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1 Introduction and statement of results
There has been a great deal of interest in the subject of quantum modular forms since
the time of their definition in 2010 by Zagier [41]. Loosely speaking, they are functions f
which exhibit modular transformation properties on Q, as opposed to H the upper half-
plane, up to the addition of nontrivial error functions. Such error functions must exhibit
appropriate analytic properties in R. (See [5,41] for a more precise definition.) In their
relatively short lifetime, extending from the foundation laid in [41], quantum modular
forms have seen applications to a variety of subjects including the celebrated Riemann
hypothesis [33], combinatorics [6,10,19,20,28], mock theta functions in number theory
[9,12,18,21,27,29], Hecke operators in number theory [31,32], topology [25,26,35], and
mathematical physics [7,14,36]. (A number of other references on the applications of
quantum modular forms also exist, some of which may be found in [5, Chapter 21].)
Jacobi forms, defined on C x H, are two-variable analogues to modular forms on H, and
their theory was largely developed by Eichler and Zagier in the 1980s [5,16]. Naturally
marrying the definition of a Jacobi form with that of a quantum modular form, Bringmann
and the author defined the notion of a quantum Jacobi form in 2016 in [3] and provided
the first example of such a function, arising from combinatorics. Precisely, we have the
following definition.

Definition 1 A weight k € %Z and index m € %Z quantum Jacobi form is a complex-
valued function ¢ on Q x Q such that for all y = (Z 2) € SLy(Z) and (A, u) € Z x Z, the
functions 1, : Q x (Q\ y ~!(ic0)) - Cand g;,,,) : Q x Q — C defined by

z ar+h)

ct + d ct +d
_ (.2
gow(zT) = d(z1) — &) L, w)e2m im0 T+ 22D g7 4t + ps 1),

by (57) = ¢l ) — o7 ()er + d)Fe g <

satisfy a “suitable” property of continuity or analyticity in a subset of R x R.
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Remarks (1) The complex numbers £1(y) and e2((A, 1)) satisfy |e1(y)| = |ea((X w))| =
1; in particular, the €1(y) are such as those appearing in the theory of half-integral
weight modular forms.

(2) We may modify the definition to allow modular transformations on appropriate
subgroups of SLy(Z). We may also restrict the domain to be a suitable subset of
QxQ.

(2) The “suitable” property of continuity or analyticity required is intentionally left some-
what vague in order to mimic Zagier’s definition of a quantum modular form [41].

Since this definition, initial example, and application emerged in [3], only a small handful
of other quantum Jacobi forms have been found (see [1,2]), all of which are combinatorial.
The first infinite family of quantum Jacobi forms was established in [11], with applications
to mock theta functions.

Here, our results and motivations are multifaceted. We establish three new infinite fam-
ilies of quantum Jacobi forms, arising in a different manner from all quantum Jacobi forms
which are known thus far (in [1-3,11]). These infinite families of quantum Jacobi forms
arise in the diverse areas of number theory, topology, and mathematical physics, espe-
cially motivating our results. Our main results are explicitly stated in Theorem 1 (infinite
family and applications to number theory), Theorem 4 (infinite family and applications to
topology), and Theorem 6 (applications to mathematical physics). Sections 1.1, 1.2, and
1.3 below are devoted to developing and stating these and other results in the context of
number theory, topology, and mathematical physics, respectively. On the one hand, these
results lie in diverse areas; on the other hand, as the remaining narrative reveals, they are
unified by the partial Jacobi theta functions Cy g(z; T) defined in (1.1).

1.1 An infinite family of quantum Jacobi forms

Throughout, unless otherwise stated, we let ¢ = e(t), w = e(z), with e(u) := e*™*, We
also let o, B € N be such that 0 < a < B, 4|8 and gcd(w, B) = 1. With these conventions,
we define the function

o
2

Cop(z;T) := g2 w2

*o:\Q

Zqé (w%q%y. (1.1)
n=0

For fixed «, B, the function Cy g(z; T) may be regarded as a Jacobi partial theta function;
historically, such functions have been important in number theory, in the theory of g-
hypergeometric series, in connection with mock theta functions, and most recently in
relation to quantum modular forms (when viewed as one-variable functions of t with
z fixed). This last subject is of particular historic interest: In Ramanujan’s final letter to
Hardy in 1920, Ramanujan states that partial (or “false”) theta functions “do not enter into
mathematics as beautifully as the ordinary theta functions,” which are modular forms.
We now know how partial/false theta functions are intimately connected to the subject of
quantum modular forms and mock modular forms. (See [5,21] and references therein.)

In what follows, xcp and V5 cp(e, B) are characters defined in (5.17) and (5.7), respec-
tively, with respect to matrices (é 5) in appropriate subgroups of SLy(Z). Similarly, (%)
denotes the Kronecker symbol on such matrices. The set Q5 € Q x Q and groups Gg, Hg
are defined in Sect. 3, and the theta functions g4 p are defined in (2.14).
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Our first result in Theorem 1 shows that {Cy, g}, indexed by pairs (e, ) € N? satisfying
the hypotheses above, forms an infinite family of quantum Jacobi forms.

Theorem 1 Assume the hypotheses above. The following are true.
(1) The function Cq,g(z; T) is a quantum Jacobi form on Qu g of weight 1/2, index —1/8,
group Gg, and character xcp.

In particular, for any €q,p > 0 satisfying ﬂﬂ;za < €qp < %, ifz € (— & E— L —€ap)
we have that

2
Cop(zT) — (=287 + 1)_%)(2_/3%16 (L) Cup ( ‘ i )

8(—2B7 + 1) 2Bt 41 —2B1 +1
2 .
1 [® Zig,ler,, (— + lt)
_ 1 it g, (12)
2 Jo —i(2 + it — 41)

and the difference in (1.2) extends to a C* function on

(B (z=g+ o b o g 2en]) x (B {35]):

(2) The function Cy,g(z; —7) is a mock Jacobi form of weight 1/2, index —1/8, group Hg,
and character ¥pcp(o, B).

Remarks (1) Part (1) of Theorem 1 shows that {C, g(z; T)}, when its members are viewed
as functions on Qu,g € Q x Q, forms an infinite family of quantum Jacobi forms. It also
holds that {Cq,g(z; —7)} forms an infinite family of quantum Jacobi forms on Q(’L g =
[(5:3) c0x0: (55 < Qus).

(2) Part (2) of Theorem 1 above shows that {Cy g}, when its members are viewed as
functions in C x H~, where H* := {r € C | &+ Im(t) > 0}, also forms an infinite family of
mock Jacobi forms. By mock Jacobi form, we mean a function which is the holomorphic
part of a nonholomorphic Jacobi form. (See [5,42].)

(3) Fix , B, a, b. The quantum modular properties of Cy,5(7; 7) as a single-variable func-
tion of t follow from work in [8,21], and the mock modular properties of C,, ,3(%; —1)
as a single-variable function of t follow from work in [21]. Thus, we have restricted our
attention to establishing the two-variable quantum Jacobi and mock Jacobi properties of
the Cy g in Theorem 1.

Before we state our remaining theorems, we discuss the so-called Eichler integral appear-
ing in (1.2). Historically, Eichler integrals have played important roles in number theory,
such as in the work of Eichler [15] and Shimura [39]. More recently, they have been
rather prominent in the growing world of quantum modular forms, as shown in [8,41] for
example. Example 4 from [41], taken from [30] and which incorporates Eichler integrals,
is particularly interesting, as it comes from topology and the theory of quantum invari-
ants of 3-manifolds. Developing this topic remains an active and current area of research,
bridging different areas of mathematics [36].

In Theorem 2 below, we give an asymptotic expansion for Cy g <%, % + jT—t), with (%, %) €
Qu,p ast — 0%, and we also give two different ways to explicitly evaluate Cy g (z; 7) on
the quantum Jacobi set Q.
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Theorem 2 Assume the hypotheses above, and let (%, %) € Qu,p. We have the asymptotic

expansion
Cop ah + it X L(=2r¢) [ —t\"
bk gzﬂbr — B2
ast — 0%, where forr € No, L(—r1,¢) := (k'Bz)r ( )B The coeffi-
) 0, ’ = r+1 r+1 kﬁz .

cients c(n) = cq,,q,b1 k(1) are defined explicitly in (6.1), and Br( ) denotes the rth Bernoulli
polynomial.

Moreover, the function Cy g may be evaluated explicitly on Qu,g in the following two
(different) ways:

a h
Cor\px

kB2
oaa n
—Capp 2 c(m)B1 <_k;32)

n=1

(4‘2;,{/(/3 fgky Ek )n

= 154,08 ZkZQk e
pomap g (fzbgk/f?fzk' ")

where M = M1,k (o, B) is the smallest nonnegative integer such thatz"—b—F% (% + % + 2M)
€ Z.

In Theorem 2 and throughout, for n € Ny, (a;9), := (1 — a)(1 — agq)(1 — aq2) (1=
aq"~1) denotes the g-Pochhammer symbol.

Example 1 Let (o, B) = (1,4). Then (“ %) = (% %) € Q1,4 (with M = 1). By Theorem
2, we have that

Cra (3L 2) = —¢5! Z ( ) — 75 ~.0490677 — .998795..

To calculate this value, we have used the fact that mod 64, the 16 nonzero coefficients c(n)

are:

¢ | (1), c(21), ¢(33), ¢(53) 4128 °| c(9), c(13), c(41), c(45)
¢t | €(5), ¢(17), ¢(37), c(49) ¢35 | €(25),¢(29), ¢(57), c(61)

On the other hand, by Theorem 2 we also have that

(6255),

Cra(F2) = s Z( "= (D),
%

2
= {128 (1 - ﬁ) .0490677 — .998795..

Example 2 Let (o, 8) = (5,24). Then (‘—Ij, %) = (%, I—g’) € Q524 (With M = 3). By
Theorem 2, we have that

5760

Cs24 (35, T2) = — (384 Z <5760) (1.3)

= ¢ (1 + L10 — &)
~ —.0802333716 + 1.5412749973i,
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where we have calculated the 240 nonzero coeflicients c(#) mod 5760 explicitly for this
evaluation, using (6.1).
On the other hand, by Theorem 2 we also have that

N (Sury o
Cs,24 (ﬁ’_g = 525625 e

n=0 §2 ’§5 )Vl
;1-, G- -6
= 1+ 1— + 22—
o= R EEE 1+
L5 P-4 - -¢ ‘4)>
2 A+ hHA+¢3)
~ —.0802333716 + 1.5412749973i. (1.4)

Without Theorem 2, it is unlikely that one would immediately expect that the two
different exponential-type sums in (1.3) and (1.4) are equal.

Remark By combining the simple closed form expressions from Theorem 2 with Theorem
1 (1), we immediately obtain simple closed form expressions in roots of unity for rational
evaluations of Eichler integrals of weight 3/2 modular forms. (Similar corollaries have
been explicitly written down in [18,20].)

1.2 Jones polynomials for torus knots as quantum Jacobi forms
One of the first fundamental examples of a quantum modular form is (a slightly normalized
version of) the function

F(@) =) (g9
n=0

when viewed as a function of x € Q, with g = e*™*. The function F was originally
studied by Zagier [41], and it was later shown to be dual to the combinatorial generating
function for strongly unimodal sequences U(—1; g) by Bryson et al. [10], in the sense that
F(¢) = U(—1;¢71), where ¢ is a root of unity (equivalently, F(g) = U(—1;4"') when
q =e
by virtue of the duality and quantum modularity of F(g) just mentioned, but it is also

27ix with x € Q). The function U/(—1;¢) is not only a quantum modular form
essentially a mock modular form by results established in [10].

This function U(—1; q) arises as the special value at w = —1 of the two-variable strongly
unimodal sequence rank generating function

U(w;q) —Z( W n(—w g5 q)ng""

Work in [20] generahzed the duality and quantum modular properties associated with
F(g) and U(—1;q) just mentioned; namely, in [20] we defined a two-variable function
F(w; q) with the properties that (1) F(1;q) = F(q), the Kontsevich—Zagier function, (2)
F(g56) = U(=¢; ¢~ 1) for any primitive kth root of unity ¢ and any bth root of unity &
where b | k, and (3) for fixed ¢, F(¢;; q) (and hence U(—¢}; g~ 1) gives rise to a quantum

modular form when viewed as a one-variable function of x € Q, with g = e2mix 1

1\e note that the same or similar notation for F and U appears in different sources (such as [6,10,20,26,41]) but
may in reality define slightly different normalizations of these functions; the reader should proceed with caution when
consulting the literature.
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In addition to [10,20], to date, there are three more works which establish mock and
quantum properties associated with the functions F and U. First, work of Bringmann et al.
[6] established an infinite family of quantum (and mock) modular forms from rank gen-
erating functions for unimodal sequences, the first member of which is the Kontsevich—
Zagier function F(g). Second, Bringmann and colleague [3] provided the first example of a

quantum Jacobi form by proving that the function U (w; g), when viewed as a two-variable

2mwiz 2mit

function in (z, ), with w = e and g = e“™*7, is (up to a slight normalization) such a
form.

The last work along these lines exists in another direction and has topological appli-
cations. Namely, Hikami in [22] defined an infinite family of g-hypergeometric series
{Ft(9)}ten, the members of which give rise to Jones polynomials for torus knots 79 9¢+1.
(See also Hikami’s [23].) When ¢ = 1, Hikami’s Fi(q) = ¢F(q), where F(q) is the
Kontsevich—Zagier function. Hikami and Lovejoy established the duality associated with
Fi(q) and U;(—1; q), where (as defined by the authors in [26])

o0

Uwaq)=q" Y  (-wgQr-1(-w G149
ke>ki=1

t—1 . j—1
« 1—[ qk}? kj+1 + kj —j+2 le:l ke '
j=1 Ki+1 = kj q

Here,

ml (@ Dm

], @D G D
denotes the g-binomial coefficient. Analogous to the fact that F1(q) = gF(g), the function
U;(w; q) satisfies Uy (w;q) = g~ 'U(w;q). One of the main results in [26] shows that
Fi(¢) = U(—1;¢7 1Y), where ¢ is a root of unity, generalizing the duality from [10] in
another direction. Playing a key role in [26] is the interesting observation that U;(—1;¢g)
and F;(g) may be interpreted as colored Jones polynomials, when specialized appropriately
at roots of unity.

Here, we generalize the previous duality and quantum properties associated with

U (w; q) and F;(q) by first defining, for ¢ € N, a two-variable analogue to F;(q), namely

00 t—1
(K | ki
Fwiq)i=q'(-w)' ) (—w)k%—wq;q)kzquf“f“)(—w)z"f[’kfl}, (1.5)
ky=--->k1=0 j=1 7 dq

This function first appeared in work of Hikami [22,24]. We point out that F;(—1; g) = F;(q)
(and hence Fi(—1;9) = qF(g)). In Theorem 3 below, we establish the duality between
F;(w; g~ 1) and U, (w; q) both as a polynomial in g for fixed w, and at suitable pairs of roots
of unity (w;q) = (¢ ;If‘), generalizing the duality established in [10,20,26]. Specifically,
we obtain [26, Theorem 1.2] as a special case of Theorem 3 part (2) below whena = b = 1,
h =1,k = N, and we obtain [20, Corollary 1.3] when ¢ = 1.

Theorem 3 Let ¢t € N. The following are true.
(1) For any N € N, we have the polynomial identity

Fi(—q";q7Y) = U(—4";9) € Ziq).



A. Folsom Res Math Sci (2019)6:25 Page 7 of 34

(2) Let hya € Z, and kb € N, be such that gcd(h, k) = ged(a, b) = 1, and such that b|k.
Then we have that

F (=587 = U=l 6.

The proof of Theorem 3 in Sect. 7, which extends original work and observations of
Hikami and Lovejoy [26], reveals that the polynomials in Theorem 3 (1) may be interpreted
as N-colored Jones polynomials for torus knots T99;41 and their mirrors. The example
below provides an illustration.

Example We have from Theorem 3 (1) with £ = 3 and N = 4, after simplifying, that

q °F3(—q* ¢ ") = ¢ °Us(—q" q)
1t g+ =" 42 =P+ — O — 2 — B

4 =P+ P =Pt PO+ g gt — g

This polynomial may be viewed as ¢ ~° times the 4-colored Jones polynomial for the torus
knot T(y,7) (in the variable g~ 1). That is, it equals q’9]4(T(2,7); g Y). (See Sect. 7.)

Now let (4, k) = (5,12) and (a, b)) = (2, 3). By Theorem 3 (2), or equivalently, by its
proof, combined with the above when N = 4, we also have (after simplifying) that

iF3(—td¢y)) = ils(—¢25¢0y)
=6—i— 205" + 12— 205" — 206 + 3¢5 + 38 — 205 + ¢
=2i+1.

Next, we turn to establishing the quantum Jacobi and mock Jacobi properties of the
functions Fy(w; q) and Uz (w; q). We define slight normalizations of the functions F;(w; q)

and Uy (w; q) as follows:

(S ISP
Fe(z7) := (1 — w)q 1648 "w™ 2 F;(—w; q),

(2t—1)2 ¢ 1 1
U(z;T) = (1 —w)g 1688 ‘w2 Uy(—w;q™ ).

Here and throughout, we let

Bri=4@2t+1), oV = =2t —1, «® =2t 43,
aig) =6t +1, a£4) =A;:=6t+5.

The periodic function yg;+4 appearing in Theorem 4 is as defined in Sect. 8. The subset
Q2 € Q x Q and groups K, L; are defined in Sect. 3.

Theorem 4 Assume the notation and hypotheses above. The following are true.

(1) The function F(z; ) = Ue(z; T) is a quantum Jacobi form on Qq of weight 1/2, index
—t— %, group Ky, and character xcg,,p.

25
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In particular, for any €; > 0 satisfying ﬂtﬂ}a‘ <€ < é, ifz e (——3, - — 25— —) ,
t

we have that
2 |
Filz;T) — (_Z,Bt T4+1) ZXZﬂzJ
28322 z T
(s o) (S 5 e)
8(—2827 + 1) —2821 + 1" —282c +1
2 .
Zl’ X8t+4(at )Z g ., +i e (E‘FZS)
t

_ 1/'00 2ﬂ
2 Jo \/—i(%—I—zs—éL,Btr)

ds, (1.6)

and the difference in (1.6) extends to a C* function on

R\U( 3+{o ﬁz,‘jﬁ,;zigi) < (R\{553})-

(2) The function F¢(z; —t) is a mock Jacobi form of weight 1/2, index —t — 5 L group L;,
and character (%)

Remarks (1) Theorem 4 combined with the discussion prior (see also Sect. 7) brings the
N-colored Jones polynomials for the torus knots T/ 5,4 1) and their mirrors into the theory
of quantum Jacobi forms.

(2) Asymptotics and various explicit evaluations of the functions F; and U; follow readily
from Theorem 2, the proof of Theorem 3, the proof of Theorem 4, and the definitions of
f[ and L{t.

Theorem 5 below establishes the quantum modular properties associated with (%, 7) =
Uy(%; T) when viewed as a single-variable function of . We state this result explicitly for
completeness, extending results from [20] (which pertain to the case ¢ = 1). Below, pp is
1 or i, depending on whether D is 1 or 3 (mod 4), and £, g := lcm(b, ). The group X, g,
is defined in Sect. 3.

Theorem 5 We have that .7-}(2,1') .7-}(— ;T) = Z/It( ;T) — Z/It(— ;T) is a quantum
modular form on Q of weight 1/2, group X, g,, and character ( ";‘) (%) ,051, The

errors to modularity on Q extend to real analytic functions in R \ { —%},

1.3 Applications to mathematical physics

The (1, p)-singlet vertex algebra admits atypical (regularized) irreducible characters

. L — L
ch[ME](r) = % ) (W@@w 4y Com—ser? @<2pn+s+p>q4;<zpn+s+p>2)’

where 1 < s < p — 1. As originally studied, these characters did not include the complex

n>0

parameter z. However, motivated by the Verlinde formula in conformal field theory, these
original characters have since been regularized to include the new complex parameter z,
which can be viewed in terms of the 1/ (1)-charge in physics. Within mathematical physics
and number theory, these functions have recently been studied in [4,13,14]. Understand-
ing the modular properties of such functions in general has been of interest, most basi-
cally referencing Monstrous Moonshine, mock modular Moonshine, and similar results
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attached to Lie superalgebras. (See [5, Chapter 20] and references therein.) Here we estab-
lish the quantum Jacobi and mock Jacobi properties of these functions, when viewed as
two-variable functions in (z, 7). The subset Q5, € Q x Q and groups M,, W), are defined
in Sect. 3.

Theorem 6 Let p = 2m? for some m € N. The following are true.
(1) The atypical characters n(t)ch[Mfs](r) are quantum Jacobi forms on Q) of weight

1/2, index —1, group My, and character <%)

(2) The functions n(T)Ch[MLZ ]( 1) are mock Jacobi forms of weight 1/2, index —1, group
Wy, and character {8;3 (—1) 3 (5),

Remarks (1) Asymptotics and explicit evaluations of these characters at rationals follow
readily from Theorem 2 and the proof of Theorem 6. Such expressions are of interest in
representation theory and mathematical physics as related to the quantum dimension of
the characters. (See [4,13,14].)

(2) As remarked after Theorem 1, the quantum modular properties of these functions for
fixed z as a one-variable function of t follow from work in [8].

1.3.1 The remainder of the paper is organized as follows. In Sect. 2, we define certain func-
tions required in the proofs of our main results and give some of their known properties.
In Sect. 3, we define and study groups and sets appearing in the statements of our main
results above. In Sect. 4, we explicitly establish the mock Jacobi properties of a certain
function, as well as some of its related nonholomorphic transformations. Each of the six
Sects. 5-10 are devoted to proving one of the six Theorems 1-6. For convenience, a partial
index of the main notations and definitions has been included, and this appears toward
the end of the paper before the references.

2 Preliminaries
In this section, we collect certain functions which are used in the proofs of our main
results, and state some of their known identities and transformation properties.

2.1 g-series identities

First, we define the partial Jacobi theta function H by
(n+3)?

%)
2
n=0

Next, we define a g-hypergeometric function K, which may be viewed as a universal
mock theta function, defined in [34] by

o0 2
=1"q" (g:4")n
K(w;q) = .
1 g(qu;qz)n(W‘lqz;qz)n

In Lemma 1 below, we relate’? H and K to Fine’s g-hypergeometric series [17]

A;
FABx, Z((gq)nx'
q:

2Note that the function H defined here is not the same as the function with the same name in [34].
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Lemma 1 We have that

Hwiq) = g5Fw g L w™Lw™lg; %) 2.1)
Kwg; @)1 —w™ g™ = F(w,wg w™ g% 4°). (2.2)

Lemma 1 follows from known identities: (2.1) is a slight generalization of [21, Eq. (1.11)],
see [38], and (2.2) is [21, Eq. (2.6)].

We require the following identity, which follows from results in [34], combined with
the definition of the Appell function A, given in Sect. 2.3.

Lemma 2 We have that

(@5 @)oo

Kwiq) = (w™* - 1)m

Aj (7 —1;21). (2.3)

2.2 Modular and Jacobi forms
We make use of the weight 1/2 modular form 7, and the weight 1/2 Jacobi form ¢, defined
forr € Hand z € C by

00
n(z) = q%‘* l_[(l . qn)) 9(z;T) = Z enin2t+2nin(z+%)‘ (2.4)
n=1 nEZ+%

These functions satisfy the transformation properties given in Lemmas 3 and 4 below [37].

Lemma3 Fory = (48) € SLy(Z) and © € H,

n(ye) = e(y)(Cr + D) 1n(x),
where for C > 0,

L (Q) [(1=C)/2mi(BD(1-C?)+C(A+D))/12 if Cisodd,
1

ely) = (2.5)

% (g) oTiD/4eTiACI-D)+DB-CN/12  if Dis odd.

Lemma4 Foriu€Zy = (48) e SLy(Z), and (z 1) € C x H,
2 ‘
() O (42T +p7) = (1) THg~ T e 2oy (g 7),
i zz
(i) o ( e D;yr) = e3(y)(Ct + D)3 5D 9 (5 1),

oo

(iii) Pz 1) = —iqéw_% 1_[(1 — "1 —wg"Ha —wlg).

n=1

Using 1 and ¥ we define the functions

()
N(t) = —nz(Zr)’

A short calculation using the definition of 7 in (2.4) as well as Lemma 4 (iii) reveals that

and T(1) =9 (—1 + %;47:).

N@TE) = —q 7%, (2.6)

a fact which we will use later. We also require the following lemma which gives some of
the modular transformation properties of N and T'.
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Lemma5 Lety = (4 58) e SLy(Z) with C even, and define y := (C/z D ) We have that

N(yt) = (et + d) " 2e(y)e 2F)N(x). 2.7)

Moreover, for B € N with 4 | B, we have that

T <2ﬁ;+ 1) — g3 (( )) (28T + l)ze : ezéﬁll )T (7). 2.8)

Proof The proof of (2.7) follows immediately from Lemma 3. To prove (2.8), we employ
Lemma 4 (ii) and find that

mﬂ(—r+ (2f5‘[+1))2

T(w;L 1) —¢3 ((é )) (2Bt + Die @m0 P <—r + % +,3f;4f>‘

Using Lemma 4 (i), this is

xip(—r+1@pr+n)’ 2
10 L 2 7 BB
2 ((45)) @pr s nle ST

The result in (2.8) now follows after a simplification. O

2.3 The level 2 Appell function
After Zwegers (see [5]), we define the level 2 Appell function for z1,z0 € C, v € Hby
sznqn(n+1)

As(z1,20;7) = &1 Z 17 (2.9)

n
= §19

where & = e(z)),j € {1, 2}. This function may be decomposed as

As(z1,22;7) = P22 + 5 21)u(221, 22 + 5 27)

+ &0 (zp + T + %;2t)u(2zl, Z+ T+ %; 27), (2.10)
where
1 n(n+1)
&f (=1)"&yq >
wz1, z2; 7) ==
T2 1o b4

The completed level 2 Appell functions A, are defined by
Ax(z1, 225 7)
i o 1 1
= Ax(z1,20;T) + 3 ;ezmﬂlﬁ <22 +jt+ 5;2r> R (221 —zy—jT — §;2t>,
(2.11)

where the nonholomorphic function R is defined by

REzt)= Y. {sgn(v)— (v+x)f)}( 1)V=3e TV e —2mivz (2.12)

ve%JrZ

with y ;= Im(z), A := ;28 and

z 2
E(z) .= 2/ e " du
0

We have the following transformation properties of A, [5]:
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Lemma 6 With hypotheses as above, for ni, ny, my, my € Z, y = (‘c’ Z) € SLy(7Z), the
functions Ay satisfy the following transformation properties:

(i) Ax(—z1, —22;7) = —As(2z1, 225 T),
I 21 =Ny ¢ —N1 _n2—niny g
(i) Aa(z1 +mit +m1, 22 + motT +mo;T) =& &, g Ay (21, 205 T),

-~ _mic_(_ 0,2 -~
(i) Az (crzjrd’ crzid';yt> = (ct + d)errrd AL, (71, 25; 7).

From [42, Propositions 1.9, 1.10], we have the following transformation properties of R.

Lemma 7 With hypotheses as above, R satisfies the following transformation properties:

(i) Riz;t+1)= e_ﬂTiR(z; 7),
.. 1 riz? z 1
(ii)

e R <—; —;) +R(z;T) = h(z; 7),
(iii) R(z;7) = R(~z;T),

—iT T
(iv) R(z;7)+ e72nizfnitR(z +1;7) = Zefm'zfnir/él,
) R(z+ 1;7) = —R(z; 7).

Asin Lemma 7 (i), for z € C, t € H, the Mordell integral / is given by

Titu?—2mzu

e
h(Z;T) ':Amdu (213)

Under certain conditions, # can be rewritten using the weight 3/2 theta functions ga s
(see Lemma 8), defined for A, B € R and t € H by

gap(r) = Y e THITIVE, (2.14)
VEA+Z

The functions g4 p transform as follows [40,42].

Lemma 8 With hypotheses as above, the functions ga g satisfy:

(i) gas1B(r) = gA,B(T);

(i) gap+1(r) = e gy p(7),
(iii) gap(r +1) = e ™AATY
(lV) 248 (_%) _ ieZﬂiAB(_
(v) g—a,—B(t) = —gaB(7).

Saa+p1(0)

3
it)2gp_a(7),

The following result relates the functions /# and g4 g [42].
Lemma9 ForA,B ¢ (—%, %),

10 8a+1B+1 (2) d —m’A21+2m'A(B+%)

0 —ilz+71) T

3 Groups and sets

h(At — B; 7).

Here we define a number of subgroups of SLy(Z) and study their Jacobi action on various
subsets of Q x Q. We use the notation (S) to denote the group generated by the set S. The
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parameters S, t, B¢, p (and b, as occurring in a/b € Q), are as in the previous section, and
Lp,8 := lem(b, B). We specifically recall that p = 2r2 for some r € N. We define

Hg:={(45) eSLy(Z): A,D=1 (mod 28),B,C =0 (mod B)},

Li:={(458) eSLy(Z): A, D=1 (mod 28;), B=0 (mod 28;),C =0 (mod B7)},

Wy :={(45) €SLy(Z): A D=1 (mod 4p), B=0 (mod 2),C =0 (mod 2p°)},
Xpp 1= { (4B) eSLy(Z): A D=1 (mod 2,4), B=0 (mod 28),

C =0 (mod 2@21/3/,3)},

Gp = <(21ﬁ(1])'<<1)2'fz)>’ Ke :=<<2z13?(1))’((1>2ft)>’ My ::<<4;’2?>’(381p)>'

Next, we define certain subgroups of Q x Q on which the above groups act. Throughout,
we call a fraction r/s € Q reduced if gcd(r, s) = 1, with the additional assumption that if
r/s < 0 then r < 0. (That is, we always take s € N.) With this, we define the following
subsets of Q x Q (as usual, 0 < « < B, 4|8, and ged(w, B) = 1):

Q:

{(%, %) cQxQ: % and % are reduced, and b | k},

% and % are reduced, k is even, A m € Z s.t.
Qu,p = (%,%)e@x@:%+%<%+%+2m>ez,and s
ifk=0 (mod 28), thenk # +1 (mod 483)

% and % are reduced, 7 odd integer n
st.phn=0 (mod k),and Imy € Zs.t.

Qsp = (% %) €QxQ: ayzp  ph(prs 1

b +7<W+§+2m¢>€Z,and

ifk =0 (mod 4p?), thenh # £1 (mod 32p3)

We refer the reader to Lemma 15 for more on Qy, g, and note that Oy, is defined similarly.
See also Example 1 and Example 2 in Sect. 1.1.

Lemma 10 The set Qy is closed under the Jacobi action of Ky x (Z x 7).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of K;. Let
% %) € K;. We have the Jacobi action

(a21) - @h=(57)

where bb = k, k' := 2B3h + k, i := h, and we have written ab = ga' and 2B%h + k = gb’
where g := gcd(uz, 2,8ch +k),and a’, ' € Z with gcd(d/, b') = 1. Since ged(h, k) = 1, we
have that gcd(#, k') = 1. We also have that b’ | k’ by definition. If ¥ > 0 and k' > 0,
the proof is complete. Otherwise, we first note that neither can equal zero. (If ¥’ = 0 then
k' = 0, which would imply k = —2p2h, e.g., gcd(h k) > 1, a contradiction.) If either
b’ or k' is negative, we rewrite a’' /b’ = —a'/|b'| or W /k' = —H'/|K’|, and by the above
discussion, all other conditions required by the definition of Q4 are satisfied.

25
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We also have that

12 By _ h42Bck
(576 b= (5"7),
and it is easily verified that this pair is in Q..
2. Jacobi elliptic action Let (%, %) € Qy, and let (A, u) € (Z x Z). We seek to show that

7+ A% + 1 can be expressed as a fraction @’ /b’ such that (Z—:, %) € Q3. To show this, we
let g := ged(ak/b + Ah + uk k), and let &/, b’ be such that a’g = ak/b + Ah + pk and
b'g = k. Then § + k% +u=ad/b,gcd(d,b') =1and b’ | k. Finally, since k > 0, we have
that ' > 0. ]

Lemma 11 Qq g is closed under the Jacobi action of Gg X (4Z x 27).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of Gg. Let
(% %) € Qq,p. We have the Jacobi action

(9 (1) =(57)
wherea'g = ak, b(2Bh+k) = b'g withg := gcd(ak, b2Bh+k), i := h,and k' .= 28h+k.
Then it follows that ged(a’, ') = ged(W, k') = 1, and k’ is even. Now if K’ = 0 (mod 28),
then we have that k = 0 (mod 28), and so & # +1 (mod 43) Since /' = h, we also have
that /' # £1 (mod 4p3).

We first assume b’ > 0 and k’ > 0, in which case, a’/b’ and /' /k’ are reduced. Note that
b’ # 0and k' # 0, for otherwise, either would imply that #/k = —1/(28), a contradiction.
Because (4, %) € Qq,p, there exists some integer m such that Z"—b + % (% + % + Zm) =xc
Z.Llet £ = m + Bx. Then

KLY (P2 L (ALY (A P WY
w T w\g T2 VAV AV R

kx  2Bxh
v
=X,

which is an integer. In this case, the proof is complete.

If either of " or k' is negative, then both are negative. In this case, we rewrite a'/b’ =
—da'/|b'| and W' /k' = —l'/|K'|; all required hypotheses in the definition of Qy g are met
using the above arguments, and the proof is complete in this case as well.

As for the second generator, we have the Jacobi action

2 h a

() (54)= (%)
where @' := a4, b’ := b/ := 2%k + h and kK’ := k. Then it is clear that gcd(a, b') =
ged(W, k') = 1, k" iseven,and b’ > 0 and kK’ > 0. We take m and x as above, and find after
a short calculation that

(2 am) = (L1

AN AVE R gy )
which is an integer. Finally, if &’ = 0 (mod 28), then k = 0 (mod 28), which means
h # £1 (mod 48%). Using the definition of 4’ (and the fact that k = 0 (mod 28)), we
have that #/ = & (mod 48%), hence /' % +1 (mod 4p3). This completes the proof.
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2. Jacobi elliptic action Let (%, %) € Qup, and let (A, u) € (4Z x 2Z). We seek to show

that ¢ + A% + 1 can be expressed as a fraction a’/b’ such that (Z—:, %) € Qq,p. First, we
write a/b+Mh/k+u = a' /b’ where gcd(d, ') = 1,and b’ > 0. (It is not difficult to check
that »" # 0.) By hypothesis, there is some m € Z such that 5 + % (% + % + 2m> € Z.Let
¢ = m — A/4 (which is an integer, since 4 | 1). Then

ALY P VA WY (P N
JR— - — — — - — — m u—
o k\B 2 2 k\p 2 2
is an integer (also using that 2 | u). |

Lemma 12 Oy, is closed under the Jacobi action of M, x (/2p Z x 7).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of M. Let
% %) € Qsp. We have the Jacobi action

(1) (60)- (.0).

where a'g = ak, b(4p*h + k) = b'g with g := gcd(ak, b(dp*h + k), i := h, and k' :=
4p*h + k. Then it follows that ged(a’, b') = ged(#, k') = 1. Suppose for contradiction’s
sake that there is some odd number # such that p#’'n = 0 (mod k’). Then there is some
integer c such that phn = c(4p®h + k), equivalently, ph(n — 4pc) = ck. But since # is odd,
n — 4pc is odd. Hence, we contradict the original assumption that there is no odd integer
n’ such that phn’ = 0 (mod k).

We first assume b’ > 0 and k¥’ > 0, in which case, a’/b’ and /' /k’ are reduced. Observe
that if either of &’ or k' is equal to zero, then —4p?h = k, so that gcd(h, k) > 1, a

contradiction. Because (%, %) € Qs,p, there exist some integers m+ such that ”Tfp +

ot (1’2—3'; +14 2ij) = x4 € Z.Let L+ = mz + 2px+. Then

afp ph (pFs 1 k (a2p ph (pFs 1
= Sp2p)=— = 42 4
b +k/ sp +2+ * k' b +k sp +2+ T Apry
k ph
—Px;-i—P‘pr]F
=X,

which are integers.

Now if ¥’ = 0 (mod 4p?), then k = 0 (mod 4p?), which means /, and hence /#/, is not
equivalent to £1 (mod 32p°).

If instead either of &’ or k' is negative, then both are, and we rewrite a’'/b’ = —a'/|V/|
and /' /k" = —H'/|k'|; all other conditions required by the definition of Q) are satisfied
as argued above.

As for the second generator, we have the Jacobi action

18 h W
(o7 (%z) = (Z—k—)
where @' := a,b' .= bl := 8pk + h and k' := k. Then it is clear that gcd(a’,d’) =
ged(#, k') = 1 and k' satisfies the required divisibility condition. We also have that ¥’ > 0
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and K’ > 0. We now take mz and x4 as above. Then after a short calculation we find that

a'\2p +p_h’ <P:FS

W o —|——+2m¢):x¢+8p (pq: + = +2m¢>

2p 2 2p 2
which are integers.

Finally, if ' = 0 (mod 4p?), then k = 0 (mod 4p?), hence & # +1 (mod 32p3). Using

the definition of /' and the fact that k = 0 (mod 4p?), we have that #// = & (mod 32p°),
and hence /' # +1 (mod 32p3).
2. Jacobi elliptic action Let (%, %) € Qyp,andlet (A, u) € (V2p Z x Z). We seek to show
that ¢ —l—)\% + 1 can be expressed as a fraction a’ /b’ such that (Z—:, %) € Qs p. First, we write
a/b+rh/k + p = da' /b where ged(a, ') = 1,and b’ > 0. (It is not difﬁcult to check that
b’ # 0.) By hypothesis, there are some mz € Zsuch that af_’_ph (pq:s +5+ 2m¢> € 7.
Let £ = mz — A/+/2p (which are integers, since /2p | A). Then

V2 ph «/_ h
“b—/er%(pq”Jr +€¢) 2 +pk <p$s+ +2m¢>+u\/7o,

which are integers (also using that «/2p € 7Z). O

4 A mock Jacobi form

In this section, building from functions and results from the previous section, we explicitly
establish the mock Jacobi properties of a certain function in Sect. 4.1, as well as a related
nonholomorphic transformation in Sect. 4.2. We later use the results established in this
section toward the proofs of our main theorems from Sects. 1.1-1.3.

4.1 Modularity and an Appell sum
For 0 < o < B with ged(e, B) = 1 and 4 | B, we define

az\ i’ —z a T
Buplzt):=e|— g ** A -7 ——,—1;21 ),
28 ﬂ 2

-~ az\ =2z g T
Buglz;t) i=e (ﬁ) q Ay (7 + Et — 5 —1,';2'().

and

Proposition 1 With notation and hypotheses as above, the function Ea, p(z; T) is a non-
holomorphic Jacobi form of weight 1, index —1/8, group Hg, and character ;8 {2_/3/213“ ,

defined for matrices (4 B) € Hg.

Proof of Proposition 1 Welety = (4 5) € Hg. For ease of notation, let u = uy,g,r =
_TZ_'_%T_%andv:VT = —7. Then

~ z
B, VT
op (Cr—!—D 4 >

( oz ) ((—4a2 + B2)(At +B))
=e e
2B(Ct + D) 88%(Ct + D)

~ u v 2ATt +2B
X
Ct+D Ct+D Ct+D
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where i = Ug,p57,) = —5+ (% — %) (At+B), andV =7V, := —(A7 +B). Using Lemma
6, this equals

oz (—4a? + BHAT+B)\ ~ oo~
) A ) ; 2 ) 4'.1
e(zmcwm)e( s 1oy )V @Y (4.1
=~ C(—#2+uv) . -,
where f, (%, V) := (Ct + D)e ooy ) The prescribed congruence conditions on y
imply that
a(A-1) A-1 a 1 1-A
ny = - , m:=B|=-—=), np:=——, my:=-B
28 4 B 2 2

are all integers. Thus, we may apply Lemma 6 and rewrite (4.1) as

oz (—4a? + B)(AT+B)\ ~
e<2ﬁ( )e< )fy(”’v)

Ct+ D) 8B2(Ct + D)
X e ((%Z + %r — %) (2m — nz)) gt R (14, v;21). (4.2)

A rather lengthy, yet straightforward, simplification shows that (4.2) equals

0z P g ape? —C22 N\ 4
(Ct +D)e 25 q % L3, € 8Cr 1 D) Az (u,v;27)

— (Ct 4 D)¢ABr 4B, i) Bz 1)
8 c2p? 8(Ct+D)) "

The Jacobi elliptic properties of §a, g are similarly deduced from those of A,, which are

given in Lemma 6. O

4.2 A nonholomorphic transformation
Let «, B be as above. We first define

o 1
r+(z;7) = req8(z7) :=R (—z + 2TE —(1Fr — 5;41) .

For convenience, we let

+ + z 2T« T 1
= » Pr % == - 1 -
a=abnt) =T T sosrrn T V%11 2
1 2ot
zf:zzi(a,ﬂ,z,t):z5—7—1—(1:}:1)1:4—2,
-1 B
71 =11(8 1) = yriay

Lemma 13 We have that

z T + +
r+ (2ﬁr+1; 2ﬂr+1> =a+(z; T)h(z] 11;11) — bi(z T)h(zy547) + bi(z; T)r+(z; 7),
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where

2

A2
a+(z; 1) ==/ —itie (M) B

—(z5)2
ba(57) 1= ax(e T)(= 1) gg* Y ~dire ( o ) .

Proof of Lemma 13 We have by definition of r4, after a short simplification and applica-

tion of Lemma 7, that

z -1 Lo+
* <m Vf) =K (Zf; —> = V=ime @ (CRZEr ) + kT T)).

71
(4.3)

A short calculation reveals that zlirl = 22jE /4t + B/4. Using this, as well as Lemma 7

again, we have that

8 -1 6 (&£ B -1
REmn) =Rzt — ) =R 2+ 25—
Eraim) =& <Zl o 4r> s (4r T

B ()P
= (-1)igg Voiare ™ (—ralz 1) + Wz 4T)). (4.4)
Combining (4.3) and (4.4) proves the lemma. O

5 Proof of Theorem 1
5.1 Proof of Theorem 1 (2)
In this section, we prove part (2) of Theorem 1. We begin by establishing the following

proposition.

Proposition 2 The function

00 1 e 1 2

w2gh ' 2; a1\

Fup(zi7) :_Z%wqm)
n=0 (wiqf2;42),

is defined for v € HUH ™. In particular, for v € H (and hence for —t € H™),

1

Fop(z;T) :q_%H(w_%q_%+7;q), (5.1)

O(2 o
Foplz;—7) = —qﬁw_ﬁN(t)Ba,ﬁ(z; 7). (5.2)
Moreover, for (%, %) € Qq,p, we have that

M e 6 (

Fop(s1) =)

cocoteh ), (5.3)
(e eeli st ey, NP Zk)

where M = M, 1, k(ct, B) € No.

Remark The number M is explicitly determined in the proof of Proposition 2.
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Proof The identity in (5.1) follows from (2.1). Moreover,

A;q7 Y, = (—A)"q_n(nfl)( AL q),. By (2.2), this equals
o 1
B

2; ) Combining this with (2.3) yields (5.2) after a short

where we have used that
1 - w%q_%Jr%)’lK(w_%q
calculation.

Finally, we consider Fy,5(z; T) on Qq,p. Let

j(m) = ()'—“+h Ll (5.4)
AUz —]a,b,h,k,a,ﬂm = 219 k ,3 D) m . B

By hypothesis, there is some m € Z such that j(m) € Z. Thus, forany ¢ € N, j(m+tk) € Z,
and for ¢t > ¢y, for some ty € N, we have that m + tk € Ny. Hence, there is some
nonnegative integer 7’ such that j(n') € Z, and we let M denote the smallest nonnegative
integer such that j(M) € Z. Then we have for any integer n > M that (W%q%+%;q2)n
contains 1 — w%q%+%q2M as a factor. This can be written as 1 — e(j(M)), which equals 0,
since j(M) € Z. Thus, the numerators defining F, g(z; ) are equal to zero for any n > M.
Further, the denominators can never be zero. Suppose for contradiction’s sake that there

is some # > 0 such that
1 24349
1—W2q5+2+n=(),

equivalently, j(n + %) € Z. Then (with m as above) this implies % (2(m —m) +1) € Z. But
k is even, hence / is odd, so this is impossible. O

Resuming the proof of Theorem 1 part (2), we have by definition of Cy, g and H that

_i o a1
q Pw Zﬁcaﬂz’ Zq ( 3 F) _q_%H(w_%q_B-’_E;q), (5.5)

n>0

and so by Proposition 2, (2.7), and Proposition 1, we have that C,,g(z; —7) is the holo-
morphic part of a nonholomorphic Jacobi form of weight 1/2, index —1/8, group Hg, and
character ;?Bgz;‘gBaze(y)s’z(')}') (defined for matrices y = (é g) € Hg). The character

simplifies as follows. Since D is odd,

C
f(EB)e 2 () =a ()& = e P (5), 56
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2
where we have used that 4|B. Moreover, we have that Cé“B;;/;Z‘B“Z = (—1)% 4§2ﬁ“ B/p ,
where we have used that A = 1 (mod 28) and 8 | B. Thus, the character in Theorem 1

(2)is

o2 C
uncota p)i= e e (). 67)

This proves Theorem 1 (2).

5.2 Proof of Theorem 1 (1)

In this section, we establish the quantum Jacobi properties in Theorem 1 (1). That Cy g
is defined on Qg follows from Theorem 2. (In fact, there we see how to evaluate the
function explicitly.) That Qg is closed under Gg x (4Z x 2Z) follows from Lemma
11. The quantum Jacobi modular transformations in Theorem 1 (1) are established in
Sect. 5.2.1 below. In particular, the transformation given in Theorem 1 (1) under ( ) 8 (1)),
which may be viewed as a generator of G along with ( (1) 2/32 ,is deduced from Proposition
3 below, with t — —1. The claimed C* properties in Theorem 1 (1) are established in
Sect. 5.2.2, and the quantum Jacobi elliptic transformations are treated in Sect. 5.2.3.

5.2.1 Quantum Jacobi modular transformations
First, we observe that the function Cy,g(z; 7) is easily seen to be invariant under the action

of matrix ((1) 21152 ) using its definition. Turning to (5 ?), we define

fe(z1) =fraplzT) = ée ((1?—1) (—% + %T - %))

and state the following proposition.

Proposition 3 Assume the notation and hypotheses as above. We have that

1 287> _
Capl2i =) = (BT + 1) 2 xpp.e (%) Co,p (2ﬁrz+ T 2&1 1>

_1_ 2.8 _ Bz> oz
=q 8 8 +4(2,3‘K+1) /2.3 ((5}2?))6(4(2,3‘[—}—1) + 2/9(2[3‘(4—1))

, (r(—4a2 +82)  Bl—t+ 1T+ 1))2)

882(287 + 1) 428t +1)
x ; - (2&: . 25:+ 1) (ax(z DhzET; 1) — bi(z D 41)), (5.8)

and for z € (—%, —% + % — €), the right-hand side of Eq. (5.8) equals

2 o
—1 e Do (3 +0) de
2 Jo [—=i(3 +it +47)

Proof of Proposition 3 We divide the lengthy proof of Proposition 3 into two parts.

(5.9)
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Part 1. We first establish (5.8). From Theorem 1 (2), using Proposition 2 and Proposition
1, for suitable y = (4 ), we have that

1 Cz?
Co,plz;—7) = (CT + D) 2y5 ¢ pla, Ple (m) Co

=
7N
a
ﬁ
+ N
b~.
|
<
™
N——

~_ _1 Cz? ~_
=—-C (z;71)+ (Ct + D) 2wB’é’D(a"B)e<8(CtZ+D) C ( z ;yr),

where C~(z; 1) := —N(t)B~(z; 7), with

. —4a24 42
B(z;f):%e(%)q 2 T(7)
1

B Do) 1)

k=0

To simplify B~ as above, we have used that ©¥(z; 7) is an odd function in z, and that
¥(z+1;t) = —0(z; 7). A short calculation shows that this expression for B~ (z; ) may be
further rewritten as

—4a2+p?
e(%)q 7 T(t)o(z; 1),

where

o(z7) =) felzDre(z ).
+

Combining this with (2.7) we have that (5.10) is equal to

N (B Crt + D)l ABpABa? Cz? B z .
(T)( (z;7) — (Ct + 8 Lo e(m) (Ct+D'yt)>'

(5.11)

We now apply Lemma 5, and find for y = (21 (1)), that

- 1 282? _ z

wn -0 (g ) 7 (7 777)

_ az\ . Bz* az
‘T(’)Hzﬂ)q ©ooEn @it e(4<2ﬂr+1>)e(2ﬂ(2ﬁr+1)>

Xe<2ﬂft+1 ‘ _40;3; ,32)83 ((:1))@pr+1?

rip(-r+leprn)’
xewq7%+ga ( ‘ ;]/7:) (5.12)

267 + 1
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The term in brackets [ - ] in (5.12) is equal to

az —4a?4p2
-~

— (28T +1)7V/23 ((% ?)) e (%)

z T =42+ B2\ (BT + 30T+ 2 s
e<2ﬁ(2ﬂr+1))e<2ﬁr+l T sp )"( 4p7 + 1) )q o
x ;fi <2ﬂrz+ 1 Zﬁrt—i- 1> = (2ﬁrz+ 1 2,3:—1— 1)’
which, after applying Lemma 13, we find to be equal to
e <%> R Z fe(a)re(sT) (5.13)
e (1) (s

(e~ )
28( 2;3r—|—1 27+1  8p2

B(—7 + (287 + 1)) s T ‘ ‘
¢ < 427 +1) ) 1 ;ft (W m) by(zt)re(z;t)  (5.14)

—(2BT +1)71/23 (( é ?)) e <$Z2+1)>

az T —4a? + B2
e<2ﬁ(2ﬂr+1)>e<2ﬁr+1' 852 )

BT+ 3BT+ D)\ s z ot ’
¢ ( 4(2BT +1) 1 zi:fi (m m) G(z;7), (5.15)
where
G1(z:7) = Grap(zT) == as(z; Oz 1 11) — ba(z 0z 4). (5.16)

Notice that the functions in lines (5.13) and (5.14) both involve 7 (z; 7). A very long, yet
explicit, calculation, which also uses that

(1) ="

shows that these two lines of the (large) expression in (5.13), (5.14), and (5.15) above
entirely cancel. Thus, we have that the term in brackets [ - ] in (5.12) is equal to (5.15).
Applying this to (5.11) and using (2.6) yields (5.8) in Proposition 3, together with the fact
that ¥ cp(a, B) = xcp when B =0 (mod 252), where

C
1-D
= . 517
XCD = &g ( D) (5.17)
Part 2. Next we establish (5.9) in Proposition 3. To do so, we study the function G (z; )
from (5.16) and begin by rewriting

+ + _+ +
Zini=an1 — by, z; =aj4t —ap

where a; = ay(z) = —% —z,biC = bf(a,ﬂ;z) = % + % — L—i(l:lil), and af =

+ 1)

af (@ p) =55 + Y O
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Lemma 14 For «, 8, and tlli as above, we have that
(i) af €(—3,0)anda; € (0,3)
Further, let € = €48 > 0 satisfy

B—« 1
<€e< —,

B> B

and suppose

Then under these additional hypotheses, we have that
(i) b7 €01 —%L)c (L), andby € (-1, -%)c (-10),
i) —are (3-Hi+i-%-c)c(h ).

Proof of Lemma 14 First, we note that (i) follows from the fact that 0 < @ < B.
Before proving (ii) and (iii), we first show that the hypotheses given on € and z are well

defined. Since 0 < @ < B, we have that 0 < ’3/3;2“ < %, so we may indeed choose some
isfying =2 1 _o 1 a o 1

€ > 0 satisfying 5 <€<g Further, we have that 57 <3 B € since € < g, SO

we may indeed let z € (—%, % — /% — 6).

Using the hypothesis given on z together with the definition of bf, it follows that

hT € (0,% — %). Moreover, since % > % > 0, we have that (O,% — %) c (o, %). The

assertions pertaining to b, now follow from the fact that b = bf - % This establishes
(ii).

Similarly, using the hypothesis given on z together with the definition of 4, it follows

that —ay € %— %,%—l—%— % — € ). Moreover, since 0 < o < 8 and 8 > 4, we have
that % < % — /% Additionally, since ﬁﬂ;z“ < €, we have that % + % — % —€< % This
establishes (iii). O

Resuming the proof of (5.9) from Proposition 3, by Lemma 9, we find for € and z
satisfying the hypotheses of Lemma 14 that

h(z T 1) = h(aat — b5 1)

2 ico g 1,+.1(u)

=2 _ppE+ / A T R (5.18)
2 0 —i(u+11)

h(zét;llr) = h(aliélr — ay;471)
+\2 ico
4 8yl i 1(1)
— e <(“1 y4r _ i (ay + %)) S toirts (5.19)

—< du
2 V—ilu +47) "

In the integral in (5.18), we let # = B/2 — 1/p so that the right-hand side of (5.18)
becomes
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Bt p) [ectin (5) v
—e| 5= —ax(bi + 3) 5
2 2 J(=)(=DETt +p) P

(—)<>

0 8a+ 1.8 (ar+h)+bi+1+8 ( )«/4prd,0

: J=)EDET +p) P

(5.20)

where we used that for n € Ny,

nA(A +1)

9 )gA,nA+B+g(T))

gaB(t+n)=e (—
which is easily deduced from Lemma 8. We rewrite
B 1) + 1 B +, 1 B
L N+p I 4B
S+ )+bE S+ = a5+

and obtain, using Lemma 8, that (5.20) is equal to

2 B 1 3
—e (% —a(by + %)) e (— 2@+ 22)(“2 + 2))

1
084y +1—atsl4s <_5> Véaptdp
;0 JENEDET+p) P

=e(@“WJH%))e<_§(“2+%)<ﬂ2+%>>
2 2
)i d)

Oga + aer2 ('0)

V=it + p)

+
|
+
|

After some additional simplifications, we find that
+ 4t B i 1D
a+(z;t)h(zy 11;11) = ax(z; 1) —l( )2§4ﬁ§16 et

e(— 1 _z_z) 0841 8at+3ar+3 \P) ('0)
N 4r+,0

(5.21)

Using (5.19) and simplifying, we also have that

) 1 2
—bi(z;r)h(zzi;élt) =a+(z; t)(—l)ﬁ/‘}{g/zg’gﬂe_m%e (—— _Z Z—) N —4it

ico g & 1 (u)
% a1+ a2+ 5 (5.22)

0 v —i(u + 47)
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After simplifying the constants in (5.21) and (5.22), we have that

-1-4 41 1 z oz ico gali+%)a2+%(u)
Gi(zt) =¢, " as(zT)VATL e (—— -z _z du
* 8 48 32t 8t 8t % —i(u + 47)

¢t 1«/—\/1—|—2ﬂre( (1)71)

1 z 22 00 g +i _Z(M)
ng‘ﬂe _ = — f " du
32t 8t 8t % /—i(u + 471)

Thus, we have after some further simplifications that (5.15) equals

—i 1 i0o Zﬂ:g—%+34i1,—z(”) 1 [ Z:I:g— +i (,3 + lt)

I/l= §

—q3 ‘
2° )2 v —i(u + 41) [—i( + it + 47)

where we integrate from 2/8 — 2/ + ioo then 2/8 + ico — ioo (the latter vanishes),

and then let u = 2/8 + it where t runs from 0 — oco. Multiplying by —q_% proves (5.9)
in Proposition 3 and, hence, concludes the proof of Proposition 3. O

5.2.2 C*™ properties
We now establish Theorem 1 (1)’s C* properties of the error to Jacobi transformation
in Qq,. The proof follows in a similar manner to the proof of a related result in 3], and
we refer the reader there for additional details. We begin with the hypotheses given on z
preceding (5.9) in Proposition 3 and will prove that the expression in (5.9) (with T — —1)
is C°.

Since 0 < o < B we have that 0 < «/(28) < 1/2and 0 < 1/2 — a/(28) < 1/2.
Thus, in studying g_q /(28)+(351)/4,—z» We seek to minimize (n p)2for0 < p < % This is
minimized at # = 0, so as calculated in [3], we obtain

0 . .
Qgp,fz(f) — (—27Ti)z Z (Vl + p)l+1 em(n+p)2r+2m(n+p)(fz) & e TPV
n

where v = Im(t). Thus, the functionin (5.9) (witht — —71) isC*®in (—%, —% + % — e) x
(R \ {ﬁ}) using the Leibniz rule as in [3].

To finish the proof of Theorem 1 (1), we are left to establish the C* nature of the error
to Jacobi transformation in Q x Q in the larger region in R x R given in Theorem 1 (1). If
it is not the case that z € (—%, —% + % — 6), equivalently, b} € (O, % — —) then we
appeal to the following facts:

1y2
W+ 1;7) = —h(u 1) + \Z_ﬁe <(” ;2) ) (5.23)
hu+11)=—e <u+ %) h(u; T) + 2e (g + %), (5.24)

which are proved in [42]. We divide the proof into cases below and follow an argument
similar to one given in [3].
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Case 1 Suppose —% + eg < bf < 0. Then —% < —ap < %, and we shift b} — b} +1=:
bl , which satisfies 0 < l~91_ < % Then appealing to (5.23), we have that

h(ayti — by; 1) = h(axti — by + 1;71)

~ 2 — by + 1y
= —h(at) — by ;11) + e ((ﬂzn 1 +3) ) .

The proof now follows as above with b replaced by Zf, together with the observation

that the error term 2(—i11)_%e((a211 — Zl_ + %)2/(2r1)) is suitably analytic.

CaseZIf%—eg<bf<%then—%<b1_<0,andi<—a2<%

o Case 2a If% < —ay < 1/2, we may proceed as above.

3
1

—ay —1 < _Tl. We argue as in Case 1 using (5.23) and (5.24).

o Case 2b If instead % < —ay < 2, we shift —ay — —ay — 1, which satisfies %1 <
+ Case 2c The final case —ay = 1/2, equivalently z = 0 and bf = %, is removed from
consideration, as it is not included in the statement of the theorem.

Caseé’lf—% < b;r < —% —|—e§ then0 < b; +1 < % and —% < —ay < %,sowework
with the shifted b — b] + 1 and argue as in Case 1 and Case 2.
Of course, Cases 1-3 above do not exhaust all possibilities, but these cases suffice: There

must be some n € Z such that

2n—1 2 1
" < bi" < n E
2 2
excluding b} in
o 1 1 B
— 42,7 -+7Z, —te=-+ 7
2B o=
This is equivalent to excluding z in
2 2 1 2 1 2
Sl 42 o — o+ 2l ket £ — s+ 2L
B B B B B B B B B

We shift bf — bf —n= Zf so that Zf € (—1/2,1/2), appealing to (5.23) above. Working
with bf, we argue as in Cases 1, 2, or 3 above.

5.2.3 Quantum Jacobi elliptic transformations

We provide a sketch of proof, as similar arguments are given in [1-3,11]. From Proposition
2 and (5.5), we have that Cy g(z; —7) = —N(7)Byg(z; 7). The elliptic transformation
properties of Cy g on Qu, g (and subsequently the required analytic properties in R x R)
may therefore be deduced from those of B, g. These may be obtained using the definition
of B, g, from (2.10), and the elliptic transformation properties of u and ¢ in [42] and
Lemma 4, respectively. In particular, the desired elliptic transformation properties of Cy, g
hold with respect to the sublattice 4Z x 27Z.

6 Proof of Theorem 2
We define

hn? —
;2“54“2]:’[32, n=a+sB (mod 2bB), somes (mod 2b), 6.1)

c(n) = co,p,abni(n) =
0, else.
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Then for ¢ € RT we have that

00 Y ¢ la+Bs+2bpn)?

—Zf 2
> cme 7 > o Ze B Cz/EOhLﬂSJr o

n=0 s (mod 2b) n=0

a(s+2bn) —t +s+2bn)2 h(ﬂ+5+2b”)2
Yoy Ot

s (mod 2b) n=0

hit _ ,
:ng ’” (k n): 252“ aﬁ(b I+ 5 (6.2)

With this, we will ultimately apply [30, Proposition, p. 98], but first establish a number of
technical lemmas to justify its use.

Lemma 15 For (%, %) € Qq,p, we have that b|Bk. Moreover, if bc = Bk, then c is even,
and c/2 is odd. Finally, for any r € N such that 2" | 8, we have that 2" | b.

Proof of Lemma 15 Let £ := lem(2b, kB). Then 2bc; = kBcy = £ for some ¢y, ¢cp € Z. By
hypothesis, there is some m € Z such that

a+h a+1+2 <7
w k\g T2 TS

which implies
—ac1 =0 (mod c).

But ¢;/c; = kB/(2b) so this means there is some integer x such that —akB/2 = xb
(recalling that 4 | B). Since gcd(a, b) = 1, we have that b | k8/2 which means there is
some d such that bd = kf/2, or, bc = k8 where ¢ = 2d. We have that

%+h<a+§+2mﬂ) € BkZ,

which implies
4 ha =1 (mod 2)
2
(using that s and « are odd). Thus, a and ¢/2 must both be odd.
To prove the divisibility condition on b, suppose 2" | 8 for some r € N (and note that r
is at least 2). Then

bc Bk
i1 = o1 €2
since 2" | B and 2 | k. But ¢/2 is odd so we must have that 2" | b. O

Lemma 16 The function c(n) is periodic (mod p2k) with mean value 0.

Proof of Lemma 16 Using notation as in Lemma 15, by definition, we see that the coeffi-
cients c(n) are periodic (mod L) where L := lem(kp2, 2bB). But since bc = Sk, we have
that

= lem(bep, 2bB) = bBlem(c, 2) = bBc = Bk,

since ¢ is even by Lemma 15.
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Now for each s (mod 2b) there are exactly ¢/2 solutions n (mod L = bcp) to the con-
gruence condition in the definition of c¢(n): They are « +sB+2bSj wherej runs (mod ¢/2).
These are all distinct—suppose for contradiction’s sake that for some s (mod 2b),

a+sB+2bBj1 =a+sB+2bBja (mod bep).
Then j; = j, (mod c¢/2). Moreover, if
o +s18 +2bfj1 = a + 528 +2bBjr  (mod bcp)

then s;1 = sy (mod 2b), since c is even.
Thus,

Yooodm= Y g > ;W, 6.3)

n  (mod bcp) s (mod 2b) j (mod ¢/2)

where
Ys,j = YS,j(a; ,3: b) =+ ﬂS —+ 2b,3]

Suppose v € N is such that 2! | g, but 2"*2 { 8. (Note that 4 | 8 so v > 1.) Then the
sum in (6.3) equals

2v+1 rz%fl v 771
S SIS SRR >y ¥ ¥ 8ot
=1 5=(r—1)2 j(mod c/2) t=1r=2t—1s=(r—1)} j(mod c/2)

For each 1 <t < 2", we claim that

ot rz%—l
> 2 X fzbs“zkm:'

r=2t—1 s:(r—l)%‘) j (mod ¢/2)

To show this, let

@t-1)%-1 25 -1
B= Y X e Te= Y Y o
s=(2t— 2)2% j (mod ¢/2) s=(2t— 1)211’ j (mod ¢/2)

Then

2t— 1)2—‘,—1 2

a(s+2‘, hY ”/
= ) > G 2k,32 :

s=(2t— 2)21:) j(mod ¢/2)

Because ¢/2 is odd, there are integers ¢/, p such that ¢’c/2 = 142"+ p. We shiftj > j+ p.
The term

b ,
Ys+2bu,j+,0:a+ﬂ<s+§>+2b'3(}+’o)

b c
= Ys,j+,3§ +2bBp = Yoj+3 c'b- -
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Thus,
Wb hO2aYedb b (5 )y w2,
§2kﬂ2 = 2kﬂ2 = CZkﬁﬂ §2v+1
where we have also used that bc = 8k, 2 | k, and 2"+1 | 8.
Thus far, we have shown that
T = gathees,.
We now prove that {Z‘ﬁi’d“ = —1, which holds if and only if
a+hcda=2" (mod2"*1h). (6.4)
By hypothesis we have that
% (et Bt omp) e prz,
2 2
which implies that
—a—hac' —h- g -¢'=0 (mod2"th). (6.5)
But since each of i, /2", and ¢’ are odd, (6.4) follows from (6.5). O

Resuming the proof of Theorem 2, we use Lemma 15 and (6.2) and apply [30, Proposition,
p- 98]. We find that

—aa - ah it _ = an ”i(%+”)2(%+%) _ - —nt/ B>

Sapp Ca 'k To)= Zgzb e = z:C(")e
n=0 n=0
i L(—2r,¢) (—t)’

a0 \ g2

= r! B

ast — 07, where L(—2r, ¢) is as given in Theorem 2. In particular, this also shows that

B’k
—aa a h\ _ n
ggﬁh o, B (z: %) =L(0,c)=— y; c(n)B; (W) .

The second (g-hypergeometric) expression for Cy,g <§, %) given in Theorem 2 follows
from (5.5) and Proposition 2.

7 Proof of Theorem 3

This proof extends an interesting observation given in [26] in the case ¢¥ = 1, and we
attribute the idea to Hikami and Lovejoy. (The two-variable F;(—w; q) was not defined in
[26].) First we note that by definition, it is not difficult to verify that F;(—¢g™;q!) € Z[q]
and U;(—¢q"; q) € Z|[q], in particular, that they are polynomials when specialized in this
way, as opposed to infinite sums as initially defined. The colored Jones polynomial for
T(o,2¢+1) is given in [26, (3.2)], and using its definition there, combined with the definition
of Fy(w; q) in (1.5), we see that for N € N, Fy(—gN; q) = IN(T(2,2¢41)s 9)- We also see from

[26, (3.22)] and the fact that U;(w;q) = U;(w™;q), that Uy (—qN;q) = ]N(T(Z%H);q),

Page 29 of 34
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where K* denotes the mirror of K. It is known that /N (K;q) = Jy(K*;¢~1). Hence,
F(—qN;q) = U;(—qN;4q 1) (and this is a polynomial in Z[g~1]). Letting ¢ > ¢!
proves part (1) of Theorem 3.

We now prove part (2). Since b|k, there is some b’ € N such that bb’ = k. Let N € N
satisfy N = ab'h (mod k), where hh = 1 (mod k). This implies that Ni = ab’ = ak/b
(mod k). Then by applying Theorem 3 (1) to such N, specializing g = ;“,f, and using the
conditions on N, we have that

Fo(—¢5 6™ = F(=¢N; o™ = Ui (=g gy = Un(—¢fs e,

as claimed.

8 Proof of Theorem 4
We first establish the following lemma.

Lemma 17 Let By = 42t + 1), and let ay) (1 <j < 4)beas in Sect. 1.2. We have that

4
Filzit) = Zl xseral@)C 0, (Bizs ). (8.1)
1:
Proof of Lemma 16 Consider the function
2
(

o0
Ti(w;q) ==Y xsrra(mg w3,
n=0

where xg; 14 is the periodic function (mod 8¢ + 4) defined by

1, n= ail), ozfl) (mod B¢),
xse+a(m) =3 -1, n= aiz), 0153) (mod By),

0, else.

We rewrite

4 2
) 2,
Twiq) =Y xserale)) Y. qwh
j=1 nsay) (mod B;)
n>0
4 )2 )
B (/") o 2 i
)N AR/ il () Byn
= ZXSHA(“? )g e w2 Zq 2 T
j=1 n>0

4
= Z X8t+4(05§1))cat(/))ﬂl (Bez; BeT).
=1

We now apply an earlier result due to Hikami on certain difference equations, namely [22,
Theorem 8]; combined with the above, the result follows. O

With Lemma 17, Theorem 4 follows from Theorem 1. Namely, by Theorem 1 (1), each
Ca(,) P (z; ) is a quantum Jacobi form of weight 1/2 and index —1/8, with respect to the
+ Pt
group Gg,. Therefore, each Ca(,-) p (Btz; Br) is a quantum Jacobi form of weight 1/2 and
¢ Bt

index —f;/8 = —t — %, with respect to the group K;. Note that the group, index, weight,
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and character are all independent of ay ), so that the sum in (8.1) transforms appropriately.
In the explicit expression given in (1.6), whlch is also ultimately deduced from Theorem

1 (1), we have used that A; = max1<]<4{o¢t }, and oy = m1n1<,<4{oct } As argued in the
proof of Theorem 3, F;(z; ) is defined on Qy, and from Lemma 10, we have that Q, is
closed under K; x (Z x Z). This proves (1) of Theorem 4. The proof of Theorem 4 (2)
follows similarly using Lemma 17 and Theorem 1 (2).

9 Proof of Theorem 5
Let a/b € Q be reduced, and let £;, 3 = lcm(b, B). Recall that 8, = 4(2¢ + 1). Define the

function

O (5:7) = Z”X&H )Czquﬂ‘

nez
where ¢ = e(t) and xg¢+4 is as defined in Sect. 8. We view ©; as a one-variable function of

t with all other parameters fixed. Then it is not difficult to show that ¢, G (%, 2} - ) isa

cusp form on I"(2£,, g,) of weight 3/2 with character ( b ) ( ) le (defined for a matrix
(‘é g) € I'(2€y,,), where pp is either 1 or i depending on whether D is 1 or 3 (mod 4)),
using results from [40]. (See also [20, Section 3.2] for a similar argument.) In turn, this
implies that ©; (b’ 7) transforms of weight 3/2 with character ( bﬁ‘) <2Cﬁ/£> °p ! with
respect to the group Xj, 5, C To(2¢% bp/B)- We now compute the Eichler integral of this
function. (See [8], and the narrative in Sect. 1.1.) We have that

Ou&1) =Y almg™,

n>0

where a(n) = /nxs;1a(V1) ({;ﬁ — §Z_baﬁ> if n is a square, and otherwise, a(n) = 0.
Here, we have used that yxg;14 is an even function. Thus, the Eichler integral of ®t(§; 7)is

where we have also used Lemma 17. The claimed weight 1/2 quantum modularity of this
function now follows by work of Bringmann—Rolen [8].

10 Proof of Theorem 6
Write p = 2m? for some m € N, and recall that 1 < s < p — 1. We may rewrite

n(z)ch[ME](r) = Zicﬂs,zp(z\/“pz 22} (10.1)

Observe: With g := 2p = 4m?*, we have that 4 | S and B > 0. Let a; := p — s and
az :=p+s. Thensincel <s < p —1wehavethat 0 < ¢;j < g forj € {1, 2}. Thus, the
conditions required to apply Theorem 1 hold.

The claimed transformation properties of these functions follow from Theorem 1,
noting the stated changes in index, group, and character (as well as the fact that
2./2p = 4m € N). That is, due to the change of variables in the arguments of the functions
Cq,p, the index changes from —1/8 to —1, the groups and characters change accordingly
as stated in parts (1) and (2) of the theorem, and the functions exhibit appropriate elliptic
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properties with respect to the sublattice /2p Z x Z. Moreover, it is not difficult to verify
using the fact that C, g is defined on Qg that the sum in (10.1) is defined on Q. The
set Qs is closed under M), x (/2p Z x Z) by Lemma 12.
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Q2 pl3
ro,ﬁ p13
Qsp P13

Theta functions
Dedekind n-function pl0
Jacobi theta function #(z; t) pl0
Partial Jacobi theta function Cy g p2
Partial Jacobi theta function H(w;q) p9
Theta function g4 5 p12
Theta function ©;(%;7) p31

Vertex algebra characters ch[M fs] p8
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