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This paper introduces a vision-based tactile sensor FingerVision, and explores its usefulness in
tactile behaviors. FingerVision consists of a transparent elastic skin marked with dots, and a
camera that is easy to fabricate, low cost, and physically robust. Unlike other vision-based
tactile sensors, the complete transparency of the FingerVision skin provides multimodal sen-
sation. The modalities sensed by FingerVision include distributions of force and slip, and object
information such as distance, location, pose, size, shape, and texture. The slip detection is very
sensitive since it is obtained by computer vision directly applied to the output from the Fin-
gerVision camera. It provides high-resolution slip detection, which does not depend on the
contact force, i.e., it can sense slip of a lightweight object that generates negligible contact force.
The tactile behaviors explored in this paper include manipulations that utilize this feature. For
example, we demonstrate that grasp adaptation with FingerVision can grasp origami, and other
deformable and fragile objects such as vegetables, fruits, and raw eggs.

Keywords: FingerVision; tactile sensor; tactile behavior.

1. Introduction

We are exploring a vision-based tactile sensor FingerVision." Unlike other vision-
based tactile sensors such as TacTip? and GelSight,® FingerVision has a transparent
skin that enables an embedded camera to see through the skin. This feature increases
the modalities obtained by the sensor, including vision of nearby objects and slip
distribution. We explore if FingerVision is a promising approach to overcome the
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(a) Skin structure on gripper Baxter gripper Robotiq

Fig. 1. Conceptual design of FingerVision (a) and an installation sketch on a robotic gripper (b). Right
two images are prototypes of FingerVision installed on a Baxter electric parallel gripper and a Robotiq

gripper.

issues of existing tactile sensors, and how we effectively use FingerVision in designing
robotic behaviors.

FingerVision consists of a transparent elastic material, a transparent hard layer,
and cameras. On the surface of the elastic material, small dots are placed to track the
deformation of the material with computer vision. The conceptual diagram is shown
in Fig. 1. By processing the video data from the cameras of FingerVision, we can
obtain tactile sensation and vision of nearby objects (prozimity vision). The features
of FingerVision can be summarized as follows:

(1) Multimodal: It can sense force distribution, high-resolution slip distribution,
object distance, location, pose, size, shape, texture, and other information
obtained from proximity vision.

(1.1) Slip can be detected regardless of the force on objects. It can sense slippage
even when the object is too light to generate measurable force (e.g.
origami).

(1.2) Cameras can sense objects before collision. With this feature, we can create
safe interactive robots that are aware of nearby humans and fragile objects.

(2) Easy to fabricate: Because of its simple structure, its fabrication is easy.

(3) Low cost: The most expensive component is the camera, which is a low cost
webcam. Other components are also inexpensive.

(4) Physically strong: External force is applied to the skin and frame, and does not
reach the camera. Thus, it is physically strong.

(5) Easy to repair: Even if the skin is damaged, replacing it is inexpensive.

(6) Using wide-angle lenses (fisheye lenses), we can place the cameras sparsely dis-
tributed under the surface where we want to install tactile sensing.

(7) Sensor parameters are adjustable: We can adjust the dynamic range of force
(hardness and thickness of the skin), size (small cameras miniaturize the sensor
size), spatial resolution (camera resolution, marker allocation, etc.), and tem-
poral resolution (high speed cameras).

(8) Other types of sensing components can be used, such as range finders and
thermal cameras.
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(9) Open source: The fabrication process including CAD files of frames and molds,
software, and tutorials are available online* in order to encourage people to
reproduce FingerVision for their own robots and projects.

Compared to the other vision-based tactile sensors, the features (1.1), (1.2), (8) are
unique to FingerVision because of its transparent skin.

In this paper, we demonstrate the use of FingerVision, especially tactile manip-
ulation with FingerVision, in order to show its usefulness. The tactile behaviors
presented in this paper are simple to program. Even so, some behaviors are dra-
matically improved because of the advantages of FingerVision. For example, the
grasp adaptation with FingerVision is very sensitive because of (1.1). FingerVision
can adapt a grasp to a range of objects, including lightweight, deformable, and fragile
ones.

Parts of this paper were published in conference papers; an early prototype,’
tactile behaviors,”® and grasp adaptation.” The purpose of this paper is providing a
comprehensive understanding of tactile behaviors with FingerVision.

The rest of this paper is organized as follows: Section 2 reviews the related work.
Section 3 introduces FingerVision. Section 4 describes the tactile behaviors. Section 5
reports the results of experiments. Section 6 is a discussion section, and Sec. 7
concludes the paper.

2. Related Work
2.1. Tactile sensors in general

There are many different approaches of tactile sensing, such as capacitive sensors,
piezoresistive sensors, magnetic sensors, piezoelectric sensors, optical and proximity
sensors, and vision-based sensors. Some of them are commercialized such as
BarrettHand,® PR2,” and ReFlex Hand.!” More comprehensive reviews are avail-
able.''2 When we design multimodal tactile sensing for robot fingers, we need to
deal with issues of fabrication, wiring, power, size, installation, expense, and physical
robustness. We think the vision-based approach is a good approach, since:
(1) achieving high resolution (superhuman resolution) is not difficult, (2) the sensor
structure can be simple and fabrication is not difficult, (3) wiring is not problematic
by using well-established network infrastructure, (4) buying the parts and fabrica-
tion equipment is affordable, (5) the sensing device (camera) is becoming smaller,
cheaper, reliable, and better in resolution and speed, due to the markets for smart
phones and endoscopic surgery, and (6) physically robust since the sensing device can
be isolated from skin deformation.

2.2. Viston-based tactile sensors

The idea of using imaging sensors for tactile sensing is decades old. An initial attempt
was measuring the frustration of total internal reflection within a waveguide on a
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sensor surface caused by contact.'?'% The research trend has shifted to measuring
displacement of markers placed on the sensor surface with computer vision, such as
using a lattice pattern,!” two-colored dots,'® a single dot,'” and single-colored
dots.?2072% Marker displacements are proportional to the external force as the dis-
placements are directly caused by the external force. The resolution of the contact
force field is decided by the camera resolution and the marker density. The dynamic
range of the force measurement can be controlled by changing the hardness of the
elastic material (softer is more sensitive; Ref. 26).

Similar to the above work, GelSight was developed by Johnson and Adelson.?” It
consists of a transparent elastomer covered with a opaque skin, which is sensitive to
the surface texture and shape of a contacting object. There has been an application
to robotic manipulation tasks,® shear force and slip estimation with markers,?® and a
slenderized fingertip (GelSlim).*’

Most of previous vision-based sensors including GelSight occluded the view be-
yond the sensor itself. This simplifies computer vision since the background of the
image is simplified. It makes sensing robust against external lighting conditions and
object appearance. Some studies used functional membranes. For example, GelSight
used a reflective membrane,?” which was effective to sense the object texture in high
resolution. An exception was proposed by Patel and Correll*® where a completely
transparent skin was used. However, it used an array of range finders to measure
the distance to an object and the skin deformation rather than using an imaging
optical device.

In contrast, FingerVision uses cameras to view objects of interest and relies on
computer vision to separate objects from the background. Although it could be a
disadvantage, there are good computer vision functions in publicly available libraries
such as OpenCV.* More importantly, making all of the skin transparent gives Fin-
gerVision another modality, prozimity vision. The sensitivity of measuring slip is
much improved with this approach as discussed below.

2.3. Slip detection with tactile sensors

Slip detection has been studied for decades. An early approach used a mechanical
roller to detect slip.?! An approach using acoustic signals caused by slip was ex-
plored.*> A popular approach is using the vibration caused by slip.**** Some vi-
bration approaches used accelerometers.***” Approaches to create a mechanism for
making slip-detection easier are considered, such as soft skin with a texture,** soft
skin covered with nibs,** and a flexible link structure.®® In Refs. 28, 39 and 40, they
analyzed an observed force (and torque) to detect slip. Many studies detect slip by
using a distributed sensor array.'™** In Ref. 43 a 44 x 44 pressure distribution is
converted to an image, and slip is detected by image processing. In Ref. 44, a multi-
sensor fusion approach was proposed where they combined stereo vision, joint-
encoders of the fingers, and fingertip force and torque sensors. In Ref. 45, they

ahttp://opencv.org/.
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developed slip detection using center-of-pressure tactile sensors. In Ref. 46, two
BioTac*" sensors are used and several strategies to detect slip are compared exper-
imentally. BioTac sensors are also used in Ref. 48, where they developed three types
of tactile estimation: finger forces, slip detection, and slip classification.

Similar to ours, Refs. 22, 28 and 49 developed methods to detect slip for vision-
based tactile sensors. In Refs. 22 and 49, slip was estimated from the stick ratio (a
ratio of areas of stick and contact regions). In Ref. 22, the stick ratio was estimated
from the displacement of dotted markers. The GelSight work®® developed a method to
detect slip by thresholding the entropy of shear (marker) displacement distribution.

In contrast, FingerVision estimates slip by directly analyzing the video from
fingertip cameras. Unlike other vision-based tactile sensors mentioned above,
FingerVision does not rely on marker displacement. FingerVision can estimate slip
even if there are no markers on its surface. This feature makes FingerVision special: it
can sense slip of very lightweight objects such as origami whose contact force is too
small to measure.

2.4. Tactile behaviors

Robotic manipulation with tactile sensing is also studied. A popular task is grasping.
Sometimes grasp execution with tactile sensing is referred to as grasp adaptation.

20,51 and a human-inspired

There are heuristic behavior designs of grasp adaptation,
grasp strategy*’ which was based on the study of grasp strategy of humans.”? Grasp
adaptation is also called re-grasping.”®°! Grasp adaptation is sometimes designed
with a grasp stability estimator that estimates a quality of grasp from tactile sensor
readings.””" Typically machine learning approaches are used to construct such
estimators, which requires training samples. Using slip sensation to adapt grasp is also
a popular approach.!?3345:48:49.58-61 Ror example, the slip detection of an optical
tactile sensor was used in grasp adaptation'® where the grasping force of a robot hand
was controlled to avoid slip. An experiment of grasping a paper cup was conducted,
where water was poured into it. It was demonstrated that the robot adapted the grasp
against the increasing weight of water without breaking the paper cup.

In this paper, we follow a grasp adaptation strategy with slip estimation since it is
simple to implement, and we can emphasize the advantage of slip detection sensi-
tivity with FingerVision. It is especially remarkable that grasp adaptation with
FingerVision can adapt grasp to a light-weight fragile object (e.g., origami) where
the contact force is too small to measure.

Other manipulation studies with tactile sensors are removing a cap of a bottle!®
where slip detection was used, rotating a cylinder with a single-finger robot®?
an optical tactile sensor” was used, in-hand manipulation of a cylinder,’* peg-in-hole
with slip detection,’* inserting a USB connector into a socket® where GelSight was
used to estimate the pose of the USB connector in the gripper, and in-hand
manipulations.”? In Ref. 64, contour-following control was learned with tactile
sensors and reinforcement learning.

where
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Comparing tactile behaviors with other approaches is difficult since we do not
have the same robot (especially the same robotic hand) and the same tactile sensors.
Constructing a common baseline would be difficult. Therefore, in this paper, we
demonstrate tactile behaviors that are enabled with FingerVision.

3. FingerVision

This section introduces the vision-based tactile sensor FingerVision, its fabrication,
and the data processing.

3.1. Overview

FingerVision consists of a transparent elastic material made with silicone, a trans-
parent hard layer made with acrylic, and a camera underneath. Some dots (markers)
are placed on the surface of the elastic material, that are made with plastic beads.
The conceptual diagram is shown in Fig. 1. Unlike other research,?'%?2
place an opaque material on the surface. The whole skin is transparent except for the
markers, and the cameras can see the external scene through the skin. This paper
presents a prototype with an RGB camera, but it can be extended with multiple

we do not

cameras and other types of cameras such as thermal and depth cameras.

The markers are captured by the cameras and tracked. This gives us a 3-axis
(z,y,z) force measurement at each marker point. By combining multiple marker
measurements, we can estimate torque information. The marker size affects the
accuracy of tracking. In general, a bigger marker is easier to detect. The density of
the markers determines the resolution of the contact force field. There is a trade-off
between the resolution and the surface transparency. The hardness and the thickness
of the elastic layer affect the marker movement caused by contact force (a softer layer
is more easily deformed by a small force), and determine the dynamic range of the
contact force measurement. The hard layer is assumed to be fixed on the gripper so
that external force is applied to the elastic and hard layers only and does not affect
the cameras. The physical robustness of the FingerVision sensor is decided by the
elastic and the hard layers. The camera resolution affects the accuracy of the marker
detection and tracking. The camera frame rate affects the sensing frame rate. These
properties (the marker size and density, the hardness and the thickness of the elastic
and the hard layers, and the camera properties) should reflect the purpose (task) of
each part of the skin. Multiple layers of different materials allow us to create a
“hardening” spring or nonlinear compliance.

3.2. Specification of prototype

As the elastic material, we use silicone, Silicones Inc. XP-565 that has A-16 Shore
hardness after cure. The effective thickness of the elastic material is 4 mm.
The thickness of the acrylic plate is 2 mm.
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For markers, we use black micro plastic beads that are spheres of around 1 mm
diameter. The size varies from 0.5mm to 1.5 mm. The markers are placed on a
5mm grid.

We use a fisheye lens camera ELP Co. USBFHD01M-L180 that has a USB in-
terface. It can capture at many different resolutions. We use the mode of 320 x 240
with MJPG compression.

3.3. Fabrication of FingerVision

Fabrication of the FingerVision sensor consists of the following processes: (1) making
base frames, molds, and an acrylic plate, (2) placing markers on the mold, (3) mixing
silicone resin and pouring it into the mold (note: degassing with vacuum is necessary
to remove air bubbles before pouring), (4) inserting the base frame with the acrylic
plate into the resin in the mold, (5) fixing the base frame on the mold, (6) waiting for
the silicone to cure, (7) removing the silicone and the frame from the mold, and
finally (8) attaching the camera. For the stability of the fabrication and installation
on robotic hands, we design the frames and the molds with a 3D printer. Figure 2
shows the 3D printed frames, molds, and after casting the silicone (at the beginning
of (6)).

We design a frame to attach the hard layer on the finger of a gripper. The frame
has a place to attach the hard layer made with transparent acrylic, and a connection
structure to the gripper. The latter part depends on the gripper. We create two
versions: one is for the electric parallel gripper of a Baxter robot (a standard gripper),
and the other is for the Robotiq 2-finger adaptive robot gripper-85 (legacy version).
Since we have CAD data for the fingers, we can easily connect to the frame. The
Robotiq gripper has a mount on the fingertip under the original finger pad. We made
a structure to attach the frame to the mount. The frame also has a mount for a
camera. We use a 3D printer (LultzBot Mini, Aleph Objects, Inc.) for producing
the frames.

Silicone covers both
faces of acrylic

Pocket for extra silicone

(a) Frames (b) Mold (c) Casting silicone

Fig. 2. (a) CAD of frames for a Baxter electric parallel gripper and a Robotiq gripper. (b) Mold for
silicone casting. (c¢) After pouring silicone into the mold.
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The soft layer is made by casting silicone. We make a mold for casting using a 3D
printer to achieve consistent fabrication. However we noticed that the surfaces of 3D
printed objects are not smooth enough to make optically clear skin even after
smoothing with sandpaper. Thus we use a 3D printed mold except for the surface
part of the soft layer. For the surface part, we use ComposiMold.

In order to increase the durability of the soft layer from peeling, we create
depressions and holes on the sides of the frames so that the silicone locks into them,
and we cover the hard layer on both top and bottom with the silicone (see Fig. 2(c)).

Figure 1 shows our Baxter robot with the FingerVision sensors installed.

3.4. Computer vision for processing FingerVision data

Since the sensing element of FingerVision is a camera, the raw data from Finger-
Vision is an RGB video stream. We use computer vision methods to process the
video. There are two types of computer vision for FingerVision video. One is marker
tracking that estimates the marker displacements from the initial positions. The
displacements of markers are used to estimate the force distribution. The other is
proximity vision that consists of nearby object detection and movement detection.
The object detection and tracking provides information about a manipulated object,
such as location, pose, area, and texture. It is also used to distinguish the movement
of a manipulated object and the background.

3.4.1. Marker tracking

We consider two approaches for marker tracking. One is using the mean shift method
to track marker movement. Initial marker positions are obtained by blob detection.
For each marker, we apply mean shift starting from the previous marker position to
obtain the current marker position. The other approach is applying blob detection
locally for each marker. We consider a small region around the previous marker
position, and apply blob detection to obtain the current marker position.

Both methods are implemented in OpenCV. The mean shift method is available as
the cv::meanShift function, and blob detection is available as the cv::Simple-
BlobDetector class. We thought the mean shift approach would be better since it is a
common tracking method. According to our preliminary test, marker tracking with
mean shift was robust. However, it turned out that this approach does not provide
good marker position accuracy since cv::meanShift returns an updated object lo-
cation as integer values. Since the marker movement on the image is small (a few
pixels), the movement was jumpy. On the other hand, cv::SimpleBlobDetector
provides the detected blob position as floating-point values. The obtained marker
position movement was smooth (see the comparison in Fig. 3(a)). Thus, we chose the
blob detection-based approach.

The actual procedure consists of two phases: calibration and tracking. In both
phases, we preprocess the image by rectifying the distortion caused by the fisheye
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(a) (b)

Fig. 3. (a) Comparison of blob tracking based on cv::meanShift (left of each pair) and cv::Simple-
BlobDetector (right of each pair). (b) An example of marker movements when a normal force is applied.

lens, and thresholding to extract black colors as the current markers are black. We
also apply a dilation and an erosion to remove noise.

Calibration: The sensor is covered with a white sheet to remove the background.
We apply blob detection method to an entire image. Then we apply the tracking
method to several frames (e.g., 10); if some markers are moving due to environmental
noise, they are removed from the marker candidates as they are noisy points.
Typically only a few points are removed. The remaining blobs are considered as
initial markers. Note that during the calibration, we do not move the robot and the
white sheet is fixed on the sensor surface. If we do not remove these points, they will
be observed as noisy movements, which affects the accuracy of force estimate.

Tracking: Starting from the initial marker positions, we track each marker frame
by frame. We consider a small (e.g., 30 x 30) region of interest (ROI) around the
previous marker position. First we count the nonzero pixels in the ROI and compare
it with the nonzero points of the initial marker. If there is a large difference, we do not
perform marker tracking (i.e., a detection failure). Otherwise, we apply the blob
detection method to the ROIL. Only one blob is expected; otherwise it is considered a
failure. We compare the previous and current blob positions and sizes, and if their
difference is large, it is considered a failure. Otherwise, the blob is considered as the
new marker location.

Post Processing: Force Estimation: From the marker movement, we estimate
an array of forces. The blob detection provides a position and a size of each blob. The
position change is caused by a horizontal (surface) force, while the size change is
caused by a normal force. However, since the size change is subtle compared to the
position change, the normal force estimate based on the size change is noisy and
unreliable. An alternative approach approximates the normal force at each marker
with a norm of marker position change. This approximation is useful especially when
taking an average of all the forces. When a normal force is applied to the center of the
skin surface, the markers around the point move radially (Fig. 3(b)). An average of
the horizontal forces in such a case will be close to zero, while an average of the
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approximated normal forces will have a useful value. Let d,, d, denote the horizontal
marker movement from the initial position. The force estimate at each marker is

given by
[fz7fy7fz] = [Cavdm Cy \/ d% + d%a czdy]v (1)

where ¢, c,, ¢, denote constant coefficients. Note that f, is the normal force (see
Fig. 1 for the coordinate system). We also define an average force and a torque
estimate as

1
f= N Z[fwa.ﬁyasz (2)
re e Sk ) )

where N denotes a number of markers, and r denotes a position of a marker from the
center of the image.

3.4.2. Prozximity vision

Proximity vision processes an image to obtain information about nearby objects,
such as object colors, textures, shape, position and orientation, movement including
slippage, and deformation. This paper focuses on approximate detection of an object
and its movement. Simple approaches to detecting movement are optical flow and
background subtraction. Movement detection involves detecting movement of the
environment and the robot body. For example when moving the robot arm, the
camera in FingerVision will capture background change. Operating the gripper also
causes background change. We need to distinguish the movement of an object from
background change. We developed a detection and tracking method for an object, as
well as movement detection.

For simplicity, we model an object with a histogram of colors. In most grasping
scenarios, a robot gripper approaches an object, or another agent passes an object to
the gripper. In both cases, the object is seen as a moving object in the cameras of
FingerVision. Thus, we design the object detection and tracking as follows. First, we
create a background model as a histogram of colors. At the beginning of grasping, we
detect moving blobs in the image, compute a histogram of colors of the moving
pixels, and subtract the background histogram. The remaining histogram is added to
the object model. In the tracking phase, we apply the back projection of the object
histogram to the current frame, and thresholding to detect the object. We describe
more details in what follows.

Movement Detection: We found that optical flow and background subtraction
are good at detecting changes in a sequence of images. We compared three
implementations based on functions in OpenCV, applying cvCalcOpticalFlowLK to
raw images, cvCalcOpticalFlowLK to edge images detected by the Sobel filter, and
cv: :BackgroundSubtractorM0G2 to raw images. In many cases, the three
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cvCalcOpticalFlowLK Sobel+cvCalcOpticalFlowLK  cv::BackgroundSubtractorMOG2

Fig. 4. An example of the comparison of three functions.

approaches provided similar results. In some cases, cv::BackgroundSubtractor-
MOG2 was slightly better than the others (Fig. 4). We used the background
subtraction approach for movement detection.

Object Model Construction: The object model construction consists of two
phases. One is the construction of a background model, which is performed at the
beginning of the experiments. The other is the construction of an object model, which
is performed during each grasping action. Both background and object models are
histograms of colors. We use the hue and saturation components of the HSV color
space to construct the histograms, where the number of bins of hue and saturation
components are 100 and 10, respectively.

The background model is constructed with several adjacent frames (e.g., 3). We
average the histograms of all frames. Let us denote the background histogram model
as Hye(h, s) where h and s denote hue and saturation bin, respectively.

During construction of an object model, the object is assumed to be moving in the
image as we described above. At each frame, we detect the moving points with the
background subtraction method, and calculate the histogram of colors as H,,(h, s).
We update the object histogram model by

H(/)bj(h7 S) = mln(255a Hobj(ha 3)
+ f;‘gain ma‘X(Oa I{IIlV(h‘? 8) - fbgHbg(hv S))), (4)

where H,;(h,s) and Hy,(h, s) are the current and the updated object histogram
models. At the beginning, H,,;(h,s) is initialized to be zero. The component
max(0, Hy,(h, s) — figHys(h, s)) computes the remaining histogram after subtracting
the background histogram from the color histogram of moving points. The
min(255, ...) operation is for normalization. fi, and f,,;, are constant values, for
example 1.5 and 0.5, respectively.

In order to simplify the timing to start and stop object model construction, we use
an object model made with the latest 200 frames. We stop object model construction

when the robot starts closing the gripper.

Object Tracking: In each frame, we track an object by detecting the pixels
similar to the object model. Concretely, we apply a back projection method (cv::
calcBackProject) with the histogram of the object Hy,(h,s), and threshold the
result to remove the uncertain pixels. The remaining pixels are the detected object.
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Left finger Right finger

Grasping
a screw
driver

Pushing
a screw
driver

Grasping
acup

Fig. 5. Examples of proximity vision. In each case, the detected object is shown as blue. In pushing a
screw driver, a human pushed the object which caused slip. The detected slip is emphasized by the purple
color. We can also see green particles that are pixels detected as moving. They are considered as back-
ground movement since they are outside the detected object region.

These pixels are used in two ways. One is removing the background change from the
moving points obtained from the background subtraction. For this purpose, we apply
an erosion (size 2) and a dilation (size 7) to remove noise and expand the boundary of
the object. The other is computing the position and the angle (orientation) of the
object. This is done by computing the moment of the object pixels. Examples of
proximity vision are shown in Fig. 5.

4. Tactile Behaviors with FingerVision

We have created several tactile behaviors with FingerVision (cf. Fig. 6). In the
following, (Behavior) denotes a behavior.

(Gentle Grasp): Grasping an object gently by using force estimation. This is useful
when grasping a fragile object.

(Holding): Controlling the gripper to avoid slip. This is especially useful when
grasping a deformable and fragile object. It is also effective for grasping light-weight
fragile objects.

(Grasp Adaptation): Automating a lifting-up motion with the slip avoidance
control (i.e., (Holding)). It enables the robot to pick up a range of objects.
(Handover): Opening the gripper when a force change or slip is detected. This is
useful when passing an object to humans.

(Automatic Placing): Placing an object grasped by the robot.

(Automatic Cutting): Automating a part of cutting motion with tactile sensing.
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Fig. 6. Conceptual diagrams of tactile behaviors where the modalities used by the behavior and the brief
processes are illustrated.

(In-hand Manipulation): Change the orientation of a grasped object by repeat-
edly relaxing and tightening the gripper based on the slip estimate.
(Tracking Object): Centering an object between the robot fingers.
(Tracking Force): Operating the robot by pushing with a small force.

For simplicity, we use position control on our grippers. In the following behaviors,
a small movement of the grippers means a position command to create a minimum
movement.

1. (Gentle Grasp)

The behavior is closing the gripper until one of the FingerVision sensors on the
fingers senses a sufficient contact force. FingerVision provides an array of forces
(each marker gives 3-dimensional force estimate [f;, f,, f,]). Rather than using an
average force or torque to detect a small force, detecting a small force on each marker
is better in this scenario. For robustness against marker tracking noise, we pro-
grammed force tracking as follows: We categorize |f,| (norm of the normal force) into
four types: noise level, sufficient contact force, medium force, large force, and give
scores 0, 1, 3, 5, respectively. Manually defined thresholds are used in this catego-
rization. We defined the condition to stop closing the gripper as that the sum of the
scores of the array exceeds a threshold (7 worked well in our experiments).

4.2. (Holding)

The behavior is that the robot slightly closes the gripper when the FingerVision
sensors detect slippage, otherwise no action is performed by the gripper. For slip
detection, we use the number of moving points on the object in the image. If the
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number exceeds a threshold, it is recognized as a slip event. This strategy is also
considered as feedback control of slip.

Note that the (Holding) strategy enables a robot to grasp very light-weight fragile
objects such as origami. The idea is that if there is not enough friction between the
object and the fingers, the object will slip when the robot moves the hand. Using the
(Holding) strategy until there is no slip, the robot will be able to move the object
without slip. This approach is applicable even when force estimation cannot sense
the contact force from the object. Thus, this could be a strategy to grasp light-weight
fragile objects.

4.3. (Grasp Adaptation)

(Grasp Adaptation) is a control to adapt grasp to an unknown object where the
gripper is controlled to avoid slip, i.e., activating the (Holding) strategy introduced
above. Grasping is considered as a control to prevent slip. With a sensor that can
detect slip, we can create a control strategy to prevent slip by adjusting the grasping
force. As explained in the (Holding) section, this (Grasp Adaptation) will work with
a range of objects, from heavy rigid objects to lightweight, deformable, and fragile
objects.

In the implementation, a lifting-up motion is executed with slip feedback control
((Holding)). The robot tries to lift up an object with the slip feedback control for the
gripper. If the grasping force is not enough to hold the object, the slip feedback
control adjusts the grasp. We refer to this controller as the (Grasp Adaptation)
controller. Figure 7 shows the control scheme of (Grasp Adaptation). First, the robot
tries to bring up the object (BringTest) with the slip feedback control (slipavd).
BringTest is performed slowly so that the gripper can adapt the grasp to the object.

Grasp adaptation

ctrl,(0.02,slow) ctrl,(z¢ina, fast)
+ slipavd + slipavd

: . hed = hed .
begin—=|BringTest = LiftUp ﬂﬁex1t(success)

reached \ \ %dropped
ctrly(Sprev) GraspPreV |Grasplnit| ctrly(Gopen)
reached yreached
ctrl,(0,fast) | Tolnit [+—>exit(failure)
large force
Emergency stop

Grasp failure detection
and recovery

Fig. 7. Control scheme of the (Grasp Adaptation). The detection of grasp failure and recovery, and
emergency stop are unified.
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Then the robot lifts it up to the final height (LiftUp). LiftUp is faster than
BringTest, while the slip feedback control is still active to adjust the grasp.

The above behavior is a one-way procedure normally. The implementation
(Fig. 7) has an error recovery. During the above two motions, the robot starts a
recovery motion when it detects that the object is considered to be dropped
(dropped). The detection of object drop is done by thresholding the ratio of the
object area over its initial value as BringTest starts. If the drop condition is satisfied,
the robot opens the gripper (GraspInit), moves the gripper to the initial pose
(ToInit), and closes the gripper to the previous value when the recovery motion
started (GraspPrev). Then the robot restarts from BringTest.

In the state machine Fig. 7, there is another block (Emergency stop), which is
activated when FingerVision detects a large force. Such an event is considered to be
an exception since the robot grasps nothing and the gripper width is the initial value
which should be greater than the object size. An example scenario of such an event is
when the robot drops the object and it rolls under the finger. Although the robot
finger pushes the object vertically in that case (i.e., only the fingertip of FingerVision
contacts the object), FingerVision can still measure the force. This is possible because
the camera of FingerVision has a fisheye lens and the elastic material propagates the
deformation at the fingertip toward the middle part. In such an event is detected, the
state machine is designed to stop immediately.

4.4. (Handowver)

We assume that the gripper already grasps an object, i.e., there are forces applied to
the FingerVision sensors. FingerVision is used as a trigger to open the gripper. Both
force change estimation and slip detection are used as the trigger: if one of them is
detected, the gripper is opened. Combining two modalities increases its applicability.
When grasping an object strongly, force tends to be detected. When grasping a light
weight object such as an origami crane, slip tends to be detected.

For force change detection, we compare the force estimate on each marker with its
initial value. We count the number of markers where a difference between those two
values exceeds a threshold. When the number exceeds a threshold (e.g., 5), it is
considered as the trigger. The slip detection is the same as that used in the (Holding)
behavior.

4.5. (Automatic Placing)

The purpose of this behavior is placing an object grasped by the robot. Tactile
sensing is useful to detect an event when the object touches with the ground. Such an
event could be estimated with external vision with a model of the object, but there
will be uncertainty in estimating the distance between the object and the ground.
The approach to use tactile sensing can handle such uncertainty. During the placing
motion (the robot moving the gripper downward), the robot stops the movement and
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opens the gripper when contact is detected. The implementation of this event de-
tection can be the same as the (Handover) strategy.

4.6. (Automatic Cutting)

We implement the (Automatic Cutting) motion of fruits with FingerVision. In this
paper, we simply use tactile sensing to detect a large force applied to the knife. This
detection is useful in two cases. One is detecting the event when the knife reaches the
cutting board. Since the knife is often occluded from the robot vision, estimating such
an event contains uncertainty. The event detection with tactile sensing can handle
such uncertainty. The second is detecting too large force for the gripper to hold the
knife. This situation happens when cutting hard materials such as pumpkins.

We create a cutting controller which (a) starts from a state where the knife held by
the gripper is put above the material, (b) moves the knife downward (cutting verti-
cally), and then (c) slightly pulls the knife (cutting horizontally). The controller moves
the knife to the initial position in order to repeat the motion several times when it
cannot cut off the material at once. Event detection is used to determine the transition
from (b) to (c). It is implemented as follows: (A) if —(fi, — fiz0) Fre — frao) > 10,
or (B) if |y, + [T, > 4, where f;, and f, indicate the z-value of the average force
of the left and the right sensors, f; .o and fz,q indicate their initial values (right before
cutting), and 71, and 7y, indicate the y-value of the average torque of the left and
the right sensors. The condition (A) is defined to detect a large force. The threshold is
decided from a preliminary experiment. The condition (B) is introduced to avoid
rotational slip of the knife. Figure 8(A) shows the state machine of the (Automatic
Cutting) motion.

When too large force is applied to the knife, it may deform the grasp by moving
the fingers (cf. Figs. 8(B)(a)) or the knife may slip in the fingers (cf. Fig. 8(B)(b)).
We emphasize that FingerVision can be used to detect these situations. For example,
look at the camera view of Fig. 8(B)(b); we can find that the angle of the knife is
different from its initial grasp position.

4.7. (In-hand Manipulation)

We assume that the gripper already grasps an object. The robot repeats the following
process until the target angle is achieved. The robot slightly opens the gripper until if
senses a small slip. Since there is a small delay between the gripper motion and
slippage, we insert a short waiting time (0.1s) after each gripper command. The
method to detect slip is the same as that in the (Holding) behavior, but the threshold
is halved (i.e., more sensitive). After a short waiting time or when slip is detected, the
robot closes the gripper until slip is not detected.

4.8. (Tracking Object)

The goal of this behavior is centering an object between the robot fingers. We control
the robot arm to achieve this purpose. We use object detection and pose estimation.
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(A) State machine of the (Automatic Cutting) motion.
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Fig. 8. (Automatic Cutting).

The position in the camera image plane is estimated; we control the robot arm to
center the object on the image. For controlling the height of the object from the
camera, we use the area of the object on the image. From two FingerVision sensors
on two fingers, we obtain two estimates of object areas on the images. By controlling
the robot to equalize the areas, the object locates at the center of the fingers.

This strategy is a demonstration of proximity vision of FingerVision; the robot
responds to an object that is not in contact with the tactile sensors. Such a function is
only possible with transparent skin. This control will be useful in centering an object
before grasping it. Another application would be inspecting fruits before picking them.

4.9. (Tracking Force)

The goal of this behavior is operating the robot by pushing with a small force. We use
the force estimate and control the robot to move in the pushed direction. We also use
object detection as a trigger to activate the control, which increases safety since the
robot does not move when no object is between the fingers. We compared two
variations: one uses the force estimate of Baxter (estimation from joint torque sen-
sors), and the other combines the force estimate of Baxter and FingerVision. In the
latter case, the robot was operated with smaller force. This control is a demonstra-
tion of using FingerVision in a physical human-robot interaction (HRI) scenario.
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5. Experiments

We conduct some experiments to demonstrate how the proposed tactile behaviors
work with FingerVision. The robots we use here are the Baxter robot of Rethink Co.
and UR3 of Universal Robots. Some of the scenes are shown in Fig. 9 with the force
estimation and the proximity vision views. The videos of experiments are available
online:

https://youtu.be/L-YbxcyRghQ Force estimation, pouring water into a grasped
container, test of proximity vision, (Gentle Grasp), (Handover), (Holding), slip-
based grasping, and (In-hand Manipulation).

https://youtu.be/uy32t09e704 (Grasp Adaptation) of a flower, an origami
crane, and a hairy rubber toy.

https://youtu.be/OsAkec5bpud (Grasp Adaptation) of more than 30 kinds of
objects.

https://youtu.be/TAA4YIqEOqg Tracking a feather with proximity vision (no
touch).

https://youtu.be/FQbNV549BQU  (Tracking Force) behavior (playing Tai Chi
with the robot).

https://youtu.be/VOrwJRv2jdk  (Automatic Placing) (from 0:21), and emer-
gency stop (from 0:43).

https://youtu.be/if0wQdy9gDg  Early test of FingerVision, and (Automatic
Cutting) (from 1:33).

5.1. Robotic system
5.1.1. Sensor network

The cameras of FingerVision have a USB 2.0 interface. In order to avoid long USB
cables, we place local computers. The local computers send videos obtained from the
FingerVision cameras to a central computer using Ethernet, and the central com-
puter processes all the videos. In the experiments, we use Raspberry Pi 3Bs as the
local computers, and transmit data through a Gigabit Ethernet network. We use
MJPG-streamer” installed on each Raspberry Pi to capture videos from cameras, and
transmit them using a motion JPEG format. In our test, the final output of Fin-
gerVision data processing (marker tracking and proximity vision) was at 63 FPS
with 320 x 240 resolution from four cameras simultaneously. In the experiments, we
reduced the FPS to 30 to reduce the computational load.

5.1.2. FingerVision on Bazxter

The Baxter robot has two 7 degrees of freedom (DoF) arms. We use its velocity
control mode commanded at 500 Hz. Our Baxter robot has two different grippers.
One is the electric parallel gripper of a Baxter robot (a standard gripper) on the right
hand, and the other is the Robotiq 2-finger adaptive robot gripper-85 (legacy

bWe use a forked version: https://github.com/akihikoy /mjpg-streamer.
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Fig. 10. Robotic systems.

version) on the left hand. Two FingerVision sensors are attached on the fingers of
each gripper. We use two Raspberry Pi 3B computers each of which has two Fin-
gerVision camera connections. Figure 10(a) shows the Baxter system.

5.1.3. FingerVision on URS3

The UR3 robot has 6 DoF and is driven by joint position or velocity commands. The
robot accepts the joint velocity commands at 125 Hz. A 3D printed gripper actuated
by a Dynamixel servo is mounted on the wrist of the robot that has 1 DoF. The servo
is operated using the position control mode at 60 Hz, while the state is observed at
40 Hz. Two FingerVision sensors are attached on the fingers of the gripper. These
devices are integrated with the control box of UR3, a Raspberry Pi 3B, and a central
computer. Figure 10(b) shows the UR3 system.
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5.2. FEwvaluating force estimation

We evaluate the force estimation using a scale. First, we let the robot push the scale
vertically to evaluate f,. Second, we let the robot hold a stick and push the scale with
it in order to evaluate f,. Similarly we evaluate f, by changing the stick and pushing
direction. In each case, we discretely increase the pushing force from around 1 [N] to
20 [N]. We record the force in static situations. For each measurement, we wait for a
few seconds for recording. Figure 11 shows the results. The values of the weight scale
are linearly scaled and offset. We noticed that there was hysteresis. There were two
sources of noise: marker tracking and the robot control.

5.3. Pouring water into a grasped container

We have the Robotiq gripper of Baxter grasp a container, and then pour water into
the container manually. Figure 12 shows the gravity-direction component (z-axis) of
the force estimate. Pouring was performed from 35 [s] to 52 [s]. The force gradually

2 \ 156 7171717 24 1T T1 177
1.6 —
g 1.2 2
= 1.2
2 0.8 1.6
E’ 0.8
0.4 |- Left-fy — 041 leftfr — 1.2 =
scale * scale *
0 | | | | 0 | | | 0.8
30 60 90 120150 20 40 60 80 100 20 40 60 80 100
Time [s] Time [s] Time [s]

Fig. 11. Average force trajectories in evaluating f, (left), f, (middle), and f, (right) respectively. The *
mark the scale readings (linearly scaled, and offset). The unit of force is omitted as it is not calibrated as
engineered units.

Leftl-fz — |

Left force

25 30 35 40 45 50 55 60 65

Time [s]

Fig. 12. Gravity-direction component (z-axis) of the force estimate during the pouring-water experiment.
Actual pouring is from 35 [s] to 52 [s]. The unit of force is omitted as it is not calibrated as engineered units.
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increased. This would be accurate enough to estimate the poured amount of water
during a pouring task.

5.4. Test of prorimity vision

We explore basic results from proximity vision. We let the Robotiq gripper of Baxter
grasp a screw driver weakly, and move it in the gripper manually. Then we let the
gripper grasp an empty Coke can, and poke the can 4 times. Figure 13 shows the
result of rotating the screw driver. We can see that the object angle changes from
zero to negative, to positive, and goes back to zero again. The object angle measured
by an external camera is also plotted in the figure. Around the peaks, the object angle
is different from the estimate by proximity vision. This was because around these
angles, a part of the object was out of the camera view. During rotating the screw
driver, there are positive movement values that are capturing the slippage. The
torque estimate sensed the external torque that rotated the screw driver. Figure 14
shows the result of poking the Coke can. Since the Coke can was light weight, the
human poked very weakly. The force and torque estimates did not capture the poke.
However, the proximity vision detected the movement as we can see four peaks in the
graph that correspond with the four pokes.

5. (Gentle Grasp)

We test the (Gentle Grasp) strategy with the Robotiq gripper of Baxter. We have the
robot grasp an empty Coke can, and grasp a paper business card on edge. Both

Right prox vision Right force, torque

OO0 0000
L 0o ANONAO

{o)(o]

Right-obj-angle —

) %ht obj-area %ng E
: Right-movément -
: | | | ocap obj- angle — ]
80 90 100 110 120 130
Time [s]

Fig. 13. Force and torque estimate (top) and proximity vision (bottom) during rotating the screw driver.
In the proximity vision graph, there are plots of the object angle (radian) and area obtained from the
moment of object pixels, and the total number of moving pixels (normalized by the image size). Object
angle obtained by an external camera is also plotted (Mocap-obj-angle). The units of force and torque are
omitted as they are not calibrated as engineered units.
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Fig. 14. Force and torque estimate (top) and the proximity vision (bottom) during poking a Coke can.
See the caption of Fig. 13 for the plots.

objects are soft and will be damaged with even small forces. Figure 15 shows the force
and torque estimate, and the proximity vision output during (Gentle Grasp). The
actual grasp happened at 34.5 [s]. We can see a small change of force around that
time. We can also see movement detection before and during grasping. This was
caused by the approaching motion before the grasp. Similar results are found in the
card case as shown in Fig. 16. The actual grasping happened at 151 [s]. The move-
ment detection is less than that of the Coke can case. Since the robot grasped the
card on edge, it appeared only in a small region of the image.
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Fig. 15. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping a
Coke can. See the caption of Fig. 13 for the plots.
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Fig. 16. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping a
business card. See the caption of Fig. 13 for the plots.

5.6. (Holding) strategy

We demonstrate the (Holding) strategy by grasping a screw driver. We compare two
patterns: (A) the (Gentle Grasp) strategy, and (B) the (Holding) strategy. During
grasping with each pattern, a human pushes the driver several times. The results are
shown in Fig. 17. From the graphs of force and torque estimates, we can see that
stronger external force was applied in (B). The orientation of the object is changing
more in (A). Thus, the (Holding) strategy could reduce slip.

We apply the (Holding) strategy to grasp a marshmallow where a human pulls the
marshmallow. Figure 18 shows the result. We can see many slip detections (peaks in
Right-movement) from the bottom graph, and the magnitude of grasping force (|fy|)
is increasing accordingly in the top graph.

Next we let the robot move a stuffed toy. Moving with the (Gentle Grasp)
strategy, the robot dropped the toy due to a slip. However by activating the
(Holding) strategy, the robot could hold and move the toy. Figure 19 shows the force
and torque estimates and the proximity vision output during the motion. We find
that there are several discrete events of slippage, and after each of them, the grasping
force (see f,) was increased. At 545 [s], the robot passed the object to the human.
The area of the object in the image, and the force and torque estimates became zero
after that.

5.7. Grasping a fragile object with the (Holding) strategy

We verify our concept that by using the (Holding) strategy the robot can grasp a
very light-weight fragile object. As such an object, we use an origami crane. A human
passes an origami crane to the gripper, and the Baxter robot uses the (Holding)
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strategy. After grasping it without slip, the robot swings its arm to see if the (Holding)
strategy is effective. Figure 20 shows the result. The robot performed grasping from
142 [s] to 145 [s]. We can see slip detection around 155 [s] and so on, but the object
was kept inside the gripper. From the force and torque estimates, we cannot see
informative changes. This was due to the small weight of the object (1.7 g).

5.8. (Grasp Adaptation)

The previous experiment showed our concept works. Next, we conduct a further test
of the (Grasp Adaptation) controller. We verify that when an adequate grasp pose
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Fig. 20. Force estimate (top) and the proximity vision (bottom) during grasping a paper bird. See the
caption of Fig. 13 for the plots.
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for an object is given, the (Grasp Adaptation) controller can adapt the grasp to the
object robustly regardless of the object and its properties. We let a human operator
decide a good grasp pose for a given object with a joystick controller, and then run
the (Grasp Adaptation) controller to pick up the object. We do not tune the para-
meters of the controller for each object.

We tested with 30 deformable and fragile objects shown in Fig. 21 including
vegetables, fruits, origami objects, and a raw egg. We use the Robotiq gripper of
Baxter. Initially each object is placed on a table.

We conducted 36 trials: Origami box, Origami crane, Badminton ball, Hairy
rubber toy, Cup cake, Chocolate, Strawberry, Tomato-medium-1, Eggplant@1,
Eggplant@2, Zucchini-yellow, Mushroom-1@1, Mushroom-1@2, Egg(raw), Pepper-
red-1, Oyster mushroom-1, Peach-1, Mushroom-2, Potato-1, Kiwi-1, Tomato-me-
dium-2, Broccoli@1, Broccoli@2, Oyster mushroom-2, Green pepper-1, Kiwi-2,
Pepper-red-2, Tomato-big, Banana-1Q1, Banana-1@2, Banana-1@3, Green pepper-
2@1, Green pepper-2@2, Peach-2, Potato-2, Banana-2. A label with @N denotes an

Fig. 21. Top: 30 objects used in the experiment. Bottom: Examples of grasp (cup cake, raw egg, oyster
mushroom, strawberry, tomato, hairy rubber toy).
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Nth trial of the same object. Examples of successful grasping are shown in Fig. 21.
There were several failures: (1) Dropped after bringing up: Oyster mushroom-1,
Potato-1. (2) Slippage could not be detected due to a computer vision failure:
Eggplant@1 (the skin was black), Broccoli@l and Green pepper-2@1 (the color
was similar to the fingers). (3) Closing gripper did not stop in Banana-1@1 because
detecting the deformation of object as slip. Since the contact force from the table
disappeared when bringing up the banana, the banana skin was deformed slightly.
(4) In Banana-1@2, dropped during bringing up, and failed to re-grasp since
the fingers got stuck at the edge of the object, and the passive joints of the
gripper bent. Note that (2) was solved by grasping the green part (Eggplant@2),
helping the object detection manually (Broccoli@2), and just trying again (Green
pepper-2@2).

The issues of (2) and (3) will be solved by improving the computer vision method
for: (A) a better object detection and (B) distinguishing slippage and deformation.
The issues of (1) and (4) will be solved by improving the behavior. For example,
testing the grasp stability by shaking the object after grasping will avoid (1). (4) can
be solved by optimizing the trajectory of fingertip in re-grasping.

5.9. (Handover)

We demonstrate the (Handover) strategy by applying it to a Coke can and a business
card. Both objects are grasped by the (Gentle Grasp) strategy, and the card is
grasped on edge. Figure 22 shows the result. In the Coke can case, the robot started
to open the gripper triggered by the slip detection at 25.1 [s]. In the business card
case, the opening gripper was triggered by the force change detection at 160 [s]. The
reason could be that the Coke can is slippery, while the slip detection does not work
well with the card when it is grasped on edge. We also investigated other object cases,
and found that when the robot grasped an object strongly, the force-trigger was often
used since the slip rarely happened with such grasps.

5.10. (Automatic Placing), {Tracking Object), and ( Tracking Force)

We demonstrate the motions of the (Automatic Placing) with the UR3. The motion
starts where the robot grasps an origami box. The grasp pose is displaced toward the
fingertip on purpose. In the placing motion, the robot tries to move the gripper
downward until its fingertip is around the table. With this setup, the grasped object
will touch the table before the planned motion ends.

Figure 23 shows an example of the execution. The left image is the initial pose
where we can see the displaced grasp of the object. At the fourth image, the object
touched the table. Since slip was detected, the robot stopped the placing motion and
opened the gripper. The views of FingerVision at the beginning and at slip detection
are shown in the same figure. We can see the points in slip at the frame when slip was
detected.
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5.11. (In-hand Manipulation)

We apply the (In-hand Manipulation) strategy to rotating a pen. The target angle is
20 degrees from the current angle. Figure 24 shows the results of eight runs. In most
cases, the achieved angles exceeded the target. This was because the object move-
ment caused by gravity was fast and the sensing and processing frame rate was not
enough to respond to that, and the gripper response was not fast enough.

5.12. (Automatic Cutting)

We conduct an experiment of the (Automatic Cutting) with the electric parallel
gripper of Baxter. The target objects are a banana and an apple. Figure 25 shows
a scene of cutting the apple and the corresponding marker tracking result. Figure 26
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Fig. 24. Result of (In-hand Manipulation). The object orientations obtained by the proximity vision are
plotted per time. The initial orientation is set to be zero.

and Fig. 27 shows the sensor values during cutting a banana and an apple, respec-
tively, where the trajectories of the average force (z, z) and torque (y) of the left and
the right FingerVision sensors are shown. Since cutting a banana requires only a
small force, the robot cut it with a single trial, while the robot took four trials in
cutting an apple. In the banana case, the robot stopped moving the knife because
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Fig. 25. Marker tracking result in cutting an apple by the robot. The left image is a view from an external
camera.
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Fig. 26. Trajectories of the average force (z, z) and torque (y) of the left and the right FingerVision
sensors during cutting a banana by the robot. There was a single cutting motion around the peak of left
a-force.

the condition (A) of the (Automatic Cutting) motion was satisfied when the knife hit
the cutting board. In the apple case, the condition (A) was mainly satisfied by the
pressure from the cut edge of the apple fresh. In these graphs, the condition (B)
was not satisfied, but it was useful when the initial knife orientation was not
perpendicular.

5.13. (Tracking Object) and ( Tracking Force)

We demonstrate the motions of (Tracking Object) and (Tracking Force). Figure 28
shows the snapshots of 30s of (Tracking Object) where the object is a pink feather
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Fig. 27. Trajectories of the average force (z, z) and torque (y) of the left and the right FingerVision
sensors during cutting an apple by the robot. The robot performed the cutting motion four times to cut the
apple completely. The peaks of left and right x-force correspond with the cutting motion.

performed by Baxter. We can see that the feather is detected by the object detection
algorithm in the FingerVision views. The robot tries to center the object on image by
moving its arm.

Figure 29 shows the snapshots of 6s of the (Tracking Force) behavior with the
UR3. The human operator pushed the finger with a small force, and then the robot
moved toward the pushed direction. Although this is a simple demonstration, it
shows the capability of FingerVision in HRI applications.

View-2

FingerVision

Left|Right Left |Right
B :Object =7:Slip

Fig. 28. Snapshots of (Tracking Object).
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Fig. 29. Snapshots of (Tracking Force).

6. Discussion
6.1. Why are tactile sensors not as popular as vision sensors?

There are popular solutions in robot vision (RGB cameras and OpenCV; depth
cameras and the Point Cloud Library), while there is no de facto standard solutions
in tactile sensing for robots. The reasons vary: difficulty to physically install, low
durability, poor compatibility among different tactile sensors, unclear usage, main-
tenance complexity, programming complexity, and expense. As a result, accumu-
lating the knowledge of tactile sensing for robots is more difficult than that of robot
vision.

6.2. Improving software improves FingerVision

This is an interesting feature of vision-based tactile sensors. Typically, we need to
improve hardware to improve a sensor, while in vision-based tactile sensors, we can
improve the sensing capability by improving the computer vision software. Of course
high-level sensing capabilities can be improved by software with the other types of
sensors, but vision-based tactile sensors have potential to increase low-level sensing
capabilities. For example, one important part of computer vision for FingerVision is
object detection and tracking. We found that there were some failures in the (Grasp
Adaptation) experiments. These failures could be solved by improving the computer
vision. It also should be mentioned that we can use the recent success of deep learning
in computer vision with vision-based tactile sensors. Especially, with FingerVision,
we can use RGB image processing with FingerVision such as object recognition,
which would be an advantage of FingerVision.

6.3. How does FingerVision improve manipulation?

Through the implementation of tactile behaviors, we found there are some useful
cases of FingerVision in manipulation. Slip detection is useful in many scenarios to
avoid slip, (Grasp Adaptation), and (In-hand Manipulation) where the slip is created
on purpose. It is also used as triggers, for example in (Handover) and placing
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behaviors. Force estimation is used as triggers in (Handover) and (Automatic
Cutting) behaviors. It is useful to detect an emergency (collision), which was used in
the (Grasp Adaptation).

6.4. Should we convert the force estimate to an engineering unit
(e.g., Newtons)?

This depends on the application. We are planning to use machine learning methods
to learn dynamical models (e.g., relation between input gripper motion and output
force changes) for example by using neural networks. In this case, obtaining contact
force information in engineering units is not necessary. If the force estimates are
consistent enough, we could learn mappings from grasping-action parameters to a
force distribution, and from a force distribution to grasping-quality measurements.
These models would be useful to reason about grasping actions. However, using an
engineering unit will be generalizable to other situations and other robots, so it is still
beneficial to consider. Accurately estimating force will depend on the contact loca-
tion and may require finite element modeling of the sensor structure.

6.5. Accuracy, reliability, and hysteresis

The marker movement in a horizontal direction is easier to track. The vertical force is
more difficult to detect as the changes of the marker visual size are comparably
smaller. A way to improve the vertical force sensitivity is increasing the thickness of
the elastic layer, although it would make the skin heavier.

In the experiments, there were some false detections of the markers. These were
mostly due to the external scene. Increasing the number of markers is helpful for
removing outliers, although it will reduce the transparency accordingly.

We found hysteresis, especially when a strong force was applied. In the cutting
vegetable experiments by the robot, the force estimate changed before and after
cutting a hard material. This would be because the deformation of the soft layer
remained. This was mostly reset after releasing the knife.

Although we demonstrated a basic study of force estimation, we did not identify
the range of detectable force and the accuracy of force estimation in dynamic
situations. Also, we did not evaluate the detection of slip. These are left for
future work.

6.6. Can FingerVision grasp objects in the dark or black/transparent
objects?

Installing structured light sources is helpful in dark scenes, although we would need
to avoid reflections of light at the surface of the silicone skin and the boundary of the
silicone and acrylic layers.

In case an object is black (the same color as the markers), it will become difficult
to detect the markers. However, using multiple colored markers will make the marker
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detection more robust against the object colors. Note that proximity vision still
works with black objects.
On the other hand, proximity vision will not work with completely transparent
objects. However, marker tracking may detect the reaction force from the objects.
Recent progress of computer vision also helps FingerVision to solve these issues.

6.7. Can we distinguish slip and deformation?

Since both slip and deformation appear as movement of pixels in the image, it is not
straightforward to distinguish them. Our current implementation of slip detection
detects both as slip. From our experience, we found that the patterns of the move-
ment of pixels are different between slip and deformation. In the case of slip, the
pixels move in the same direction, while in the case of deformation, the pixels move
inward radially.

6.8. Proximity vision versus functional membranes

The key aspect of FingerVision is the transparent skin, while other vision-based
tactile sensors use opaque skin. FingerVision also has markers to detect force
distribution. A drawback of FingerVision would be the robustness to external light
and object view. As discussed above, we think this drawback can be handled.

Some vision-based tactile sensors use functional membranes such as GelSight.>”
While GelSight provides high-resolution and sensitive texture and shape detection,
FingerVision provides proximity vision and sensitive slip detection. FingerVision can
also combine with other sensors such as depth and thermal cameras. Which is better?
It would be difficult to answer now since it depends on the task.

7. Conclusion

We introduced a vision-based tactile sensor FingerVision and explored tactile
behaviors implemented on a Baxter and a Universal Robots UR3 to show its use-
fulness. FingerVision consists of a transparent elastic material with black dots, and a
camera, that is easy to fabricate, low cost, and physically robust. Unlike other vision-
based tactile sensors, the complete transparency of the FingerVision skin provides a
multimodal sensation. The modalities sensed by FingerVision include distributions
of force and slip, and object information such as distance, location, pose, size, shape,
and texture. The slip detection is very sensitive since it is obtained by computer
vision directly applied to the output of the FingerVision camera. It provides high-
resolution slip detection, which does not depend on the contact force, i.e., it can sense
slip of a lightweight object that generates negligible contact force. The tactile
behaviors explored in this paper include manipulations that emphasize this feature.
For example, we demonstrated that grasp adaptation with FingerVision could
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grasp origami, and other deformable and fragile objects such as vegetables, fruits,

and raw eggs.
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