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SCATTERING BELOW THE GROUND STATE FOR THE 2d
RADIAL NONLINEAR SCHRODINGER EQUATION

ANUDEEP KUMAR ARORA, BENJAMIN DODSON, AND JASON MURPHY

(Communicated by Catherine Sulem)

ABSTRACT. We revisit the problem of scattering below the ground state thresh-
old for the mass-supercritical focusing nonlinear Schrédinger equation in two
space dimensions. We present a simple new proof that treats the case of radial
initial data. The key ingredient is a localized virial/Morawetz estimate; the
radial assumption aids in controlling the error terms resulting from the spatial
localization.

1. INTRODUCTION

We consider the initial-value problem for the focusing nonlinear Schrédinger
equation (NLS) in two space dimensions:

(i0; + A)yu = —|u|Pu,

(1) u(0) = uo € H'(R?),

where u : RxR? — C and 2 < p < co. This equation admits a global nonscattering
solution of the form u(t) = e Q(z), where @Q is the ground state solution to the
elliptic equation

—AQ+Q - QM =0

(see, e.g., [16]). In this note we will give a simple new proof of scattering for radial
solutions to (1.1) with initial data “below the ground state threshold” (in the sense
of (1.3) and (1.4) below). Such results have been established previously in related
settings in [1,3-6,8,10]. These results demonstrate that the ground state is the
minimal nonscattering solution in an appropriate sense. Before stating the result
precisely, let us introduce a few basic notions.

First, we recall that solutions to (1.1) conserve their mass and energy, defined

by
M(®) = [ Jutt.0)P
R2
B(ut) = [ 4Vutta) - Hluttn)* do,
respectively.
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1654 A. ARORA, B. DODSON, AND J. MURPHY

Next, we observe that the class of solutions to (1.1) is invariant under the scaling
(1.2) u(t, z) — )\%u(/\Qt, Az).
This defines a notion of criticality for (1.1). Specifically, if we define
Se=1— %,

then we find that the H*:-norm of initial data is invariant under the rescaling (1.2).
In particular (since we are working in two space dimensions) we always have s. < 1,
which means the equation is always energy-subcritical. The case s, = 0 (i.e., p = 2)
is called the mass-critical equation, since in this case the mass of solutions is left
invariant under (1.2).

In this paper, we consider the mass-supercritical range 2 < p < co. We will
prove the following.

Theorem 1.1. Let 2 < p < oo. Suppose ug € H*(R?) is spherically-symmetric
and satisfies

(1.3) M (u0)?E(ug)*~? < M(Q)*E(Q)P*
and
(1.4) uoll2: | Vuol[52 < Q2 |V Q|32

Then (1.1) admits a unique, global-in-time solution u with u|i—g = ug. Further-
more, the solution u scatters, that is, there exist uyx € H'(R?) such that

tA’U,iHHl =0.

. i

RTNUORY

Remark 1.2. The powers of M (ug) and E(ug) are chosen so that the product scales

like the critical H®¢-norm. Here e** denotes the Schrodinger group, so that e**®u4

are solutions to the linear Schréodinger equation. The proof of Theorem 1.1 will also
show that the solution u obeys global space-time bounds of the form

Hu”Lff’t(RxR% < C(M(uo), E(uo)).

The result of Theorem 1.1 was previously established in [1,3,8], extending the ar-
guments of [6,10]. In fact, in [1,3,8] the same result is proven without the restriction
to radial initial data. In these works the authors proceed via the concentration-
compactness approach to induction on energy. The purpose of this note is to
demonstrate a short and simple argument that suffices to handle the radial case; in
particular, it avoids concentration-compactness entirely.! This extends our previous
works [4,5] to the two-dimensional setting, which often presents new challenges due
to issues with Morawetz estimates and weaker dispersive estimates. It is an inter-
esting problem to find a simplified argument to handle the general (i.e., non-radial)
case in two dimensions, as well as to consider the one-dimensional problem.

The strategy of proof will be to establish a virial/Morawetz estimate for solu-
tions to (1.1) from which we may deduce scattering. The required coercivity in
the virial/Morawetz estimate follows from the sub-threshold assumptions (1.3) and
(1.4) (specifically through the use of the sharp Gagliardo—Nirenberg inequality).
The radial assumption is used to get uniform control over error terms stemming

IShortly after the submission of the present work to arXiv, Guo and Shen submitted their work
(9], which obtains the same result by similar methods (as well as some extensions to nonlinear
Klein—-Gordon equations).
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2D FOCUSING NLS 1655

from the spatial truncation, which is in turn needed to render the virial/Morawetz
quantities finite. In particular, we utilize the radial Sobolev embedding estimate to
deal with errors at large radii.

2. PRELIMINARIES

We use the standard notation A < B to denote A < CB for some C > 0,
with dependence on parameters indicated via subscripts. We also use the “big O”
notation O. When necessary we will write C(A) to denote a positive constant
depending on a parameter A.

We employ the standard Lebesgue and Sobolev spaces, including mixed space-
time Lebesgue norms. We write 7’ for the Holder dual of 7, i.e., the solution to
T+5=1

We write a+ to denote a £ ¢ for sufficiently small € > 0. When the exponent
LS~ appears, it should be interpreted as L, for some r satisfying % = 0+.

We utilize the following radial Sobolev embedding estimate, which appears orig-
inally in [12] and follows from the fundamental theorem of calculus and Cauchy—
Schwarz.

Lemma 2.1 (Radial Sobolev embedding, [12]). If f € H(R?) is spherically-
symmetric, then

]2 fllee ey S 1 1m re)-

2.1. Linear estimates; local theory. We recall the standard dispersive estimate

; y2
€™ ) o g2y s Loy S 177, 2 <7 < oo,

which in turn yield the following Strichartz estimates [7,11,13]: for t € I C R and
2 < g; < oo satisfying % + % = % for j =1,2,
itA
€2 Fllpo po (rxmey S I fllL2 @2,

’/eiSAF(S) ds
R

¢
/ =B P (s) ds

0

SIF
L2(R?)

SIFE

LI LT (IxR?)

I "1LT1 RxR2)’

The endpoint case (¢q,7) = (2, 00) may also be included in the radial setting [14],
although we will not need it here.

Local well-posedness for (1.1) follows from standard arguments using Strichartz
estimates and Sobolev embedding. In particular, any uy € H' leads to a local-in-
time solution in C.H", which may be extended to a global solution provided the
H'-norm remains uniformly bounded in time. See [2] for a textbook treatment.

HLféLzé(IxRQ)'

2.2. Variational analysis. We recall that @ is the unique positive, radial, decay-
ing solution to

(2.1) —AQ+Q - Q" =0,
which may be constructed as an optimizer of the sharp Gagliardo—Nirenberg in-
equality

1122, sy < Coll 122y IV A1 o
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1656 A. ARORA, B. DODSON, AND J. MURPHY

For more details, see for example [2,16]. Multiplying (2.1) by @ and by - VQ and
integrating leads to the Pohozaev identities

+2 +2
IQI7 = ZzlQII7%:  and [[VQIZ: = Z5lQI7%
p p

In particular,

22 1QI2: | VQIE? = 2t2¢;
and
(2.3) M(Q)2E(Q)p72 _ (%)piz(”’#)zco—?_

We will need the following two lemmas.
Lemma 2.2 (Coercivity I). If
M (uo)* E(uo)"™2 < (1 - 6)M(Q)*E(Q)"*
and
luolZe I Vuollz2” < lIQIIZ=IVQIT:",
then there exists 0’ > 0 so that
(2.4) lu() 122 [Vu@)[lF2* < (1= ) QIZ: IVl

for all t € I, where u : I x R? — C is the mazimal-lifespan solution to (1.1). In
particular, I = R and u(t) is uniformly bounded in H*'.

Proof. By the sharp Gagliardo—Nirenberg inequality and conservation of mass/
energy,

(1= 0)M(QE(Q)"? = M(u)*E(u)"?
) 22 -2
> [5lull 72" 1VullZ: — 55l 227 1 VullE.]”
for all ¢ € I. Using (2.3), a short computation reveals that this is equivalent to
_2_ 2
P (IIU(UIIEJ IV’u(t)IIL’z)2 2 (IW)IZzz IIVU(t)IL2>p
= -2 —
1QIIZ=" VRl b QIIZ=" V@Il

for all t € I. The desired bound now follows from a continuity argument and the
fact that for p > 2 we have

1-6>
= =2

#Zﬁ_%ypgl_(s = |y—1]>4¢" for some § > 0.

Global well-posedness and uniform H! bounds now follow from the conservation of
L2-norm and the H! blowup criterion (cf. Section 2.1). O

Lemma 2.3 (Coercivity II). If

1120V £172% < (1= 8)lIQII7=VQlIT
for some § > 0, then there exists &’ > 0 such that

2 2
IVFIZe = Gl F I > &I
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2D FOCUSING NLS 1657

Proof. By the sharp Gagliardo—Nirenberg inequality and (2.2),

E(f) 2 [VfIZ215 — 72 Coll 121V F11727]
> [IVF113:[5 — 5Co(1 = 0)|QIE: 1VQ%:)
p

2
— 2 (p=2 | &
= IVFlz=l5 + 5]
Thus
2 _
LIV FI2: — LI FIB2 = B(f) - B2V 12 > 8912,
which implies the result after some rearranging. ]

3. VIRIAL/MORAWETZ ESTIMATE

Let wug satisfy (1.3) and (1.4), and let u be the corresponding global-in-time
solution to (1.1) guaranteed by Lemma 2.2. In particular, u is uniformly bounded
in H* and obeys (2.4). Applying the scaling (1.2), we may assume

(3.1) M(u) = E(u) = Ey.
We will prove the following space-time estimate.

Proposition 3.1. For any T > 0,

T
/0 /\u(t,x)\p” dedt Sp, T, where o= max{3, %}
Proof. We let ¢ be a smooth radial function satisfying

L o<l <1,

9(@) = {O, |z| > 2.

We may write ¢ = ¢(r) where r = |z|. We use ' or 9, to denote radial derivatives.
We then set

||

U(x) = o) dp.

In particular, ¢(r) = ¢(r) for r < 1. We also have the following bound:

(3.2) [9(x)] < min{1, ﬁ}.
Note that
(3.3) Y (r) = o(r) — (7).
In particular, ¢'(r) = ¢'(r) = 0 for » < 1, while we have
(3.4) (@) S e for o] > 1.

Given R > 1, we define the Morawetz quantity

A(t) = /w(%)x -Im[aVu] dz
which satisfies

(3.5) |A(t)] £ REy uniformly over ¢ € R.
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1658 A. ARORA, B. DODSON, AND J. MURPHY
Using (1.1), we compute

(3.6) a4 — Re/w(%)xk [ — wjur) do

(3.7) + Re/w(%)xk[aakﬂu\pu) — |ulPuuy) dz,

where subscripts denote partial derivatives and repeated indices are summed.
For (3.6), we begin by observing that

Refuw;jx — tjjux] = 50;50|ul® — 2 Re 0;[d;up].
We will insert this identity into (3.6) and integrate by parts. Using (3.3) as well,
this yields

(3.6) ——/A (£)+ %)]|u|2dx—|—2/1/) )Vl + ¢ (£) 210,12 da.
Now observe
Al(g) +o(5)] = 6" (F) + 7 [20' (%) —¥'(R)]-
Recalling (3.3) and (3
3.6 =2 [ 6@V - g [ @Il — [ (26 (R) — v (Gul o
(3.8) _2/¢ 2)|Vul? + O(k ullZa).

We turn to (3.7). Noting that

Re{ady (Jul"u) — |ufPaur} = 250k (Jul"*?)

4), we deduce

and
Ilzep(£)] = 2¢(%) + F [0c](F):

we may integrate by parts and use (3.3) to write

(3.9) 6:1) = - [W() + 6@ luP? da.
We now collect (3.8) and (3.9) to obtain
B10) B> [0Vl - ) + ol de - O(h)

Now, by construction (see, e.g., (3.2)) and radial Sobolev embedding (Lemma 2.1),
we can estimate

Wt el s [ s
x|>

_r 1 _r
SR 2|2 ullj lullf S R72,

(3.11)

and so we may continue from (3.10) to get
(312 422 [ (R IVAl - Ealul?*?] do - O(4),

where
o =min{2, §}.

Next, let us establish a lower bound.
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2D FOCUSING NLS 1659

Lemma 3.2. There exists n > 0 such that for R sufficiently large, we have
2 [ GV gl ez [t e - OGE)
<3
uniformly in time.
Proof of Lemma 3.2. Let us write ¢(%) = x}(x). We first wish to show
(3.13) S‘ipHXRUJ(t)H%QHXRU(t)HI;;Z < (1= 30)QIz= Q%

for R sufficiently large, where ¢’ is as in (2.4). Given that (2.4) holds and the
cutoff only decreases the L?-norm, we need only consider the H'-norm. For this
we compute

/ aIVuf? de = / IV (xru)[? + xnAlallul dr,
which shows
Ixrul?, < Jul?, + OR 2 ul2),

and hence (3.13) holds for R large enough.
Using Lemma 2.3, (3.13) implies

2 2
Ixru()1F: — Fallxru)7?: > 100l xrut)ll}2:

for some n > 0, uniformly in ¢t. Now, the argument just given above shows that we
may replace

ru()y with [ o()IVal? do

with errors that are O(R~2) uniformly in time. Similarly, estimating as in (3.11),

we may write
[t = [ ol [ e il
||> &

— [ ottt ds + O(R )
uniformly in ¢. This completes the proof. (]

With Lemma 3.2 in place, we may combine (3.12), the fundamental theorem of
calculus, and (3.5) to deduce

T
/t/ lu(t, )P 2 dedt Spy R+ 2=
0 Jz|<§
uniformly in T, R > 1. As radial Sobolev embedding (Lemma 2.1) yields
—2y L _ _z
/l lult, o) P2 de S R7E 2P ullf Jullz: S B Flullfnt S RV
T|> 5
uniformly in time, we deduce
T
/ / lu(t,z)|PT? dedt g, R+TR™°
0
uniformly in 7', R > 1. Choosing R = Tt yields

T
/'/W@QWWMﬁgTﬁa
0
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Observing that

H%— :max{%,ﬁ}:a,

1
1+min{2,5}
we complete the proof of the proposition. O

4. SCATTERING

In this section we will use the virial/Morawetz estimate of Proposition 3.1 to
establish scattering.

Proof of Theorem 1.1. For initial data ug as in Theorem 1.1, we are guaranteed
a global-in-time solution wu(t) satisfying uniform H' bounds by Lemma 2.2. We
rescale u so that (3.1) holds, and we have the virial/Morawetz estimate, Proposi-
tion 3.1.

Our argument is similar to the one appearing in [5], and in fact would be appli-
cable in the settings considered previously in [4,5].

Let ¢ > 0 be a small parameter to be chosen sufficiently small (depending on
Ey) below. As Sobolev embedding and Strichartz yield

HeitA

Uo”ﬁf;(n@xn@’z) S ||UOHH1(]R2) SEe L

we may split R into J = J(e, Ey) intervals I; such that
(4.1) HeitAUOHLff;(Iij?) <e

for each j. We let T'= T'(¢) be a large parameter to be determined below. We will
prove

2
(42) Hu”L%i([jXRQ) SJEO T

for each j. Then, summing over j yields the critical global space-time bound

2
Hu”LprT;(]RXRQ) SEO T’

which in turn yields scattering by standard arguments (see, e.g., [15, Section 5.8]).
As Holder’s inequality and Sobolev embedding imply
2
(43) Hu”Lpf,I;(IXRZ) SEO <I>
for any interval I C R, it suffices to consider j such that |I;| > 27T
Let us fix one such interval, say I = (a,b) with |[I| > 2T. We will show that
there exists ¢; € (a,a + T') such that

tl .
/ e A (JufPu)(s) ds

0

<p, CE)T P +e3

(4.4) ’
L7P ([t1,00) xR?)

for some 8 > 0.
Assuming (4.4) for the moment, let us complete the proof. We use the Duhamel
formula to write

A (1) = e Bug + z/ DB (|ufPu)(s) ds.
0
Thus, choosing T sufficiently large depending on € and recalling (4.1), we deduce

i(t—t1)A 1
||€l(t t1) u(tl)HLff;([tl,b]X]Rz) 562.
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For e small enough, this yields by a continuity argument the bound

[l 2 (g2, by xmey S e2,

On the other hand, using |t; —a| < T and (4.3), we get

||UHL2P ([a,t1]xR?) 5 Ta

and hence (4.2) holds, as desired.
It remains to prove (4.4). By time-translation invariance, we may assume a = 0.
We begin by applying Proposition 3.1, which yields

(4.5) / /\u (t, )PP dedt Sp, T, where o= max{3, p+2}

We claim that there exists ¢y € [X, 2] and § = (e, Eo) > 0 such that

to+oT1
(4.6) / / lu(t,z)|PT2 dxdt < e.

to

Indeed, as [T, Z] is covered by ~ 61T intervals of length §7"'~*, the bound (4.5)

shows that there must be some interval [to,to + 67~ %] obeying

to+oT ™
/ / lu(t, z) P2 dx dt < 5C(Ey),

to

which yields the claim.

We now set

ty =to+ 0T @

and observe that since ¢y < %, we may guarantee that ¢; < T.

We will estimate the integral in (4.4) by estimating separately the contribution
of [O,to] and [to,tl].

We first treat [0,tg]. For ¢ > t;, we may use the dispersive estimate, Holder’s
inequality, and (4.5) to estimate

to A to N (p+2)(p—1) 2
[ puruas| s [ s ol as
0 0

oo
Lz
P

to -
< [ / / (s, @) P2 deds| 1|1t — s~z

T T P

to
‘ / e =8y Py ds
0

On the other hand, we may write

z/ ez(t_s)A|u|pu ds = el(t_tO)Au(to) — By,
0

yielding
< 5 (A2
LS, ([t1,00) xR2)

so that by Strichartz we have

to )
‘/ e =8y Pu(s) ds
0
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Thus, by interpolation and the fact that * 3 <« < 5, we get
to
/ =By |Py(s) ds
0
2

Sy 0757 T U258 <p O TP

for some S > 0. This is an acceptable contribution to (4.4).

We next consider the contribution of [tg,t1]. Let us first show how the estimate
works, employing the a+ notation; we will show how to choose exponents more
precisely in Remark 4.1 below. By Sobolev embedding, Strichartz, the fractional
chain rule, and (4.6),

t1
/ =By |Py(s) ds

to

(4.7) ‘ L7 ([t1,00) XE2)

t1 )
< HIVISC e uts) ds

to

2p_
2pr p—1
L2 LY

LY,
< ||IVISC(IU\”U)\|L2—L1+([to,t1]xm2>

RO [ -l [ P

<Eo €2a

~

which is again an acceptable contribution to (4.4).
This completes the proof of (4.4) and hence of Theorem 1.1. |

Remark 4.1. Tt is also possible (although, we contend, less transparent) to choose
the exponents in the final estimate above more precisely: Let 6 € (0,1) be a small
parameter satisfying p(1 — ) > 2. In the estimates above, we choose the dual

admissible pair
4—26

Lo =020
T
and estimate
[IV]% (JulPu) | 4-20

L279 L2739 ([to,t1] xR2?)

p+2 p(1—-0)—2

’SH |2pi2([tot ]R2)H ||L°°LT2 |||v|scu||L°°LT1a

where, given a choice of r; we must have (by scaling)

_ _2m[p(1-0)-2]
r2 = rl(gl—ge)—(z;—ze)'

In particular, to guarantee finiteness of 7‘2 we should take
(4.8) r1 > > 2,
which is compatible with r < psz (needed for the embedding H! ¢ H**"™) pro-

vided 6 also obeys 6 < - It then remains to verify that we may guarantee ro > 2.
After some rearranglng, thls reduces to the constraint

v < | EEi-e 4[p<21 gy p(l1—0)-2<2-30,
oo otherwise.

As this is compatible with (4.8), we conclude that there exist suitable choices of
exponents, as claimed.
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