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Abstract

We establish three infinite families of quantum Jacobi forms, arising in the diverse areas
of number theory, topology, and mathematical physics, and unified by partial Jacobi
theta functions.

1 Introduction and statement of results
There has been a great deal of interest in the subject of quantum modular forms since
the time of their definition in 2010 by Zagier [41]. Loosely speaking, they are functions f
which exhibit modular transformation properties on Q, as opposed to H the upper half-
plane, up to the addition of nontrivial error functions. Such error functions must exhibit
appropriate analytic properties in R. (See [5,41] for a more precise definition.) In their
relatively short lifetime, extending from the foundation laid in [41], quantum modular
forms have seen applications to a variety of subjects including the celebrated Riemann
hypothesis [33], combinatorics [6,10,19,20,28], mock theta functions in number theory
[9,12,18,21,27,29], Hecke operators in number theory [31,32], topology [25,26,35], and
mathematical physics [7,14,36]. (A number of other references on the applications of
quantum modular forms also exist, some of which may be found in [5, Chapter 21].)
Jacobi forms, defined on C×H, are two-variable analogues to modular forms on H, and

their theory was largely developed by Eichler and Zagier in the 1980s [5,16]. Naturally
marrying the definition of a Jacobi formwith that of a quantummodular form, Bringmann
and the author defined the notion of a quantum Jacobi form in 2016 in [3] and provided
the first example of such a function, arising from combinatorics. Precisely, we have the
following definition.

Definition 1 A weight k ∈ 1
2Z and index m ∈ 1

2Z quantum Jacobi form is a complex-
valued function φ on Q × Q such that for all γ = ( a b

c d
) ∈ SL2(Z) and (λ,μ) ∈ Z × Z, the

functions hγ : Q × (Q \ γ −1(i∞)) → C and g(λ,μ) : Q × Q → C defined by

hγ (z; τ ) := φ(z; τ ) − ε−1
1 (γ )(cτ + d)−ke

−2π imcz2
cτ+d φ

(
z

cτ + d
;
aτ + b
cτ + d

)
,

g(λ,μ)(z; τ ) := φ(z; τ ) − ε−1
2 ((λ,μ))e2π im(λ2τ+2λz)φ(z + λτ + μ; τ ),

satisfy a “suitable” property of continuity or analyticity in a subset of R × R.
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Remarks (1) The complex numbers ε1(γ ) and ε2((λ,μ)) satisfy |ε1(γ )| = |ε2((λ,μ))| =
1; in particular, the ε1(γ ) are such as those appearing in the theory of half-integral
weight modular forms.

(2) We may modify the definition to allow modular transformations on appropriate
subgroups of SL2(Z). We may also restrict the domain to be a suitable subset of
Q × Q.

(2) The “suitable” property of continuity or analyticity required is intentionally left some-
what vague in order to mimic Zagier’s definition of a quantum modular form [41].

Since this definition, initial example, and application emerged in [3], only a small handful
of other quantum Jacobi forms have been found (see [1,2]), all of which are combinatorial.
The first infinite family of quantum Jacobi forms was established in [11], with applications
to mock theta functions.
Here, our results andmotivations aremultifaceted.We establish three new infinite fam-

ilies of quantum Jacobi forms, arising in a differentmanner from all quantum Jacobi forms
which are known thus far (in [1–3,11]). These infinite families of quantum Jacobi forms
arise in the diverse areas of number theory, topology, and mathematical physics, espe-
cially motivating our results. Our main results are explicitly stated in Theorem 1 (infinite
family and applications to number theory), Theorem 4 (infinite family and applications to
topology), and Theorem 6 (applications to mathematical physics). Sections 1.1, 1.2, and
1.3 below are devoted to developing and stating these and other results in the context of
number theory, topology, and mathematical physics, respectively. On the one hand, these
results lie in diverse areas; on the other hand, as the remaining narrative reveals, they are
unified by the partial Jacobi theta functions Cα,β (z; τ ) defined in (1.1).

1.1 An infinite family of quantum Jacobi forms

Throughout, unless otherwise stated, we let q = e(τ ), w = e(z), with e(u) := e2π iu. We
also let α,β ∈ N be such that 0 < α < β , 4|β and gcd(α,β) = 1. With these conventions,
we define the function

Cα,β (z; τ ) := q
α2
2β2 w

α
2β

∑

n≥0
q

n2
2

(
w

1
2 q

α
β

)n
. (1.1)

For fixed α,β , the function Cα,β (z; τ ) may be regarded as a Jacobi partial theta function;
historically, such functions have been important in number theory, in the theory of q-
hypergeometric series, in connection with mock theta functions, and most recently in
relation to quantum modular forms (when viewed as one-variable functions of τ with
z fixed). This last subject is of particular historic interest: In Ramanujan’s final letter to
Hardy in 1920, Ramanujan states that partial (or “false”) theta functions “do not enter into
mathematics as beautifully as the ordinary theta functions,” which are modular forms.
We now know how partial/false theta functions are intimately connected to the subject of
quantum modular forms and mock modular forms. (See [5,21] and references therein.)
In what follows, χC,D and ψB,C,D(α,β) are characters defined in (5.17) and (5.7), respec-

tively, with respect to matrices
( A B
C D

)
in appropriate subgroups of SL2(Z). Similarly,

(
C
D

)

denotes the Kronecker symbol on suchmatrices. The setQα,β ⊆ Q×Q and groupsGβ , Hβ

are defined in Sect. 3, and the theta functions gA,B are defined in (2.14).
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Our first result in Theorem 1 shows that {Cα,β}, indexed by pairs (α,β) ∈ N2 satisfying
the hypotheses above, forms an infinite family of quantum Jacobi forms.

Theorem 1 Assume the hypotheses above. The following are true.
(1) The function Cα,β (z; τ ) is a quantum Jacobi form on Qα,β of weight 1/2, index −1/8,
group Gβ , and character χC,D.
In particular, for any εα,β > 0 satisfying β−α

β2 < εα,β < 1
β
, if z ∈ ( − α

β2 , 1β − α
β2 − εα,β

)
,

we have that

Cα,β (z; τ ) − (−2βτ + 1)−
1
2 χ−1

2β ,1e
(

2βz2

8(−2βτ + 1)

)
Cα,β

(
z

−2βτ + 1
;

τ

−2βτ + 1

)

= −1
2

∫ ∞

0

∑
± g− α

2β + 3∓1
4 ,−z

(
2
β

+ it
)

√
−i( 2

β
+ it − 4τ )

dt, (1.2)

and the difference in (1.2) extends to a C∞ function on
(
R \

(
2
β

Z − α
β2 +

{
0, 1

β
, α

β2 , 1β ± εα,β
}))

×
(
R \

{
1
2β

})
.

(2) The function Cα,β (z;−τ ) is a mock Jacobi form of weight 1/2, index −1/8, group Hβ ,
and character ψB,C,D(α,β).

Remarks (1) Part (1) of Theorem 1 shows that {Cα,β (z; τ )}, when its members are viewed
as functions on Qα,β ⊆ Q × Q, forms an infinite family of quantum Jacobi forms. It also
holds that {Cα,β (z;−τ )} forms an infinite family of quantum Jacobi forms on Q′

α,β :=
{(

a
b ,

h
k

)
∈ Q × Q :

(
a
b ,

−h
k

)
∈ Qα,β

}
.

(2) Part (2) of Theorem 1 above shows that {Cα,β}, when its members are viewed as
functions in C × H−, where H± := {τ ∈ C | ± Im(τ ) > 0}, also forms an infinite family of
mock Jacobi forms. By mock Jacobi form, we mean a function which is the holomorphic
part of a nonholomorphic Jacobi form. (See [5,42].)
(3) Fix α,β , a, b. The quantum modular properties of Cα,β ( ab ; τ ) as a single-variable func-
tion of τ follow from work in [8,21], and the mock modular properties of Cα,β ( ab ;−τ )
as a single-variable function of τ follow from work in [21]. Thus, we have restricted our
attention to establishing the two-variable quantum Jacobi and mock Jacobi properties of
the Cα,β in Theorem 1.

Beforewe state our remaining theorems,wediscuss the so-calledEichler integral appear-
ing in (1.2). Historically, Eichler integrals have played important roles in number theory,
such as in the work of Eichler [15] and Shimura [39]. More recently, they have been
rather prominent in the growing world of quantummodular forms, as shown in [8,41] for
example. Example 4 from [41], taken from [30] and which incorporates Eichler integrals,
is particularly interesting, as it comes from topology and the theory of quantum invari-
ants of 3-manifolds. Developing this topic remains an active and current area of research,
bridging different areas of mathematics [36].
InTheorem2below,we give an asymptotic expansion forCα,β

(
a
b ,

h
k + it

π

)
, with ( ab ,

h
k ) ∈

Qα,β , as t → 0+, and we also give two different ways to explicitly evaluate Cα,β (z; τ ) on
the quantum Jacobi set Qα,β .
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Theorem 2 Assume the hypotheses above, and let
(
a
b ,

h
k

)
∈ Qα,β .We have the asymptotic

expansion

Cα,β

(
a
b
,
h
k

+ it
π

)
∼ ζ αa

2βb

∞∑

r=0

L(−2r, c)
r!

(−t
β2

)r

as t → 0+, where for r ∈ N0, L(−r, c) := − (kβ2)r

r + 1
∑kβ2

n=1
c(n)Br+1

(
n

kβ2

)
. The coeffi-

cients c(n) = cα,β ,a,b,h,k (n) are defined explicitly in (6.1), and Br(x) denotes the rth Bernoulli
polynomial.
Moreover, the function Cα,β may be evaluated explicitly on Qα,β in the following two

(different) ways:

Cα,β

(
a
b
,
h
k

)
= −ζ αa

2βb

kβ2
∑

n=1
c(n)B1

(
n

kβ2

)

= ζ αa
2βbζ

α2h
2β2k

M∑

n=0
ζ nh
2k ζ nhα

kβ ζ na
2b

(ζ a
2bζ

αh
kβ

ζ h
2k ; ζ

2h
k )n

(ζ a
2bζ

αh
kβ

ζ 3h
2k ; ζ

2h
k )n

,

whereM = Ma,b,h,k (α,β) is the smallest nonnegative integer such that a
2b+ h

k

(
α
β

+ 1
2 + 2M

)

∈ Z.

In Theorem 2 and throughout, for n ∈ N0, (a; q)n := (1 − a)(1 − aq)(1 − aq2) · · · (1 −
aqn−1) denotes the q-Pochhammer symbol.

Example 1 Let (α,β) = (1, 4). Then
(
a
b ,

h
k

)
= (−1

8 , 34
) ∈ Q1,4 (withM = 1). By Theorem

2, we have that

C1,4
(−1

8 , 34
) = −ζ−1

64

64∑

n=1
c(n)B1

( n
64

)
= −ζ 33

128 ≈ .0490677 − .998795i.

To calculate this value, we have used the fact that mod 64, the 16 nonzero coefficients c(n)
are:

ζ 3
128 c(1), c(21), c(33), c(53)

ζ−61
128 c(5), c(17), c(37), c(49)

ζ−29
128 c(9), c(13), c(41), c(45)

ζ 35
128 c(25), c(29), c(57), c(61)

On the other hand, by Theorem 2 we also have that

C1,4
(−1

8 , 34
) = ζ128

1∑

n=0
(−1)n

(
ζ2; ζ 3

2
)
n(

ζ 5
4 ; ζ

3
2
)
n

= ζ128

(
1 − 2

1 − i

)
≈ .0490677 − .998795i.

Example 2 Let (α,β) = (5, 24). Then
(
a
b ,

h
k

)
= ( 1

40 ,
−3
10

) ∈ Q5,24 (with M = 3). By
Theorem 2, we have that

C5,24
( 1
40 ,

−3
10

) = −ζ384

5760∑

n=1
c(n)B1

( n
5760

)
(1.3)

= ζ 379
1280(1 + ζ10 − ζ 2

10)

≈ −.0802333716 + 1.5412749973i,
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where we have calculated the 240 nonzero coefficients c(n) mod 5760 explicitly for this
evaluation, using (6.1).
On the other hand, by Theorem 2 we also have that

C5,24
( 1
40 ,

−3
10

) = ζ−1
256

3∑

n=0
ζ−n
5

(ζ−1
5 ; ζ−3

5 )n
(ζ−1
2 ; ζ−3

5 )n

= ζ−1
256

(
1 + ζ−1

5
2

(1 − ζ−1
5 ) + ζ−2

5
2

(1 − ζ−1
5 )(1 − ζ−4

5 )
(1 + ζ−3

5 )

+ ζ−3
5
2

(1 − ζ−1
5 )(1 − ζ−2

5 )(1 − ζ−4
5 )

(1 + ζ−1
5 )(1 + ζ−3

5 )

)

≈ −.0802333716 + 1.5412749973i. (1.4)

Without Theorem 2, it is unlikely that one would immediately expect that the two
different exponential-type sums in (1.3) and (1.4) are equal.

Remark By combining the simple closed formexpressions fromTheorem2withTheorem
1 (1), we immediately obtain simple closed form expressions in roots of unity for rational
evaluations of Eichler integrals of weight 3/2 modular forms. (Similar corollaries have
been explicitly written down in [18,20].)

1.2 Jones polynomials for torus knots as quantum Jacobi forms

Oneof thefirst fundamental examples of a quantummodular form is (a slightly normalized
version of) the function

F (q) =
∞∑

n=0
(q; q)n

when viewed as a function of x ∈ Q, with q = e2π ix. The function F was originally
studied by Zagier [41], and it was later shown to be dual to the combinatorial generating
function for strongly unimodal sequences U (−1; q) by Bryson et al. [10], in the sense that
F (ζ ) = U (−1; ζ−1), where ζ is a root of unity (equivalently, F (q) = U (−1; q−1) when
q = e2π ix, with x ∈ Q). The function U (−1; q) is not only a quantum modular form
by virtue of the duality and quantum modularity of F (q) just mentioned, but it is also
essentially a mock modular form by results established in [10].
This functionU (−1; q) arises as the special value atw = −1 of the two-variable strongly

unimodal sequence rank generating function

U (w; q) :=
∞∑

n=0
(−wq; q)n(−w−1q; q)nqn+1.

Work in [20] generalized the duality and quantum modular properties associated with
F (q) and U (−1; q) just mentioned; namely, in [20] we defined a two-variable function
F (w; q) with the properties that (1) F (1; q) = F (q), the Kontsevich–Zagier function, (2)
F (ζ a

b ; ζ ) = U (−ζ a
b ; ζ

−1) for any primitive kth root of unity ζ and any bth root of unity ζ a
b

where b | k , and (3) for fixed ζ a
b , F (ζ

a
b ; q) (and hence U (−ζ a

b ; q
−1) gives rise to a quantum

modular form when viewed as a one-variable function of x ∈ Q, with q = e2π ix.1

1We note that the same or similar notation for F and U appears in different sources (such as [6,10,20,26,41]) but
may in reality define slightly different normalizations of these functions; the reader should proceed with caution when
consulting the literature.
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In addition to [10,20], to date, there are three more works which establish mock and
quantum properties associated with the functions F andU . First, work of Bringmann et al.
[6] established an infinite family of quantum (and mock) modular forms from rank gen-
erating functions for unimodal sequences, the first member of which is the Kontsevich–
Zagier function F (q). Second, Bringmann and colleague [3] provided the first example of a
quantum Jacobi form by proving that the functionU (w; q), when viewed as a two-variable
function in (z, τ ), with w = e2π iz and q = e2π iτ , is (up to a slight normalization) such a
form.
The last work along these lines exists in another direction and has topological appli-

cations. Namely, Hikami in [22] defined an infinite family of q-hypergeometric series
{Ft (q)}t∈N, the members of which give rise to Jones polynomials for torus knots T2,2t+1.
(See also Hikami’s [23].) When t = 1, Hikami’s F1(q) = qF (q), where F (q) is the
Kontsevich–Zagier function. Hikami and Lovejoy established the duality associated with
Ft (q) and Ut (−1; q), where (as defined by the authors in [26])

Ut (w; q) := q−t
∞∑

kt≥···k1≥1
(−wq; q)kt−1(−w−1q; q)kt−1qkt

×
t−1∏

j=1
qk

2
j

[
kj+1 + kj − j + 2

∑j−1
�=1 k�

kj+1 − kj

]

q
.

Here,
[
m
n

]

q
= (q; q)m

(q; q)n(q; q)m−n

denotes the q-binomial coefficient. Analogous to the fact that F1(q) = qF (q), the function
Ut (w; q) satisfies U1(w; q) = q−1U (w; q). One of the main results in [26] shows that
Ft (ζ ) = Ut (−1; ζ−1), where ζ is a root of unity, generalizing the duality from [10] in
another direction. Playing a key role in [26] is the interesting observation that Ut (−1; q)
and Ft (q)may be interpreted as colored Jones polynomials, when specialized appropriately
at roots of unity.
Here, we generalize the previous duality and quantum properties associated with

Ut (w; q) and Ft (q) by first defining, for t ∈ N, a two-variable analogue to Ft (q), namely

Ft (w; q) := qt (−w)t
∞∑

kt≥···≥k1≥0
(−w)kt (−wq; q)kt

t−1∏

j=1
qkj(kj+1)(−w)2kj

[
kj+1
kj

]

q
. (1.5)

This functionfirst appeared inworkofHikami [22,24].Wepoint out thatFt (−1; q) = Ft (q)
(and hence F1(−1; q) = qF (q)). In Theorem 3 below, we establish the duality between
Ft (w; q−1) andUt (w; q) both as a polynomial in q for fixed w, and at suitable pairs of roots
of unity (w; q) = (ζ a

b ; ζ
h
k ), generalizing the duality established in [10,20,26]. Specifically,

we obtain [26, Theorem 1.2] as a special case of Theorem 3 part (2) belowwhen a = b = 1,
h = 1, k = N , and we obtain [20, Corollary 1.3] when t = 1.

Theorem 3 Let t ∈ N. The following are true.
(1) For any N ∈ N, we have the polynomial identity

Ft (−qN ; q−1) = Ut (−qN ; q) ∈ Z[q].
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(2) Let h, a ∈ Z, and k, b ∈ N, be such that gcd(h, k) = gcd(a, b) = 1, and such that b|k.
Then we have that

Ft (−ζ a
b ; ζ

−h
k ) = Ut (−ζ a

b ; ζ
h
k ).

The proof of Theorem 3 in Sect. 7, which extends original work and observations of
Hikami andLovejoy [26], reveals that the polynomials inTheorem3 (1)may be interpreted
as N -colored Jones polynomials for torus knots T2,2t+1 and their mirrors. The example
below provides an illustration.

Example We have from Theorem 3 (1) with t = 3 and N = 4, after simplifying, that

q−9F3(−q4 , q−1) = q−9U3(−q4 , q)

= 1+q4−q7+q8−q11+q12 −q15+q16−q19+q20−q22−q23+q24

−q26+q28−q30+q32−q34+ q36+q37−q38+q41−q42.

This polynomial may be viewed as q−9 times the 4-colored Jones polynomial for the torus
knot T(2,7) (in the variable q−1). That is, it equals q−9J4(T(2,7); q−1). (See Sect. 7.)
Now let (h, k) = (5, 12) and (a, b) = (2, 3). By Theorem 3 (2), or equivalently, by its

proof, combined with the above when N = 4, we also have (after simplifying) that

iF3(−ζ 2
3 ; ζ

−5
12 ) = iU3(−ζ 2

3 ; ζ
5
12)

= 6 − i − 2ζ−1
12 + ζ12 − 2ζ−1

6 − 2ζ6 + 3ζ−1
3 + 3ζ3 − 2ζ−5

12 + ζ 5
12

= 2i + 1.

Next, we turn to establishing the quantum Jacobi and mock Jacobi properties of the
functions Ft (w; q) and Ut (w; q). We define slight normalizations of the functions Ft (w; q)
and Ut (w; q) as follows:

Ft (z; τ ) := (1 − w)q
(2t−1)2
16t+8 −tw− 1

2 Ft (−w; q),

Ut (z; τ ) := (1 − w)q
(2t−1)2
16t+8 −tw− 1

2Ut (−w; q−1).

Here and throughout, we let

βt := 4(2t + 1), α
(1)
t = αt := 2t − 1, α

(2)
t := 2t + 3,

α
(3)
t := 6t + 1, α

(4)
t = At := 6t + 5.

The periodic function χ8t+4 appearing in Theorem 4 is as defined in Sect. 8. The subset
Q2 ⊆ Q × Q and groups Kt , Lt are defined in Sect. 3.

Theorem 4 Assume the notation and hypotheses above. The following are true.

(1) The function Ft (z; τ ) = Ut (z; τ ) is a quantum Jacobi form on Q2 of weight 1/2, index
−t − 1

2 , group Kt , and character χC/βt ,D.
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In particular, for any εt > 0 satisfying βt−αt
β2
t

< εt < 1
βt
, if z ∈

(
− αt

β3
t
, 1

β2
t

− At
β3
t

− εt
βt

)
,

we have that

Ft (z; τ ) − (−2β2
t τ + 1)−

1
2 χ−1

2βt ,1

× e
(

2β3
t z2

8(−2β2
t τ + 1)

)
Ft

(
z

−2β2
t τ + 1

;
τ

−2β2
t τ + 1

)

= −1
2

∫ ∞

0

∑4

j=1
χ8t+4(α

(j)
t )

∑

± g
− α

(j)
t

2βt
+ 3∓1

4 ,−βt z

(
2
βt

+ is
)

√
−i( 2

βt
+ is − 4βtτ )

ds, (1.6)

and the difference in (1.6) extends to a C∞ function on
⎛

⎝R \
4⋃

j=1

(
2
β2
t
Z − α

(j)
t

β3
t

+ {0, 1
β2
t
, α

(j)
t

β3
t
, 1

β2
t

± εt
βt

}
)
⎞

⎠ ×
(
R \ { 1

2β2
t
}
)
.

(2) The function Ft (z;−τ ) is a mock Jacobi form of weight 1/2, index −t − 1
2 , group Lt ,

and character
(
C
D

)
.

Remarks (1) Theorem 4 combined with the discussion prior (see also Sect. 7) brings the
N -colored Jones polynomials for the torus knotsT(2,2t+1) and theirmirrors into the theory
of quantum Jacobi forms.

(2) Asymptotics and various explicit evaluations of the functions Ft and Ut follow readily
from Theorem 2, the proof of Theorem 3, the proof of Theorem 4, and the definitions of
Ft and Ut .

Theorem 5 below establishes the quantummodular properties associated withFt ( ab , τ ) =
Ut ( ab ; τ ) when viewed as a single-variable function of τ . We state this result explicitly for
completeness, extending results from [20] (which pertain to the case t = 1). Below, ρD is
1 or i, depending on whether D is 1 or 3 (mod 4), and �b,β := lcm(b,β). The group Xb,βt
is defined in Sect. 3.

Theorem 5 We have that Ft ( ab ; τ ) − Ft (− a
b ; τ ) = Ut ( ab ; τ ) − Ut (− a

b ; τ ) is a quantum
modular form on Q of weight 1/2, group Xb,βt , and character

(
�b,βt
D

) ( 2Cβt/�b,βt
D

)
ρ−1
D . The

errors to modularity on Q extend to real analytic functions in R \ {−D
C }.

1.3 Applications to mathematical physics

The (1, p)-singlet vertex algebra admits atypical (regularized) irreducible characters

ch[Miz
1,s](τ ) = 1

η(τ )
∑

n≥0

(
w

1√
2p (2pn−s+p)q

1
4p (2pn−s+p)2 − w

1√
2p (2pn+s+p)q

1
4p (2pn+s+p)2

)
,

where 1 ≤ s ≤ p − 1. As originally studied, these characters did not include the complex
parameter z. However, motivated by the Verlinde formula in conformal field theory, these
original characters have since been regularized to include the new complex parameter z,
which can be viewed in terms of theU (1)-charge in physics.Withinmathematical physics
and number theory, these functions have recently been studied in [4,13,14]. Understand-
ing the modular properties of such functions in general has been of interest, most basi-
cally referencing Monstrous Moonshine, mock modular Moonshine, and similar results
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attached to Lie superalgebras. (See [5, Chapter 20] and references therein.) Here we estab-
lish the quantum Jacobi and mock Jacobi properties of these functions, when viewed as
two-variable functions in (z, τ ). The subsetQs,p ⊆ Q × Q and groupsMp,Wp are defined
in Sect. 3.

Theorem 6 Let p = 2m2 for some m ∈ N. The following are true.
(1) The atypical characters η(τ )ch[Miz

1,s](τ ) are quantum Jacobi forms on Qs,p of weight
1/2, index −1, group Mp, and character

(
C
D

)
.

(2) The functions η(τ )ch[Miz
1,s](−τ ) are mock Jacobi forms of weight 1/2, index −1, group

Wp, and character ζ−Bs2
8p (−1)

Bs
2

(
C
D

)
.

Remarks (1) Asymptotics and explicit evaluations of these characters at rationals follow
readily from Theorem 2 and the proof of Theorem 6. Such expressions are of interest in
representation theory and mathematical physics as related to the quantum dimension of
the characters. (See [4,13,14].)
(2) As remarked after Theorem 1, the quantummodular properties of these functions for
fixed z as a one-variable function of τ follow from work in [8].

1.3.1 The remainder of the paper is organized as follows. In Sect. 2, we define certain func-
tions required in the proofs of our main results and give some of their known properties.
In Sect. 3, we define and study groups and sets appearing in the statements of our main
results above. In Sect. 4, we explicitly establish the mock Jacobi properties of a certain
function, as well as some of its related nonholomorphic transformations. Each of the six
Sects. 5–10 are devoted to proving one of the six Theorems 1–6. For convenience, a partial
index of the main notations and definitions has been included, and this appears toward
the end of the paper before the references.

2 Preliminaries
In this section, we collect certain functions which are used in the proofs of our main
results, and state some of their known identities and transformation properties.

2.1 q-series identities

First, we define the partial Jacobi theta function H by

H (w; q) :=
∞∑

n=0
q

(n+ 1
2 )

2
2 w−n.

Next, we define a q-hypergeometric function K , which may be viewed as a universal
mock theta function, defined in [34] by

K (w; q) :=
∞∑

n=0

(−1)nqn2 (q; q2)n
(wq2; q2)n(w−1q2; q2)n

.

In Lemma 1 below, we relate2 H and K to Fine’s q-hypergeometric series [17]

F (A, B, x; q) :=
∞∑

n=0

(Aq; q)nxn

(Bq; q)n
.

2Note that the function H defined here is not the same as the function with the same name in [34].
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Lemma 1 We have that

H (w; q) = q
1
8 F (w−1q−1, w−1, w−1q; q2) (2.1)

K (wq; q)(1 − w−1q−1)−1 = F (w,wq, w−1q−1; q2). (2.2)

Lemma 1 follows from known identities: (2.1) is a slight generalization of [21, Eq. (1.11)],
see [38], and (2.2) is [21, Eq. (2.6)].
We require the following identity, which follows from results in [34], combined with

the definition of the Appell function A2 given in Sect. 2.3.

Lemma 2 We have that

K (w; q) = (w−1 − 1)
(q; q)∞
(q2; q2)2∞

A2 (z,−τ ; 2τ ) . (2.3)

2.2 Modular and Jacobi forms

Wemake use of the weight 1/2modular form η, and the weight 1/2 Jacobi form ϑ , defined
for τ ∈ H and z ∈ C by

η(τ ) := q
1
24

∞∏

n=1
(1 − qn), ϑ(z; τ ) :=

∑

n∈Z+ 1
2

eπ in2τ+2π in(z+ 1
2 ). (2.4)

These functions satisfy the transformation properties given in Lemmas 3 and 4 below [37].

Lemma 3 For γ = ( A B
C D

) ∈ SL2(Z) and τ ∈ H,

η(γ τ ) = ε(γ )(Cτ + D)
1
2 η(τ ),

where for C > 0,

ε(γ ) =
⎧
⎨

⎩

1√
i

(
D
C

)
i(1−C)/2eπ i(BD(1−C2)+C(A+D))/12 if C is odd,

1√
i

(
C
D

)
eπ iD/4eπ i(AC(1−D2)+D(B−C))/12 if D is odd.

(2.5)

Lemma 4 For λ,μ ∈ Z, γ = ( A B
C D

) ∈ SL2(Z), and (z, τ ) ∈ C × H,

(i) ϑ (z + λτ + μ; τ ) = (−1)λ+μq− λ2
2 e−2π iλzϑ(z; τ ),

(ii) ϑ

(
z

Cτ + D
; γ τ

)
= ε3(γ )(Cτ + D)

1
2 e

π iCz2
Cτ+D ϑ(z; τ ),

(iii) ϑ(z; τ ) = −iq
1
8w− 1

2

∞∏

n=1
(1 − qn)(1 − wqn−1)(1 − w−1qn).

Using η and ϑ we define the functions

N (τ ) := η(τ )
η2(2τ )

, and T (τ ) := ϑ(−τ + 1
2 ; 4τ ).

A short calculation using the definition of η in (2.4) as well as Lemma 4 (iii) reveals that

N (τ )T (τ ) = −q− 1
8 , (2.6)

a fact which we will use later. We also require the following lemma which gives some of
the modular transformation properties of N and T .
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Lemma 5 Let γ = ( A B
C D

) ∈ SL2(Z) with C even, and define γ̃ :=
(

A 2B
C/2 D

)
. We have that

N (γ τ ) = (cτ + d)−
1
2 ε(γ )ε−2(γ̃ )N (τ ). (2.7)

Moreover, for β ∈ N with 4 | β , we have that

T
(

τ

2βτ + 1

)
= ε3

(( 1 0
β
2 1

))
(2βτ + 1)

1
2 e

π iβ
8 e

π iβτ2
2(2βτ+1)T (τ ). (2.8)

Proof The proof of (2.7) follows immediately from Lemma 3. To prove (2.8), we employ
Lemma 4 (ii) and find that

T
(

τ

2βτ + 1

)
= ε3

(( 1 0
β
2 1

))
(2βτ + 1)

1
2 e

π iβ(−τ+ 1
2 (2βτ+1))2

2(2βτ+1) ϑ

(
−τ + 1

2
+ βτ ; 4τ

)
.

Using Lemma 4 (i), this is

ε3
(( 1 0

β
2 1

))
(2βτ + 1)

1
2 e

π iβ(−τ+ 1
2 (2βτ+1))2

2(2βτ+1) q− β2
8 + β

4 T (τ ).

The result in (2.8) now follows after a simplification. 
�

2.3 The level 2 Appell function

After Zwegers (see [5]), we define the level 2 Appell function for z1, z2 ∈ C, τ ∈ H by

A2(z1, z2; τ ) := ξ1
∑

n∈Z

ξn2 qn(n+1)

1 − ξ1qn
, (2.9)

where ξj = e(zj), j ∈ {1, 2}. This function may be decomposed as

A2(z1, z2; τ ) = ϑ(z2 + 1
2 ; 2τ )μ(2z1, z2 + 1

2 ; 2τ )

+ ξ1ϑ(z2 + τ + 1
2 ; 2τ )μ(2z1, z2 + τ + 1

2 ; 2τ ), (2.10)

where

μ(z1, z2; τ ) := ξ
1
2
1

ϑ(z2; τ )
∑

n∈Z

(−1)nξn2 q
n(n+1)

2

1 − ξ1qn
.

The completed level 2 Appell functions Â2 are defined by

Â2(z1, z2; τ )

:= A2(z1, z2; τ ) + i
2

1∑

j=0
e2π ijz1ϑ

(
z2 + jτ + 1

2
; 2τ

)
R

(
2z1 − z2 − jτ − 1

2
; 2τ

)
,

(2.11)

where the nonholomorphic function R is defined by

R(z; τ ) :=
∑

ν∈ 1
2+Z

{
sgn(ν) − E

(
(ν + λ)

√
2y

)}
(−1)ν− 1

2 e−π iν2τ−2π iνz , (2.12)

with y := Im(τ ), λ := Im(z)
Im(τ ) and

E(z) := 2
∫ z

0
e−πu2du.

We have the following transformation properties of Â2 [5]:
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Lemma 6 With hypotheses as above, for n1, n2, m1, m2 ∈ Z, γ = ( a b
c d

) ∈ SL2(Z), the
functions Â2 satisfy the following transformation properties:

(i) Â2(−z1,−z2; τ ) = −Â2(z1, z2; τ ),
(ii) Â2(z1 + n1τ + m1, z2 + n2τ + m2; τ ) = ξ

2n1−n2
1 ξ

−n1
2 qn21−n1n2Â2(z1, z2; τ ),

(iii) Â2
(

z1
cτ+d ,

z2
cτ+d ; γ τ

)
= (cτ + d)e

π ic
cτ+d (−2z21+2z1z2)Â2(z1, z2; τ ).

From [42, Propositions 1.9, 1.10], we have the following transformation properties of R.

Lemma 7 With hypotheses as above, R satisfies the following transformation properties:

(i) R(z; τ + 1) = e− π i
4 R(z; τ ),

(ii)
1√−iτ

e
π iz2

τ R
(
z
τ
;−1

τ

)
+ R(z; τ ) = h(z; τ ),

(iii) R(z; τ ) = R(−z; τ ),
(iv) R(z; τ ) + e−2π iz−π iτR(z + τ ; τ ) = 2e−π iz−π iτ/4 ,
(v) R(z + 1; τ ) = −R(z; τ ).

As in Lemma 7 (ii), for z ∈ C, τ ∈ H, the Mordell integral h is given by

h(z; τ ) :=
∫

R

eπ iτu2−2πzu

cosh(πu)
du. (2.13)

Under certain conditions, h can be rewritten using the weight 3/2 theta functions gA,B
(see Lemma 8), defined for A, B ∈ R and τ ∈ H by

gA,B(τ ) :=
∑

ν∈A+Z

νeπ iν2τ+2π iνB. (2.14)

The functions gA,B transform as follows [40,42].

Lemma 8 With hypotheses as above, the functions gA,B satisfy:

(i) gA+1,B(τ ) = gA,B(τ ),
(ii) gA,B+1(τ ) = e2π iAgA,B(τ ),
(iii) gA,B(τ + 1) = e−π iA(A+1)gA,A+B+ 1

2
(τ ),

(iv) gA,B
(− 1

τ

) = ie2π iAB(−iτ )
3
2 gB,−A(τ ),

(v) g−A,−B(τ ) = −gA,B(τ ).

The following result relates the functions h and gA,B [42].

Lemma 9 For A, B ∈ (− 1
2 ,

1
2 ),

∫ i∞

0

gA+ 1
2 ,B+ 1

2
(z)

√−i(z + τ )
dz = −e−π iA2τ+2π iA

(
B+ 1

2

)

h(Aτ − B; τ ).

3 Groups and sets
Here we define a number of subgroups of SL2(Z) and study their Jacobi action on various
subsets of Q×Q. We use the notation 〈S〉 to denote the group generated by the set S. The
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parameters β , t,βt , p (and b, as occurring in a/b ∈ Q), are as in the previous section, and
�b,β := lcm(b,β). We specifically recall that p = 2r2 for some r ∈ N. We define

Hβ := {( A B
C D

) ∈ SL2(Z) : A,D ≡ 1 (mod 2β), B, C ≡ 0 (mod β)
}
,

Lt :=
{( A B

C D
) ∈ SL2(Z) : A,D ≡ 1 (mod 2βt ), B ≡ 0 (mod 2βt ), C ≡ 0 (mod β2

t )
}
,

Wp := {( A B
C D

) ∈ SL2(Z) : A,D ≡ 1 (mod 4p), B ≡ 0 (mod 2), C ≡ 0 (mod 2p2)
}
,

Xb,β :=
{ ( A B

C D
) ∈ SL2(Z) : A,D ≡ 1 (mod 2�b,β ), B ≡ 0 (mod 2β),

C ≡ 0 (mod 2�2b,β/β)
}
,

Gβ :=
〈( 1 0

2β 1
)
,
(
1 2β2

0 1

)〉
, Kt :=

〈(
1 0

2β2
t 1

)
,
( 1 2βt
0 1

)〉
, Mp :=

〈(
1 0

4p2 1

)
,
( 1 8p
0 1

)〉
.

Next, we define certain subgroups ofQ×Q onwhich the above groups act. Throughout,
we call a fraction r/s ∈ Q reduced if gcd(r, s) = 1, with the additional assumption that if
r/s < 0 then r < 0. (That is, we always take s ∈ N.) With this, we define the following
subsets of Q × Q (as usual, 0 < α < β , 4|β , and gcd(α,β) = 1):

Q2 :=
{(

a
b ,

h
k

)
∈ Q × Q : a

b and h
k are reduced, and b | k

}
,

Qα,β :=

⎧
⎪⎪⎨

⎪⎪⎩

(
a
b ,

h
k

)
∈ Q × Q :

a
b and h

k are reduced, k is even, ∃ m ∈ Z s.t.
a
2b + h

k

(
α
β

+ 1
2 + 2m

)
∈ Z, and

if k ≡ 0 (mod 2β), then h �≡ ±1 (mod 4β3)

⎫
⎪⎪⎬

⎪⎪⎭
,

Qs,p :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
a
b ,

h
k

)
∈ Q × Q :

a
b and h

k are reduced, � odd integer n
s.t. phn ≡ 0 (mod k), and ∃ m∓ ∈ Z s.t.
a
√
2p
b + ph

k

(
p∓s
2p + 1

2 + 2m∓
)

∈ Z, and
if k ≡ 0 (mod 4p2), then h �≡ ±1 (mod 32p3)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We refer the reader to Lemma 15 for more onQα,β , and note thatQs,p is defined similarly.
See also Example 1 and Example 2 in Sect. 1.1.

Lemma 10 The set Q2 is closed under the Jacobi action of Kt � (Z × Z).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of Kt . Let
( ab ;

h
k ) ∈ Kt . We have the Jacobi action
(

1 0
2β2

t 1

)
· ( ab , hk ) =

(
a′
b′ , h

′
k ′

)
,

where b̃b = k , k ′ := 2β2
2h + k , h′ := h, and we have written ãb = ga′ and 2β2

t h + k = gb′

where g := gcd(ãb, 2β2
t h + k), and a′, b′ ∈ Z with gcd(a′, b′) = 1. Since gcd(h, k) = 1, we

have that gcd(h′, k ′) = 1. We also have that b′ | k ′ by definition. If b′ > 0 and k ′ > 0,
the proof is complete. Otherwise, we first note that neither can equal zero. (If b′ = 0 then
k ′ = 0, which would imply k = −2β2

t h, e.g., gcd(h, k) > 1, a contradiction.) If either
b′ or k ′ is negative, we rewrite a′/b′ = −a′/|b′| or h′/k ′ = −h′/|k ′|, and by the above
discussion, all other conditions required by the definition of Qα,β are satisfied.
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We also have that
( 1 2βt
0 1

) · ( ab , hk ) =
(
a
b ,

h+2βt k
k

)
,

and it is easily verified that this pair is in Q2.
2. Jacobi elliptic action Let

(
a
b ,

h
k

)
∈ Q2, and let (λ,μ) ∈ (Z × Z). We seek to show that

a
b + λ h

k + μ can be expressed as a fraction a′/b′ such that
(
a′
b′ , hk

)
∈ Q2. To show this, we

let g := gcd(ak/b + λh + μk, k), and let a′, b′ be such that a′g = ak/b + λh + μk and
b′g = k . Then a

b +λ h
k +μ = a′/b′, gcd(a′, b′) = 1 and b′ | k . Finally, since k > 0, we have

that b′ > 0. 
�
Lemma 11 Qα,β is closed under the Jacobi action of Gβ � (4Z × 2Z).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of Gβ . Let
( ab ;

h
k ) ∈ Qα,β . We have the Jacobi action
( 1 0
2β 1

) ·
(
a
b ,

h
k

)
=

(
a′
b′ , h

′
k ′

)

where a′g = ak, b(2βh+k) = b′g with g := gcd(ak, b(2βh+k), h′ := h, and k ′ := 2βh+k .
Then it follows that gcd(a′, b′) = gcd(h′, k ′) = 1, and k ′ is even. Now if k ′ ≡ 0 (mod 2β),
then we have that k ≡ 0 (mod 2β), and so h �≡ ±1 (mod 4β3) Since h′ = h, we also have
that h′ �≡ ±1 (mod 4β3).
We first assume b′ > 0 and k ′ > 0, in which case, a′/b′ and h′/k ′ are reduced. Note that

b′ �= 0 and k ′ �= 0, for otherwise, either would imply that h/k = −1/(2β), a contradiction.
Because ( ab ,

h
k ) ∈ Qα,β , there exists some integerm such that a

2b + h
k

(
α
β

+ 1
2 + 2m

)
= x ∈

Z. Let � = m + βx. Then

a′

2b′ + h′

k ′

(
α

β
+ 1

2
+ 2�

)
= k

k ′

(
a
2b

+ h
k

(
α

β
+ 1

2
+ 2m + 2βx

))

= kx
k ′ + 2βxh

k ′
= x,

which is an integer. In this case, the proof is complete.
If either of b′ or k ′ is negative, then both are negative. In this case, we rewrite a′/b′ =

−a′/|b′| and h′/k ′ = −h′/|k ′|; all required hypotheses in the definition of Qα,β are met
using the above arguments, and the proof is complete in this case as well.
As for the second generator, we have the Jacobi action

(
1 2β2

0 1

)
·
(
a
b ,

h
k

)
=

(
a′
b′ , h

′
k ′

)
,

where a′ := a, b′ := b, h′ := 2β2k + h and k ′ := k . Then it is clear that gcd(a′, b′) =
gcd(h′, k ′) = 1, k ′ is even, and b′ > 0 and k ′ > 0. We takem and x as above, and find after
a short calculation that

a′

2b′ + h′

k ′

(
α

β
+ 1

2
+ 2m

)
= x + 2β2

(
α

β
+ 1

2
+ 2m

)
,

which is an integer. Finally, if k ′ ≡ 0 (mod 2β), then k ≡ 0 (mod 2β), which means
h �≡ ±1 (mod 4β3). Using the definition of h′ (and the fact that k ≡ 0 (mod 2β)), we
have that h′ ≡ h (mod 4β3), hence h′ �≡ ±1 (mod 4β3). This completes the proof.
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2. Jacobi elliptic action Let
(
a
b ,

h
k

)
∈ Qα,β , and let (λ,μ) ∈ (4Z × 2Z). We seek to show

that a
b + λ h

k + μ can be expressed as a fraction a′/b′ such that
(
a′
b′ , hk

)
∈ Qα,β . First, we

write a/b+λh/k +μ = a′/b′ where gcd(a′, b′) = 1, and b′ > 0. (It is not difficult to check
that b′ �= 0.) By hypothesis, there is somem ∈ Z such that a

2b + h
k

(
α
β

+ 1
2 + 2m

)
∈ Z. Let

� = m − λ/4 (which is an integer, since 4 | λ). Then

a′

2b′ + h
k

(
α

β
+ 1

2
+ 2�

)
= a

2b
+ h

k

(
α

β
+ 1

2
+ 2m

)
+ μ

2

is an integer (also using that 2 | μ). 
�

Lemma 12 Qs,p is closed under the Jacobi action of Mp � (
√
2p Z × Z).

Proof We divide the proof into two parts.
1. Jacobi modular action It suffices to establish closure under the generators of Mp. Let
( ab ;

h
k ) ∈ Qs,p. We have the Jacobi action
(

1 0
4p2 1

)
·
(
a
b ,

h
k

)
=

(
a′
b′ , h

′
k ′

)
,

where a′g = ak, b(4p2h + k) = b′g with g := gcd(ak, b(4p2h + k), h′ := h, and k ′ :=
4p2h + k . Then it follows that gcd(a′, b′) = gcd(h′, k ′) = 1. Suppose for contradiction’s
sake that there is some odd number n such that ph′n ≡ 0 (mod k ′). Then there is some
integer c such that phn = c(4p2h+ k), equivalently, ph(n− 4pc) = ck . But since n is odd,
n− 4pc is odd. Hence, we contradict the original assumption that there is no odd integer
n′ such that phn′ ≡ 0 (mod k).
We first assume b′ > 0 and k ′ > 0, in which case, a′/b′ and h′/k ′ are reduced. Observe

that if either of b′ or k ′ is equal to zero, then −4p2h = k , so that gcd(h, k) > 1, a
contradiction. Because ( ab ,

h
k ) ∈ Qs,p, there exist some integers m∓ such that a

√
2p
b +

ph
k

(
p∓s
2p + 1

2 + 2m∓
)

= x∓ ∈ Z. Let �∓ = m∓ + 2px∓. Then

a′√2p
b′ + ph′

k ′

(
p ∓ s
sp

+ 1
2

+ 2�∓
)

= k
k ′

(
a
√
2p
b

+ ph
k

(
p ∓ s
sp

+ 1
2

+ 2m∓ + 4px∓
))

= k
k ′ x∓ + ph

k ′ 4px∓

= x∓,

which are integers.
Now if k ′ ≡ 0 (mod 4p2), then k ≡ 0 (mod 4p2), which means h, and hence h′, is not

equivalent to ±1 (mod 32p3).
If instead either of b′ or k ′ is negative, then both are, and we rewrite a′/b′ = −a′/|b′|

and h′/k ′ = −h′/|k ′|; all other conditions required by the definition of Qs,p are satisfied
as argued above.
As for the second generator, we have the Jacobi action

( 1 8p
0 1

) ·
(
a
b ,

h
k

)
=

(
a′
b′ , h

′
k ′

)
,

where a′ := a, b′ := b, h′ := 8pk + h and k ′ := k . Then it is clear that gcd(a′, b′) =
gcd(h′, k ′) = 1 and k ′ satisfies the required divisibility condition.We also have that b′ > 0
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and k ′ > 0. We now takem∓ and x∓ as above. Then after a short calculation we find that

a′√2p
b′ + ph′

k ′

(
p ∓ s
2p

+ 1
2

+ 2m∓
)

= x∓ + 8p2
(
p ∓ s
2p

+ 1
2

+ 2m∓
)
,

which are integers.
Finally, if k ′ ≡ 0 (mod 4p2), then k ≡ 0 (mod 4p2), hence h �≡ ±1 (mod 32p3). Using

the definition of h′ and the fact that k ≡ 0 (mod 4p2), we have that h′ ≡ h (mod 32p3),
and hence h′ �≡ ±1 (mod 32p3).
2. Jacobi elliptic action Let

(
a
b ,

h
k

)
∈ Qs,p, and let (λ,μ) ∈ (

√
2p Z × Z). We seek to show

that a
b +λ h

k +μ can be expressed as a fraction a′/b′ such that
(
a′
b′ , hk

)
∈ Qs,p. First, wewrite

a/b+ λh/k + μ = a′/b′ where gcd(a′, b′) = 1, and b′ > 0. (It is not difficult to check that
b′ �= 0.) Byhypothesis, there are somem∓ ∈ Z such that a

√
2p
b + ph

k

(
p∓s
2p + 1

2 + 2m∓
)

∈ Z.
Let �∓ = m∓ − λ/

√
2p (which are integers, since

√
2p | λ). Then

a′√2p
b′ + ph

k

(
p ∓ s
2p

+ 1
2

+ 2�∓
)

= a
√
2p
b

+ ph
k

(
p ∓ s
2p

+ 1
2

+ 2m∓
)

+ μ
√
2p,

which are integers (also using that
√
2p ∈ Z). 
�

4 Amock Jacobi form
In this section, building from functions and results from the previous section, we explicitly
establish the mock Jacobi properties of a certain function in Sect. 4.1, as well as a related
nonholomorphic transformation in Sect. 4.2. We later use the results established in this
section toward the proofs of our main theorems from Sects. 1.1–1.3.

4.1 Modularity and an Appell sum

For 0 < α < β with gcd(α,β) = 1 and 4 | β , we define

Bα,β (z; τ ) := e
(

αz
2β

)
q

−4α2+β2
8β2 A2

(−z
2

+ α

β
τ − τ

2
,−τ ; 2τ

)
,

and

B̂α,β (z; τ ) := e
(

αz
2β

)
q

−4α2+β2
8β2 Â2

(−z
2

+ α

β
τ − τ

2
,−τ ; 2τ

)
.

Proposition 1 With notation and hypotheses as above, the function B̂α,β (z; τ ) is a non-
holomorphic Jacobi form of weight 1, index −1/8, group Hβ , and character ζAB

8 ζ−ABα2

2β2 ,
defined for matrices

( A B
C D

) ∈ Hβ .

Proof of Proposition 1 We let γ = ( A B
C D

) ∈ Hβ . For ease of notation, let u = uα,β ,z,τ =
−z
2 + α

β
τ − τ

2 and v = vτ = −τ . Then

B̂α,β

(
z

Cτ + D
; γ τ

)

= e
(

αz
2β(Cτ + D)

)
e
(
(−4α2 + β2)(Aτ + B)

8β2(Cτ + D)

)

× Â2

(
ũ

Cτ + D
,

ṽ
Cτ + D

;
2Aτ + 2B
Cτ + D

)
,
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where ũ = ũα,β ,z,τ ,γ := − z
2 +

(
α
β

− 1
2

)
(Aτ +B), and ṽ = ṽτ ,γ := −(Aτ +B).Using Lemma

6, this equals

e
(

αz
2β(Cτ + D)

)
e
(
(−4α2 + β2)(Aτ + B)

8β2(Cτ + D)

)
f̃γ (̃u, ṽ)Â2 (̃u, ṽ; 2τ ) , (4.1)

where f̃γ (̃u, ṽ) := (Cτ + D)e
(

C(−ũ2+ũ̃v)
2(Cτ+D)

)
. The prescribed congruence conditions on γ

imply that

n1 := α(A − 1)
2β

− A − 1
4

, m1 := B
(

α

β
− 1

2

)
, n2 := 1 − A

2
, m2 := −B

are all integers. Thus, we may apply Lemma 6 and rewrite (4.1) as

e
(

αz
2β(Cτ + D)

)
e
(
(−4α2 + β2)(Aτ + B)

8β2(Cτ + D)

)
f̃γ (̃u, ṽ)

× e
((−z

2
+ α

β
τ − τ

2

)
(2n1 − n2)

)
q2n

2
1−2n1n2+n1 Â2 (u, v; 2τ ) . (4.2)

A rather lengthy, yet straightforward, simplification shows that (4.2) equals

(Cτ + D)e
(

αz
2β

)
q

−4α2+β2
8β2 ζAB

8 ζ−ABα2

2β2 e
( −Cz2

8(Cτ + D)

)
Â2 (u, v; 2τ )

= (Cτ + D)ζAB
8 ζ−ABα2

2β2 e
( −Cz2

8(Cτ + D)

)
B̂(z; τ ).

The Jacobi elliptic properties of B̂α,β are similarly deduced from those of Â2, which are
given in Lemma 6. 
�

4.2 A nonholomorphic transformation

Let α,β be as above. We first define

r±(z; τ ) = r±,α,β (z; τ ) := R
(

−z + 2τ
α

β
− (1 ∓ 1)τ − 1

2
; 4τ

)
.

For convenience, we let

z±
1 = z±

1 (α,β , z, τ ) := − z
2βτ + 1

+ 2τα

β(2βτ + 1)
− (1 ∓ 1)

τ

2βτ + 1
− 1

2
,

z±
2 = z±

2 (α,β , z, τ ) :=
1
2

− 2ατ

β
+ (1 ∓ 1)τ + z,

τ1 = τ1(β , τ ) := −1
4τ

− β

2
.

Lemma 13 We have that

r±
(

z
2βτ +1

;
τ

2βτ +1

)
=a±(z; τ )h(z±

1 τ1; τ1) − b±(z; τ )h(z±
2 ; 4τ ) + b±(z; τ )r±(z; τ ),
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where

a±(z; τ ) :=
√−iτ1e

(
−(z±

1 )2τ1
2

)

,

b±(z; τ ) := a±(z; τ )(−1)β/4ζ
β/2
8

√−4iτe
(

−(z±
2 )2

8τ

)

.

Proof of Lemma 13 We have by definition of r±, after a short simplification and applica-
tion of Lemma 7, that

r±
(

z
2βτ + 1

; γ τ

)
= R

(
z±
1 ;

−1
τ1

)
= √−iτ1e−π i(z±

1 )
2τ1

(−R(z±
1 τ1; τ1) + h(z±

1 τ1; τ1)
)
.

(4.3)

A short calculation reveals that z±
1 τ1 = z±

2 /4τ + β/4. Using this, as well as Lemma 7
again, we have that

R(z±
1 τ1; τ1) = ζ

β
2
8 R

(
z±
1 τ1;

−1
4τ

)
= ζ

β
2
8 R

(
z±
2
4τ

+ β

4
;
−1
4τ

)

= (−1)
β
4 ζ

β
2
8

√−i4τe−π i
(z±2 )2
4τ

(−r±(z; τ ) + h(z±
2 ; 4τ )

)
. (4.4)

Combining (4.3) and (4.4) proves the lemma. 
�

5 Proof of Theorem 1
5.1 Proof of Theorem 1 (2)

In this section, we prove part (2) of Theorem 1. We begin by establishing the following
proposition.

Proposition 2 The function

Fα,β (z; τ ) :=
∞∑

n=0

(w
1
2 q

α
β
+ 1

2 ; q2)n
(w

1
2 q

α
β
+ 3

2 ; q2)n

(
w

1
2 q

α
β
+ 1

2
)n

is defined for τ ∈ H ∪ H−. In particular, for τ ∈ H (and hence for −τ ∈ H−),

Fα,β (z; τ ) = q− 1
8H (w− 1

2 q− α
β
+ 1

2 ; q), (5.1)

Fα,β (z;−τ ) = −q
α2
2β2 w− α

2β N (τ )Bα,β (z; τ ). (5.2)

Moreover, for ( ab ,
h
k ) ∈ Qα,β , we have that

Fα,β ( ab ;
h
k ) =

M∑

n=0

(ζ a
2bζ

αh
βk ζ h

2k ; ζ
2h
k )n

(ζ a
2bζ

αh
βk ζ 3h

2k ; ζ
2h
k )n

(
ζ a
2bζ

αh
βk ζ h

2k

)n
, (5.3)

where M = Ma,b,h,k (α,β) ∈ N0.

Remark The numberM is explicitly determined in the proof of Proposition 2.
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Proof The identity in (5.1) follows from (2.1). Moreover,

Fα,β (z;−τ ) =
∞∑

n=0

(
w

1
2 q− α

β
− 1

2 ; q−2
)

n(
w

1
2 q− α

β
− 3

2 ; q−2
)

n

(
w

1
2 q− α

β
− 1

2
)n

=
∞∑

n=0

(
w− 1

2 q
α
β
+ 1

2 ; q2
)

n(
w− 1

2 q
α
β
+ 3

2 ; q2
)

n

(
w

1
2 q− α

β
+ 1

2
)n

= F
(
w− 1

2 q
α
β
− 3

2 , w− 1
2 q

α
β
− 1

2 , w
1
2 q− α

β
+ 1

2 ; q2
)
,

where we have used that (A; q−1)n = (−A)nq− n(n−1)
2 (A−1; q)n. By (2.2), this equals

(1 − w
1
2 q− α

β
+ 1

2 )−1K
(
w− 1

2 q
α
β
− 1

2 ; q
)
. Combining this with (2.3) yields (5.2) after a short

calculation.
Finally, we consider Fα,β (z; τ ) on Qα,β . Let

j(m) = ja,b,h,k,α,β (m) := a
2b

+ h
k

(
α

β
+ 1

2
+ 2m

)
. (5.4)

By hypothesis, there is somem ∈ Z such that j(m) ∈ Z. Thus, for any t ∈ N, j(m+ tk) ∈ Z,
and for t ≥ t0, for some t0 ∈ N, we have that m + tk ∈ N0. Hence, there is some
nonnegative integerm′ such that j(m′) ∈ Z, and we letM denote the smallest nonnegative
integer such that j(M) ∈ Z. Then we have for any integer n > M that (w

1
2 q

α
β
+ 1

2 ; q2)n
contains 1 − w

1
2 q

α
β
+ 1

2 q2M as a factor. This can be written as 1 − e(j(M)), which equals 0,
since j(M) ∈ Z. Thus, the numerators defining Fα,β (z; τ ) are equal to zero for any n > M.
Further, the denominators can never be zero. Suppose for contradiction’s sake that there
is some n ≥ 0 such that

1 − w
1
2 q

α
β
+ 3

2+2n = 0,

equivalently, j(n+ 1
2 ) ∈ Z. Then (withm as above) this implies h

k (2(n − m) + 1) ∈ Z. But
k is even, hence h is odd, so this is impossible. 
�

Resuming the proof of Theorem 1 part (2), we have by definition of Cα,β and H that

q− α2
2β2 w− α

2β Cα,β (z; τ ) =
∑

n≥0
q

n2
2

(
w

1
2 q

α
β

)n = q− 1
8H

(
w− 1

2 q− α
β
+ 1

2 ; q
)
, (5.5)

and so by Proposition 2, (2.7), and Proposition 1, we have that Cα,β (z;−τ ) is the holo-
morphic part of a nonholomorphic Jacobi form of weight 1/2, index−1/8, groupHβ , and
character ζAB

8 ζ−ABα2

2β2 ε(γ )ε−2(γ̃ ) (defined for matrices γ = ( A B
C D

) ∈ Hβ ). The character
simplifies as follows. Since D is odd,

ε
( A B
C D

)
ε−2

(
A 2B

C/2 D

)
= ζ 1−D

8

(
C
D

)
ζ−DB
8 = ζ 1−D

8 (−1)B/4
(
C
D

)
, (5.6)
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where we have used that 4|B. Moreover, we have that ζAB
8 ζ−ABα2

2β2 = (−1)B/4ζ
−α2B/β
2β ,

where we have used that A ≡ 1 (mod 2β) and β | B. Thus, the character in Theorem 1
(2) is

ψB,C,D(α,β) := ζ 1−D
8 ζ

−α2B/β
2β

(
C
D

)
. (5.7)

This proves Theorem 1 (2).

5.2 Proof of Theorem 1 (1)

In this section, we establish the quantum Jacobi properties in Theorem 1 (1). That Cα,β
is defined on Qα,β follows from Theorem 2. (In fact, there we see how to evaluate the
function explicitly.) That Qα,β is closed under Gβ � (4Z × 2Z) follows from Lemma
11. The quantum Jacobi modular transformations in Theorem 1 (1) are established in
Sect. 5.2.1 below. In particular, the transformation given in Theorem 1 (1) under

( 1 0−2β 1
)
,

whichmay be viewed as a generator ofGβ alongwith
(
1 2β2

0 1

)
, is deduced fromProposition

3 below, with τ �→ −τ . The claimed C∞ properties in Theorem 1 (1) are established in
Sect. 5.2.2, and the quantum Jacobi elliptic transformations are treated in Sect. 5.2.3.

5.2.1 Quantum Jacobi modular transformations

First, we observe that the function Cα,β (z; τ ) is easily seen to be invariant under the action
of matrix

(
1 2β2

0 1

)
using its definition. Turning to

( 1 0
2β 1

)
, we define

f±(z; τ ) = f±,α,β (z; τ ) := i
2
e
((

1 ∓ 1
2

)(
− z
2

+ ατ

β
− τ

2

))

and state the following proposition.

Proposition 3 Assume the notation and hypotheses as above. We have that

Cα,β (z;−τ ) − (2βτ + 1)−
1
2 χ−1

2β ,1e
(

2βz2

8(2βτ + 1)

)
Cα,β

(
z

2βτ + 1
;

−τ

2βτ + 1

)

= q− 1
8− β2

8 + β
4 (2βτ + 1)−1/2ε3

(( 1 0
β/2 1

))
e
(

βz2

4(2βτ + 1)
+ αz

2β(2βτ + 1)

)

× e
(

τ (−4α2 + β2)
8β2(2βτ + 1)

+ β(−τ + 1
2 (2βτ + 1))2

4(2βτ + 1)

)

×
∑

±
f±

(
z

2βτ + 1
;

τ

2βτ + 1

) (
a±(z; τ )h(z±

1 τ1; τ1) − b±(z; τ )h(z±
2 ; 4τ )

)
, (5.8)

and for z ∈ (− α
β2 ,− α

β2 + 1
β

− ε), the right-hand side of Eq. (5.8) equals

−1
2

∫ ∞

0

∑
± g− α

2β + 3∓1
4 ,−z

(
2
β

+ it
)

√
−i( 2

β
+ it + 4τ )

dt. (5.9)

Proof of Proposition 3 We divide the lengthy proof of Proposition 3 into two parts.
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Part 1.We first establish (5.8). From Theorem 1 (2), using Proposition 2 and Proposition
1, for suitable γ = ( A B

C D
)
, we have that

Cα,β (z;−τ ) − (Cτ + D)−
1
2 ψ−1

B,C,D(α,β)e
(

Cz2

8(Cτ + D)

)
Cα,β

(
z

Cτ + D
;−γ τ

)

= −C̃−(z; τ ) + (Cτ + D)−
1
2 ψ−1

B,C,D(α,β)e
(

Cz2

8(Cτ + D)

)
C̃−

(
z

Cτ + D
; γ τ

)
,

(5.10)

where C̃−(z; τ ) := −N (τ )B−(z; τ ), with

B−(z; τ ) = i
2
e
(

αz
2β

)
q

−4α2+β2
8β2 T (τ )

×
1∑

k=0
e
(
k

(
− z
2

+ ατ

β
− τ

2

))
R

(
−z + 2τ

(
α

β
− k

)
− 1

2
; 4τ

)
.

To simplify B− as above, we have used that ϑ(z; τ ) is an odd function in z, and that
ϑ(z + 1; τ ) = −ϑ(z; τ ). A short calculation shows that this expression for B−(z; τ ) may be
further rewritten as

e
(

αz
2β

)
q

−4α2+β2
8β2 T (τ )σ (z; τ ),

where

σ (z; τ ) :=
∑

±
f±(z; τ )r±(z; τ ).

Combining this with (2.7) we have that (5.10) is equal to

N (τ )
(
B−(z; τ ) − (Cτ + D)−1ζ−AB

8 ζABα2

2β2 e
(

Cz2

8(Cτ + D)

)
B−

(
z

Cτ + D
; γ τ

))
.

(5.11)

We now apply Lemma 5, and find for γ = ( 1 0
2β 1

)
, that

B−(z; τ ) − (2βτ + 1)−1e
(

2βz2

8(2βτ + 1)

)
B−

(
z

2βτ + 1
; γ τ

)

= T (τ )

⎡

⎣e
(

αz
2β

)
q

−4α2+β2
8β2 σ (z; τ ) − (2βτ + 1)−1e

(
βz2

4(2βτ + 1)

)
e
(

αz
2β(2βτ + 1)

)

×e
(

τ

2βτ + 1
· −4α2 + β2

8β2

)
ε3

(( 1 0
β
2 1

))
(2βτ + 1)

1
2

×e
π iβ(−τ+ 1

2 (2βτ+1))2
2(2βτ+1) q− β2

8 + β
4 σ

(
z

2βτ + 1
; γ τ

)⎤

⎦ (5.12)
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The term in brackets [ · ] in (5.12) is equal to

e
(

αz
2β

)
q

−4α2+β2
8β2

∑

±
f±(z; τ )r±(z; τ )

− (2βτ + 1)−1/2ε3
(( 1 0

β
2 1

))
e
(

βz2

4(2βτ + 1)

)

× e
(

αz
2β(2βτ + 1)

)
e
(

τ

2βτ + 1
· −4α2 + β2

8β2

)
e
(

β(−τ + 1
2 (2βτ + 1))2

4(2βτ + 1)

)

q− β2
8 + β

4

×
∑

±
f±

(
z

2βτ + 1
;

τ

2βτ + 1

)
r±

(
z

2βτ + 1
;

τ

2βτ + 1

)
,

which, after applying Lemma 13, we find to be equal to

e
(

αz
2β

)
q

−4α2+β2
8β2

∑

±
f±(z; τ )r±(z; τ ) (5.13)

− (2βτ + 1)−1/2ε3
(( 1 0

β
2 1

))
e
(

βz2

4(2βτ + 1)

)

× e
(

αz
2β(2βτ + 1)

)
e
(

τ

2βτ + 1
· −4α2 + β2

8β2

)

× e
(

β(−τ + 1
2 (2βτ + 1))2

4(2βτ + 1)

)

q− β2
8 + β

4
∑

±
f±

(
z

2βτ + 1
;

τ

2βτ + 1

)
b± (z; τ ) r±(z; τ ) (5.14)

− (2βτ + 1)−1/2ε3
(( 1 0

β
2 1

))
e
(

βz2

4(2βτ + 1)

)

× e
(

αz
2β(2βτ + 1)

)
e
(

τ

2βτ + 1
· −4α2 + β2

8β2

)

× e
(

β(−τ + 1
2 (2βτ + 1))2

4(2βτ + 1)

)

q− β2
8 + β

4
∑

±
f±

(
z

2βτ + 1
;

τ

2βτ + 1

)
G±(z; τ ), (5.15)

where

G±(z; τ ) = G±,α,β (z; τ ) := a±(z; τ )h(z±
1 τ1; τ1) − b±(z; τ )h(z±

2 ; 4τ ). (5.16)

Notice that the functions in lines (5.13) and (5.14) both involve r±(z; τ ). A very long, yet
explicit, calculation, which also uses that

ε3
(( 1 0

β
2 1

))
= ζ

−β/2
8 ,

shows that these two lines of the (large) expression in (5.13), (5.14), and (5.15) above
entirely cancel. Thus, we have that the term in brackets [ · ] in (5.12) is equal to (5.15).
Applying this to (5.11) and using (2.6) yields (5.8) in Proposition 3, together with the fact
that ψB,C,D(α,β) = χC,D when B ≡ 0 (mod 2β2), where

χC,D := ζ 1−D
8

(
C
D

)
. (5.17)

Part 2. Next we establish (5.9) in Proposition 3. To do so, we study the function G±(z; τ )
from (5.16) and begin by rewriting

z±
1 τ1 = a2τ1 − b±

1 , z±
2 = a±

1 4τ − a2

where a2 = a2(z) := − 1
2 − z, b±

1 = b±
1 (α,β ; z) := βz

2 + α
2β − 1

4 (1 ∓ 1) , and a±
1 =

a±
1 (α,β) := −α

2β + (1∓1)
4 . 
�
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Lemma 14 For α,β , and a±
1 as above, we have that

(i) a+
1 ∈ (− 1

2 , 0) and a−
1 ∈ (0, 12 ).

Further, let ε = εα,β > 0 satisfy

β − α

β2 < ε <
1
β
,

and suppose

z ∈
(

− α

β2 ,
1
β

− α

β2 − ε

)
.

Then under these additional hypotheses, we have that

(ii) b+
1 ∈ (0, 12 − εβ

2 ) ⊂ (0, 12 ), and b−
1 ∈ (− 1

2 ,− εβ
2 ) ⊂ (− 1

2 , 0),
(iii) −a2 ∈

(
1
2 − α

β2 , 12 + 1
β

− α
β2 − ε

)
⊂ ( 1

4 ,
1
2
)
.

Proof of Lemma 14 First, we note that (i) follows from the fact that 0 < α < β .
Before proving (ii) and (iii), we first show that the hypotheses given on ε and z are well

defined. Since 0 < α < β , we have that 0 <
β−α

β2 < 1
β
, so we may indeed choose some

ε > 0 satisfying β−α

β2 < ε < 1
β
. Further, we have that − α

β2 < 1
β

− α
β2 − ε since ε < 1

β
, so

we may indeed let z ∈
(
− α

β2 , 1β − α
β2 − ε

)
.

Using the hypothesis given on z together with the definition of b+
1 , it follows that

b+
1 ∈ (0, 12 − εβ

2 ). Moreover, since 1
2 >

εβ
2 > 0, we have that (0, 12 − εβ

2 ) ⊂ (0, 12 ). The
assertions pertaining to b−

1 now follow from the fact that b−
1 = b+

1 − 1
2 . This establishes

(ii).
Similarly, using the hypothesis given on z together with the definition of a, it follows

that −a2 ∈
(
1
2 − α

β2 , 12 + 1
β

− α
β2 − ε

)
. Moreover, since 0 < α < β and β ≥ 4, we have

that 1
4 < 1

2 − α
β2 . Additionally, since

β−α

β2 < ε, we have that 1
2 + 1

β
− α

β2 − ε < 1
2 . This

establishes (iii). 
�

Resuming the proof of (5.9) from Proposition 3, by Lemma 9, we find for ε and z
satisfying the hypotheses of Lemma 14 that

h(z±
1 τ1; τ1) = h(a2τ1 − b±

1 ; τ1)

= −e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)∫ i∞

0

ga2+ 1
2 ,b

±
1 + 1

2
(u)

√−i(u + τ1)
du, (5.18)

h(z±
2 ; 4τ ) = h(a±

1 4τ − a2; 4τ )

= −e
(
(a±

1 )24τ
2

− a±
1 (a2 + 1

2 )
)∫ i∞

0

ga±
1 + 1

2 ,a2+ 1
2
(u)

√−i(u + 4τ )
du. (5.19)

In the integral in (5.18), we let u = β/2 − 1/ρ so that the right-hand side of (5.18)
becomes
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− e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)∫ 0

2
β

ga2+ 1
2 ,b

±
1 + 1

2

(
β
2 − 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ
ρ2

= −e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)

e
(

−
β
2 (a2 + 1

2 )(a2 + 3
2 )

2

)

×
∫ 0

2
β

ga2+ 1
2 ,

β
2 (a2+ 1

2 )+b±
1 + 1

2+ β
4

(
− 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ
ρ2 , (5.20)

where we used that for n ∈ N0,

gA,B(τ + n) = e
(

−nA(A + 1)
2

)
gA,nA+B+ n

2
(τ ),

which is easily deduced from Lemma 8. We rewrite

β

2

(
a2 + 1

2

)
+ b±

1 + 1
2

+ β

4
= −a±

1 + 1
2

+ β

4

and obtain, using Lemma 8, that (5.20) is equal to

− e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)

e
(

−
β
2 (a2 + 1

2 )(a2 + 3
2 )

2

)

×
∫ 0

2
β

ga2+ 1
2 ,−a±

1 + 1
2+ β

4

(
− 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ
ρ2

= e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)

e
(

−
β
2 (a2 + 1

2 )(a2 + 3
2 )

2

)

×
√

4τ
−1

i(−i)
3
2 e

((
a2 + 1

2

)(
−a±

1 + 1
2

+ β

4

))

×
∫ 0

2
β

ga±
1 + 1

2 ,a2+ 1
2
(ρ)

√−i(4τ + ρ)
dρ.

After some additional simplifications, we find that

a±(z; τ )h(z±
1 τ1; τ1) = a±(z; τ )

√
4τ
−1

i(−i)
3
2 ζ α

4βζ
−β

16 eπ i (1±1)
4

e
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ 0

2
β

ga±
1 + 1

2 ,a2+ 1
2
(ρ)

√−i(4τ + ρ)
dρ. (5.21)

Using (5.19) and simplifying, we also have that

−b±(z; τ )h(z±
2 ; 4τ ) = a±(z; τ )(−1)β/4ζ

β/2
8 ζ α

4βe
−π i 1∓1

4 e
(

− 1
32τ

− z
8τ

− z2

8τ

)√−4iτ

×
∫ i∞

0

ga±
1 + 1

2 ,a2+ 1
2
(u)

√−i(u + 4τ )
du. (5.22)
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After simplifying the constants in (5.21) and (5.22), we have that

G±(z; τ ) = ζ
−1− β

4
4 ζ±1

8 a±(z; τ )
√
4τζ α

4βe
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ i∞
2
β

ga±
1 + 1

2 ,a2+ 1
2
(u)

√−i(u + 4τ )
du

= ζ
−1− β

4
4 ζ±1

8
√
i
√
1 + 2βτe

(
−(z±

1 )2τ1
2

)

×ζ α
4βe

(
− 1
32τ

− z
8τ

− z2

8τ

)∫ i∞
2
β

g− α
2β + 3∓1

4 ,−z(u)
√−i(u + 4τ )

du.

Thus, we have after some further simplifications that (5.15) equals

−i
2
q

1
8

∫ i∞
2
β

∑
± g− α

2β + 3∓1
4 ,−z(u)

√−i(u + 4τ )
du = 1

2
q

1
8

∫ ∞

0

∑
± g− α

2β + 3∓1
4 ,−z

(
2
β

+ it
)

√
−i( 2

β
+ it + 4τ )

dt

where we integrate from 2/β → 2/β + i∞ then 2/β + i∞ → i∞ (the latter vanishes),
and then let u = 2/β + it where t runs from 0 → ∞. Multiplying by −q− 1

8 proves (5.9)
in Proposition 3 and, hence, concludes the proof of Proposition 3. 
�

5.2.2 C∞ properties

We now establish Theorem 1 (1)’s C∞ properties of the error to Jacobi transformation
in Qα,β . The proof follows in a similar manner to the proof of a related result in [3], and
we refer the reader there for additional details. We begin with the hypotheses given on z
preceding (5.9) in Proposition 3 and will prove that the expression in (5.9) (with τ �→ −τ )
is C∞.
Since 0 < α < β we have that 0 < α/(2β) < 1/2 and 0 < 1/2 − α/(2β) < 1/2.

Thus, in studying g−α/(2β)+(3∓1)/4,−z , we seek to minimize (n∓ ρ)2 for 0 < ρ < 1
2 . This is

minimized at n = 0, so as calculated in [3], we obtain

∂

∂z�
gρ,−z(τ ) = (−2π i)�

∑

n
(n + ρ)�+1 eπ i(n+ρ)2τ+2π i(n+ρ)(−z) � e−πρ2ν

whereν = Im(τ ).Thus, the function in (5.9) (with τ �→ −τ ) isC∞ in
(
− α

β2 ,− α
β2 + 1

β
− ε

)
×

(
R \ { 1

2β }
)
using the Leibniz rule as in [3].

To finish the proof of Theorem 1 (1), we are left to establish the C∞ nature of the error
to Jacobi transformation in Q × Q in the larger region in R × R given in Theorem 1 (1). If
it is not the case that z ∈

(
− α

β2 ,− α
β2 + 1

β
− ε

)
, equivalently, b+

1 ∈
(
0, 12 − εβ

2

)
, then we

appeal to the following facts:

h(u + 1; τ ) = −h(u; τ ) + 2√−iτ
e
(
(u + 1

2 )
2

2τ

)

, (5.23)

h(u + τ ; τ ) = −e
(
u + τ

2

)
h(u; τ ) + 2e

(
u
2

+ 3τ
8

)
, (5.24)

which are proved in [42]. We divide the proof into cases below and follow an argument
similar to one given in [3].
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Case 1 Suppose − 1
2 + ε

β
2 < b+

1 < 0. Then − 1
2 < −a2 < 1

2 , and we shift b−
1 �→ b−

1 + 1 =:
b̃−
1 , which satisfies 0 < b̃−

1 < 1
2 . Then appealing to (5.23), we have that

h(a2τ1 − b−
1 ; τ1) = h(a2τ1 − b̃−

1 + 1; τ1)

= −h(a2τ1 − b̃−
1 ; τ1) + 2√−iτ1

e
(
(a2τ1 − b̃−

1 + 1
2 )

2

2τ1

)

.

The proof now follows as above with b−
1 replaced by b̃−

1 , together with the observation
that the error term 2(−iτ1)−

1
2 e((a2τ1 − b̃−

1 + 1
2 )

2/(2τ1)) is suitably analytic.
Case 2 If 1

2 − ε
β
2 < b+

1 < 1
2 then − 1

2 < b−
1 < 0, and 1

4 < −a2 < 3
4

• Case 2a If 1
4 < −a2 < 1/2, we may proceed as above.

• Case 2b If instead 1
2 < −a2 < 3

4 , we shift −a2 �→ −a2 − 1, which satisfies −1
2 <

−a2 − 1 < −1
4 . We argue as in Case 1 using (5.23) and (5.24).

• Case 2c The final case −a2 = 1/2, equivalently z = 0 and b+
1 = α

2β , is removed from
consideration, as it is not included in the statement of the theorem.

Case 3 If − 1
2 < b+

1 < − 1
2 + ε

β
2 then 0 < b−

1 + 1 < 1
2 and − 1

2 < −a2 < 1
2 , so we work

with the shifted b−
1 �→ b−

1 + 1 and argue as in Case 1 and Case 2.
Of course, Cases 1–3 above do not exhaust all possibilities, but these cases suffice: There

must be some n ∈ Z such that
2n − 1

2
< b+

1 <
2n + 1

2
,

excluding b+
1 in

α

2β
+ Z,Z,

1
2

+ Z,
1
2

± ε
β

2
+ Z.

This is equivalent to excluding z in
2
β

Z,− α

β2 + 2
β

Z,
1
β

− α

β2 + 2
β

Z, ±ε + 1
β

− α

β2 + 2
β

Z.

Weshift b+
1 �→ b+

1 −n =: b̃+
1 so that b̃+

1 ∈ (−1/2, 1/2), appealing to (5.23) above.Working
with b̃+

1 , we argue as in Cases 1, 2, or 3 above.

5.2.3 Quantum Jacobi elliptic transformations

Weprovide a sketch of proof, as similar arguments are given in [1–3,11]. FromProposition
2 and (5.5), we have that Cα,β (z;−τ ) = −N (τ )Bα,β (z; τ ). The elliptic transformation
properties of Cα,β on Qα,β (and subsequently the required analytic properties in R × R)
may therefore be deduced from those of Bα,β . These may be obtained using the definition
of Bα,β , from (2.10), and the elliptic transformation properties of μ and ϑ in [42] and
Lemma 4, respectively. In particular, the desired elliptic transformation properties ofCα,β
hold with respect to the sublattice 4Z × 2Z.

6 Proof of Theorem 2
We define

c(n) = cα,β ,a,b,h,k (n) :=
⎧
⎨

⎩
ζ as
2bζ

hn2
2kβ2 , n ≡ α + sβ (mod 2bβ), some s (mod 2b),

0, else.
.(6.1)
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Then for t ∈ R+ we have that

∞∑

n=0
c(n)e− n2t

β2 =
∑

s (mod 2b)
ζ sa
2b

∞∑

n=0
e−t (α+βs+2bβn)2

β2 ζ
h(α+βs+2bβn)2
2kβ2

=
∑

s (mod 2b)

∞∑

n=0
ζ
a(s+2bn)
2b e−t( α

β
+s+2bn)2

ζ
h( α

β
+s+2bn)2

2k

=
∞∑

n=0
ζ an
2b e

π i
(

α
β
+n

)2( h
k + it

π

)

= ζ−αa
2βb Cα,β ( ab ;

h
k + it

π
). (6.2)

With this, we will ultimately apply [30, Proposition, p. 98], but first establish a number of
technical lemmas to justify its use.

Lemma 15 For
(
a
b ,

h
k

)
∈ Qα,β , we have that b|βk. Moreover, if bc = βk, then c is even,

and c/2 is odd. Finally, for any r ∈ N such that 2r | β , we have that 2r | b.

Proof of Lemma 15 Let � := lcm(2b, kβ). Then 2bc1 = kβc2 = � for some c1, c2 ∈ Z. By
hypothesis, there is somem ∈ Z such that

a
2b

+ h
k

(
α

β
+ 1

2
+ 2m

)
∈ Z,

which implies

−ac1 ≡ 0 (mod c2).

But c1/c2 = kβ/(2b) so this means there is some integer x such that −akβ/2 = xb
(recalling that 4 | β). Since gcd(a, b) = 1, we have that b | kβ/2 which means there is
some d such that bd = kβ/2, or, bc = kβ where c = 2d. We have that

ac
2

+ h
(

α + β

2
+ 2mβ

)
∈ βkZ,

which implies

−ac
2

≡ hα ≡ 1 (mod 2)

(using that h and α are odd). Thus, a and c/2 must both be odd.
To prove the divisibility condition on b, suppose 2r | β for some r ∈ N (and note that r

is at least 2). Then

bc
2r+1 = βk

2r+1 ∈ Z

since 2r | β and 2 | k . But c/2 is odd so we must have that 2r | b. 
�

Lemma 16 The function c(n) is periodic (mod β2k) with mean value 0.

Proof of Lemma 16 Using notation as in Lemma 15, by definition, we see that the coeffi-
cients c(n) are periodic (mod L) where L := lcm(kβ2, 2bβ). But since bc = βk , we have
that

L = lcm(bcβ , 2bβ) = bβlcm(c, 2) = bβc = β2k,

since c is even by Lemma 15.
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Now for each s (mod 2b) there are exactly c/2 solutions n (mod L = bcβ) to the con-
gruence condition in the definition of c(n): They areα+sβ+2bβjwhere j runs (mod c/2).
These are all distinct—suppose for contradiction’s sake that for some s (mod 2b),

α + sβ + 2bβj1 = α + sβ + 2bβj2 (mod bcβ).

Then j1 ≡ j2 (mod c/2). Moreover, if

α + s1β + 2bβj1 = α + s2β + 2bβj2 (mod bcβ)

then s1 ≡ s2 (mod 2b), since c is even.
Thus,

∑

n (mod bcβ)
c(n) =

∑

s (mod 2b)
ζ as
2b

∑

j (mod c/2)
ζ
hY 2

s,j
2kβ2 , (6.3)

where

Ys,j = Ys,j(α,β , b) := α + βs + 2bβj.

Suppose ν ∈ N is such that 2ν+1 | β , but 2ν+2 � β . (Note that 4 | β so ν ≥ 1.) Then the
sum in (6.3) equals

2ν+1∑

r=1

r b
2ν −1∑

s=(r−1) b
2ν

∑

j (mod c/2)
ζ as
2bζ

hY 2
s,j

2kβ2 =
2ν∑

t=1

2t∑

r=2t−1

r b
2ν −1∑

s=(r−1) b
2ν

∑

j (mod c/2)
ζ as
2bζ

hY 2
s,j

2kβ2 .

For each 1 ≤ t ≤ 2ν , we claim that

2t∑

r=2t−1

r b
2ν −1∑

s=(r−1) b
2ν

∑

j (mod c/2)
ζ as
2bζ

hY 2
s,j

2kβ2 = 0.

To show this, let

�1 :=
(2t−1) b

2ν −1∑

s=(2t−2) b
2ν

∑

j (mod c/2)
ζ as
2bζ

hY 2
s,j

2kβ2 , �2 :=
2t b

2ν −1∑

s=(2t−1) b
2ν

∑

j (mod c/2)
ζ as
2bζ

hY 2
s,j

2kβ2 .

Then

�2 =
(2t−1) b

2ν −1∑

s=(2t−2) b
2ν

∑

j (mod c/2)
ζ
a(s+ b

2ν )
2b ζ

hY 2
s+ b

2ν ,j

2kβ2 .

Because c/2 is odd, there are integers c′, ρ such that c′c/2 = 1+2ν+1ρ.We shift j �→ j+ρ.
The term

Ys+ b
2ν ,j+ρ

= α + β

(
s + b

2ν

)
+ 2bβ(j + ρ)

= Ys,j + β
b
2ν

+ 2bβρ = Ys,j + c
2

· c′b · β

2ν
.
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Thus,

ζ

hY 2
s+ b

2ν ,j+ρ

2kβ2 = ζ
h(Y 2

s,j+Ys,jcc′b β
2ν +

(
c
2 c

′b β
2ν

)2
)

2kβ2 = ζ
hY 2

s,j
2kβ2ζ

hc′α
2ν+1

where we have also used that bc = βk, 2 | k , and 2ν+1 | β .
Thus far, we have shown that

�2 = ζ a+hc′α
2ν+1 �1.

We now prove that ζ a+hc′α
2ν+1 = −1, which holds if and only if

a + hc′α ≡ 2ν (mod 2ν+1). (6.4)

By hypothesis we have that

−ac
2

− h
(

α + β

2
+ 2mβ

)
∈ βkZ,

which implies that

−a − hαc′ − h · β

2
· c′ ≡ 0 (mod 2ν+1). (6.5)

But since each of h,β/2ν+1, and c′ are odd, (6.4) follows from (6.5). 
�
Resuming theproof ofTheorem2,weuseLemma15and (6.2) andapply [30, Proposition,

p. 98]. We find that

ζ−αa
2βb Cα,β

(
a
b
,
h
k

+ it
π

)
=

∞∑

n=0
ζ an
2b e

π i
(

α
β
+n

)2( h
k + it

π

)

=
∞∑

n=0
c(n)e−n2t/β2

∼
∞∑

r=0

L(−2r, c)
r!

(−t
β2

)r

as t → 0+, where L(−2r, c) is as given in Theorem 2. In particular, this also shows that

ζ−αa
2βb Cα,β

(
a
b
,
h
k

)
= L(0, c) = −

β2k∑

n=1
c(n)B1

(
n

β2k

)
.

The second (q-hypergeometric) expression for Cα,β
(
a
b ,

h
k

)
given in Theorem 2 follows

from (5.5) and Proposition 2.

7 Proof of Theorem 3
This proof extends an interesting observation given in [26] in the case qN = 1, and we
attribute the idea to Hikami and Lovejoy. (The two-variable Ft (−w; q) was not defined in
[26].) First we note that by definition, it is not difficult to verify that Ft (−qN ; q−1) ∈ Z[q]
and Ut (−qN ; q) ∈ Z[q], in particular, that they are polynomials when specialized in this
way, as opposed to infinite sums as initially defined. The colored Jones polynomial for
T(2,2t+1) is given in [26, (3.2)], and using its definition there, combined with the definition
of Ft (w; q) in (1.5), we see that forN ∈ N, Ft (−q−N ; q) = JN (T(2,2t+1); q).We also see from
[26, (3.22)] and the fact that Ut (w; q) = Ut (w−1; q), that Ut (−q−N ; q) = JN (T ∗

(2,2t+1); q),
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where K ∗ denotes the mirror of K . It is known that JN (K ; q) = JN (K ∗; q−1). Hence,
Ft (−q−N ; q) = Ut (−q−N ; q−1) (and this is a polynomial in Z[q−1]). Letting q �→ q−1

proves part (1) of Theorem 3.
We now prove part (2). Since b|k , there is some b′ ∈ N such that bb′ = k . Let N ∈ N

satisfy N ≡ ab′h (mod k), where hh ≡ 1 (mod k). This implies that Nh ≡ ab′ ≡ ak/b
(mod k). Then by applying Theorem 3 (1) to such N , specializing q = ζ h

k , and using the
conditions on N , we have that

Ft (−ζ a
b ; ζ

−h
k ) = Ft (−ζ hN

k ; ζ−h
k ) = Ut (−ζ hN

k ; ζ h
k ) = Ut (−ζ a

b ; ζ
h
k ),

as claimed.

8 Proof of Theorem 4
We first establish the following lemma.

Lemma 17 Let βt = 4(2t + 1), and let α
(j)
t (1 ≤ j ≤ 4) be as in Sect. 1.2. We have that

Ft (z; τ ) =
4∑

j=1
χ8t+4(α

(j)
t )C

α
(j)
t ,βt

(βt z;βtτ ). (8.1)

Proof of Lemma 16 Consider the function

Tt (w; q) :=
∞∑

n=0
χ8t+4(n)q

n2
8(2t+1)w

n
2 ,

where χ8t+4 is the periodic function (mod 8t + 4) defined by

χ8t+4(n) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, n ≡ α
(1)
t ,α(4)

t (mod βt ),

−1, n ≡ α
(2)
t ,α(3)

t (mod βt ),

0, else.

We rewrite

Tt (w; q) =
4∑

j=1
χ8t+4(α

(j)
t )

∑

n≡α
(j)
t (mod βt )

n≥0

q
n2
2βt w

n
2

=
4∑

j=1
χ8t+4(α

(j)
t )q

(α(j)t )2
2βt w

α
(j)
t
2

∑

n≥0
q

n2βt
2 +nα

(j)
t w

βt n
2

=
4∑

j=1
χ8t+4(α

(j)
t )C

α
(j)
t ,βt

(βt z;βtτ ) .

Wenow apply an earlier result due to Hikami on certain difference equations, namely [22,
Theorem 8]; combined with the above, the result follows. 
�

With Lemma 17, Theorem 4 follows from Theorem 1. Namely, by Theorem 1 (1), each
C

α
(j)
t ,βt

(z; τ ) is a quantum Jacobi form of weight 1/2 and index −1/8, with respect to the
group Gβt . Therefore, each C

α
(j)
t ,βt

(βt z;βtτ ) is a quantum Jacobi form of weight 1/2 and

index −βt/8 = −t − 1
2 , with respect to the group Kt . Note that the group, index, weight,
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and character are all independent of α(j)
t , so that the sum in (8.1) transforms appropriately.

In the explicit expression given in (1.6), which is also ultimately deduced from Theorem
1 (1), we have used that At = max1≤j≤4{α(j)

t }, and αt = min1≤j≤4{α(j)
t }. As argued in the

proof of Theorem 3, Ft (z; τ ) is defined on Q2, and from Lemma 10, we have that Q2 is
closed under Kt � (Z × Z). This proves (1) of Theorem 4. The proof of Theorem 4 (2)
follows similarly using Lemma 17 and Theorem 1 (2).

9 Proof of Theorem 5
Let a/b ∈ Q be reduced, and let �b,β = lcm(b,β). Recall that βt = 4(2t + 1). Define the
function

�t ( ab ; τ ) =
∑

n∈Z
nχ8t+4(n)ζ an

2b q
n2
2βt ,

where q = e(τ ) and χ8t+4 is as defined in Sect. 8.We view�t as a one-variable function of
τ with all other parameters fixed. Then it is not difficult to show that ζ−a/2

b �t
(
a
b ;

βtτ
�b,βt

)
is a

cusp form on�(2�b,βt ) of weight 3/2with character
(

�b,βt
D

) (
2C
D

)
ρ−1
D (defined for amatrix

( A B
C D

) ∈ �(2�b,βt ), where ρD is either 1 or i depending on whether D is 1 or 3 (mod 4)),
using results from [40]. (See also [20, Section 3.2] for a similar argument.) In turn, this
implies that �t

( a
b ; τ

)
transforms of weight 3/2 with character

(
�b,βt
D

) (
2Cβ/�

D

)
ρ−1
D with

respect to the group Xb,βt ⊆ �0(2�2b,β/β). We now compute the Eichler integral of this
function. (See [8], and the narrative in Sect. 1.1.) We have that

�t ( ab ; τ ) =
∑

n>0
a(n)q

n
2β ,

where a(n) := √
nχ8t+4(

√
n)

(
ζ
a
√
n

2b − ζ
−a

√
n

2b

)
if n is a square, and otherwise, a(n) = 0.

Here, we have used that χ8t+4 is an even function. Thus, the Eichler integral of �t ( ab ; τ ) is

∑

n>0
a(n)n1−

3
2 q

n
2β = Ft ( ab ; τ ) − Ft (− a

b ; τ ),

where we have also used Lemma 17. The claimed weight 1/2 quantum modularity of this
function now follows by work of Bringmann–Rolen [8].

10 Proof of Theorem 6
Write p = 2m2 for somem ∈ N, and recall that 1 ≤ s ≤ p − 1. We may rewrite

η(τ )ch[Miz
1,s](τ ) =

∑

±
±Cp∓s,2p(2

√
2pz; pτ ). (10.1)

Observe: With β := 2p = 4m2, we have that 4 | β and β > 0. Let α1 := p − s and
α2 := p + s. Then since 1 ≤ s ≤ p − 1 we have that 0 < αj < β for j ∈ {1, 2}. Thus, the
conditions required to apply Theorem 1 hold.
The claimed transformation properties of these functions follow from Theorem 1,

noting the stated changes in index, group, and character (as well as the fact that
2
√
2p = 4m ∈ N). That is, due to the change of variables in the arguments of the functions

Cαj ,β , the index changes from −1/8 to −1, the groups and characters change accordingly
as stated in parts (1) and (2) of the theorem, and the functions exhibit appropriate elliptic
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properties with respect to the sublattice
√
2p Z × Z. Moreover, it is not difficult to verify

using the fact that Cα,β is defined on Qα,β that the sum in (10.1) is defined on Qs,p. The
setQs,p is closed underMp � (

√
2p Z × Z) by Lemma 12.

Index
Appell functions
A2 p10, p11
Â2 p11
Bα,β p16
B̂α,β p16

Characters and periodic functions
ε(γ ) p10
ρD p8
ψB,C,D p20
χC,D p22
χ8t+4 p30

Colored Jones polynomials p6, p29
Eichler integrals and related functions
as in Eq. (1.2) p3
as in Eq. (5.9) p20
as in the proof of Theorem 5 p31
h(z; τ ) p12
R(z; τ ) p11

Groups
Gβ p13
Hβ p13
Kt p13
Lt p13
Mp p13
Wp p13
Xb,β p13

Miscellaneous parameters
αt ,α

(j)
t p7

βt p7
c(n) = cα,β ,a,b,h,k (n) p26
�b,β p8

q-hypergeometric functions
F (q) (Kontsevich–Zagier) p5
F (w; q) p5
Ft (w; q) p6
Ft (z; τ ) p7
F (a, b, x; q) (Fine) p9
Fα,β (z; τ ) p18
K (w; q) (universal mock theta function) p9
U (w; q) (strongly unimodal sequence rank generating function) p5
Ut (w; q) p6
Ut (z; τ ) p7

Quantum Jacobi form p1
Quantum modular form p1
Subsets in Q × Q
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Q2 p13
Qα,β p13
Qs,p p13

Theta functions
Dedekind η-function p10
Jacobi theta function ϑ(z; τ ) p10
Partial Jacobi theta function Cα,β p2
Partial Jacobi theta function H (w; q) p9
Theta function gA,B p12
Theta function �t ( ab ; τ ) p31

Vertex algebra characters ch[Miz
1,s] p8
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