is an interim sequential equilibrium (resp., ex ante sequential equilibrium) in a machine game

G = ([m],M, . . .) if µ is compatible with M⃗ and for all players i , states q ofMi , and TMsM ′i compatible withMi and q

such that (Mi ,q,M
′
i ) ∈ M (resp., and (Mi ,q,M

′
i ) is a local variant ofMi ), we have

Ui (M⃗ | q, µ ) ≥ Ui (((Mi ,q,M
′
i ), M⃗−i ) | q, µ )).

Note that in Definition 5.1 we consider only switches (Mi ,q,M
′
i ) that result in a TM that is in the setM of possible

TMs in the game. That is, we require that the TM we switch to is “legal”, and has a well-defined complexity.

As we said, upon reaching a state q, an agent may well want to switch to a TM (Mi ,q,M
′
i ) that is not a local variant

ofMi . This is why we drop this requirement in the definition of interim sequential equilibrium. But it is a reasonable

requirement ex ante. It means that, at the planning stage of the game, there is no TMM ′i and state q such that agent i

prefers to useM ′i in the event that q is reached. That is,Mi is “optimal” at the planning stage, even if the agent considers

the possibility of reaching states that are off the equilibrium path.

The following result is immediate from the definitions, and shows that, in many cases of interest, the two notions of

sequential equilibrium coincide. A complexity function C is local if C (Mi ,v ) = C ((Mi ,q,M
′
i ),v ) for all TMsMi and

M ′i , states q, and views v that do not reach q. Clearly a complexity function that considers only running time, space

used, and the number of transitions taken on a path is local. If C also takes the number of states into account, then it is

local as long asMi and (Mi ,q,M
′
i ) have the same number of states. Indeed, if we think of the state space as “hardware”

and the transition function as the “software” of a TM, then restricting to changesM ′i that have the same state space
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10 Joseph Y. Halpern and Rafael Pass

asMi seems reasonable: when the agent contemplates making a change at a non-initial state, he cannot acquire new

hardware, so he must work with his current hardware.

Proposition 5.2. Every interim sequential equilibrium is an ex ante sequential equilibrium. In a machine game with a

local complexity function, the interim and ex ante sequential equilibria coincide.

As the discussion above emphasizes, a host of new issues arise when defining sequential equilibrium in the context

of machine games. While we believe we have made reasonable choices, variants of our definitions are also worth

considering. For instance, our way of defining beliefs in the definition of interim sequential equilibrium arguably still

has an ex ante flavor (recall that the probability assigned to a node in an information set is the probability of reaching

the node conditioned on reaching the information set). If we want these beliefs to instead correspond to the probabilities

the agent assigns to being at the node, conditioned on being at the information set, we need to consider more carefully

when the agent reconsiders his strategy. If the decision to reconsider depends only on the information set, then the

change in strategy must happen at the upper frontier of the information set, that is, when the information set is first

reached, and our current analysis of interim sequential seems reasonable. If the change does not necessarily happen at

the upper frontier, then we need to model under what circumstances reconsideration occurs. (This point is also made in

[Grove and Halpern 1997; Halpern 1997].) For concreteness, in our context, assume that at each step of the computation,

with some small probability ϵ , a human (the agent) comes in, observes the state of the TM, and decides whether it

wishes to switch machines.
6

Such a model would result in a different way of ascribing beliefs. Our results no longer apply if we use this alternative

way of ascribing beliefs: it is not hard to come up with a machine game that corresponds the “absentminded-driver”

game of Piccione and Rubinstein [1997] where a Nash equilibrium exists, the complexity function is local, but no interim

sequential equilibrium exists using this method to ascribe beliefs.

6 RELATING NASH EQUILIBRIUM AND SEQUENTIAL EQUILIBRIUM

In this section, we relate NE and sequential equilibrium.

First note that is easy to see that every (computational) sequential equilibrium is a NE, since if q = q0, the start state,

(Mi ,q0,M
′
i ) = M ′i . That is, by taking q = q0, we can consider arbitrary modifications of the TMMi .

7

Proposition 6.1. Every ex ante sequential equilibrium is a NE.

Of course, since every interim sequential equilibrium is an ex ante sequential equilibrium, it follows that every

interim sequential equilibrium is a NE as well.

In general, not every NE is a sequential equilibrium. However, under some natural assumptions on the complexity

function, the statement holds. A strategy profile M⃗ in a machine game G is lean if, for all players i and local states

q of Mi , q is reached with positive probability when playing M⃗ . The following proposition is the analogue of the

well-known observation that, with the traditional definition of sequential equilibrium, every completely mixed NE is

also a sequential equilibrium.

Proposition 6.2. If M⃗ is a lean NE for machine game G and µ is a belief system compatible with M⃗ , then (M⃗, µ ) is an

ex ante sequential equilibrium.
6
Even fully specifying such a model requires some care. For instance, can the agent come in twice? In our discussion, for definiteness, we assume that the

agent comes in only once.

7
As we mentioned earlier, since a game tree was not assumed to have a unique initial node in our companion paper [Halpern and Pass 2016], it was

necessary to allow changes at sets of information sets to ensure that every sequential equilibrium was a NE.
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Proof:We need to show only that for each player i and local state q ofMi , there does not exist a TMM ′i compatible with

(Mi ,q) such thatUi (M⃗ | q, µ ) < Ui (((Mi ,q,M
′
i ), M⃗−i ) | q, µ ). Suppose, by way of contradiction, that there exist such

a TMM ′i and local state q. Since µ is compatible with M⃗ , it follows thatUi (M⃗ | q) < Ui (((Mi ,q,M
′
i ), M⃗−i ) | q). Since

(Mi ,q,M
′
i ) is local variant ofMi ,Ui (M⃗ | not reaching q) = Ui (((Mi ,q,M

′
i ), M⃗−i ) | not reaching q)). By the definition

of (Mi ,q,M
′
i ), the probability thatMi and (Mi ,q,M

′
i ) reach q is identical; it follows thatUi (M⃗ ) < Ui ((Mi ,q,M

′
i ), M⃗−i ),

which contradicts the assumption that M⃗ is a NE.

The restriction to local variants (Mi ,q,M
′
i ) ofMi in the definition of ex ante sequential equilibrium is critical here.

Proposition 6.2 does not hold for interim sequential equilibrium. Suppose, for example, that if i is willing to put in

more computation at q, then he gets a better result. Looked at from the beginning of the game, it is not worth putting

in the extra computation, since it involves using extra states, and this charge is global (that is, it affects the complexity

of histories that do not reach q). But once q is reached, it is certainly worth putting in the extra computation. If we

assume locality, then the extra computational effort at q does not affect the costs for histories that do not go through q.

Thus, if it is worth putting in the effort, it will be judged worthwhile ex ante. The following two examples illustrate the

role of locality.

Example 6.3. Let x be an n-bit string whose Kolmogorov complexity is n (i.e., x is incompressible; there is no shorter

description of x). Consider a single-agent gameGx (so that x is built into the game; it is not part of the input) where

the agent’s type is a string of length logn, chosen uniformly at random, and the utility function is defined as follows,

for an agent with type t :

• The agent “wins” if it outputs (1,y), where y = xt (i.e., it manages to guess the tth bit of x , where t is its type).

In this case, it receives a utility of 10, as long as its complexity is at most 2.

• The agent can also “give up”: if it outputs t0 (i.e., the first bit of its type) and its complexity is 1, then it receives a

utility of 0.

• Otherwise, its utility is −∞.8

Consider the 4-state TMM that just “gives up”. Formally,M = (τ , {q0,b0,b1,H },q0, {H }), where τ is such that, in q0,M

reads the first bit t0 of the type, and transitions to bi if it is i; and in state bi , it outputs i and transitions to H , the halt

state. Now define the complexity function as follows:

• the complexity ofM is 1 (on all inputs);

• the complexity of any TMM ′ , M that has at most 0.9n states is 2;

• all other TMs have complexity 3.

Note thatM is the unique NE in Gx . Since x is incompressible, no TMM∗ with fewer than 0.9n states can correctly

guess xt for all t (for otherwise M
∗
would provide a description of x shorter than |x |). It follows that no TM with

complexity greater than 1 does better thanM . Thus,M is the unique NE. It is also a lean NE, and thus, by Proposition

6.2, an ex ante sequential equilibrium. However, there exists a non-local variant ofM at b0 that gives higher utility than

M . Notice that if the first bit is 0 (i.e., if the TM is in state b0), then xt is one of the first n/2 bits of x . Thus, at b0, we can

switch to the TMM ′ that reads the whole type t and the first n/2 bits of x , and then outputs (1,xt ). It is easy to see that

M ′ can be constructed using 0.5n +O (1) states. Thus,M is not an interim sequential equilibrium (in fact, none exists in

Gx ). (M,b0,M
′) is not a local variant ofM , sinceM ′ has higher complexity thanM at q0.

8
We can replace −∞ here by any sufficiently small integer; −20 logn will do.
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Example 6.4. Consider the game in Figure 1 again. Recall that the strategy that maximizes expected utility is the

strategy f that chooses action S at node x1, action B at node x2, and action R at the information set X consisting of

x3 and x4. Let f
′
be the strategy of choosing action B at x1, action S at x2, and L at X . As Piccione and Rubinstein

point out, if node x1 is reached and the agent is using f , then he will not want to continue using f ; he would prefer to

switch to f ′ instead. In the language of this paper, f is not an interim sequential equilibrium, although it is a NE of the

one-player game. Note that f ′ is neither a NE nor an interim sequential equilibrium (since if the player is using f ′

at x2, he will want to switch to f ). According to the definition in our companion paper [Halpern and Pass 2016], f

is an ex ante sequential equilibrium. The reason is that switching from f to f ′ is not allowed at x1, because f ′ does

something different from f at a node that is not below x1, namely x4. As a consequence, ( f ,x , f
′) is not a strategy in

the game, since it does different things at x3 and x4, although they are in the same information set. The requirement

made in our companion paper that, when considering switching from a strategy f to f ′ at an information set X ∗, f ′

has to agree with f at all nodes not below X ∗ is somewhat analogous to the local-variant requirement that we make

here in the definition of ex ante sequential equilibrium.

We now consider a machine game that captures some of the essential features of the game in Figure 1. Suppose that

there are two types, 0 and 1, which each occurs with probability 1/2. The agent must choose between two TMs,M0 and

M1, which can be viewed as corresponding to f and ( f ,x , f ′).M0 reads the input in state q0, and moves to either state

q1 or q2, depending on whether it reads 0 or 1. In q1,M0 moves to state H , the halt state, outputting nothing (i.e., the

output is b, the blank symbol). In state q2,M0 writes 1 on its output tape and moves to q4; in q4, it writes 1 again, and

moves to H .M1 again moves to q1 or q2 depending on its input, and from q2 moves to q4 and H , writing 11, just like

M0. But from q1, it moves to q3 and H , writing 00. See Figures 2 and 3 for descriptions ofM0 andM1, respectively.

q0start

q1

q2 q4

H

0,b

1,b

b,b

b,1

b,1

Fig. 2. The machine M0. Labels of the form (x, y ) on an edge mean that the transition is made while reading x on the input tape and
writing y on the output tape; we assume that all heads move to the right at every transition.

The payoffs are as follows: if the output is b, the payoff is 2 − c for both inputs, where c is the complexity of the

machine chosen. If the output is 00 and the input is 0, the payoff is 3 − c ; if the output is 11 and the input is 1, the payoff

is 4 − c . If the output is something other than b or 00 and the input is 0, then the payoff is −6; if the output is something

other than b or 11 and the input is 1, then the payoff of −2. Finally, c = 0 ifM0 is chosen, and c = .75 ifM1 is chosen.

It is easy to see thatM0 is a NE; its expected payoff is 3, while that ofM1 is 2.75 (with probability 1/2 it is 3.25 and

with probability 1/2 it is 2.25). However,M0 is not an interim sequential equilibrium, because at q1, the agent prefers
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q0start

q1 q3

q2 q4

H

0,b

1,b

b,0

b,0

b,1

b,1

Fig. 3. The machine M1.

switching to (M0,q1,M1), which is equivalent toM1, since, conditional on reaching q1, the payoff ofM0 is 2, while that

ofM1 is 2.25. Note that although ( f ,x1, f
′) is not a strategy, (M0,q1,M1) is a TM (and is equivalent toM1). Switching

fromM0 to (M0,q1,M1) results in changing the information structure. Such a change is not possible in standard games

of imperfect recall. Finally, note that M0 is an ex ante sequential equilibrium; the switch from M0 to (M0,q1,M1) is

disallowed at q1 because (M0,q1,M1) is not a local variant ofM0.

We now show that for a natural class of games, every NE is lean, and thus also an ex ante sequential equilibrium.

Intuitively, we consider games where there is a strictly positive cost for having more states. Our argument is similar in

spirit to that of Rubinstein [1986], who showed that in his games with automata, there is always a NE with no “wasted”

states; all states are reached in equilibrium. Roughly speaking, a machine gameG has positive state cost if (a) a state q is

not reached in TMM , andM−q is the TM that results from removing q fromM , then Ci (M
−q ,v ) < Ci (M,v ); and (b)

utilities are monotone decreasing in complexity; that is, ui (⃗t , a⃗, (c
′
i , c⃗−i )) < ui (⃗t , a⃗, (ci , c⃗i )) if c

′
i > ci . More precisely,

we have the following definition.

Definition 6.5. A machine game G = ([m],M, Pr, C⃗ , u⃗) has positive state cost if the following two conditions hold:

• For all players i , TMsMi = (τ ,Q,q0,H ), views v for player i , and local states q , q0 inQ such that q is not reached

in view v when runningMi (note that because the view gives the complete history of messages received and read, we

can compute the sequence of states that player i goes through when usingMi if his view isv),Ci (M
−q ,v ) < Ci (M,v ),

whereM−q = (Q − {q},τq ,q0), and τq is identical to τ except that all transitions to q are replaced by transitions to

q0.

• Utilities are monotone decreasing in complexity; that is, for all players i , type profiles t⃗ , action profiles a⃗, and

complexity profiles (ci , c⃗−i ), views v , (c ′i , c⃗−i ), if c
′
i > ci , then Ci (M

−q ,v ) < Ci (M,v ).

Lemma 6.6. Every NE M⃗ for machine game G with positive state cost is lean.

Proof: Suppose, by way of contradiction, that there exists a NE M⃗ for a game G with positive state cost, a player i ,

and a local state q ofMi that is reached with probability 0. First, note that q cannot be the initial state ofMi since, by

definition, the initial state of every TM is reached with probability 1. Since G has positive state cost, for every view v

that is assigned positive probability (according to the type distribution ofG),M
−q
i (v ) has the same output asMi (v ) and
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Ci (M
−q
i ,v ) < C (M

−q
i ,v ). Since the utility is monotonic in complexity, it follows thatUi (M

−q
i , M⃗−i ) < Ui (M⃗ ), which

contradicts the assumption that M⃗ is a NE.

Combining Proposition 6.2 and Lemma 6.6, we immediately get the following result.

Theorem 6.7. If M⃗ is a NE for amachine game G with positive state cost and µ is a belief system compatible with M⃗ , then (M⃗, µ ) is an ex ante sequential equilibrium.

One might be tempted to conclude from Theorem 6.7 that sequential equilibria are not interesting, since every NE

is a sequential equilibrium. But this result depends on the assumption of positive state cost in a critical way, as the

following simple example shows.

Example 6.8. Consider a single-agent game where the type space is {0, 1}; the agent gets payoff 1 if he outputs

his type, and otherwise gets 0. Suppose that all TMs have complexity 0 on all inputs (so that the game does not have

positive state cost), and that the type distribution assigns probability 1 to the type being 0. LetM be the 4-state TM that

reads the input and then outputs 0. Formally,M = (τ , {q0,b
0,b1,H },q0, {H }), where τ is such that in q0,M reads the

type t and transitions to bi if the type is i; and in state bi , it outputs 0 and transitions to H , the halt state.M is clearly a

NE, since b = 0 with probability 1. However,M is not an ex ante sequential equilibrium, since conditional on reaching

b1, outputting 1 and transitioning to H yields higher utility; furthermore, this change is a local variant ofM since all

TMs have complexity 0.

7 EXISTENCE

We cannot hope to prove a general existence theorem for sequential equilibrium, since not every game has even a

NE, and by Proposition 6.1, every ex ante sequential equilibrium is a NE. Nonetheless, we show that for any Bayesian

machine game G where the setM of possible TMs that can be chosen is finite, if G has a NE, then it has a sequential

equilibrium. More precisely, we show that in every game where the setM of possible TMs that can be chosen is

finite, every NE can be converted to an ex ante sequential equilibrium with the same distribution over outcomes. As

illustrated in Example 6.8, not every NE is an ex ante sequential equilibrium; thus, in general, we must modify the

original equilibrium.

Theorem 7.1. LetG be a machine game where the setM of TMs is finite. IfG has a NE, then it has an ex ante sequential

equilibrium with the same distribution over outcomes.

Proof: Let M⃗1, M⃗2, . . . be a sequence of machine profiles that converges to M⃗ , and let µ be the belief induced by this

sequence. That is, µ is a belief that is compatible with M⃗ . Let M⃗ be a NE that is not a sequential equilibrium. There thus

exists a player i and a nonempty set of states Q such thatMi is not a best response for i at any state q ∈ Q , given the

belief µ. Let q ∈ Q be a state that is not strictly preceded by another state q∗ ∈ Q (i.e., q < QMi ,q∗ ). It follows using the

same proof as in Lemma 6.2 that q is reached with probability 0 (when the profile M⃗ is used). Let (Mi ,q,M
′
i ) be a local

variant ofM with the highest expected utility conditional on reaching q and the other players using M⃗−i . (SinceM, the

set of TMs, is finite, such a TM exists.) Since q is reached with probability 0, it follows that ((Mi ,q,M
′
i ), M⃗−i ) is a NE;

furthermoreM ′i is now optimal at q, and all states that are reached with positive probability from q (when using the

profile ((Mi ,q,M
′
i ), M⃗−i ) and belief system µ).

If (M,q,M ′i ) is not a sequential equilibrium, we can iterate this procedure, keeping the belief system µ fixed. Note

that in the second iteration, we can choose only a state q′ that is reached with probability 0 also when starting from q

(when using the profile ((Mi ,q,M
′
i ), M⃗−i ) and beliefs µ). It follows by a simple induction that states “made optimal” in
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iteration i cannot become non-optimal at later iterations. SinceM is finite, it suffices to iterate this procedure a finite

number of time to eventually obtain a strategy profile M⃗ ′ such that (M⃗ ′, µ ) is a sequential equilibrium.

We end this section by providing some existence results for games with infinite machine spaces. As shown in Theorem

6.7, in games with positive state cost, every NE is an ex ante sequential equilibrium. Although positive state cost is a

reasonable requirement in many settings, it is certainly a nontrivial requirement. A game G has non-negative state cost

if the two conditions in Definition 6.5 hold when replacing the strict inequalities with non-strict inequalities. That is,

roughly speaking,G has non-negative state cost if adding machine states (without changing the functionality of the TM)

can never improve the utility. It is hard to imagine natural games with negative state cost. In particular, a complexity

function that assigns complexity 0 to all TMs and inputs has non-negative state cost. Say thatG is complexity-independent

if, for each player i , i’s utility does not depend on the complexity of players −i .9 (Note that all single-player games are

trivially complexity-independent.) Although non-negative state cost combined with complexity-independence is not

enough to guarantee that every NE is an ex ante sequential equilibrium (as illustrated by Example 6.8), it is enough to

guarantee the existence of an ex ante sequential equilibrium.

Proposition 7.2. IfG is a complexity-independent machine game with non-negative state cost that has a NE, then it

has a lean NE with the same distribution over outcomes.

Proof: Suppose that M⃗ is a NE of the game G with non-negative state cost. For each player i , let M ′i denote the TM

obtained by removing all states fromMi that are never reached in equilibrium. Since G has non-negative state cost and

is complexity-independent, M⃗ ′ is also a NE. Furthermore, it is lean by definition and has the same distribution over

outcomes as M⃗ .

Corollary 7.3. If G is a complexity-independent machine game with non-negative state cost, and G has a NE, then G

has an ex ante sequential equilibrium.

8 EXTENSIVE-FORMMACHINE GAMES

Up to now, we have considered sequential equilibrium only for extensive-form games determined by Bayesian machine

games, where players make only one move in the underlying Bayesian game, and the remaining moves correspond

to computation steps. But the notion of a machine game also can be extended to extensive-form games as well in a

straightforward way. We just sketch the relevant definitions here.

We assume that the reader is familiar with the standard definition of extensive-form games. We start with an

underlying extensive-form game of perfect recall. The intuition here is that two nodes are in the same information set

for player i if player i cannot distinguish the histories ending with these nodes even if player i recalls all the moves he

has made made and all the information that he has received. Now if player i chooses a TM that forgets some information,

then player i may be able to make fewer distinctions. Thus, the information sets in the underlying game represent an

upper bound; player i’s actual partition may be coarser, depending on his choice of TM.
10

In an extensive-form machine game, just as in the case of computational Bayesian games, a player chooses a TM to

play for him. In addition to making moves in the underlying game, the TM makes “computational” moves, just as in the

9
For our theorem, it suffices to assume that player j ’s utility decreases if player i ’s complexity decreases and everything else remains the same.

10
The game in Figure 1 illustrates why we do not want to start with a game of imperfect recall. Recall that, in this game, a player was able to use his

strategy as a way of telling which history in the information set he was is. We want to separate the fact that a player cannot distinguish two histories

because the information to distinguish is not available, even if he has perfect recall, from the fact that he cannot distinguish two histories because he has

forgotten (more precisely, chosen to forget). The former lack of information is captured by the information sets of the underlying extensive-form game;

the latter is captured by the state of the TM.
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model of Section 3. In the resulting extensive-form game, player i’s information sets are again determined by the states

of the TM that i chooses. Since all we have are TMs, we need a way for a player’s TM to make moves, to learn about

what moves other players made (if it is consistent with their information sets to learn it), and to learn that it is their

move. We model this by assuming that players actually communicate with a mediator. Formally, we use what are called

interactive Turing machines (ITMs), which can send and receive messages (see Goldreich [2001] for a formal definition).

We assume that all communication passes between the players and a trusted mediator. Communication between the

players is modeled by having a trusted mediator who passes along messages received from the players. Thus, we think

of the players as having reliable communication channels to and from a mediator; no other communication channels

are assumed to exist. The mediator is also an ITM. However, we do not view the mediator as a “strategic player” in

the game. Specifically, we do not define the utility of the mediator, and thus do not worry about the complexity of the

mediator’s ITM. We assume that the mediator plays according to its ITM, and does not consider deviating.

A player makes a move in the underlying game by sending the mediator a message describing the move; a player

discovers it is his move and gets information about other players’ moves by receiving messages from the mediator.

(Machine games with mediators are introduced and discussed in detail in our earlier paper [Halpern and Pass 2015,

Section 3], but the details are not needed here.) With these modifications, we can now define ex ante and interim

sequential equilibrium in the resulting extensive-form game just as in Definition 5.1. All our earlier results hold with

essentially no change. However, now an issue that did not seem to be so significant when considering Bayesian games

has more bite when considering extensive-form games. TMs output bitstrings. Thus, we have to associate these bitstrings

with actions in the underlying game. Exactly how we do this may affect the equilibrium.

Example 8.1. Consider the (well-known) extensive-form game in Figure 4. If we do not take computation into

s s

ss sc c

d d

A B

(1, 1) (0, 0)

(3, 3)

Fig. 4. A well-known extensive-form game.

account, (d,d ) is a Nash equilibrium, but it is not a sequential equilibrium: if Alice plays c , then Bob prefers switching

to c . The only sequential equilibrium is (c, c ) (together with the obvious belief assessment that assigns probability 1 to

(c, c )).

To model the game in Figure 4 as an extensive-form machine game, we consider Alice and Bob communicating

with a mediator N . Alice sends its move to N ; if the move is c , N sends the bit 1 to Bob; otherwise N sends 0 to Bob.

Finally, Bob sends his move to N . Since the action space in a machine game is {0, 1}∗, we need to map bitstrings onto

the actions c and d . For definiteness, we let the string 0 be interpreted as the action c; all other bitstrings (including

the empty string) are interpreted as d . Suppose that all TMs have complexity 0 on all inputs (i.e., computation is free)

and that utilities are defined as in Figure 4. Let D be a 2-state machine that simply outputs 1 (which is interpreted
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as d); formally, D = (τ , {q0,H },q0, {H }), where τ is such that in q0, the machine outputs 1 and transitions to H . Let

C be the analogous 2-state machine that outputs 0 (i.e., c). As we might expect, ((C,C ), µ ) is both an interim and ex

ante sequential equilibrium, where µ is the belief assessment where Bob assigns probability 1 to receiving 0 from N

(i.e., Alice playing c). But now ((D,D), µ ′) is also an interim and ex ante sequential equilibrium, where µ ′ is the belief

assessment where Bob assigns probability 1 to receiving 1 from N (i.e., Alice playing d). Since the machine D never

reads the input from N , this belief is never contradicted. We do not have to consider what his beliefs would be if Alice

had played c , because he will not be in a local state where he discovers this. (C,C ) remains a sequential equilibrium even

if we charge (moderately) for the number of states. (D,D), on the other hand, is no longer a sequential equilibrium, or

even a Nash equilibrium: both players prefer to use the single-state machine ⊥ that simply halts (recall that outputting

the empty string is interpreted as choosing the action d). Indeed, (⊥,⊥) is an ex ante and interim sequential equilibrium.

As illustrated in Example 8.1, to rely on our treatment of sequential equilibrium, we must first interpret an extensive

form game as a game with a mediator. But as we showed, the sequential equilibrium outcomes are sensitive to the

interpretation of the extensive-form game. This leaves open the question of what the “right” way to interpret a given

extensive-form game is. Note that when consider a game with a mediator, we did not consider the complexity of the

mediator, since the mediator is not viewed as a player who plays strategically and has utilities. But consider a mediator

that is “simple” in some sense might be more reasonable than considering a complicated mediator. We leave the question

of the “right” way to view extensive-form games as machine games to further research.

9 DISCUSSION

There is by now a long tradition of taking the cost of computation into account in game theory and decision theory;

see, for example, [Good 1952; Halpern and Pass 2010, 2015; Horvitz 1987, 2001]. Horvitz [1987; 2001], in particular,

has focused on tradeoffs between deliberation and computation. Here we have modeled the process of deliberation

by the computation of a TM, viewing the deliberation itself as part of the game, and have considered what solution

concepts would be appropriate for this setting. In particular, we have given definitions of ex ante and interim sequential

equilibrium in machine games, provided conditions under which they exist, and related them to Nash equilibrium in

machine games. We believe that thinking about sequential equilibrium in machine games clarifies some issues raised by

Piccione and Rubinstein [1997] about sequential equilibrium in games of imperfect recall.

Specifically, given a “standard” extensive-form game G of imperfect recall, we can consider an extensive-form

computational gameG ′ where the players have the same moves available as inG , butG ′ is a game of perfect recall. We

can then restrict the class of TMs that the agents can choose among to those in the computable convex closure
11

of

a finite set of TMs that capture the knowledge assumptions described by the information sets in G. In particular, if

nodes x and y are in the same information set for player i in G, then all the TMs that i can choose among in G ′ will be

in the same state when they reach both nodes x and y. We restrict to complexity functions where randomization is

free, in the sense that the complexity of αM1 + (1 − α )M2 is the obvious convex combination of the complexity ofM1

and the complexity ofM2. As shown in our earlier paper, this suffices to guarantee that G ′ has a Nash equilibrium. By

Theorem 6.7, if G ′ has positive state cost, then G ′ has an ex ante sequential equilibrium; furthermore, if the complexity

function in G ′ is local, by Proposition 5.2, this ex ante sequential equilibrium is also an interim sequential equilibrium.

Thus, thinking in terms of computational games forces us to specify the “meaning” of the information set in a game of

11
See our earlier paper [Halpern and Pass 2015] for a formal definition of the computable convex closure.
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imperfect recall, and gives us a way of doing so. It also gives us deeper insight into when and why sequential equilibrium

exists in such games.

Thinking in terms of computational games also raises a number of fundamental questions involving computation in

extensive-form games. As we already observed in our earlier paper, in our framework, we are implicitly assuming that

the agents understand the costs associated with each TM; they do not have to compute these costs. Similarly, players

do not have to compute their beliefs. In a computational model, it seems that we should be able to charge for these

computations. It is not yet clear how to charge for these computations, nor how such charges should affect solution

concepts. We are planning to explore these issues.

Interestingly, extensive-form games with imperfect information have arisen recently in the analysis of large extensive-

form games with perfect information, such as poker. Since the analysis (in particular, finding a Nash equilibrium) is

too hard to do in the orignial large game, the game is abstracted to a smaller game, by combining information sets.

The abstracted game is often one of imperfect recall. Because it is smaller, it is easier to find a Nash equilibrium of the

smaller game. The hope is that this tells us something about the equilibrium of the larger game. (Sandholm [2015]

provides a good overview of this work.) Although games of imperfect information play a key role in this literature, as

do issues of computation, the information sets are given exogenously (as is standard in game theory), rather than by

defined by the TM that does the computation. The focus is also on Nash equilibrium, rather than sequential equilIbrium.

It would be interesting to investigate whether thinking in terms of sequential equilibrium in computational games gives

insight into how humans play these large games. For example, it seems normatively reasonable to want a sequential

equilibrium in a game like poker. We would want whatever strategy is being played to be a best response even if an

opponent made an unexpected move (that led to a node off the equilibrium path). In addition, if we are interested

in modeling how players might take advantage of players who are not playing optimally (an issue that most of the

research on poker has not focused on), we need a model of how these players make decisions. We also want a way to

model weaker and stronger players. Thinking in terms of TMs gives us a principled way of doing this. We can think of a

weaker player as one who chooses from a more restricted set of TMs, although exactly how to best limit the complexity

class requires more thought. Of course, finding an appropriate way to combine the techniques of this paper with those

used in the poker-playing literature is a nontrivial problem, but it seems to us an interesting path to pursue.
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