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This paper introduces a vision-based tactile sensor FingerVision, and explores its usefulness in

tactile behaviors. FingerVision consists of a transparent elastic skin marked with dots, and a

camera that is easy to fabricate, low cost, and physically robust. Unlike other vision-based
tactile sensors, the complete transparency of the FingerVision skin provides multimodal sen-

sation. The modalities sensed by FingerVision include distributions of force and slip, and object

information such as distance, location, pose, size, shape, and texture. The slip detection is very

sensitive since it is obtained by computer vision directly applied to the output from the Fin-
gerVision camera. It provides high-resolution slip detection, which does not depend on the

contact force, i.e., it can sense slip of a lightweight object that generates negligible contact force.

The tactile behaviors explored in this paper include manipulations that utilize this feature. For
example, we demonstrate that grasp adaptation with FingerVision can grasp origami, and other

deformable and fragile objects such as vegetables, fruits, and raw eggs.

Keywords: FingerVision; tactile sensor; tactile behavior.

1. Introduction

We are exploring a vision-based tactile sensor FingerVision.1 Unlike other vision-

based tactile sensors such as TacTip2 and GelSight,3 FingerVision has a transparent

skin that enables an embedded camera to see through the skin. This feature increases

the modalities obtained by the sensor, including vision of nearby objects and slip

distribution. We explore if FingerVision is a promising approach to overcome the
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issues of existing tactile sensors, and how we e®ectively use FingerVision in designing

robotic behaviors.

FingerVision consists of a transparent elastic material, a transparent hard layer,

and cameras. On the surface of the elastic material, small dots are placed to track the

deformation of the material with computer vision. The conceptual diagram is shown

in Fig. 1. By processing the video data from the cameras of FingerVision, we can

obtain tactile sensation and vision of nearby objects (proximity vision). The features

of FingerVision can be summarized as follows:

(1) Multimodal: It can sense force distribution, high-resolution slip distribution,

object distance, location, pose, size, shape, texture, and other information

obtained from proximity vision.

(1.1) Slip can be detected regardless of the force on objects. It can sense slippage

even when the object is too light to generate measurable force (e.g.

origami).

(1.2) Cameras can sense objects before collision. With this feature, we can create

safe interactive robots that are aware of nearby humans and fragile objects.

(2) Easy to fabricate: Because of its simple structure, its fabrication is easy.

(3) Low cost: The most expensive component is the camera, which is a low cost

webcam. Other components are also inexpensive.

(4) Physically strong: External force is applied to the skin and frame, and does not

reach the camera. Thus, it is physically strong.

(5) Easy to repair: Even if the skin is damaged, replacing it is inexpensive.

(6) Using wide-angle lenses (¯sheye lenses), we can place the cameras sparsely dis-

tributed under the surface where we want to install tactile sensing.

(7) Sensor parameters are adjustable: We can adjust the dynamic range of force

(hardness and thickness of the skin), size (small cameras miniaturize the sensor

size), spatial resolution (camera resolution, marker allocation, etc.), and tem-

poral resolution (high speed cameras).

(8) Other types of sensing components can be used, such as range ¯nders and

thermal cameras.

(a) Skin structure
(b) Installation

on gripper

Fig. 1. Conceptual design of FingerVision (a) and an installation sketch on a robotic gripper (b). Right

two images are prototypes of FingerVision installed on a Baxter electric parallel gripper and a Robotiq

gripper.
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(9) Open source: The fabrication process including CAD ¯les of frames and molds,

software, and tutorials are available online4 in order to encourage people to

reproduce FingerVision for their own robots and projects.

Compared to the other vision-based tactile sensors, the features (1.1), (1.2), (8) are

unique to FingerVision because of its transparent skin.

In this paper, we demonstrate the use of FingerVision, especially tactile manip-

ulation with FingerVision, in order to show its usefulness. The tactile behaviors

presented in this paper are simple to program. Even so, some behaviors are dra-

matically improved because of the advantages of FingerVision. For example, the

grasp adaptation with FingerVision is very sensitive because of (1.1). FingerVision

can adapt a grasp to a range of objects, including lightweight, deformable, and fragile

ones.

Parts of this paper were published in conference papers; an early prototype,1

tactile behaviors,5,6 and grasp adaptation.7 The purpose of this paper is providing a

comprehensive understanding of tactile behaviors with FingerVision.

The rest of this paper is organized as follows: Section 2 reviews the related work.

Section 3 introduces FingerVision. Section 4 describes the tactile behaviors. Section 5

reports the results of experiments. Section 6 is a discussion section, and Sec. 7

concludes the paper.

2. Related Work

2.1. Tactile sensors in general

There are many di®erent approaches of tactile sensing, such as capacitive sensors,

piezoresistive sensors, magnetic sensors, piezoelectric sensors, optical and proximity

sensors, and vision-based sensors. Some of them are commercialized such as

BarrettHand,8 PR2,9 and ReFlex Hand.10 More comprehensive reviews are avail-

able.11,12 When we design multimodal tactile sensing for robot ¯ngers, we need to

deal with issues of fabrication, wiring, power, size, installation, expense, and physical

robustness. We think the vision-based approach is a good approach, since:

(1) achieving high resolution (superhuman resolution) is not di±cult, (2) the sensor

structure can be simple and fabrication is not di±cult, (3) wiring is not problematic

by using well-established network infrastructure, (4) buying the parts and fabrica-

tion equipment is a®ordable, (5) the sensing device (camera) is becoming smaller,

cheaper, reliable, and better in resolution and speed, due to the markets for smart

phones and endoscopic surgery, and (6) physically robust since the sensing device can

be isolated from skin deformation.

2.2. Vision-based tactile sensors

The idea of using imaging sensors for tactile sensing is decades old. An initial attempt

was measuring the frustration of total internal re°ection within a waveguide on a

Tactile Behaviors with the Vision-Based Tactile Sensor FingerVision
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sensor surface caused by contact.13–16 The research trend has shifted to measuring

displacement of markers placed on the sensor surface with computer vision, such as

using a lattice pattern,17 two-colored dots,18 a single dot,19 and single-colored

dots.2,20–25 Marker displacements are proportional to the external force as the dis-

placements are directly caused by the external force. The resolution of the contact

force ¯eld is decided by the camera resolution and the marker density. The dynamic

range of the force measurement can be controlled by changing the hardness of the

elastic material (softer is more sensitive; Ref. 26).

Similar to the above work, GelSight was developed by Johnson and Adelson.27 It

consists of a transparent elastomer covered with a opaque skin, which is sensitive to

the surface texture and shape of a contacting object. There has been an application

to robotic manipulation tasks,3 shear force and slip estimation with markers,28 and a

slenderized ¯ngertip (GelSlim).29

Most of previous vision-based sensors including GelSight occluded the view be-

yond the sensor itself. This simpli¯es computer vision since the background of the

image is simpli¯ed. It makes sensing robust against external lighting conditions and

object appearance. Some studies used functional membranes. For example, GelSight

used a re°ective membrane,27 which was e®ective to sense the object texture in high

resolution. An exception was proposed by Patel and Correll30 where a completely

transparent skin was used. However, it used an array of range ¯nders to measure

the distance to an object and the skin deformation rather than using an imaging

optical device.

In contrast, FingerVision uses cameras to view objects of interest and relies on

computer vision to separate objects from the background. Although it could be a

disadvantage, there are good computer vision functions in publicly available libraries

such as OpenCV.a More importantly, making all of the skin transparent gives Fin-

gerVision another modality, proximity vision. The sensitivity of measuring slip is

much improved with this approach as discussed below.

2.3. Slip detection with tactile sensors

Slip detection has been studied for decades. An early approach used a mechanical

roller to detect slip.31 An approach using acoustic signals caused by slip was ex-

plored.32 A popular approach is using the vibration caused by slip.33–38 Some vi-

bration approaches used accelerometers.34,37 Approaches to create a mechanism for

making slip-detection easier are considered, such as soft skin with a texture,34 soft

skin covered with nibs,33 and a °exible link structure.36 In Refs. 28, 39 and 40, they

analyzed an observed force (and torque) to detect slip. Many studies detect slip by

using a distributed sensor array.41–43 In Ref. 43 a 44� 44 pressure distribution is

converted to an image, and slip is detected by image processing. In Ref. 44, a multi-

sensor fusion approach was proposed where they combined stereo vision, joint-

encoders of the ¯ngers, and ¯ngertip force and torque sensors. In Ref. 45, they

ahttp://opencv.org/.
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developed slip detection using center-of-pressure tactile sensors. In Ref. 46, two

BioTac47 sensors are used and several strategies to detect slip are compared exper-

imentally. BioTac sensors are also used in Ref. 48, where they developed three types

of tactile estimation: ¯nger forces, slip detection, and slip classi¯cation.

Similar to ours, Refs. 22, 28 and 49 developed methods to detect slip for vision-

based tactile sensors. In Refs. 22 and 49, slip was estimated from the stick ratio (a

ratio of areas of stick and contact regions). In Ref. 22, the stick ratio was estimated

from the displacement of dotted markers. The GelSight work28 developed a method to

detect slip by thresholding the entropy of shear (marker) displacement distribution.

In contrast, FingerVision estimates slip by directly analyzing the video from

¯ngertip cameras. Unlike other vision-based tactile sensors mentioned above,

FingerVision does not rely on marker displacement. FingerVision can estimate slip

even if there are no markers on its surface. This feature makes FingerVision special: it

can sense slip of very lightweight objects such as origami whose contact force is too

small to measure.

2.4. Tactile behaviors

Robotic manipulation with tactile sensing is also studied. A popular task is grasping.

Sometimes grasp execution with tactile sensing is referred to as grasp adaptation.

There are heuristic behavior designs of grasp adaptation,50,51 and a human-inspired

grasp strategy40 which was based on the study of grasp strategy of humans.52 Grasp

adaptation is also called re-grasping.53,54 Grasp adaptation is sometimes designed

with a grasp stability estimator that estimates a quality of grasp from tactile sensor

readings.55–57 Typically machine learning approaches are used to construct such

estimators, which requires training samples. Using slip sensation to adapt grasp is also

a popular approach.15,33,45,48,49,58–61 For example, the slip detection of an optical

tactile sensor was used in grasp adaptation15 where the grasping force of a robot hand

was controlled to avoid slip. An experiment of grasping a paper cup was conducted,

where water was poured into it. It was demonstrated that the robot adapted the grasp

against the increasing weight of water without breaking the paper cup.

In this paper, we follow a grasp adaptation strategy with slip estimation since it is

simple to implement, and we can emphasize the advantage of slip detection sensi-

tivity with FingerVision. It is especially remarkable that grasp adaptation with

FingerVision can adapt grasp to a light-weight fragile object (e.g., origami) where

the contact force is too small to measure.

Other manipulation studies with tactile sensors are removing a cap of a bottle15

where slip detection was used, rotating a cylinder with a single-¯nger robot62 where

an optical tactile sensor2 was used, in-hand manipulation of a cylinder,63 peg-in-hole

with slip detection,44 inserting a USB connector into a socket3 where GelSight was

used to estimate the pose of the USB connector in the gripper, and in-hand

manipulations.43 In Ref. 64, contour-following control was learned with tactile

sensors and reinforcement learning.

Tactile Behaviors with the Vision-Based Tactile Sensor FingerVision
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Comparing tactile behaviors with other approaches is di±cult since we do not

have the same robot (especially the same robotic hand) and the same tactile sensors.

Constructing a common baseline would be di±cult. Therefore, in this paper, we

demonstrate tactile behaviors that are enabled with FingerVision.

3. FingerVision

This section introduces the vision-based tactile sensor FingerVision, its fabrication,

and the data processing.

3.1. Overview

FingerVision consists of a transparent elastic material made with silicone, a trans-

parent hard layer made with acrylic, and a camera underneath. Some dots (markers)

are placed on the surface of the elastic material, that are made with plastic beads.

The conceptual diagram is shown in Fig. 1. Unlike other research,2,18,22 we do not

place an opaque material on the surface. The whole skin is transparent except for the

markers, and the cameras can see the external scene through the skin. This paper

presents a prototype with an RGB camera, but it can be extended with multiple

cameras and other types of cameras such as thermal and depth cameras.

The markers are captured by the cameras and tracked. This gives us a 3-axis

(x; y; z) force measurement at each marker point. By combining multiple marker

measurements, we can estimate torque information. The marker size a®ects the

accuracy of tracking. In general, a bigger marker is easier to detect. The density of

the markers determines the resolution of the contact force ¯eld. There is a trade-o®

between the resolution and the surface transparency. The hardness and the thickness

of the elastic layer a®ect the marker movement caused by contact force (a softer layer

is more easily deformed by a small force), and determine the dynamic range of the

contact force measurement. The hard layer is assumed to be ¯xed on the gripper so

that external force is applied to the elastic and hard layers only and does not a®ect

the cameras. The physical robustness of the FingerVision sensor is decided by the

elastic and the hard layers. The camera resolution a®ects the accuracy of the marker

detection and tracking. The camera frame rate a®ects the sensing frame rate. These

properties (the marker size and density, the hardness and the thickness of the elastic

and the hard layers, and the camera properties) should re°ect the purpose (task) of

each part of the skin. Multiple layers of di®erent materials allow us to create a

\hardening" spring or nonlinear compliance.

3.2. Specification of prototype

As the elastic material, we use silicone, Silicones Inc. XP-565 that has A-16 Shore

hardness after cure. The e®ective thickness of the elastic material is 4mm.

The thickness of the acrylic plate is 2mm.

A. Yamaguchi & C. G. Atkeson
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For markers, we use black micro plastic beads that are spheres of around 1mm

diameter. The size varies from 0.5mm to 1.5mm. The markers are placed on a

5mm grid.

We use a ¯sheye lens camera ELP Co. USBFHD01M-L180 that has a USB in-

terface. It can capture at many di®erent resolutions. We use the mode of 320� 240

with MJPG compression.

3.3. Fabrication of FingerVision

Fabrication of the FingerVision sensor consists of the following processes: (1) making

base frames, molds, and an acrylic plate, (2) placing markers on the mold, (3) mixing

silicone resin and pouring it into the mold (note: degassing with vacuum is necessary

to remove air bubbles before pouring), (4) inserting the base frame with the acrylic

plate into the resin in the mold, (5) ¯xing the base frame on the mold, (6) waiting for

the silicone to cure, (7) removing the silicone and the frame from the mold, and

¯nally (8) attaching the camera. For the stability of the fabrication and installation

on robotic hands, we design the frames and the molds with a 3D printer. Figure 2

shows the 3D printed frames, molds, and after casting the silicone (at the beginning

of (6)).

We design a frame to attach the hard layer on the ¯nger of a gripper. The frame

has a place to attach the hard layer made with transparent acrylic, and a connection

structure to the gripper. The latter part depends on the gripper. We create two

versions: one is for the electric parallel gripper of a Baxter robot (a standard gripper),

and the other is for the Robotiq 2-¯nger adaptive robot gripper-85 (legacy version).

Since we have CAD data for the ¯ngers, we can easily connect to the frame. The

Robotiq gripper has a mount on the ¯ngertip under the original ¯nger pad. We made

a structure to attach the frame to the mount. The frame also has a mount for a

camera. We use a 3D printer (LultzBot Mini, Aleph Objects, Inc.) for producing

the frames.

(a) Frames (b) Mold (c) Casting silicone

Fig. 2. (a) CAD of frames for a Baxter electric parallel gripper and a Robotiq gripper. (b) Mold for

silicone casting. (c) After pouring silicone into the mold.

Tactile Behaviors with the Vision-Based Tactile Sensor FingerVision
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The soft layer is made by casting silicone. We make a mold for casting using a 3D

printer to achieve consistent fabrication. However we noticed that the surfaces of 3D

printed objects are not smooth enough to make optically clear skin even after

smoothing with sandpaper. Thus we use a 3D printed mold except for the surface

part of the soft layer. For the surface part, we use ComposiMold.

In order to increase the durability of the soft layer from peeling, we create

depressions and holes on the sides of the frames so that the silicone locks into them,

and we cover the hard layer on both top and bottom with the silicone (see Fig. 2(c)).

Figure 1 shows our Baxter robot with the FingerVision sensors installed.

3.4. Computer vision for processing FingerVision data

Since the sensing element of FingerVision is a camera, the raw data from Finger-

Vision is an RGB video stream. We use computer vision methods to process the

video. There are two types of computer vision for FingerVision video. One is marker

tracking that estimates the marker displacements from the initial positions. The

displacements of markers are used to estimate the force distribution. The other is

proximity vision that consists of nearby object detection and movement detection.

The object detection and tracking provides information about a manipulated object,

such as location, pose, area, and texture. It is also used to distinguish the movement

of a manipulated object and the background.

3.4.1. Marker tracking

We consider two approaches for marker tracking. One is using the mean shift method

to track marker movement. Initial marker positions are obtained by blob detection.

For each marker, we apply mean shift starting from the previous marker position to

obtain the current marker position. The other approach is applying blob detection

locally for each marker. We consider a small region around the previous marker

position, and apply blob detection to obtain the current marker position.

Both methods are implemented in OpenCV. The mean shift method is available as

the cv::meanShift function, and blob detection is available as the cv::Simple-

BlobDetector class. We thought the mean shift approach would be better since it is a

common tracking method. According to our preliminary test, marker tracking with

mean shift was robust. However, it turned out that this approach does not provide

good marker position accuracy since cv::meanShift returns an updated object lo-

cation as integer values. Since the marker movement on the image is small (a few

pixels), the movement was jumpy. On the other hand, cv::SimpleBlobDetector

provides the detected blob position as °oating-point values. The obtained marker

position movement was smooth (see the comparison in Fig. 3(a)). Thus, we chose the

blob detection-based approach.

The actual procedure consists of two phases: calibration and tracking. In both

phases, we preprocess the image by rectifying the distortion caused by the ¯sheye

A. Yamaguchi & C. G. Atkeson
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lens, and thresholding to extract black colors as the current markers are black. We

also apply a dilation and an erosion to remove noise.

Calibration: The sensor is covered with a white sheet to remove the background.

We apply blob detection method to an entire image. Then we apply the tracking

method to several frames (e.g., 10); if some markers are moving due to environmental

noise, they are removed from the marker candidates as they are noisy points.

Typically only a few points are removed. The remaining blobs are considered as

initial markers. Note that during the calibration, we do not move the robot and the

white sheet is ¯xed on the sensor surface. If we do not remove these points, they will

be observed as noisy movements, which a®ects the accuracy of force estimate.

Tracking: Starting from the initial marker positions, we track each marker frame

by frame. We consider a small (e.g., 30� 30) region of interest (ROI) around the

previous marker position. First we count the nonzero pixels in the ROI and compare

it with the nonzero points of the initial marker. If there is a large di®erence, we do not

perform marker tracking (i.e., a detection failure). Otherwise, we apply the blob

detection method to the ROI. Only one blob is expected; otherwise it is considered a

failure. We compare the previous and current blob positions and sizes, and if their

di®erence is large, it is considered a failure. Otherwise, the blob is considered as the

new marker location.

Post Processing: Force Estimation: From the marker movement, we estimate

an array of forces. The blob detection provides a position and a size of each blob. The

position change is caused by a horizontal (surface) force, while the size change is

caused by a normal force. However, since the size change is subtle compared to the

position change, the normal force estimate based on the size change is noisy and

unreliable. An alternative approach approximates the normal force at each marker

with a norm of marker position change. This approximation is useful especially when

taking an average of all the forces. When a normal force is applied to the center of the

skin surface, the markers around the point move radially (Fig. 3(b)). An average of

the horizontal forces in such a case will be close to zero, while an average of the

(a) (b)

Fig. 3. (a) Comparison of blob tracking based on cv::meanShift (left of each pair) and cv::Simple-

BlobDetector (right of each pair). (b) An example of marker movements when a normal force is applied.
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approximated normal forces will have a useful value. Let dx ; dy denote the horizontal

marker movement from the initial position. The force estimate at each marker is

given by

½fx ; fy; fz � ¼ ½cxdx ; cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d 2
x þ d 2

y

q

; czdy�; ð1Þ

where cx ; cy; cz denote constant coe±cients. Note that fy is the normal force (see

Fig. 1 for the coordinate system). We also de¯ne an average force and a torque

estimate as

f ¼
1

N

X

½fx ; fy; fz �; ð2Þ

¿ ¼
1

N

X

r� ½fx ; fy; fz �; ð3Þ

where N denotes a number of markers, and r denotes a position of a marker from the

center of the image.

3.4.2. Proximity vision

Proximity vision processes an image to obtain information about nearby objects,

such as object colors, textures, shape, position and orientation, movement including

slippage, and deformation. This paper focuses on approximate detection of an object

and its movement. Simple approaches to detecting movement are optical °ow and

background subtraction. Movement detection involves detecting movement of the

environment and the robot body. For example when moving the robot arm, the

camera in FingerVision will capture background change. Operating the gripper also

causes background change. We need to distinguish the movement of an object from

background change. We developed a detection and tracking method for an object, as

well as movement detection.

For simplicity, we model an object with a histogram of colors. In most grasping

scenarios, a robot gripper approaches an object, or another agent passes an object to

the gripper. In both cases, the object is seen as a moving object in the cameras of

FingerVision. Thus, we design the object detection and tracking as follows. First, we

create a background model as a histogram of colors. At the beginning of grasping, we

detect moving blobs in the image, compute a histogram of colors of the moving

pixels, and subtract the background histogram. The remaining histogram is added to

the object model. In the tracking phase, we apply the back projection of the object

histogram to the current frame, and thresholding to detect the object. We describe

more details in what follows.

Movement Detection: We found that optical °ow and background subtraction

are good at detecting changes in a sequence of images. We compared three

implementations based on functions in OpenCV, applying cvCalcOpticalFlowLK to

raw images, cvCalcOpticalFlowLK to edge images detected by the Sobel ¯lter, and

cv::BackgroundSubtractorMOG2 to raw images. In many cases, the three

A. Yamaguchi & C. G. Atkeson
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approaches provided similar results. In some cases, cv::BackgroundSubtractor-

MOG2 was slightly better than the others (Fig. 4). We used the background

subtraction approach for movement detection.

Object Model Construction: The object model construction consists of two

phases. One is the construction of a background model, which is performed at the

beginning of the experiments. The other is the construction of an object model, which

is performed during each grasping action. Both background and object models are

histograms of colors. We use the hue and saturation components of the HSV color

space to construct the histograms, where the number of bins of hue and saturation

components are 100 and 10, respectively.

The background model is constructed with several adjacent frames (e.g., 3). We

average the histograms of all frames. Let us denote the background histogram model

as Hbgðh; sÞ where h and s denote hue and saturation bin, respectively.

During construction of an object model, the object is assumed to be moving in the

image as we described above. At each frame, we detect the moving points with the

background subtraction method, and calculate the histogram of colors as Hmvðh; sÞ.

We update the object histogram model by

H 0
objðh; sÞ ¼ minð255;Hobjðh; sÞ

þ fgain maxð0;Hmvðh; sÞ � fbgHbgðh; sÞÞÞ; ð4Þ

where Hobjðh; sÞ and H 0
objðh; sÞ are the current and the updated object histogram

models. At the beginning, Hobjðh; sÞ is initialized to be zero. The component

maxð0;Hmvðh; sÞ � fbgHbgðh; sÞÞ computes the remaining histogram after subtracting

the background histogram from the color histogram of moving points. The

minð255; . . . Þ operation is for normalization. fbg and fgain are constant values, for

example 1:5 and 0:5, respectively.

In order to simplify the timing to start and stop object model construction, we use

an object model made with the latest 200 frames. We stop object model construction

when the robot starts closing the gripper.

Object Tracking: In each frame, we track an object by detecting the pixels

similar to the object model. Concretely, we apply a back projection method (cv::

calcBackProject) with the histogram of the object Hobjðh; sÞ, and threshold the

result to remove the uncertain pixels. The remaining pixels are the detected object.

Fig. 4. An example of the comparison of three functions.
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These pixels are used in two ways. One is removing the background change from the

moving points obtained from the background subtraction. For this purpose, we apply

an erosion (size 2) and a dilation (size 7) to remove noise and expand the boundary of

the object. The other is computing the position and the angle (orientation) of the

object. This is done by computing the moment of the object pixels. Examples of

proximity vision are shown in Fig. 5.

4. Tactile Behaviors with FingerVision

We have created several tactile behaviors with FingerVision (cf. Fig. 6). In the

following, hBehaviori denotes a behavior.

hGentle Graspi: Grasping an object gently by using force estimation. This is useful

when grasping a fragile object.

hHoldingi: Controlling the gripper to avoid slip. This is especially useful when

grasping a deformable and fragile object. It is also e®ective for grasping light-weight

fragile objects.

hGrasp Adaptationi: Automating a lifting-up motion with the slip avoidance

control (i.e., hHoldingi). It enables the robot to pick up a range of objects.

hHandoveri: Opening the gripper when a force change or slip is detected. This is

useful when passing an object to humans.

hAutomatic Placingi: Placing an object grasped by the robot.

hAutomatic Cuttingi: Automating a part of cutting motion with tactile sensing.

Fig. 5. Examples of proximity vision. In each case, the detected object is shown as blue. In pushing a

screw driver, a human pushed the object which caused slip. The detected slip is emphasized by the purple

color. We can also see green particles that are pixels detected as moving. They are considered as back-
ground movement since they are outside the detected object region.
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hIn-hand Manipulationi: Change the orientation of a grasped object by repeat-

edly relaxing and tightening the gripper based on the slip estimate.

hTracking Objecti: Centering an object between the robot ¯ngers.

hTracking Forcei: Operating the robot by pushing with a small force.

For simplicity, we use position control on our grippers. In the following behaviors,

a small movement of the grippers means a position command to create a minimum

movement.

4.1. hGentle Graspi

The behavior is closing the gripper until one of the FingerVision sensors on the

¯ngers senses a su±cient contact force. FingerVision provides an array of forces

(each marker gives 3-dimensional force estimate ½fx ; fy; fz �). Rather than using an

average force or torque to detect a small force, detecting a small force on each marker

is better in this scenario. For robustness against marker tracking noise, we pro-

grammed force tracking as follows: We categorize jfyj (norm of the normal force) into

four types: noise level, su±cient contact force, medium force, large force, and give

scores 0, 1, 3, 5, respectively. Manually de¯ned thresholds are used in this catego-

rization. We de¯ned the condition to stop closing the gripper as that the sum of the

scores of the array exceeds a threshold (7 worked well in our experiments).

4.2. hHoldingi

The behavior is that the robot slightly closes the gripper when the FingerVision

sensors detect slippage, otherwise no action is performed by the gripper. For slip

detection, we use the number of moving points on the object in the image. If the

Fig. 6. Conceptual diagrams of tactile behaviors where the modalities used by the behavior and the brief

processes are illustrated.
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number exceeds a threshold, it is recognized as a slip event. This strategy is also

considered as feedback control of slip.

Note that the hHoldingi strategy enables a robot to grasp very light-weight fragile

objects such as origami. The idea is that if there is not enough friction between the

object and the ¯ngers, the object will slip when the robot moves the hand. Using the

hHoldingi strategy until there is no slip, the robot will be able to move the object

without slip. This approach is applicable even when force estimation cannot sense

the contact force from the object. Thus, this could be a strategy to grasp light-weight

fragile objects.

4.3. hGrasp Adaptationi

hGrasp Adaptationi is a control to adapt grasp to an unknown object where the

gripper is controlled to avoid slip, i.e., activating the hHoldingi strategy introduced

above. Grasping is considered as a control to prevent slip. With a sensor that can

detect slip, we can create a control strategy to prevent slip by adjusting the grasping

force. As explained in the hHoldingi section, this hGrasp Adaptationi will work with

a range of objects, from heavy rigid objects to lightweight, deformable, and fragile

objects.

In the implementation, a lifting-up motion is executed with slip feedback control

(hHoldingi). The robot tries to lift up an object with the slip feedback control for the

gripper. If the grasping force is not enough to hold the object, the slip feedback

control adjusts the grasp. We refer to this controller as the hGrasp Adaptationi

controller. Figure 7 shows the control scheme of hGrasp Adaptationi. First, the robot

tries to bring up the object (BringTest) with the slip feedback control (slipavd).

BringTest is performed slowly so that the gripper can adapt the grasp to the object.

Fig. 7. Control scheme of the hGrasp Adaptationi. The detection of grasp failure and recovery, and

emergency stop are uni¯ed.
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Then the robot lifts it up to the ¯nal height (LiftUp). LiftUp is faster than

BringTest, while the slip feedback control is still active to adjust the grasp.

The above behavior is a one-way procedure normally. The implementation

(Fig. 7) has an error recovery. During the above two motions, the robot starts a

recovery motion when it detects that the object is considered to be dropped

(dropped). The detection of object drop is done by thresholding the ratio of the

object area over its initial value as BringTest starts. If the drop condition is satis¯ed,

the robot opens the gripper (GraspInit), moves the gripper to the initial pose

(ToInit), and closes the gripper to the previous value when the recovery motion

started (GraspPrev). Then the robot restarts from BringTest.

In the state machine Fig. 7, there is another block (Emergency stop), which is

activated when FingerVision detects a large force. Such an event is considered to be

an exception since the robot grasps nothing and the gripper width is the initial value

which should be greater than the object size. An example scenario of such an event is

when the robot drops the object and it rolls under the ¯nger. Although the robot

¯nger pushes the object vertically in that case (i.e., only the ¯ngertip of FingerVision

contacts the object), FingerVision can still measure the force. This is possible because

the camera of FingerVision has a ¯sheye lens and the elastic material propagates the

deformation at the ¯ngertip toward the middle part. In such an event is detected, the

state machine is designed to stop immediately.

4.4. hHandoveri

We assume that the gripper already grasps an object, i.e., there are forces applied to

the FingerVision sensors. FingerVision is used as a trigger to open the gripper. Both

force change estimation and slip detection are used as the trigger: if one of them is

detected, the gripper is opened. Combining two modalities increases its applicability.

When grasping an object strongly, force tends to be detected. When grasping a light

weight object such as an origami crane, slip tends to be detected.

For force change detection, we compare the force estimate on each marker with its

initial value. We count the number of markers where a di®erence between those two

values exceeds a threshold. When the number exceeds a threshold (e.g., 5), it is

considered as the trigger. The slip detection is the same as that used in the hHoldingi

behavior.

4.5. hAutomatic Placingi

The purpose of this behavior is placing an object grasped by the robot. Tactile

sensing is useful to detect an event when the object touches with the ground. Such an

event could be estimated with external vision with a model of the object, but there

will be uncertainty in estimating the distance between the object and the ground.

The approach to use tactile sensing can handle such uncertainty. During the placing

motion (the robot moving the gripper downward), the robot stops the movement and

Tactile Behaviors with the Vision-Based Tactile Sensor FingerVision
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opens the gripper when contact is detected. The implementation of this event de-

tection can be the same as the hHandoveri strategy.

4.6. hAutomatic Cuttingi

We implement the hAutomatic Cuttingi motion of fruits with FingerVision. In this

paper, we simply use tactile sensing to detect a large force applied to the knife. This

detection is useful in two cases. One is detecting the event when the knife reaches the

cutting board. Since the knife is often occluded from the robot vision, estimating such

an event contains uncertainty. The event detection with tactile sensing can handle

such uncertainty. The second is detecting too large force for the gripper to hold the

knife. This situation happens when cutting hard materials such as pumpkins.

We create a cutting controller which (a) starts from a state where the knife held by

the gripper is put above the material, (b) moves the knife downward (cutting verti-

cally), and then (c) slightly pulls the knife (cutting horizontally). The controllermoves

the knife to the initial position in order to repeat the motion several times when it

cannot cut o® the material at once. Event detection is used to determine the transition

from (b) to (c). It is implemented as follows: (A) if �ðfLx � fLx0ÞðfRx � fRx0Þ > 10,

or (B) if j�Lyj þ j�Ryj > 4, where fLx and fRx indicate the x-value of the average force

of the left and the right sensors, fLx0 and fRx0 indicate their initial values (right before

cutting), and �Ly and �Ry indicate the y-value of the average torque of the left and

the right sensors. The condition (A) is de¯ned to detect a large force. The threshold is

decided from a preliminary experiment. The condition (B) is introduced to avoid

rotational slip of the knife. Figure 8(A) shows the state machine of the hAutomatic

Cuttingi motion.

When too large force is applied to the knife, it may deform the grasp by moving

the ¯ngers (cf. Figs. 8(B)(a)) or the knife may slip in the ¯ngers (cf. Fig. 8(B)(b)).

We emphasize that FingerVision can be used to detect these situations. For example,

look at the camera view of Fig. 8(B)(b); we can ¯nd that the angle of the knife is

di®erent from its initial grasp position.

4.7. hIn-hand Manipulationi

We assume that the gripper already grasps an object. The robot repeats the following

process until the target angle is achieved. The robot slightly opens the gripper until if

senses a small slip. Since there is a small delay between the gripper motion and

slippage, we insert a short waiting time (0.1 s) after each gripper command. The

method to detect slip is the same as that in the hHoldingi behavior, but the threshold

is halved (i.e., more sensitive). After a short waiting time or when slip is detected, the

robot closes the gripper until slip is not detected.

4.8. hTracking Objecti

The goal of this behavior is centering an object between the robot ¯ngers. We control

the robot arm to achieve this purpose. We use object detection and pose estimation.
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The position in the camera image plane is estimated; we control the robot arm to

center the object on the image. For controlling the height of the object from the

camera, we use the area of the object on the image. From two FingerVision sensors

on two ¯ngers, we obtain two estimates of object areas on the images. By controlling

the robot to equalize the areas, the object locates at the center of the ¯ngers.

This strategy is a demonstration of proximity vision of FingerVision; the robot

responds to an object that is not in contact with the tactile sensors. Such a function is

only possible with transparent skin. This control will be useful in centering an object

before grasping it. Another application would be inspecting fruits before picking them.

4.9. hTracking Forcei

The goal of this behavior is operating the robot by pushing with a small force. We use

the force estimate and control the robot to move in the pushed direction. We also use

object detection as a trigger to activate the control, which increases safety since the

robot does not move when no object is between the ¯ngers. We compared two

variations: one uses the force estimate of Baxter (estimation from joint torque sen-

sors), and the other combines the force estimate of Baxter and FingerVision. In the

latter case, the robot was operated with smaller force. This control is a demonstra-

tion of using FingerVision in a physical human-robot interaction (HRI) scenario.

(A) State machine of the hAutomatic Cuttingi motion.

(B) Di±culties in cutting.

Fig. 8. hAutomatic Cuttingi.
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5. Experiments

We conduct some experiments to demonstrate how the proposed tactile behaviors

work with FingerVision. The robots we use here are the Baxter robot of Rethink Co.

and UR3 of Universal Robots. Some of the scenes are shown in Fig. 9 with the force

estimation and the proximity vision views. The videos of experiments are available

online:

https://youtu.be/L-YbxcyRghQ Force estimation, pouring water into a grasped

container, test of proximity vision, hGentle Graspi, hHandoveri, hHoldingi, slip-

based grasping, and hIn-hand Manipulationi.

https://youtu.be/uy32tO9e7O4 hGrasp Adaptationi of a °ower, an origami

crane, and a hairy rubber toy.

https://youtu.be/0sAkec5bpu4 hGrasp Adaptationi of more than 30 kinds of

objects.

https://youtu.be/TAA4YJqEOqg Tracking a feather with proximity vision (no

touch).

https://youtu.be/FQbNV549BQU hTracking Forcei behavior (playing Tai Chi

with the robot).

https://youtu.be/V0rwJRv2jdk hAutomatic Placingi (from 0:21), and emer-

gency stop (from 0:43).

https://youtu.be/ifOwQdy9gDg Early test of FingerVision, and hAutomatic

Cuttingi (from 1:33).

5.1. Robotic system

5.1.1. Sensor network

The cameras of FingerVision have a USB 2.0 interface. In order to avoid long USB

cables, we place local computers. The local computers send videos obtained from the

FingerVision cameras to a central computer using Ethernet, and the central com-

puter processes all the videos. In the experiments, we use Raspberry Pi 3Bs as the

local computers, and transmit data through a Gigabit Ethernet network. We use

MJPG-streamerb installed on each Raspberry Pi to capture videos from cameras, and

transmit them using a motion JPEG format. In our test, the ¯nal output of Fin-

gerVision data processing (marker tracking and proximity vision) was at 63 FPS

with 320� 240 resolution from four cameras simultaneously. In the experiments, we

reduced the FPS to 30 to reduce the computational load.

5.1.2. FingerVision on Baxter

The Baxter robot has two 7 degrees of freedom (DoF) arms. We use its velocity

control mode commanded at 500 Hz. Our Baxter robot has two di®erent grippers.

One is the electric parallel gripper of a Baxter robot (a standard gripper) on the right

hand, and the other is the Robotiq 2-¯nger adaptive robot gripper-85 (legacy

bWe use a forked version: https://github.com/akihikoy/mjpg-streamer.
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Fig. 9. Scenes of experiments. \Force est" are views of force estimation (red lines show estimated forces), and \Prox vision" are views of proximity vision (blue

regions are detected objects, and purple points are detected movements).
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version) on the left hand. Two FingerVision sensors are attached on the ¯ngers of

each gripper. We use two Raspberry Pi 3B computers each of which has two Fin-

gerVision camera connections. Figure 10(a) shows the Baxter system.

5.1.3. FingerVision on UR3

The UR3 robot has 6 DoF and is driven by joint position or velocity commands. The

robot accepts the joint velocity commands at 125Hz. A 3D printed gripper actuated

by a Dynamixel servo is mounted on the wrist of the robot that has 1 DoF. The servo

is operated using the position control mode at 60Hz, while the state is observed at

40Hz. Two FingerVision sensors are attached on the ¯ngers of the gripper. These

devices are integrated with the control box of UR3, a Raspberry Pi 3B, and a central

computer. Figure 10(b) shows the UR3 system.

(a) The Baxter system with four FingerVision sensors.

(b) Universal Robots UR3 with FingerVision.

Fig. 10. Robotic systems.
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5.2. Evaluating force estimation

We evaluate the force estimation using a scale. First, we let the robot push the scale

vertically to evaluate fy. Second, we let the robot hold a stick and push the scale with

it in order to evaluate fz . Similarly we evaluate fx by changing the stick and pushing

direction. In each case, we discretely increase the pushing force from around 1 [N] to

20 [N]. We record the force in static situations. For each measurement, we wait for a

few seconds for recording. Figure 11 shows the results. The values of the weight scale

are linearly scaled and o®set. We noticed that there was hysteresis. There were two

sources of noise: marker tracking and the robot control.

5.3. Pouring water into a grasped container

We have the Robotiq gripper of Baxter grasp a container, and then pour water into

the container manually. Figure 12 shows the gravity-direction component (z-axis) of

the force estimate. Pouring was performed from 35 [s] to 52 [s]. The force gradually

Fig. 11. Average force trajectories in evaluating fy (left), fz (middle), and fx (right) respectively. The �

mark the scale readings (linearly scaled, and o®set). The unit of force is omitted as it is not calibrated as
engineered units.

Fig. 12. Gravity-direction component (z-axis) of the force estimate during the pouring-water experiment.

Actual pouring is from 35 [s] to 52 [s]. The unit of force is omitted as it is not calibrated as engineered units.
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increased. This would be accurate enough to estimate the poured amount of water

during a pouring task.

5.4. Test of proximity vision

We explore basic results from proximity vision. We let the Robotiq gripper of Baxter

grasp a screw driver weakly, and move it in the gripper manually. Then we let the

gripper grasp an empty Coke can, and poke the can 4 times. Figure 13 shows the

result of rotating the screw driver. We can see that the object angle changes from

zero to negative, to positive, and goes back to zero again. The object angle measured

by an external camera is also plotted in the ¯gure. Around the peaks, the object angle

is di®erent from the estimate by proximity vision. This was because around these

angles, a part of the object was out of the camera view. During rotating the screw

driver, there are positive movement values that are capturing the slippage. The

torque estimate sensed the external torque that rotated the screw driver. Figure 14

shows the result of poking the Coke can. Since the Coke can was light weight, the

human poked very weakly. The force and torque estimates did not capture the poke.

However, the proximity vision detected the movement as we can see four peaks in the

graph that correspond with the four pokes.

5.5. hGentle Graspi

We test the hGentle Graspi strategy with the Robotiq gripper of Baxter. We have the

robot grasp an empty Coke can, and grasp a paper business card on edge. Both

Fig. 13. Force and torque estimate (top) and proximity vision (bottom) during rotating the screw driver.

In the proximity vision graph, there are plots of the object angle (radian) and area obtained from the
moment of object pixels, and the total number of moving pixels (normalized by the image size). Object

angle obtained by an external camera is also plotted (Mocap-obj-angle). The units of force and torque are

omitted as they are not calibrated as engineered units.
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objects are soft and will be damaged with even small forces. Figure 15 shows the force

and torque estimate, and the proximity vision output during hGentle Graspi. The

actual grasp happened at 34.5 [s]. We can see a small change of force around that

time. We can also see movement detection before and during grasping. This was

caused by the approaching motion before the grasp. Similar results are found in the

card case as shown in Fig. 16. The actual grasping happened at 151 [s]. The move-

ment detection is less than that of the Coke can case. Since the robot grasped the

card on edge, it appeared only in a small region of the image.

Fig. 14. Force and torque estimate (top) and the proximity vision (bottom) during poking a Coke can.

See the caption of Fig. 13 for the plots.

Fig. 15. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping a

Coke can. See the caption of Fig. 13 for the plots.
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5.6. hHoldingi strategy

We demonstrate the hHoldingi strategy by grasping a screw driver. We compare two

patterns: (A) the hGentle Graspi strategy, and (B) the hHoldingi strategy. During

grasping with each pattern, a human pushes the driver several times. The results are

shown in Fig. 17. From the graphs of force and torque estimates, we can see that

stronger external force was applied in (B). The orientation of the object is changing

more in (A). Thus, the hHoldingi strategy could reduce slip.

We apply the hHoldingi strategy to grasp a marshmallow where a human pulls the

marshmallow. Figure 18 shows the result. We can see many slip detections (peaks in

Right-movement) from the bottom graph, and the magnitude of grasping force (jfyj)

is increasing accordingly in the top graph.

Next we let the robot move a stu®ed toy. Moving with the hGentle Graspi

strategy, the robot dropped the toy due to a slip. However by activating the

hHoldingi strategy, the robot could hold and move the toy. Figure 19 shows the force

and torque estimates and the proximity vision output during the motion. We ¯nd

that there are several discrete events of slippage, and after each of them, the grasping

force (see fy) was increased. At 545 [s], the robot passed the object to the human.

The area of the object in the image, and the force and torque estimates became zero

after that.

5.7. Grasping a fragile object with the hHoldingi strategy

We verify our concept that by using the hHoldingi strategy the robot can grasp a

very light-weight fragile object. As such an object, we use an origami crane. A human

passes an origami crane to the gripper, and the Baxter robot uses the hHoldingi

Fig. 16. Force and torque estimate (top) and the proximity vision (bottom) during gently grasping a
business card. See the caption of Fig. 13 for the plots.
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Fig. 18. Force and torque estimate (top) and the proximity vision (bottom) during holding and moving a

marshmallow. See the caption of Fig. 13 for the plots.

Fig. 17. Results of the hHoldingi strategy. Top two graphs are results of hGentle Graspi, and bottom two

graphs are ones of the hHoldingi strategy. In each pair, force and torque estimate (top) and the proximity

vision (bottom) are plotted. See the caption of Fig. 13 for the plots.
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strategy. After grasping it without slip, the robot swings its arm to see if the hHoldingi

strategy is e®ective. Figure 20 shows the result. The robot performed grasping from

142 [s] to 145 [s]. We can see slip detection around 155 [s] and so on, but the object

was kept inside the gripper. From the force and torque estimates, we cannot see

informative changes. This was due to the small weight of the object (1.7 g).

5.8. hGrasp Adaptationi

The previous experiment showed our concept works. Next, we conduct a further test

of the hGrasp Adaptationi controller. We verify that when an adequate grasp pose

Fig. 19. Force and torque estimate (top) and the proximity vision (bottom) during holding and moving a
stu®ed toy. See the caption of Fig. 13 for the plots.

Fig. 20. Force estimate (top) and the proximity vision (bottom) during grasping a paper bird. See the

caption of Fig. 13 for the plots.

A. Yamaguchi & C. G. Atkeson

1940002-26

In
t.

 J
. 
H

u
m

an
. 
R

o
b
o
t.

 2
0
1
9
.1

6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
S

IT
Y

 o
n
 0

5
/2

6
/2

0
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



for an object is given, the hGrasp Adaptationi controller can adapt the grasp to the

object robustly regardless of the object and its properties. We let a human operator

decide a good grasp pose for a given object with a joystick controller, and then run

the hGrasp Adaptationi controller to pick up the object. We do not tune the para-

meters of the controller for each object.

We tested with 30 deformable and fragile objects shown in Fig. 21 including

vegetables, fruits, origami objects, and a raw egg. We use the Robotiq gripper of

Baxter. Initially each object is placed on a table.

We conducted 36 trials: Origami box, Origami crane, Badminton ball, Hairy

rubber toy, Cup cake, Chocolate, Strawberry, Tomato-medium-1, Eggplant@1,

Eggplant@2, Zucchini-yellow, Mushroom-1@1, Mushroom-1@2, Egg(raw), Pepper-

red-1, Oyster mushroom-1, Peach-1, Mushroom-2, Potato-1, Kiwi-1, Tomato-me-

dium-2, Broccoli@1, Broccoli@2, Oyster mushroom-2, Green pepper-1, Kiwi-2,

Pepper-red-2, Tomato-big, Banana-1@1, Banana-1@2, Banana-1@3, Green pepper-

2@1, Green pepper-2@2, Peach-2, Potato-2, Banana-2. A label with @N denotes an

Fig. 21. Top: 30 objects used in the experiment. Bottom: Examples of grasp (cup cake, raw egg, oyster

mushroom, strawberry, tomato, hairy rubber toy).
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Nth trial of the same object. Examples of successful grasping are shown in Fig. 21.

There were several failures: (1) Dropped after bringing up: Oyster mushroom-1,

Potato-1. (2) Slippage could not be detected due to a computer vision failure:

Eggplant@1 (the skin was black), Broccoli@1 and Green pepper-2@1 (the color

was similar to the ¯ngers). (3) Closing gripper did not stop in Banana-1@1 because

detecting the deformation of object as slip. Since the contact force from the table

disappeared when bringing up the banana, the banana skin was deformed slightly.

(4) In Banana-1@2, dropped during bringing up, and failed to re-grasp since

the ¯ngers got stuck at the edge of the object, and the passive joints of the

gripper bent. Note that (2) was solved by grasping the green part (Eggplant@2),

helping the object detection manually (Broccoli@2), and just trying again (Green

pepper-2@2).

The issues of (2) and (3) will be solved by improving the computer vision method

for: (A) a better object detection and (B) distinguishing slippage and deformation.

The issues of (1) and (4) will be solved by improving the behavior. For example,

testing the grasp stability by shaking the object after grasping will avoid (1). (4) can

be solved by optimizing the trajectory of ¯ngertip in re-grasping.

5.9. hHandoveri

We demonstrate the hHandoveri strategy by applying it to a Coke can and a business

card. Both objects are grasped by the hGentle Graspi strategy, and the card is

grasped on edge. Figure 22 shows the result. In the Coke can case, the robot started

to open the gripper triggered by the slip detection at 25.1 [s]. In the business card

case, the opening gripper was triggered by the force change detection at 160 [s]. The

reason could be that the Coke can is slippery, while the slip detection does not work

well with the card when it is grasped on edge. We also investigated other object cases,

and found that when the robot grasped an object strongly, the force-trigger was often

used since the slip rarely happened with such grasps.

5.10. hAutomatic Placingi, hTracking Objecti, and hTracking Forcei

We demonstrate the motions of the hAutomatic Placingi with the UR3. The motion

starts where the robot grasps an origami box. The grasp pose is displaced toward the

¯ngertip on purpose. In the placing motion, the robot tries to move the gripper

downward until its ¯ngertip is around the table. With this setup, the grasped object

will touch the table before the planned motion ends.

Figure 23 shows an example of the execution. The left image is the initial pose

where we can see the displaced grasp of the object. At the fourth image, the object

touched the table. Since slip was detected, the robot stopped the placing motion and

opened the gripper. The views of FingerVision at the beginning and at slip detection

are shown in the same ¯gure. We can see the points in slip at the frame when slip was

detected.
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5.11. hIn-hand Manipulationi

We apply the hIn-hand Manipulationi strategy to rotating a pen. The target angle is

20 degrees from the current angle. Figure 24 shows the results of eight runs. In most

cases, the achieved angles exceeded the target. This was because the object move-

ment caused by gravity was fast and the sensing and processing frame rate was not

enough to respond to that, and the gripper response was not fast enough.

5.12. hAutomatic Cuttingi

We conduct an experiment of the hAutomatic Cuttingi with the electric parallel

gripper of Baxter. The target objects are a banana and an apple. Figure 25 shows

a scene of cutting the apple and the corresponding marker tracking result. Figure 26

Fig. 22. Results of the hHandoveri strategy. Top two graphs show the result of the Coke can case, and

bottom tow graphs show the result of the card case. Each of them have force and torque estimates (top)
and the proximity vision (bottom). See the caption of Fig. 13 for the plots.
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and Fig. 27 shows the sensor values during cutting a banana and an apple, respec-

tively, where the trajectories of the average force (x; z) and torque (y) of the left and

the right FingerVision sensors are shown. Since cutting a banana requires only a

small force, the robot cut it with a single trial, while the robot took four trials in

cutting an apple. In the banana case, the robot stopped moving the knife because

Fig. 23. An execution scene of placing origami box.

Fig. 24. Result of hIn-hand Manipulationi. The object orientations obtained by the proximity vision are
plotted per time. The initial orientation is set to be zero.
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the condition (A) of the hAutomatic Cuttingimotion was satis¯ed when the knife hit

the cutting board. In the apple case, the condition (A) was mainly satis¯ed by the

pressure from the cut edge of the apple fresh. In these graphs, the condition (B)

was not satis¯ed, but it was useful when the initial knife orientation was not

perpendicular.

5.13. hTracking Objecti and hTracking Forcei

We demonstrate the motions of hTracking Objecti and hTracking Forcei. Figure 28

shows the snapshots of 30 s of hTracking Objecti where the object is a pink feather

Fig. 25. Marker tracking result in cutting an apple by the robot. The left image is a view from an external

camera.

Fig. 26. Trajectories of the average force (x, z) and torque (y) of the left and the right FingerVision

sensors during cutting a banana by the robot. There was a single cutting motion around the peak of left

x-force.
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performed by Baxter. We can see that the feather is detected by the object detection

algorithm in the FingerVision views. The robot tries to center the object on image by

moving its arm.

Figure 29 shows the snapshots of 6 s of the hTracking Forcei behavior with the

UR3. The human operator pushed the ¯nger with a small force, and then the robot

moved toward the pushed direction. Although this is a simple demonstration, it

shows the capability of FingerVision in HRI applications.

Fig. 27. Trajectories of the average force (x, z) and torque (y) of the left and the right FingerVision
sensors during cutting an apple by the robot. The robot performed the cutting motion four times to cut the

apple completely. The peaks of left and right x-force correspond with the cutting motion.

Fig. 28. Snapshots of hTracking Objecti.
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6. Discussion

6.1. Why are tactile sensors not as popular as vision sensors?

There are popular solutions in robot vision (RGB cameras and OpenCV; depth

cameras and the Point Cloud Library), while there is no de facto standard solutions

in tactile sensing for robots. The reasons vary: di±culty to physically install, low

durability, poor compatibility among di®erent tactile sensors, unclear usage, main-

tenance complexity, programming complexity, and expense. As a result, accumu-

lating the knowledge of tactile sensing for robots is more di±cult than that of robot

vision.

6.2. Improving software improves FingerVision

This is an interesting feature of vision-based tactile sensors. Typically, we need to

improve hardware to improve a sensor, while in vision-based tactile sensors, we can

improve the sensing capability by improving the computer vision software. Of course

high-level sensing capabilities can be improved by software with the other types of

sensors, but vision-based tactile sensors have potential to increase low-level sensing

capabilities. For example, one important part of computer vision for FingerVision is

object detection and tracking. We found that there were some failures in the hGrasp

Adaptationi experiments. These failures could be solved by improving the computer

vision. It also should be mentioned that we can use the recent success of deep learning

in computer vision with vision-based tactile sensors. Especially, with FingerVision,

we can use RGB image processing with FingerVision such as object recognition,

which would be an advantage of FingerVision.

6.3. How does FingerVision improve manipulation?

Through the implementation of tactile behaviors, we found there are some useful

cases of FingerVision in manipulation. Slip detection is useful in many scenarios to

avoid slip, hGrasp Adaptationi, and hIn-hand Manipulationi where the slip is created

on purpose. It is also used as triggers, for example in hHandoveri and placing

Fig. 29. Snapshots of hTracking Forcei.
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behaviors. Force estimation is used as triggers in hHandoveri and hAutomatic

Cuttingi behaviors. It is useful to detect an emergency (collision), which was used in

the hGrasp Adaptationi.

6.4. Should we convert the force estimate to an engineering unit

(e.g., Newtons)?

This depends on the application. We are planning to use machine learning methods

to learn dynamical models (e.g., relation between input gripper motion and output

force changes) for example by using neural networks.65 In this case, obtaining contact

force information in engineering units is not necessary. If the force estimates are

consistent enough, we could learn mappings from grasping-action parameters to a

force distribution, and from a force distribution to grasping-quality measurements.

These models would be useful to reason about grasping actions. However, using an

engineering unit will be generalizable to other situations and other robots, so it is still

bene¯cial to consider. Accurately estimating force will depend on the contact loca-

tion and may require ¯nite element modeling of the sensor structure.

6.5. Accuracy, reliability, and hysteresis

The marker movement in a horizontal direction is easier to track. The vertical force is

more di±cult to detect as the changes of the marker visual size are comparably

smaller. A way to improve the vertical force sensitivity is increasing the thickness of

the elastic layer, although it would make the skin heavier.

In the experiments, there were some false detections of the markers. These were

mostly due to the external scene. Increasing the number of markers is helpful for

removing outliers, although it will reduce the transparency accordingly.

We found hysteresis, especially when a strong force was applied. In the cutting

vegetable experiments by the robot, the force estimate changed before and after

cutting a hard material. This would be because the deformation of the soft layer

remained. This was mostly reset after releasing the knife.

Although we demonstrated a basic study of force estimation, we did not identify

the range of detectable force and the accuracy of force estimation in dynamic

situations. Also, we did not evaluate the detection of slip. These are left for

future work.

6.6. Can FingerVision grasp objects in the dark or black/transparent

objects?

Installing structured light sources is helpful in dark scenes, although we would need

to avoid re°ections of light at the surface of the silicone skin and the boundary of the

silicone and acrylic layers.

In case an object is black (the same color as the markers), it will become di±cult

to detect the markers. However, using multiple colored markers will make the marker

A. Yamaguchi & C. G. Atkeson

1940002-34

In
t.

 J
. 
H

u
m

an
. 
R

o
b
o
t.

 2
0
1
9
.1

6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
S

IT
Y

 o
n
 0

5
/2

6
/2

0
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



detection more robust against the object colors. Note that proximity vision still

works with black objects.

On the other hand, proximity vision will not work with completely transparent

objects. However, marker tracking may detect the reaction force from the objects.

Recent progress of computer vision also helps FingerVision to solve these issues.

6.7. Can we distinguish slip and deformation?

Since both slip and deformation appear as movement of pixels in the image, it is not

straightforward to distinguish them. Our current implementation of slip detection

detects both as slip. From our experience, we found that the patterns of the move-

ment of pixels are di®erent between slip and deformation. In the case of slip, the

pixels move in the same direction, while in the case of deformation, the pixels move

inward radially.

6.8. Proximity vision versus functional membranes

The key aspect of FingerVision is the transparent skin, while other vision-based

tactile sensors use opaque skin. FingerVision also has markers to detect force

distribution. A drawback of FingerVision would be the robustness to external light

and object view. As discussed above, we think this drawback can be handled.

Some vision-based tactile sensors use functional membranes such as GelSight.27

While GelSight provides high-resolution and sensitive texture and shape detection,

FingerVision provides proximity vision and sensitive slip detection. FingerVision can

also combine with other sensors such as depth and thermal cameras. Which is better?

It would be di±cult to answer now since it depends on the task.

7. Conclusion

We introduced a vision-based tactile sensor FingerVision and explored tactile

behaviors implemented on a Baxter and a Universal Robots UR3 to show its use-

fulness. FingerVision consists of a transparent elastic material with black dots, and a

camera, that is easy to fabricate, low cost, and physically robust. Unlike other vision-

based tactile sensors, the complete transparency of the FingerVision skin provides a

multimodal sensation. The modalities sensed by FingerVision include distributions

of force and slip, and object information such as distance, location, pose, size, shape,

and texture. The slip detection is very sensitive since it is obtained by computer

vision directly applied to the output of the FingerVision camera. It provides high-

resolution slip detection, which does not depend on the contact force, i.e., it can sense

slip of a lightweight object that generates negligible contact force. The tactile

behaviors explored in this paper include manipulations that emphasize this feature.

For example, we demonstrated that grasp adaptation with FingerVision could
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grasp origami, and other deformable and fragile objects such as vegetables, fruits,

and raw eggs.
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