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Abstract

In the last few decades, numerous experiments have shown that humans
do not always behave so as to maximize their material payoff. Cooperative
behavior when non-cooperation is a dominant strategy (with respect to the
material payoffs) is particularly puzzling. Here we propose a novel approach
to explain cooperation, assuming what Halpern and Pass (2013) call translu-
cent players. Typically, players are assumed to be opaque, in the sense that a
deviation by one player in a normal-form game does not affect the strategies
used by other players. But a player may believe that if he switches from one
strategy to another, the fact that he chooses to switch may be visible to the
other players. For example, if he chooses to defect in Prisoner’s Dilemma,
the other player may sense his guilt. We show that by assuming translucent
players, we can recover many of the regularities observed in human behav-
ior in well-studied games such as Prisoner’s Dilemma, Traveler’s Dilemma,
Bertrand Competition, and the Public Goods game. The approach can also
be extended to take into account a player’s concerns that his social group (or
God) may observe his actions. This extension helps explain prosocial be-
havior in situations in which previous models of social behavior fail to make
correct predictions (e.g., conflict situations and situations where there is a
tradeoff between equity and efficiency).

1 Introduction

In the last few decades, numerous experiments have shown that humans do not al-
ways behave so as to maximize their material payoff. Many alternative models have
consequently been proposed to explain deviations from the money-maximization
paradigm. Some of them assume that players are boundedly rational and/or make
mistakes in the computation of the expected utility of a strategy (Camerer, Ho,
and Chong 2004; Costa-Gomes, Crawford, and Broseta 2001; Halpern and Pass
2015; McKelvey and Palfrey 1995; Stahl and Wilson 1994); yet others assume that
players have other-regarding preferences (Bolton and Ockenfels 2000; Charness
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and Rabin 2002; Fehr and Schmidt 1999); others define radically different solu-
tion concepts, assuming that players do not try to maximize their payoff, but rather
try to minimize their regret (Halpern and Pass 2012; Renou and Schlag 2010),
maximize the forecasts associated to coalition structures (Capraro 2013; Capraro,
Venanzi, Polukarov, and Jennings 2013), or maximize the total welfare (Apt and
Schäfer 2014; Rong and Halpern 2013). However, the predictive power of these
models is typically quite limited; for each of them, we can easily find examples of
games where they fail to make good predictions.

Cooperative behavior in one-shot anonymous games is particularly puzzling,
especially in games where non-cooperation is a dominant strategy (with respect to
the material payoffs): why should you pay a cost to help a stranger, when no clear
direct or indirect reward seems to be at stake? Nevertheless, the secret of success
of our societies is largely due to our ability to cooperate. We do not cooperate only
with family members, friends, and co-workers. A great deal of cooperation can be
observed also in one-shot anonymous interactions (Camerer 2003), where none of
the five rules of cooperation proposed by Nowak (2006) seems to be at play.

Here we propose a different approach to explain cooperation, based on work of
Halpern and Pass (2013) and Salcedo (2013), assuming what Halpern and Pass call
translucent players. Typically, players are assumed to be opaque, in the sense that
a deviation by one player in a normal-form game does not affect the strategies used
by other players. But a player may believe that if he switches from one strategy
to another, the fact that he chooses to switch may be visible to the other players.
For example, if he chooses to defect in Prisoner’s Dilemma, the other player may
sense his guilt. (Indeed, it is well known that there are facial and bodily clues, such
as increased pupil size, associated with deception; see, e.g., (Ekman and Friesen
1969). Professional poker players are also very sensitive to tells—betting patterns
and physical demeanor that reveal something about a player’s hand and strategy.)1

Such beliefs may well increase cooperative behavior in games such as Prisoner’s
1The idea of translucency is motivated by some of the same concerns as Solan and Yariv’s (2004)

games with espionage, but the technical details are different. A game with espionage is a two-player
extensive-form game that extends an underlying normal-form game by adding a step where player 1
can purchase some noisy information about player 2’s planned move. In contrast, in our framework,
the information is free and all players may be translucent. Moreover, the effect of the translucency is
modeled by the players’ counterfactual beliefs in a normal-form game rather than by adding a move
to the game and making it an extensive-form game. Indeed, following Halpern and Pass (2013), we
have deliberately avoided trying to model the belief-change process using an extensive-form games.
As pointed out by Halpern and Pass, there are many factors other than information leakage that
can lead to translucency; each might correspond to a different class of games. Rather than trying
to model a particular belief-change process that would result from one cause of translucency, by
using counterfactuals, we can give an explict description of how players’ beliefs change without
considering the reasons.
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Dilemma.
In this paper, we show how translucency can help explain a wide range of ex-

perimental results regarding cooperative behavior. Appealing to translucency may
at first seem somewhat strange. Typical lab experiments of social dilemmas con-
sider anonymous players, who play against each other using computers. In this set-
ting, there are no tells. However, as Rand and his colleagues have argued (see, e.g.,
(Rand et al. 2012; Rand et al. 2014)), behavior of subjects in lab experiments is
strongly influenced by their experience in everyday interactions. People internalize
strategies that are more successful in everyday interactions and use them as default
strategies in the lab. We would argue that people do not just internalize strategies;
they also internalize beliefs. In everyday interactions, changing strategies certainly
affects how other players react in the future. Through tells and possible leaks about
changes in plans, it also may affect how other players react in current play. In real
interactions, this might happen through mutual monitoring of visual expressions.
Along these lines, Owren and Bachorowski (2001) have argued that smiling and
laughter have evolved as signals of trustworthiness. Since mutual monitoring in
general has been proposed as a key mechanism for the evolution of cooperation
among unrelated humans (Binmore 2005), it is then possible that, in everyday in-
teractions, people assume a certain amount of transparency. We claim that players
then apply these beliefs in lab settings where they are arguably inappropriate.

There is experimental evidence that can be viewed as providing support for
players believing that they are transparent. Gilovich et al. (1998) show that people
tend to overestimate the extent to which others can discern their internal states. For
instance, they showed that liars overestimate the detectability of their lies and that
people believe that their feelings of disgust are more apparent than they actually
are. There is also growing evidence that showing people simple images of watching
eyes has a marked effect on behavior, ranging from giving more in Public Goods
games to littering less (see (Bateson et al. 2013) for a discussion of some of this
work and an extensive list of references). One way of understanding these results
is that the eyes are making people feel more transparent.

We apply the idea of translucency to a particular class of games that we call
social dilemmas (cf. (Dawes 1980)). A social dilemma is a normal-form game with
two properties:

1. there is a unique Nash equilibrium sN , which is a pure strategy profile;

2. there is a unique welfare-maximizing profile sW , again a pure strategy pro-
file, such that each player’s utility if sW is played is higher than his utility if
sN is played.

These uniqueness assumptions are not necessary, but they make definitions and
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computations easier. Although these restrictions are nontrivial, many of the best-
studied games in the game-theory literature satisfy them, including Prisoner’s Dilemma,
Traveler’s Dilemma (Basu 1994), Bertrand Competition, and the Public Goods
game. (See Section 3 for more discussion of these games.)

There are (at least) two reasons why an agent may be concerned about translu-
cency in a social dilemma: (1) his opponents may discover that he is planning to
defect and punish him by defecting as well, (2) others (such as people in social
group, which may or may not include his opponent, or God) may discover that he
is planning to defect (or has defected, despite the fact that the game is anonymous)
and thus think worse of him and/or punish him.

For definiteness, we focus here on the first reason, although we do address the
second in Section 6. Specifically, we assume that, in social dilemmas, players have
a degree of belief α that they are transparent, so that if they intend to cooperate (by
playing their component of the welfare-maximizing strategy) and decide to deviate,
there is a probability α that another player will detect this, and play her component
of the Nash equilibrium strategy. (The assumption that cooperation acts as a default
strategy is supported by experiments showing that people forced to make a decision
under time pressure are, on average, more cooperative than those forced to make
a decision under time delay (Rand, Green, and Nowak 2012; Rand, Peysakhovich,
Kraft-Todd, Newman, Wurzbacher, Nowak, and Greene 2014). Rand and his col-
leagues suggest that this is due to the internalization of strategies that are successful
in everyday interactions.) We assume that these detections are independent, so that
the probability of, for example, exactly two players other than i detecting a devi-
ation by i is α2(1 − α)N−3, where N is the total number of players. Of course,
if α = 0, then we are back at the standard game-theoretic framework. We show
that, with this assumption, we can already explain a number of experimental reg-
ularities observed in social dilemmas (see Section 3). We can model the second
point regarding concerns about transparency in much the same way, and would get
qualitatively similar results (see Section 7).

The rest of the paper is as follows. In Section 2, we formalize the notion of
translucency in a game-theoretic setting. In Section 3, we define the social dilem-
mas that we focus on in this paper; in Section 4, we show that, by assuming translu-
cency, we can obtain as predictions of the framework a number of regularities that
have been observed in the experimental literature. We discuss related work in Sec-
tion 5. In Section 6 we extend our approach to take into account a player’s concerns
that his social group (or God) may observe his actions. Section 7 concludes. Proofs
are deferred to the appendix, where we also discuss a solution concept that we call
translucent equilibrium, based on translucency, closely related to the notion of in-
dividual rationality discussed by Halpern and Pass (2013), and show how it can be
applied in social dilemmas.
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2 Rationality with translucent players

In this section, we briefly define rationality in the presence of translucency, moti-
vated by the ideas in Halpern and Pass (2013).

Formally, a (finite) normal-form game G is a tuple (P, S1, . . . , SN , u1, . . . , uN ),
where P = {1, . . . , N} is the set of players, Si is the set of strategies for player i,
and ui is player i’s utility function. Let S = S1 × · · · × SN and S−i =

∏
j 6=i Sj .

We assume that S is finite and that N ≥ 2.
In standard game theory, it is assumed that a player i has beliefs about the

strategies being used by other players; i is rational if his strategy is a best response
to these beliefs. The standard definition of best response is the following.

Definition 2.1. A strategy si ∈ Si is a best response to a probability µi on S−i if,
for all strategies s′i for player i,∑

s′−i∈S−i

µi(s
′
−i)ui(si, s

′
−i) ≥

∑
s′−i∈S−i

µi(s
′
−i)ui(s

′
i, s
′
−i).

Definition 2.1 implicitly assumes that i’s beliefs about what other agents are
doing do not change if i switches from si, the strategy he was intending to play, to a
different strategy. (In general, we assume that i always has an intended strategy, for
otherwise it does not make sense to talk about i switching to a different strategy.)
In the translucent counterpart of Definition 2.1, what we have are beliefs µsi,s

′
i

i for

i indexed by a pair of strategies si and s′i; we interpret µsi,s
′
i

i as i’s beliefs if he
intends to play si but instead deviates to s′i. Thus, µsi,sii represents i’s beliefs if he
plays si and does not deviate. We modify the standard definition of best response
by defining best response with respect to a family of beliefs µsi,s

′
i

i .

Definition 2.2. Strategy si ∈ Si is a best response for i with respect to the beliefs
{µsi,s

′
i

i : s′i ∈ Si} if, for all strategies s′i ∈ Si,∑
s′−i∈S−i

µsi,sii (s′−i)ui(si, s
′
−i) ≥

∑
s′−i∈S−i

µ
si,s
′
i

i (s′−i)ui(s
′
i, s
′
−i).

Thus, crucially, as in Halpern and Pass (2013), beliefs depend on players’ in-
tended strategies. We are interested in players who best respond to their beliefs, but
we define best response in terms of Definition 2.2, not Definition 2.1. Of course,
the standard notion of best response is just the special case of the notion above
where µsi,s

′
i

i = µsi,sii for all s′i: a player’s beliefs about what other players are
doing do not change if he switches strategies.
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Definition 2.3. A player is translucently rational if he best responds to his beliefs
in the sense of Definition 2.2.

Our assumptions about translucency will be used to determine µsi,s
′
i

i . For ex-
ample, suppose that Γ is a 2-player game, player 1 believes that, if he were to
switch from si to s′i, this would be detected by player 2 with probability α, and

if player 2 did detect the switch, then player 2 would switch to s′j . Then µsi,s
′
i

i is
(1− α)µsi,si + αµ′, where µ′ assigns probability 1 to s′j ; that is, player 1 believes
that with probability 1 − α, player 2 continues to do what he would have done all
along (as described by µsi,si) and, with probability α, player 2 switches to s′j .

3 Social dilemmas

Social dilemmas are situations in which there is a tension between the collective in-
terest and individual interests: every individual has an incentive to deviate from the
common good and act selfishly, but if everyone deviates, then they are all worse off.
Many personal and professional relationships, the depletion of natural resources,
climate protection, the security of energy supply, and price competition in markets
can all be viewed as instances of social dilemmas.

As we said in the introduction, we formally define a social dilemma as a
normal-form game with a unique Nash equilibrium and a unique welfare-maximizing
profile, both pure strategy profiles, such that each player’s utility if sW is played
is higher than his utility if sN is played. While this is a restricted set of games, it
includes many that have been quite well studied. Here, we focus on the following
games:

Prisoner’s Dilemma. Two players can either cooperate (C) or defect (D). To
relate our results to experimental results on Prisoner’s Dilemma, we think of
cooperation as meaning that a player pays a cost c > 0 to give a benefit b > c
to the other player. If a player defects, he pays nothing and gives nothing.
Thus, the payoff of (D,D) is (0, 0), the payoff of (C,C) is (b − c, b − c),
and the payoffs of (D,C) and (C,D) are (b,−c) and (−c, b), respectively.
The condition b > c implies that (D,D) is the unique Nash equilibrium and
(C,C) is the unique welfare-maximizing profile.

Traveler’s Dilemma. Two travelers have identical luggage, which is damaged (in
an identical way) by an airline. The airline offers to recompense them for
their luggage. They may ask for any dollar amount between L andH (where
L and H are both positive integers). There is only one catch. If they ask for
the same amount, then that is what they will both receive. However, if they
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ask for different amounts—say one asks for m and the other for m′, with
m < m′—then whoever asks for m (the lower amount) will get m + b (m
and a bonus of b), while the other player gets m − b: the lower amount and
a penalty of b. It is easy to see that (L,L) is the unique Nash equilibrium,
while (H,H) maximizes social welfare, independent of b.

Public Goods game. N ≥ 2 contributors are endowed with 1 dollar each; they
must simultaneously decide how much, if anything, to contribute to a public
pool. (The contributions must be in whole cent amounts.) The total con-
tribution pot is then multiplied by a constant strictly between 1 and N , and
then evenly redistributed among all players.2 So the payoff of player i is
ui(x1, . . . , xN ) = 1 − xi + ρ(x1 + . . . + xN ), where xi denotes i’s contri-
bution, and ρ ∈

(
1
N , 1

)
is the marginal return. (Thus, the pool is multiplied

by ρN before being split evenly among all players.) Everyone contributing
nothing to the pool is the unique Nash equilibrium, and everyone contribut-
ing their whole endowment to the pool is the unique welfare-maximizing
profile.

Bertrand Competition. N ≥ 2 firms compete to sell their identical product at a
price between the “price floor”L ≥ 2 and the “reservation value”H . (Again,
we assume that H and L are integers, and all prices must be integers.) The
firm that chooses the lowest price, say s, sells the product at that price, get-
ting a payoff of s, while all other firms get a payoff of 0. If there are ties, then
the sales are split equally among all firms that choose the lowest price. Now
everyone choosing L is the unique Nash equilibrium, and everyone choosing
H is the unique welfare-maximizing profile.3

From here on, we say that a player cooperates if he plays his part of the welfare-
maximizing strategy profile and defects if he plays his part of the Nash equilibrium
strategy profile.

While Nash equilibrium predicts that people should always defect in social
dilemmas, in practice, we see a great deal of cooperative behavior; that is, people
often play (their part of) the welfare-maximizing profile rather than (their part of)
the Nash equilibrium profile. Of course, there have been many attempts to explain

2We thus consider only linear Public Goods games. This choice is motivated by the fact that our
purpose is to compare the predictions of our model with experimental data. Most experiments have
adopted linear Public Goods games, since they have much easier instructions and thus they minimize
noise due to participants not understanding the rules of the game.

3We require that L ≥ 2 for otherwise we would not have a unique Nash equilibrium, a condition
we imposed on Social Dilemmas. If L = 1 and N = 2, we get two Nash equilibria: (2, 2) and
(1, 1); similarly, for L = 0, we also get multiple Nash equilibria, for all values of N ≥ 2.
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this. Evolutionary theories may explain cooperative behavior among genetically
related individuals (Hamilton 1964) or when future interactions among the same
subjects are likely (Nowak and Sigmund 1998; Trivers 1971); see (Nowak 2006)
for a review of the five rules of cooperation. However, we often observe coopera-
tion even in one-shot anonymous experiments among unrelated players (Rapoport
1965).

Although we do see a great deal of cooperation in these games, we do not
always see it. Here are some of the regularities that have been observed:

• The degree of cooperation in Prisoner’s Dilemma depends positively on
the benefit of mutual cooperation and negatively on the cost of cooperation
(Capraro, Jordan, and Rand 2014; Engel and Zhurakhovska 2016; Rapoport
1965).

• The degree of cooperation in Traveler’s Dilemma depends negatively on the
bonus/penalty (Capra, Goeree, Gomez, and Holt 1999).

• The degree of cooperation in the Public Goods game depends positively on
the constant marginal return (Gunnthorsdottir, Houser, and McCabe 2007;
Isaac, Walker, and Thomas 1984).

• The degree of cooperation in the Public Goods game depends positively
on the number of players (Barcelo and Capraro 2015; Isaac, Walker, and
Williams 1994; Zelmer 2003).

• The degree of cooperation in Bertrand Competition depends negatively on
the number of players (Dufwenberg and Gneezy 2002).

• The degree of cooperation in Bertrand Competition depends negatively on
the price floor (Dufwenberg, Gneezy, Goeree, and Nagel 2007).

4 Explaining social dilemmas using translucency

As we suggested in the introduction, we hope to use translucency to explain co-
operation in social dilemmas even when players cannot see each other. We expect
that people get so used to assuming some degree of transparency in their everyday
interactions, which are typically face-to-face, that they bring these strategies and
beliefs in the lab setting, even though they are arguably inappropriate.

To do this, we have to make assumptions about an agent’s beliefs. Say that
an agent i has type (α, β, C) if i intends to cooperate (the parameter C stands for
cooperate) and believes that (a) if he deviates from that, then each other agent will
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independently realize this with probability α; (b) if an agent j realizes that i is not
going to cooperate, then j will defect; and (c) all other players will either cooperate
or defect, and they will cooperate with probability β.

The standard assumption, of course, is that α = 0. Our results are only of
interest if α > 0. The assumption that i believes that agent j will defect if she
realizes that i is going to deviate from cooperation seems reasonable; defection is
the “safe” strategy. We stress that, for our results, it does not matter what j actu-
ally does. All that matters are i’s beliefs about what j will do. The assumption
that players will either cooperate or defect is trivially true in Prisoner’s Dilemma,
but is a highly nontrivial assumption in the other games we consider. While co-
operation and defection are arguably the most salient strategies, we do in practice
see players using other strategies. For instance, the distribution of strategies in the
Public Goods game is typically tri-modal, concentrated on contributing nothing,
contributing everything, and contributing half (Capraro, Jordan, and Rand 2014).
We make this assumption mainly for technical convenience: it makes the calcu-
lations much easier. We believe that results qualitatively similar to ours will hold
under a much weaker assumption, namely, that a type (α, β, C) player believes
that other players will cooperate with probability β (without assuming that they
will defect with probability 1− β).

Similarly, the assumptions that a social dilemma has a unique Nash equilibrium
and a unique social-welfare maximizing strategy were made largely for technical
reasons. We can drop these assumptions, although that would require more com-
plicated assumptions about players’ beliefs.

Our assumptions ensure that the type of player i determines the distributions
µ
si,s
′
i

i . In a social dilemma withN agents, the distribution µsi,sii assigns probability
βr(1 − β)N−1−r to a strategy profile s−i for the players other than i if exactly r
players cooperate in s−i and the remaining N − 1 − r players defect; it assigns
probability 0 to all other strategy profiles. The distributions µsi,s

′
i

i for s′i 6= si
all have the form

∑
J⊆{1,...,i−1,i+1,...,N} α

|J |(1 − α)N−1−|J |pJi , where pJi is the
distribution that assigns probability βk(1−β)N−|J |−k to a profile where k ≤ N −
1 − |J | players not in J cooperate, and the remaining players (which includes all
the players in J) defect. Thus, pJi is the distribution that describes what player i’s
beliefs would be if he knew that exactly the players in J had noticed his deviation
(which happens with probability α|J |(1 − α)N−1−|J |). In the remainder of this
section, when we talk about best response, it is with respect to these beliefs.

For our purposes, it does not matter where the beliefs α and β that make up a
player’s type come from. We do not assume, for example, that other players are
(translucently) rational. For example, i may believe that some players cooperate
because they are altruistic, while others may cooperate because they have mistaken
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beliefs. We can think of β as summarizing i’s previous experience of cooperation
when playing social dilemmas. Here we are interested in the impact of the param-
eters of the game on the reasonableness of cooperation, given a player’s type.

The following four propositions analyze the four social dilemmas in turn; the
proofs can be found in Appendix A. We start with Prisoner’s Dilemma. Recall
that b is the benefit of cooperation and c is its cost.

Proposition 4.1. In Prisoner’s Dilemma, it is translucently rational for a player of
type (α, β, C) to cooperate if and only if αβb ≥ c.

As we would expect, if α = 0, then cooperation is not a best response in
Prisoner’s Dilemma; this is just the standard argument that defection dominates
cooperation. But if α > 0, then cooperation can be rational. Moreover, if we fix α,
the greater the benefit of cooperation and the smaller the cost, then the smaller the
value of β that still allows cooperation to be a best response.

We next consider Traveler’s Dilemma. Recall that b is the reward/punishment,
H is the high payoff, and L is the low payoff,

Proposition 4.2. In Traveler’s Dilemma, it is translucently rational for a player of

(α, β, C) to cooperate if and only if b ≤

{ (H−L)β
1−αβ if α ≥ 1

2

min
(

(H−L)β
1−αβ , H−L−1

1−2α

)
if α < 1

2 .

Proposition 4.2 shows that as b, the punishment/reward, increases, a player
must have a greater belief that his opponent is cooperative and/or a greater belief
that the opponent will learn about his deviation and/or a greater difference between
the high and low payoffs in order to make cooperation a best response. (The fact
that increasing β increases (H−L)β

1−αβ follows from straightforward calculus.)
We next consider the Public Goods game. Recall the ρ is the marginal return

of cooperating.

Proposition 4.3. In the Public Goods game with N players, it is translucently
rational for a player of type (α, β, C) to cooperate if and only if αβρ(N − 1) ≥
1− ρ.

Proposition 4.3 shows that if ρ = 1, then cooperation is certainly a best re-
sponse (you always get out at least as much as you contribute). For fixed α and
β, there is guaranteed to be an N0 such that cooperation is a best response for
all N ≥ N0; moreover, for fixed α, as N gets larger, smaller and smaller βs are
needed for cooperation to be a best response.

Finally we consider Bertrand competition. Recall that H is the reservation
value and L is the price floor.
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Proposition 4.4. In Bertrand Competition, it is translucently rational for a player
of type (α, β, C) to cooperate iff βN−1 ≥ max(γN−1N(H−1)/H, f(γ,N)LN/H),
where γ = (1− α)β and f(γ,N) =

∑N−1
k=0

(
N−1
k

)
(1− γ)kγN−k−1/(k + 1).

Note that f(γ,N) =
∑N−1

k=0

(
N−1
k

)
(1−γ)kγN−k−1/(k+1) ≥

∑N−1
k=0

(
N−1
k

)
(1−

γ)kγN−k/N = 1/N , so Proposition 4.4 shows cooperation is irrational if βN−1 <
L/H .

Thus, while cooperation may be achieved for reasonable values of α and β
if N is small, a player must be more and more certain of cooperation in order to
cooperate in Bertrand Competition as the number of players increases. Indeed, for
a fixed type (α, β, C), there exists N0 such that cooperation is not a best response
for all N ≥ N0. Moreover, if we fix the number N of players, more values of α
and β allow cooperation as L/H gets smaller. In particular, if we fix H and raise
the floor L, fewer values of α and β allow cooperation.

While Propositions 4.1–4.4 are suggestive, we need to make extra assumptions
to use these propositions to make predictions. A simple assumption that suffices
is that there are a substantial number of translucently rational players whose types
have the form (α, β, C). Formally, assume that for each pair (u, v) and (u′, v′) of
open intervals in [0, 1], there is a positive probability of finding someone of type
(α, β, C) with α ∈ (u, v) and β ∈ (u′, v′). With this assumption, it is easy to see
that all the regularities discussed in Section 3 hold.

5 Comparison to other approaches

Here we show that approaches (that we are aware of) other than that of Charness
and Rabin, and possibly that of Bolton and Ockenfels, are not able to obtain all the
regularities that we mentioned in Section 3. We consider a number of approaches
in turn.

• The Fehr and Schmidt (1999) inequity-aversion model assumes that sub-
jects play a Nash equilibrium of a modified game, in which players do
not only care about their monetary payoff, but also they care about equity.
Specifically, player i’s utility when strategy s is played is assumed to be
Ui(s) = ui(s)−

aFSi
N−1

∑
j 6=i max(uj(s)−ui(s), 0)− bFSi

N−1

∑
j 6=i max(ui(s)−

uj(s), 0), where ui(s) is the material payoff of player i, and 0 ≤ bFSi ≤ aFSi
are individual parameters, where aFSi represents the extent to which player
i is averse to inequity in favor of others, and bFSi represents his aversion to
inequity in his favor. Consider the Public Goods game with N players. The
strategy profile (x, . . . , x), where all players contribute x gives player i a
utility of (1− x) + ρNx. If x > 0 and player i contributes x′ < x, then his
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payoff is (1−x′)+ρ((N −1)x+x′)−bFSi ρ(x−x′). Thus, (x, . . . , x) is an
equilibrium if bFSi ρ(x− x′) ≥ (1− ρ)(x− x′), that is, if bFSi ≥ (1− ρ)/ρ.
Thus, if bFSi ≥ (1− ρ)/ρ for all players i, then (x, . . . , x) is an equilibrium
for all choices of x and all values of N . While there may be other pure and
mixed strategy equilibria, it is not hard to show that if bFSi < (1−ρ)/ρ, then
player i will play 0 in every equilibrium (i.e., not contribute anything). As a
consequence, assuming, as in our model, that players believe that there is a
probability β that other agents will cooperate and that the other agents either
cooperate or defect, Fehr and Schmidt (1999) model does not make any clear
prediction of a group-size effect on cooperation in the public goods game.
This goes against the experimental data (Barcelo and Capraro 2015; Isaac,
Walker, and Williams 1994; Zelmer 2003), which show a positive effect of
group size on cooperation in the Public Goods game.

• McKelvey and Palfrey’s (1995) quantal response equilibrium (QRE) is de-
fined as follows.4 Taking σi(s) to be the probability that mixed strategy σi
assigns to the pure strategy s, given λ > 0, a mixed strategy profile σ is a
QRE if, for each player i, σi(s) = eλEUi(s,σ−i)∑

s′
i
∈Si

eλEUi(s
′
i
,σ−i)

.

To see that QRE does not describe human behaviour well in social dilemmas,
observe that in Prisoner’s Dilemma, for all choices of parameters b and c in
the game, all choices of the parameter λ, all players i, and all (mixed) strate-
gies s−i of player −i, we have EUi(C, s−i) < EUi(D, s−i). Consequently,
whatever the QRE σ is, we must have σi(C) < 1

2 < σi(D), that is, QRE
predicts that the degree of cooperation can never be larger than 50%. How-
ever, experiments show that we can increase the benefit-to-cost ratio so as
to reach arbitrarily large degrees of cooperation (close to 80% in (Capraro,
Jordan, and Rand 2014) with b/c = 10).

• Iterated regret minimization (Halpern and Pass 2012) does not make appro-
priate predictions in Prisoner’s Dilemma and the Public Goods game, be-
cause it predicts that if there is a dominant strategy then it will be played,
and in these two games, the Nash equilibrium is the unique dominant strat-
egy.

• Capraro’s (2013) notion of cooperative equilibrium, while correctly predict-
ing the effects of the size of the group on cooperation in Bertrand Competi-
tion and the Public Goods game (Barcelo and Capraro 2015), fails to predict
the negative effect of the price floor on cooperation in Bertrand Competition.

4We actually define here a particular instance of QRE called the logit QRE; λ is a free parameter
of this model.
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• Rong and Halpern’s (2010, 2013) notion of cooperative equilibrium (which
is different from that of Capraro (2013)) focuses on 2-player games. How-
ever, the definition for games with greater than 2 players does not predict
the decrease in cooperation as N increases in Bertrand Competition, nor the
increase as N increases in the Public Goods Game.

• Bolton and Ockenfels’ (2000) inequity-aversion model assumes that a player
i aims at maximizing his or her motivational function vi = vi(xi, σi), where
xi is i’s monetary payoff and σi = σi(x1,

∑
j=1,...,N xj) = xi/

∑
j=1,...,N xj .

The motivational function is assumed to be twice differentiable, weakly in-
creasing in the first argument, and concave in the second argument with a
maximum at σi = 1

N , but otherwise is unconstrained. For each of the so-
cial dilemmas that we have considered, it is not hard to define a motivational
function that will obtain the regularities observed. However, we have not
been able to find a single motivational function that gives the observed regu-
larities for all four social dilemmas that we have considered. In any case, just
as with the Charness and Rabin model, once we consider the interaction be-
tween social groups and translucency, we can distinguish our approach from
this inequity-aversion model. Specifically, consider a situation where peo-
ple are given a choice between giving $1 to an anonymous stranger, rather
than burning it. In such a situation, inequity aversion would predict that peo-
ple would burn the dollar to maintain equity (i.e., a situation where no one
gets $1). However, perhaps not surprisingly, Capraro et al. (2014) found
that over 90% people prefer giving away the dollar to burning it. Of course,
translucency (and a number of other approaches) would have no difficulty in
explaining this phenomenon.

The one approach besides ours that we are aware of that obtains all the regulari-
ties discussed above is that of Charness and Rabin (2002). Charness and Rabin, like
Fehr and Schmidt (1999), assume that agents play a Nash equilibrium of a modified
game, where players care not only about their personal material payoff, but also
about the social welfare and the outcome of the least fortunate person. Specifically,
player i’s utility is assumed to be (1−aCRi )ui(s) +aCRi (bCRi minj=1,...,N uj(s) +

(1− bCRi )
∑N

j=1 uj(s)). Assuming, as in our model, that agents believe that other
players either cooperate or defect and that they cooperate with probability β, then
it is not hard to see that Charness and Rabin (2002) also predict all the regularities
that we have been considering.

Although it seems difficult to distinguish our model from that of Charness and
Rabin (2002) if we consider only social dilemmas, the models are distinguishable
if we look at other settings and take into account the other reason we mentioned
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for translucency: that other people in their social group or God might discover how
they acted. We consider this topic in the next section.

Finally, our work is tangentially related to recent work of Brams and Kilgour
(2017) They restrict to 2-player games where one player is the predictor. The
predictor predicts the other player’s strategy and plays a best response to his pre-
diction, but the prediction may be wrong with probability p (and these facts are
commonly known). While, on the surface, this model may seem similar to our
model of translucent players, there are three significant differences. Our αi is the
probability that i will learn j’s strategy. Learning is different from predicting: if i
learns j’s strategy, i will be right as to what it is; with probability 1−αi, i will not
learn anything, which is different from making the wrong prediction. Moreover,
our situation is symmetric; both players might learn, while Brams and Kilgour con-
sider games where only one player has the role of predictor. Finally, if there is a
dominant strategy in a 2-player game, it remains a dominant strategy even in the
presence of a predictor. Thus, Brams and Kilgour’s model has nothing interesting
to say about the social dilemmas that are the focus of this paper.

6 God is watching

Given the lack of privacy on the internet these days, assuming that there is some
probability that our private actions (especially if performed on a computer that
may be recording them) may be revealed to people that we care about does not
seem so unreasonable. Recent work (Johnson 2016; Norenzayan 2013) has argued
that belief that “God is watching” is also ubiquitous. To quote Johnson (2016, p.
24), “When we do something selfish or wrong, even if we are alone and could
never be found out, we nevertheless find it hard to shake a sense that somehow our
actions are observed and disapproved of by someone or something.” Moreover,
this “supernatural” observer has the power to punish inappropriate actions if they
are observed. The claim is that belief in such a supernatural force is adaptive since
it promotes cooperation without free riding on society; indeed, it is an evolutionary
adaptation that can be viewed as the equilibrium outcome of a game. Note that
these supernatural beings are typically not assumed to be omniscient, nor do they
necessarily act if they do discover inappropriate behavior; rather, it is typically
assumed that they will discover inappropriate behavior and act on it only with
some probability.

It is well beyond the scope of this paper to go into these arguments in detail.
We content ourselves with observing how well the assumption that God may be
watching or that our social group may discover our actions fits into our framework.
We can easily formalize this assumption by doubling the number of agents; for
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each player i, we add another player i∗ that represents i’s God (we are allowing
for “personal Gods” here; these are used to represent the possibility that i’s God
might observe i, but j’s God may not observe j) or i’s social network. Player i∗

can play only two actions: n (for “did not observe player i’s action) and o (for
“observed player i’s action”).5 The payoffs of these new players are irrelevant.
Player i’s payoff depends on the action of player i∗, but not on the actions of
player j∗ for j∗ 6= i∗. Now player i must have a prior probability γi on whether
his action will be observed; in a social dilemma, this probability might increase to
γ′i ≥ γi if he intends to cooperate but instead deviates and defects. It should be
clear that, even if γ′i = γi, if we assume that player i’s utilities are significantly
lower if his non-cooperative action is observed, with this framework we would get
qualitatively similar results for social dilemmas to the ones that we have already
obtained. Again, a player has beliefs about the extent to which he is transparent,
and we can set the payoffs so that the effects of transparency are the same if a
player’s social network learns about his actions and if other players learn about his
action.

The advantage of taking into account what God or your social group thinks is
that it allows us to apply ideas of translucency even to single-player games like
the Dictator Game (Kahneman, Knetsch, and Thaler 1986). To do so, we need
to make assumptions about what a player’s utility would be if his social group
knew the extent to which he shared the pot. But it should be clear that reasonable
assumptions here would lead to some degree of sharing. While this would still
not distinguish our predictions from those of the Charness-Rabin model, there is a
variant of the Dictator Game that has recently been considered to show existence
of hyper-altruism in conflict situations (Crockett et al. 2014; Capraro 2014). In the
simplest version of this game, there are only two possible allocations of money:
either the agent gets x and the other player gets −x, or the other player gets x and
the agent gets −x. In this game, the Charness-Rabin approach would predict that
the agent will either keep x or be indifferent between keeping x and giving it away.
However, this is not the case. Capraro (2014) has shown that a significant fraction
(1/6) of people are hyper-altruistic: they strictly prefer giving away x to keeping it.
We can explain this result by assuming translucency. Indeed, translucency allows
for the possibility that some agents would think that, if the action of keeping x is
observed by their social group or Gods, the subjective cost they would experience
would overcome the monetary cost of giving x to the other person.

We can similarly explain another finding that is inconsistent with the Charness
and Rabin model, namely, the framing effect recently reported in the Trade-Off

5Alternatively, we could take player i’s payoff to depend on the state of the world, where the state
would model whether or not player i’s action was observed.
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game by Capraro and Rand (2018). The Trade-Off game is a decision problem
where one person has to decide between two allocations of money to the decision
maker and two other participants. One allocation is equitable, that is, it minimizes
payoff differences among the participants; the other allocation is efficient, that is,
it maximizes the sum of all payoffs. Capraro and Rand (2018) found that simply
changing the names of the two allocations of money in such a way to make one
of them to seem more morally appropriate than the other one results in people be-
ing more likely to choose the one that is presented as being morally appropriate.
Clearly, this result cannot be explained by any outcome-based model of behavior.
However, we can easily explain it using translucency. Indeed, with translucency, an
agent might get some additional positive utility by performing the morally appro-
priate action and negative utility by performing the morally inappropriate action,
making the the appropriate action the better one, no matter which action is called
“appropriate”.

Thinking in terms of God watching also makes it easy to explain the evidence
that showing people simple images of watching eyes has a marked effect on be-
havior (Bateson et al. 2013): seeing these images may have the effect of raising
an agent’s subjective probability that God is watching, and thus (quite rationally,
given the payoffs above) results in more social behavior.

We conclude by observing that the “God-is-watching” model shares some con-
ceptual similarities with indirect reciprocity (?) and linked-game (?; ?) models.
The classic model of indirect reciprocity introduced by Nowak and Sigmund (?)
assumes that social dilemma interactions are repeated, although not necessarily
with the same partner, and that players carry a reputation that depends on whether
they cooperated in the previous interactions or not. This reputation is visible, there-
fore players can condition their strategy on the reputation of their partner. There-
fore, it may be optimal for a player to cooperate in the current interaction, in order
to obtain a positive reputation and signal to the future partner that s/he is coop-
erative, which then increases the chances of a cooperative interaction in the next
round. Linked-games are similar but they assume that social dilemma interactions
are linked to an “indirect social exchange” in which some players (donors) can
help other players (recipients) conditional on how the recipient behaved in the so-
cial dilemma. In particular, donors can choose not to help recipients who defected
in the social dilemma. Therefore, also in this model, it is optimal for a player to
cooperate in the social dilemma, in order to receive the help in the subsequent in-
direct social exchange. The God-is-watching model differs from these models in
some of its basic assumptions: it does not assume that actions are visible to players,
but only that players believe that their actions might be visible, nor does it assume
that interactions can be repeated. However, all the models make use of the fact that
an agent’s actions are observable to obtain cooperation.
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7 Discussion

We have presented an approach that explains a number of well-known observations
regarding the extent of cooperation in social dilemmas. In addition, our approach
can also be applied to explain the apparent contradiction that people cooperate
more in a one-shot Prisoner’s dilemma when they do not know the other player’s
choice than when they do. In the latter case, Shafir and Tversky (1992) found that
most people (90%) defect, while in the former case, only 63% of people defect.
Our model of translucent players predicts this behavior: if player 1 knows player
2’s choices then there is no translucency, so our model predicts that player 1 defects
for sure. On the other hand, if player 1 does not know player 2’s choice and believes
that he is to some extent translucent, then, as shown in Proposition 4.1, he may be
willing to cooperate. Seen in this light, our model can also be interpreted as an
attempt to formalize quasi-magical thinking (Shafir and Tversky 1992), the kind
of reasoning that is supposed to motivate those people who believe that the others’
reasoning is somehow influenced by their own thinking, even though they know
that there is no causal relation between the two. Quasi-magical thinking has also
been formalized by Masel (2007) in the context of the Public Goods game and by
Daley and Sadowski (2014) in the context of symmetric 2 × 2 games. The notion
of translucency goes beyond these models, since it may be applied to a much larger
set of games.

Besides a retrospective explanation, our model makes new predictions for so-
cial dilemmas which, to the best of our knowledge, have never been tested in the
lab. In particular, it predicts that

• the degree of cooperation in Traveler’s Dilemma increases as the difference
H − L increases;

• for fixed L and N , the degree of cooperation in Bertrand Competition in-
creases as H increases, and what really matters is the ratio L/H .

Clearly much more experimental work needs to be done to validate the ap-
proach. For one thing, it is important to understand the predictions it makes for
other social dilemmas and for games that are not social dilemmas. Perhaps even
more important would be to see if we can experimentally verify that people believe
that they are to some extent translucent, and, if so, to get a sense of what the value
of α is. In light of the work on watching eyes mentioned in the introduction, it
would also be interesting to know what could be done to manipulate the value of
α.

One feature of our approach is that, at least if we take the concern with translu-
cency to be due to an opponent discovering what you are going to do (rather than
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other members of your social group discovering what you are going to do), then,
unlike many other approaches to explaining social dilemmas, our approach does
not involve modifying the utility function; that is, we can apply translucency while
still identifying utility with the material payoff. While this make it an arguably
simpler explanation, that does not necessarily make it “right”, of course. We do
not in fact believe that there is a unique “right” explanation for cooperation in so-
cial dilemmas and all the other explanations that we discussed above are “wrong”.
There are probably a number of factors that contribute to cooperation. We hope in
future work to tease these apart.

Of course, we do not have to assume α > 0 to get cooperation in social dilem-
mas such as Traveler’s Dilemma or Bertrand Competition. But we do if we want
to consider what we believe is the appropriate equilibrium notion. Suppose that ra-
tional players are chosen at random from a population and play a social dilemma.
Players will, of course, then update their beliefs about the likelihood of seeing co-
operation, and perhaps change their strategy as a consequence. Will these beliefs
stabilize and the strategies played stabilize? By stability here, we mean that (1)
players are all best responding to their beliefs, and (2) players’ beliefs about the
strategies played by others are correct: if player i ascribes probability p to player
j playing a strategy sj , then in fact a proportion p of players in the population
play sj . We have deliberately been fuzzy here about whether we mean best re-
sponse in the sense of Definition 2.1 or Definition 2.2. If we use Definition 2.1 (or,
equivalently use Definition 2.2 and take α = 0), then it is easy to see (and well
known) that the only way that this can happen is if the distribution of strategies
played by the players represents a mixed strategy Nash equilibrium. On the other
hand, if α > 0 and we use Definition 2.2, then we can have stable beliefs that
accurately reflect the strategies used and have cooperation (in all the other social
dilemmas that we have studied). We make this precise in Appendix B, using the
framework of Halpern and Pass (2013), by defining a notion of translucent equi-
librium. Roughly speaking, we construct a model where, at all states, players are
translucently rational (so we have common belief of translucent rationality), the
strategies used are common knowledge, and we nevertheless have cooperation at
some states. Propositions 4.1–4.4 play a key role in this construction; indeed, as
long as the strategies used satisfy the constraints imposed by these results, we get
a translucent equilibrium.

In Appendix B, we also characterize those profiles of strategies that can be
translucent equilibria, using ideas similar in spirit to those of Halpern and Pass
(2013). While allowing people to believe that they are to a certain extent transpar-
ent means that the set of translucent equilibria is a superset of the set of Nash
equilibria, not all strategy profiles can be translucent equilibria. For example,
(C,D) is not a translucent equilibrium in Prisoner’s Dilemma. We have not focused
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on translucent equilibrium in the main text, because it makes strong assumptions
about players’ rationality and beliefs (e.g., it implicitly assumes common belief of
translucent rationality). We do not need such strong assumptions for our results.

Although in this paper we have focused on applying ideas of translucency to
social dilemmas, they should apply to a larger class of games. The work of Jessie
and Kendall (2015) suggests which games they might be most applicable to. Jessie
and Kendall consider a decomposition of normal-form games originally due to
Jessie and Saari (2016). In this decomposition, a game is decomposed into three
components, called the strategic component, the behavioral component, and the
kernel. Strategic behavior in a game depends only on the strategic component;
two games that agree on the strategic component have the same Nash equilibria.
However, as Jessie and Kendall show, the other two components of a game can
have a signficant impact on how people actually play the game. Specifically, their
experiments provided support for their hypothesis that players in 2-player games
are more likely to select the action that corresponds to outcome where both play-
ers have positive behavioral values (this can be viewed as a generalization of the
cooperative outcome in social dilemmas), particularly in games where each sub-
ject had a dominant strategy and the cell that gave the action profile that gave the
players positive behavioral values was different from the Nash equilibrium profile.
Thinking in terms of translucency explains this finding in much the same way that
it explains the outcomes of social dilemmas.

In sum, we have introduced a model that, by assuming that people believe that
they have some degree of translucency, can recover many of the experimental reg-
ularities observed in social dilemmas. Our approach goes beyond previous models
of human prosociality, as it can explain prosociality in contexts in which previous
models predict self-regarding behavior (e.g., conflict situations). Future research
should focus on the experimental validation of our model.

A Proofs

Here we provide complete proofs of Propositions 4.1–4.4. We repeat the statements
of the propositions for the convenience of the reader.

PROPOSITION 4.1. In Prisoner’s Dilemma, it is translucently rational for a
player of type (α, β, C) to cooperate if and only if αβb ≥ c.

Proof. If player i has type (α, β, C) and cooperates in Prisoner’s Dilemma, then
his expected payoff is β(b − c) − (1 − β)c, since player i believes that j 6= i will
cooperate with probability β. However, if i deviates from his intended strategy
of cooperation, then j will catch him with probability α and also defect. Thus,
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if i deviates, then i’s belief that j will cooperate goes down from β to (1 − α)β.
(We remark that this is the case in all social dilemmas; this fact will be used in all
our arguments.) This means that i’s expected payoff if he deviates by defecting is
(1− α)βb. So cooperating is a best response if β(b− c)− (1− β)c ≥ (1− α)βb.
A little algebra shows that this reduces to αβb ≥ c.

PROPOSITION 4.2. In Traveler’s Dilemma, it is translucently rational for a
player of (α, β, C) to cooperate if and only if

b ≤

{ (H−L)β
1−αβ if α ≥ 1

2

min
(

(H−L)β
1−αβ , H−L−1

1−2α

)
if α < 1

2 .

Proof. If player i has type (α, β, C) and cooperates in Traveler’s Dilemma, then
his expected payoff is βH + (1 − β)(L − b), since player i believes that j 6= i
will cooperate with probability β. If i deviates and plays x 6= H , then j will catch
him with probability α and play L. Recall from the proof of Proposition 4.1 that,
if i deviates, i’s belief that j cooperates is (1− α)β. This means that i’s expected
payoff if he deviates to x < H is (1−α)β(x+ b) + (1−β+αβ)(L− b) if x > L,
and (1− α)β(L+ b) + (1− β + αβ)L = L+ (β − αβ)b if x = L.

It is easy to see that i maximizes his expected payoff either if x = H − 1 or
x = L. Thus, cooperation is a best response if βH + (1− β)(L− b) ≥ max((1−
α)β(H + b− 1) + (1− β + αβ)(L− b), L+ (β − αβ)b). Again, straightforward
algebra shows that this condition is equivalent to the one stated, as desired. (It
is easy to check that if α ≥ 1/2, then the condition βH + (1 − β)(L − b) ≥
(1− α)β(H + b− 1) + (1− β + αβ)(L− b) is guaranteed to hold, which is why
we get the two cases depending on whether α ≥ 1/2.)

PROPOSITION 4.3. In the Public Goods game with N players, it is translu-
cently rational for a player of type (α, β, C) to cooperate if and only if αβρ(N −
1) ≥ 1− ρ.

Proof. Suppose player i, of type (α, β, C), cooperates. Since he expects a player to
cooperate with probability β, the expected number of cooperators among the other
players is β(N − 1). Since he himself will cooperate, the total expected number
of cooperators is 1 + β(N − 1). Since i’s payoff is ρm if m players including him
cooperate, and thus is linear in the number of cooperators, his expected payoff is
exactly his payoff if the expected number of players cooperate. Since his expected
payoff with 1 + β(N − 1) cooperators is ρ(1 + β(N − 1)), this is his expected
payoff if he cooperates.

On the other hand, if i deviates by contributing x < 1, his expected payoff if
m other players cooperate is (1−x) +ρ(m+x). Again, if i deviates, his expected
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belief that j will cooperate is (1− α)β. Thus, the expected number of cooperators
is (1− α)β(N − 1), and his expected payoff is 1− x+ ρ((1− α)β(N − 1) + x).
Since ρ < 1, he gets the highest expected payoff by defecting (i.e., taking x = 0).

Thus, cooperation is a best response if ρ(1+β(N−1)) ≥ 1+ρ(1−α)β(N−1).
Simple algebra shows that this condition holds iff αβρ(N − 1) ≥ 1− ρ.

PROPOSITION 4.4. In Bertrand Competition, it is translucently rational for a
player of type (α, β, C) to cooperate iff βN−1 ≥ max(γN−1N(H−1)/H, f(γ,N)LN/H),
where γ = (1− α)β and f(γ,N) =

∑N−1
k=0

(
N−1
k

)
(1− γ)kγN−k−1/(k + 1).

Proof. Clearly, if player i cooperates, then his expected payoff is βN−1H/N , since
he gets H/N if everyone else cooperates (which happens with probability βN−1),
and otherwise gets 0.

Let γ = (1 − α)β. Again, this is the probability that i ascribes to another
player playing H if he deviates. If i deviates, then it is easy to see (given his
beliefs) that the optimal choices for deviation are H − 1 and L. In the former
case, i’s expected payoff is γN−1(H − 1). In the latter case, i’s expected payoff
is
∑N−1

k=0

(
N−1
k

)
(1 − γ)kγN−k−1L/(k + 1): with probability (1 − γ)kγN−k−1,

exactly k other players will play L, and i’s payoff will be L/(k + 1). Moreover,
each possible subset of k defectors, has to be count

(
N−1
k

)
times. Let f(γ,N) =∑N−1

k=0

(
N−1
k

)
(1 − γ)kγN−k−1/(k + 1). Note that, as the notation suggests, this

expression depends only on γ and N (and not any of the other parameters of the
game). Thus, i’s expected payoff in this case is f(γ,N)L, so cooperation is a
best response iff βN−1H/N ≥ max(γN−1(H − 1), f(γ,N)L) or, equivalently,
βN−1 ≥ max(γN−1(H − 1)N/H, f(γ,N)LN/H).6

B Translucent equilibrium

In the main text of this paper we have described how cooperation can be rational if
players are translucent, that is, if they believe that if they switch from one strategy
to another, the fact that they choose to switch may be visible to the other players.
In this appendix, we show how to use counterfactual structures to define a notion
of equilibrium with translucent players and we observe that rationality of cooper-
ation shown in the main text corresponds to having a mixed strategy translucent
equilibrium, where cooperation is played with non-zero probability. This material
is not necessary for understanding the material in the main text; we include it to
provide some theoretical underpinnings for the results of the main text.

6While it seems difficult to find a closed-form expression for f(γ,N), this does not matter for
our purposes. Note that the expected value of L/(k + 1) cannot be computed by plugging in the
expected value of k, in the spirit of our earlier calculations, since L/(k + 1) is not linear in k.
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B.1 Game theory with translucent players

We start by reviewing the relevant definitions from (Halpern and Pass 2013).
Let G = G(P, S, u) be a (finite) normal form game, where P = {1, . . . , N} is

the set of players, each of which has finite pure strategy set Si and utility function
ui.

Definition B.1. A finite counterfactual structure appropriate for the game G is a
tuple M = (Ω, s, f,PR1, . . . ,PRN ), where:

• Ω is a finite space of states;

• s : Ω → S is the function that associates to each state ω the strategy profile
that is supposed to be played at ω;

• f is the closest-state function, which describes what would happen if player
i switched strategy to s′i at state ω. Thus, f : Ω× P × Si → Ω has to verify
the following properties:

CS1. si(f(ω, i, s′)) = s′i;

CS2. f(ω, i, si(ω)) = ω.

Property CS1 assures that, at state f(ω, i, s′i), player i plays s′i, and Prop-
erty CS2 assures that the state does not change if player i does not change
strategy.

• PRi are player i’s beliefs, which depends on the state i is reasoning about.
Specifically, for each ω ∈ Ω, PRi(ω) is a probability measure on Ω satisfy-
ing the following properties:

PR1. PRi(ω)({ω′ ∈ Ω : si(ω
′) = si(ω)}) = 1 (where si(ω) denotes player

i’s strategy in s(ω));

PR2. PRi(ω)({ω′ ∈ Ω : PRi(ω′) = PRi(ω)}) = 1.

These assumptions guarantee that player i assigns probability 1 to his actual
strategy and beliefs. ut

We can now define i’s beliefs at ω if he were to switch to strategy s′. Intuitively,
if he were to switch to strategy s′ at ω, the probability that i would assign to state
ω′ is the sum of the probabilities that he assigns to all the states ω′′ such that he
believes that he would move from ω′′ to ω′ if he used strategy s′. Thus we define

PRi,s′(ω)(ω′) :=
∑

{ω′′:f(ω′′,i,s′)=ω′}

PRi(ω)(ω′′).
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We define the expected utility of player i at state ω in the usual way as the sum
of the product of his expected utility of the strategy profile played at each state ω′

and the probability of ω′: EU i(ω) =
∑

ω′∈Ω PRi(ω)(ω′)ui(si(ω), s−i(ω
′)).7

Now we define i’s expected utility at ω if he were to switch to s′. The usual
way to do so is to simply replace i’s actual strategy at ω by s′ at all states, keeping
the strategies of the other players the same; that is,∑

ω′∈Ω

PRi(ω)(ω′)ui(s
′, s−i(ω

′)).

In this definition, player i’s beliefs about the strategies that the other players are
using do not change when he switches from si(ω) to s′. The key point of coun-
terfactual structures is that these beliefs may well change. Thus, we define i’s
expected utility at ω if he switches to s′ as

EU i(ω, s
′) =

∑
ω′∈Ω

PRi,s′(ω)(ω′)ui(s
′, s−i(ω

′)).

Finally, we can define rationality in counterfactual structures using these no-
tions:

Definition B.2. Player i is rational at state ω if, for all s′ ∈ Si,

EU i(ω) ≥ EU i(ω, s
′).

ut

B.2 Translucent equilibrium

In this section, we define translucent equilibrium and we observe that the results
reported in the main text imply that social dilemmas have a counterfactual struc-
ture according to which each player plays, in equilibrium, his part of the welfare
maximizing strategy with non-zero probability.

We start with some preliminary notation. Given a probability measure τ on
a finite set T , let supp(τ) denote the support of τ , that is, supp(τ) = {t ∈ T :
τ(t) 6= 0}. Given a mixed strategy profile σ, note that σ−i can can be viewed as
a probability on S−i, where σ−i(s−i) =

∏
j 6=i σj(sj). Similarly σ can be viewed

as a probability measure on S. In the sequel, we view σ−i and σ as probability
measures without further comment (and so talk about their support).

7Given a profile t = (t1, . . . , tN ), as usual, we define t−i = (t1, . . . , ti−1, ti+1, . . . , tN ).
We extend this notation in the obvious way to functions like s, so that, for example, s−i(ω) =
(s1(ω), . . . , si−1(ω), si+1(ω), . . . , sn(ω)).
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Definition B.3. A strategy profile σ in a game G is a translucent equilibrium in a
counterfactual structureM = (Ω, s, f,PR1, . . . ,PRN ) appropriate for G if there
exists a subset Ω′ ⊆ Ω such that, for each state ω in Ω′, the following properties
hold:

TE1. s(ω) ∈ supp(σ);

TE2. supp(PRi(ω)) ⊆ Ω′;

TE3. s−i(PRi(ω)) = σ−i (i.e., for each strategy profile s−i ∈ S−i, we have
σ−i(s−i) = PRi(ω)({ω′ : s−i(ω′) = s−i})).

TE4. each player is rational at ω.

The mixed strategy profile σ is a translucent equilibrium of G if there exists a coun-
terfactual structure M appropriate for G such that σ is a translucent equilibrium in
M . ut

Intuitively, σ is a translucent equilibrium in M if, for each strategy si in the
support of σi, the expected utility of playing si given that other players are playing
according to σ−i is at least as good as switching to some other strategy s′i, given
what i would believe about what strategies the other players are playing if he were
to switch to s′i.

Rather, we make the idea that σi is a best response to σ−i in M precise by
assuming that at each state in ω ∈ Ω′, player i does not gain by deviating from the
pure strategy that i plays at state ω (which must be in the support of σi).

This notion of translucent equilibrium is closely related to a condition called
IR (for individually rational) by Halpern and Pass (2013). The main difference
is that Halpern and Pass considered only pure strategy profiles; we allow mixed-
strategy profiles here. We discuss the relationship between the notions at greater
length in Section B.3. It is easy to see that if we restrict to opaque players, then
this definition of translucent equilibrium reduces to Nash equilibrium.

B.3 Characterizing translucent equilibrium

While it is easy to see that every Nash equilibrium is a translucent equilibrium
(see Proposition B.4), the converse is far from true. As we show, for example,
cooperation can be an equilibrium in social dilemmas (see below and Section B.4).
In this section, we provide a characterization of translucent equilibria that will
prove useful when discussing social dilemmas.

Proposition B.4. Every Nash equilibrium of G is a translucent equilibrium.
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Proof. Given a Nash equilibrium σ = (σ1, . . . , σn), consider the following coun-
terfactual structure Mσ = (Ω, s, f,PR1, . . . ,PRN ):

• Ω is the set of strategy profiles in the support of σ;

• s(s) = s;

• PRi(si, s−i)(s′i, s′−i) =

{
0 if s′i 6= si
σ−i(s

′
−i) if s′i = si;

• f((si, s−i), i, s
′) = (s′, s−i).

It is easy to check that σ is a translucent equilibrium in Mσ; we simply take
Ω′ = Ω. The fact that f is an “opaque” closest-state function, which is not affected
by the strategy used by players, means that rationality inM reduces to the standard
definition of rationality. We leave details to the reader.

Although the fact that we can consider arbitrary counterfactual structures (ap-
propriate for G) means that many strategy profiles are translucent equilibria, the
notion of translucent equilibrium has some bite. For example, the strategy profile
(C,D), where player 1 cooperates and player 2 defects, is not a translucent equilib-
rium in Prisoner’s Dilemma: if player 1 believes that player 2 is playing defecting
with probability 1, there are no beliefs that 1 could have that would justify cooper-
ation. However, as we shall see, both (C,C) and (D,D) are translucent equilibria.
This follows from the characterization of translucent equilibrium that we now give.

Definition B.5. A mixed-strategy profile σ in G is coherent if for all players i ∈ P ,
all si ∈ supp(σi), and all s′i ∈ Si, there is s′−i ∈ S−i such that

ui(si, σ−i) ≥ ui(s′)

(where, of course, ui(si, σ−i) =
∑

s′′−i∈S′−i
σ−i(s

′′
−i)ui(si, s

′′
−i)). ut

That is, σ is coherent if, for all pure strategies for player i in the support of σi,
if i’s belief about the strategies being played by the other players is given by σ−i,
there is no obviously better strategy that i can switch to in the weak sense that, if
i contemplates switching to s′i, there are beliefs that i could have about the other
players (namely, that they would definitely play s′−i in this case) that would make
switching to s′i better than sticking with si.

It is easy to see that (C,C) and (D,D) in Prisoner’s Dilemma are both coher-
ent; on the other hand, (C,D) is not.

Halpern and Pass (2013) define a pure strategy profile to be individually ratio-
nal if it is coherent. Definition B.5 extends individual rationality to mixed strate-
gies. Halpern and Pass prove that a pure strategy profile is individually rational if
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there is a model where it is commonly known that σ is played and there is common
belief of rationality. The definition of translucent equilibrium can be seen as the
generalization of this characterization of IR to mixed strategies. As the following
theorem shows, we get an analogous representation.

Theorem B.6. The mixed strategy profile σ of game G is coherent iff σ is a translu-
cent equilibrium of G.

Proof. Let σ be a coherent strategy profile in G. We construct a counterfactual
structure M = (Ω, s, f,PR1, . . . ,PRN ) as follows:

• Ω = S;

• s(s) = s;

• PRi(ω)(ω′) =


1 if ω /∈ supp(σi), ω = ω′

0 if ω /∈ supp(σi), ω 6= ω′

σ−i(s−i(ω
′)) if ω ∈ supp(σi), si(ω′) = si(ω)

0 if ω ∈ supp(σi), si(ω′) 6= si(ω);

• f(ω, i, s′i) =



(s′i, s−i(ω)) if ω /∈ supp(σi)
ω if ω ∈ supp(σi), s′i = si(ω)
(s′i, s

′
−i) if ω ∈ supp(σi), s′i 6= si(ω), where s′i is a

strategy such that ui(si(ω), σ−i) ≥ ui(s′);
such a strategy is guaranteed to exist since
σ is coherent.

We first show that M is a finite counterfactual structure appropriate for G; in
particular, PRi satisfies PR1 and PR2 and f satisfies CS1 and CS2. For PR1 and
PR2, there are two cases. If ω /∈ supp(σ), then PRi(ω)(ω) = 1, so PR1 and PR2
clearly hold. If ω /∈ supp(σ), then PRi(ω)(ω) > 0 iff si(ω) = si(ω

′). More-
over, if si(ω) = si(ω

′), then it is immediate from the definition that PRi(ω) =
PRi(ω′), so PR2. holds. That CS1 and CS2 hold is immediate from the definition
of f .

To show that σ is a translucent equilibrium in M , let Ω′ = supp(σ). For each
state ω ∈ Ω′, TE1 clearly holds. Note that if ω ∈ supp(σ), then PRi(ω) =
(si(ω), σ−i(ω)) (identifying the strategy profile with a probability measure), so
TE2 and TE3 clearly hold. It remains to show that TE4 holds, that is, that every
player is rational at every state ω ∈ Ω′.
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Thus, we must show that EU i(ω) ≥ EU (ω, s∗i ) for all s∗i ∈ Si. Note that

EU i(ω) =
∑

ω′∈Ω PRi(ω)(ω′)ui(si(ω), s−i(ω
′))

=
∑
{ω′∈Ω:si(ω′)=si(ω)} σ−i(s−i(ω

′))ui(si(ω), s−i(ω
′))

=
∑

s′′−i∈S−i
ui(si(ω), s′′−i)

= ui(si(ω), σ−i).

By definition,

EU i(ω, s
∗
i ) =

∑
ω′∈Ω

PRi,s∗i (ω)(ω′)ui(s
∗
i , s−i(ω

′))

and
PRi,s′(ω)(ω′) =

∑
{ω′′:f(ω′′,i,s′)=ω′}

PRi(ω)(ω′′).

Now if s∗i = si(ω), then f(ω, i, s∗i ) = ω. In this case, it is easy to check that
PRi,s∗i (ω) = PRi(ω), so EU i(ω, s

∗
i ) = EU i(ω) = EU i(si, σ−i), and TE4

clearly holds. On the other hand, if s∗i 6= si(ω), then

EU i(ω, s
∗
i )

=
∑

ω′∈Ω

∑
{ω′′:f(ω′′,i,s∗i )=ω′} PRi(ω)(ω′′)ui(s

∗
i , s−i(ω

′))

=
∑
{ω′∈Ω:si(ω′)=s∗i }

∑
{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)} σ−i(ω

′′)ui(s
∗
i , s−i(ω

′))

=
∑
{ω′∈Ω:si(ω′)=s∗i }

∑
{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)} σ−i(ω

′′)ui(f(ω′′, i, s∗i )).

By definition, ui(f(ω′′, i, s∗i )) ≤ ui(si(ω′′), σ−i) = ui(si(ω), σ−i). Thus,

EU i(ω, s
∗
i )

≤
∑
{ω′∈Ω:si(ω′)=s∗i }

∑
{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)} σ−i(ω

′′)ui(si(ω), σ−i)

= ui(si(ω), σ−i)
∑
{ω′∈Ω:si(ω′)=s∗i }

∑
{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)} σ−i(ω

′′)

= ui(si(ω), σ−i).

This completes the proof that TE4 holds, and the proof of the “only if” direction
of the argument

The “if” is actually much simpler. Suppose, by way of contradiction, that σ is
not coherent. Then there is a player i and a strategy si ∈ supp(σi) such that for all
s′−i ∈ Si, we have ui(si, σ−i) < ui(s

′). It follows that, for all counterfactual struc-
tures M , no matter what the beliefs and the closest-state functions are in M , it is
always strictly profitable for player i to switch strategy from si to s′i. Consequently,
i is not rational at a state ω such that si(ω) = si, contradicting TE4.
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B.4 Translucent equilibrium in social dilemmas

As we now show, our characterizations of Propositions 4.1–4.4 can be used to pro-
vide conditions on when translucent equilibrium exists in these social dilemmas.

We start our analysis with Prisoner’s Dilemma. We capture the assumption that
β is the probability of cooperation, and that players either cooperate or defect, by
assuming that players follow a mixed strategy where they cooperate with proba-
bility β and defect with probability 1 − β. This mixed strategy should really be
interpreted as a belief. In each state, each player either cooperates or defects (which
is critical, since the closest-state function is defined only on pure strategies).

Proposition B.7. (β1C+(1−β1)D,β2C+(1−β2)D) is a translucent equilibrium
of Prisoner’s Dilemma iff βib ≥ c, for i = 1, 2, or β1 = β2 = 0.

Proof. Suppose that (β1C+(1−β1)D,β2C+(1−β2)D) is a translucent equilib-
rium. If β1 > 0, then by Theorem B.6, it easily follows we must have u1(C, β2C+
(1 − β2)D) ≥ u1(D,D). Thus, we must have β2(b − c) + (1 − β2)(−c) ≥ 0;
equivalently, β2b ≥ c. Note that since c > 0, this means that we must have β2 > 0.
Similarly, if β2 > 0, then β1b ≥ c. By Theorem B.4, (D,D) is a translucent
equilibrium, since it is a Nash equilibrium. Thus, either βib ≥ c for i = 1, 2 or
β1 = β2 = 0.

Conversely, if βib ≥ c for i = 1, 2, then it again easily follows from Theo-
rem B.6 that (β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium.
As we have observed, (D,D) (the case that β1 = β2 = 0) is also a translucent
equilibrium.

Proposition B.7 is not all that interesting, since it does not take into account a
player’s beliefs regarding translucency. The following definition is a step towards
doing this. Suppose that M is counterfactual structure appropriate for a social
dilemma Γ. Player i has type αi in M if, at each state ω in M , player i believes
that if he intends to cooperate in ω and deviates from that, then each other agent
will independently realize this with probability αi and will defect. Formally, this
means that, at each state ω in M , we have

• if si(ω) = sWi (i.e., i is cooperating in ω by playing his component of the
social-welfare maximing strategy profile), then, for each J ⊆ P \ {i}, we
have PRi(ω)({ω′ : f(ω′, i, sNi ) = ω′′, sj(ω

′) = sCj , sj(ω
′′) = sNj , ∀j ∈

J}) = α
|J |
i PRi(ω){ω′ : sj(ω′) = sCj ,∀j ∈ J}).

As the following result shows, ignoring degenerate cases, in Prisoner’s Dilemma,
we have a translucent equilibrium in a structure where player i has type αi iff the
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condition described in Proposition 4.1 for a translucently rational player i to coop-
erate holds. That is, translucent equilibrium essentially characterizes the conditions
for translucently rational players to cooperate.

Proposition B.8. (β1C+(1−β1)D,β2C+(1−β2)D) is a translucent equilibrium
of Prisoner’s Dilemma in a structure where player i has type αi if and only if
β1 = β2 = 0 or αiβ3−ib ≥ c for i ≥ 1, 2.

Proof. Suppose that αiβ3−ib ≥ c for i = 1, 2 or β1 = β2 = 0. We show that
(β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium in a struc-
ture where player i has type αi. Consider the counterfactual structure M(α1, α2)
defined as follows:

• Ω = {C,D} × {0, 1}2. (The second component of the state, which is an
element of {0, 1}2, is used to determine the closest-state function. Roughly
speaking, if vj = 1, then player j learns about a deviation if there is one; if
vj = 0, he does not.)

• s((s, v)) = s.

• f((s, v), i, s∗i ) =


(s, v) if si = s∗i ,
(s′, v) if si 6= s∗i , where s′i = s∗i and for j 6= i,

s′j = sj if vj = 0 and s′j = sNj if vj = 1.

Thus, if player i changes strategy from si to s′i, s
′
i 6= si, then each other

player j either deviates to his component of the Nash equilibrium or contin-
ues with his current strategy, depending on whether vj is 0 or 1. Roughly
speaking, he switches to his component of the Nash equilibrium if he learns
about a deviation (i.e., if vj = 1).

• PRi(s, v)(s′, v′) =

{
0 if si 6= s′i or vi 6= v′i,
σ3−i(s3−i)πi(v3−i) if s = s′,

where

σ3−i is the distribution on strategies that puts probability β3−i on C and
probability 1 − β3−i on D, while πi is the distribution that puts probability
αi on 1 and probability 1 − αi on 0. Thus, if s = s′, then the probability
of the v′ component is determined by assuming that the other player (3− i)
independently learns about a deviation

by i with probability αi.

Clearly, M(α1, α2) is a structure where player i has type αi, for i = 1, 2. We
claim that (β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium in
the counterfactual structure M(α1, α2).
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There are two cases. If β1 = β2 = 0, then let Ω′ consist of all states of the
form ((D,D), v). It is easy to check that TE1–4 hold. If αiβ3−ib ≥ c for i ≥ 1, 2,
let Ω′ = Ω. It is immediate that TE1, TE2, and TE3 hold. Since αiβ3−ib ≥ c, it
follows from Proposition 4.1 that player i is rational at each state in Ω; thus, TE4
holds.

For the converse, suppose that M is a structure where player i has type αi, for
i = 1, 2, and (β1C + (1−β1)D,β2C + (1−β2)D) is a translucent equilibrium in
M . If it is not the case that either β1 = β2 = 0 or αiβ3−ib ≥ c for i = 1, 2, without
loss of generality we can assume that β1 > 0 and that α1β2b < c. Let ω be a state in
the set Ω′ where player 1 cooperates. Since player 1 must be rational at Ω′, we must
have u1(C, β2C+(1−β2)D) ≥ ((1−β2)+α1β2)u1(D,D)+(1−α1)β2u1(D,C).
Simple calculations show that this inequality holds iff β2(b− c) + (1−β2)(−c) ≥
(1− α1)β2b or, equivalently, α1β2b ≥ c. This gives the desired contradiction.

We have similar connections between the existence of translucent equilibrium
and the conditions given in Propositions 4.2, 4.3, and 4.4 for translucently ra-
tional players to cooperate in Traveler’s Dilemma, the Public Goods game, and
Bertrand competition. The connections are stated in the following propositions,
whose proofs are similar to that of Proposition B.8. We leave details to the reader.

Proposition B.9. (β1H+(1−β1)L, β2H+(1−β2)L) is a translucent equilibrium
of Traveler’s Dilemma if and only if b ≤ (H−L)βi

1−βi , for i = 1, 2, or β1 = β2 = 0.

Proposition B.10. (β1H+(1−β1)L, β2H+(1−β2)L) is a translucent equilibrium
of Traveler’s Dilemma in a structure where player i has type αi if and only if
β1 = β2 = 0 or

b ≤


(H−L)β3−i
1−αiβ3−i if αi ≥ 1

2

min
(

(H−L)β3−i
1−αiβ3−i ,

H−L−1
1−2αi

)
if αi < 1

2 .

In the following propositions, let C and D denote, respectively, the full con-
tribution and the null contribution in the Public Goods game. Given an N -tuple
(r1, . . . , rN ) of real numbers, r̄−i denotes the average of the numbers rj , with
j 6= i.

Proposition B.11. (β1C + (1 − β1)D, . . . , βNC + (1 − βN )D) is a translucent
equilibrium of the Public Goods game if and only if ρβ̄−i(N − 1) ≥ 1 − ρ for all
i, or βi = 0 for all i.

Proposition B.12. (β1C + (1 − β1)D, . . . , βNC + (1 − βN )D) is a translucent
equilibrium of the Public Goods game in a structure where player i has type αi if
and only if βi = 0 for all i or αiρβ̄−i ≥ 1− ρ for all i.
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Proposition B.13. (β1H + (1 − β1)L, . . . , βNH + (1 − βN )L) is a translucent
equilibrium of Bertrand competition if and only if βi = 0 for all i, or

∏
j 6=i βj ≥

L
H

for all i.

Proposition B.14. (β1H + (1 − β1)L, . . . , βNH + (1 − βN )L) is a translucent
equilibrium of Bertrand competition in a structure where player i has type αi if and
only if βi = 0 for all i, or

∏
j 6=i βj ≥ max

(
N(H−1)

H

∏
j 6=i γi,j , f(γi,j , N)LN/H

)
for all i, where f(γi,j , N) =

∑
J⊆P\{i}(

∏
j∈P\(J∪{i}) γi,j

∏
j∈J(1−γi,j))/(|J |+

1) and γi,j = (1− αi)βj .
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Apt, K. R. and G. Schäfer (2014). Selfishness level of strategic games. Journal
of Artificial Intelligence Research 49, 207–240.

Barcelo, H. and V. Capraro (2015). Group size effect on cooperation in one-shot
social dilemmas. Scientific Reports 5.

Basu, K. (1994). The traveler’s dilemma: paradoxes of rationality in game the-
ory. American Economic Review 84(2), 391–395.

Bateson, M., L. Callow, J. R. Holmes, M. L. Redmond Roche, and D. Nettle
(2013). Do images of “watching eyes” induce behaviour that is more pro-
social or more normative? A field experiment on littering. PLoS ONE 8(12).

Binmore, K. (2005). Natural Justice. Oxford, U.K.: Oxford University Press.

Bolton, G. E. and A. Ockenfels (2000). ERC: A theory of equity, reciprocity,
and competition. American Economic Review 90(1), 166–193.

Brams, S. J. and M. D. Kilgour (2017). Stabilizing unstable outcomes in predic-
tion games. Available at SSRN.

Camerer, C. F. (2003). Behavioral Game Theory: Experiments in Strategic In-
teraction. Princeton, N.J.: Princeton University Press.

31



Camerer, C. F., T.-H. Ho, and J.-K. Chong (2004). A cognitive hierarchy model
of games. Quarterly Journal of Economics 119, 861–897.

Capra, M., J. K. Goeree, R. Gomez, and C. A. Holt (1999). Anomalous behavior
in a traveler’s dilemma. American Economic Review 89(3), 678–690.

Capraro, V. (2013). A model of human cooperation in social dilemmas. PLoS
ONE 8(8), e72427.

Capraro, V. (2014). The emergence of altruistic behaviour in conflictual situa-
tions. Working Paper.

Capraro, V., J. J. Jordan, and D. G. Rand (2014). Heuristics guide the implemen-
tation of social preferences in one-shot Prisoner’s Dilemma experiments.
Scientific Reports 4.

Capraro, V. and D. G. Rand (2018). Do the right thing: Experimental evidence
that preferences for moral behavior, rather than equity or efficiency per se,
drive human prosociality. Judgment and Decision Making 13(1), 99–111.

Capraro, V., C. Smyth, K. Mylona, and G. A. Niblo (2014). Benevolent char-
acteristics promote cooperative behaviour among humans. PloS ONE 9(8),
e102881.

Capraro, V., M. Venanzi, M. Polukarov, and N. R. Jennings (2013). Cooperative
equilibria in iterated social dilemmas. In Proc. Sixth International Sympo-
sium on Algorithmic Game Theory (SAGT ’13), pp. 146–158.

Charness, G. and M. Rabin (2002). Understanding social preferences with sim-
ple tests. Quarterly Journal of Economics 117(3), 817–869.

Costa-Gomes, M., V. Crawford, and B. Broseta (2001). Cognition and behavior
in normal form games: An experimental study. Econometrica 69(5), 1193–
1235.

Crockett, M. J., Z. Kurth-Nelson, J. Z. Siegel, P. Dayan, and R. J. Dolan (2014).
Harm to others outweighs harm to self in moral decision making. Proceed-
ings of the National Academy of Sciences 111(48), 17320–17325.

Daley, B. and P. Sadowski (2014). A strategic model of
magical thinking: Axioms and analysis. Available at
http://www.princeton.edu/economics/seminar-schedule-by-
prog/behavioralf14/Daley Sadowski MT.pdf.

Dawes, R. M. (1980). Social dilemmas. Annual Review of Psychology 31, 169–
193.

Dufwenberg, M. and U. Gneezy (2002). Information disclosure in auctions: an
experiment. Journal of Economic Behavior and Organization 48, 431–444.

32



Dufwenberg, M., U. Gneezy, J. K. Goeree, and R. Nagel (2007). Price floors
and competition. Economic Theory 33, 211–224.

Ekman, P. and W. Friesen (1969). Nonverbal leakage and clues to deception.
Psychiatry 32, 88–105.

Engel, C. and L. Zhurakhovska (2016). When is the risk of cooperation worth
taking? The Prisoner’s Dilemma as a game of multiple motives. Applied
Economics Letters 23(16), 1157–1161.

Fehr, E. and K. Schmidt (1999). A theory of fairness, competition, and cooper-
ation. Quarterly Journal of Economics 114(3), 817–868.

Gilovich, T., K. Savitsky, and V. H. Medvec (1998). The illusion of trans-
parency: biased assessments of others’ ability to read one’s emotional states.
Journal of Personality and Social Psychology 75(2), 332.

Gunnthorsdottir, A., D. Houser, and K. McCabe (2007). Dispositions, history
and contributions in public goods experiments. Journal of Economic Behav-
ior and Organization 62(2), 304–315.

Halpern, J. Y. and R. Pass (2012). Iterated regret minimization: a new solution
concept. Games and Economic Behavior 74(1), 194–207.

Halpern, J. Y. and R. Pass (2013). Game theory with translucent players. In
Theoretical Aspects of Rationality and Knowledge: Proc. Fourteenth Con-
ference (TARK 2013), pp. 216–221.

Halpern, J. Y. and R. Pass (2015). Algorithmic rationality: Game theory with
costly computation. Journal of Economic Theory 156, 246–268.

Halpern, J. Y. and N. Rong (2010). Cooperative equilibrium. In Proc. Ninth
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1465–1466.

Hamilton, W. D. (1964). The genetical evolution of social behavior. i. Journal
of Theoretical Biology 7, 1–16.

Inaba, M., N. Takahashi, and H. Ohtsuki (2016). Robustness of linkage strategy
that leads to large-scale cooperation. Journal of Theoretical Biology 409,
97–107.

Isaac, M. R., J. M. Walker, and S. Thomas (1984). Divergent evidence on
free riding: an experimental examination of possible explanations. Public
Choice 43(1), 113–149.

Isaac, M. R., J. M. Walker, and A. W. Williams (1994). Group size and the
voluntary provision of public goods. Journal of Public Economics 54, 1–36.

33



Jessie, D. and R. Kendall (2015). Decomposing models of bounded rationality.
unpublished manuscript.

Jessie, D. and D. Saari (2016). From the Luce choice axioms to the quantal
response equilibrium for normal form games. Journal of Mathematical Psy-
chology 75, 3–9.

Johnson, D. (2016). God is Watching You: How the Fear of God Makes Us
Human. Oxford, U.K.: Oxford University Press.

Kahneman, D., J. Knetsch, and R. H. Thaler (1986). Fairness and the assump-
tions of economics. Journal of Business 59(4), S285–300.

Masel, J. (2007). A Bayesian model of quasi-magical thinking can explain ob-
served cooperation in the public good game. Journal of Economic Behavior
and Organization 64(1), 216–231.

McKelvey, R. and T. Palfrey (1995). Quantal response equilibria for normal
form games. Games and Economic Behavior 10(1), 6–38.

Norenzayan, A. (2013). Big Gods: How Religion Transformed Cooperation and
Conflict. Princeton, NJ: Princeton University Press.

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Sci-
ence 314(5805), 1560–1563.

Nowak, M. A. and K. Sigmund (1998). Evolution of indirect reciprocity by
image scoring. Nature 393, 573–577.

Nowak, M. A. and K. Sigmund (2005). Evolution of indirect reciprocity. Na-
ture 437(7063), 1291–1298.

Owren, M. J. and J.-A. Bachorowski (2001). The evolution of emotional expres-
sion: A “selfish-gene” account of smiling and laughter in early hominids and
humans. In T. J. Mayne and G. A. Bonanno (Eds.), Emotions: Current Issues
and Future Directions, pp. 152–191. New York, NY: Guildford Press.

Panchanathan, K. and R. Boyd (2004). Indirect reciprocity can stabilize cooper-
ation without the second-order free rider problem. Nature 432(7016), 499–
502.

Rand, D. G., J. D. Green, and M. A. Nowak (2012). Spontaneous giving and
calculated greed. Nature 489, 427–430.

Rand, D. G., A. Peysakhovich, G. T. Kraft-Todd, G. E. Newman,
O. Wurzbacher, M. A. Nowak, and J. D. Greene (2014). Social heuristics
shape intuitive cooperation. Nature Communications 5, 3677.

Rapoport, A. (1965). Prisoner’s Dilemma: A Study in Conflict and Cooperation.
University of Michigan Press.

34



Renou, L. and K. H. Schlag (2010). Minimax regret and strategic uncertainty.
Journal of Economic Theory 145, 264–286.

Rong, N. and J. Y. Halpern (2013). Towards a deeper understanding of coopera-
tive equilibrium: characterization and complexity. In Proc. Twelfth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pp.
319–326.

Salcedo, B. (2013). Implementation without commitment in moral hazard envi-
ronments. Working paper.

Shafir, E. and A. Tversky (1992). Thinking through uncertainty: Nonconsequen-
tial reasoning and choice. Cognitive Psychology 24, 449–474.

Solan, E. and L. Yariv (2004). Games with espionage. Games and Economic
Behavior 47, 172–199.

Stahl, D. and P. Wilson (1994). Experimental evidence on players’ models of
other players. Journal of Economic Behavior and Organization 25(3), 309–
327.

Trivers, R. (1971). The evolution of reciprocal altruism. Quarterly Review of
Biology 46, 35–57.

Zelmer, J. (2003). Linear public goods experiments: A meta-analysis. Experi-
mental Economics 6, 299–310.

35


