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In this paper we study the defocusing, cubic nonlinear wave equation in three dimen-
sions with radial initial data. The critical space is H!/2 x H~1/2, We show that if the
initial data is radial and lies in (B x H571) N (H'/2 x H~Y/2) for some s > 1, then the
cubic initial value problem is globally well-posed. The proof utilizes the I-method, long
time Strichartz estimates, and local energy decay. This method is quite similar to the
method used in [11].

1 Introduction

In this paper we study the defocusing, cubic wave equation
ust — Au = F(u) = —u®, u(0,x) = ug, us(0,x) = u1,u: R x R® > R. (1)

A solution to (1) actually produces a family of solutions due to scaling. Indeed, if u

solves (1) with initial data (u(0), u¢(0)) then for any A > 0,

u(t, x) = Au(it, Ax), (2)
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2 B.Dodson

is a solution to (1) with initial data (Au(O,AX),Azut(O,AX)). Equation (2) preserves the
H'Y2 (R®) norm of u and the H~%/2 (R®) norm of u;, and thus (1) is called H/2-critical.
Study of dispersive partial differential equations with initial data lying in the critical
Sobolev space is currently an important topic of research. References [23] and [24]
proved a sharp counterexample to well-posedness of (1) for data lying in a Sobolev space
less regular than the critical Sobolev space. See [5] for similar results for a number of
dispersive equations, including (1).

On the other hand, positive results have been obtained for a number of initial value
problems with initial data lying in the critical Sobolev space. Reference [24] proved a
local well-posedness result for (1) with initial data in H'/2 x H~1/2,

For the energy-critical, defocusing wave equation in three dimensions (quintic), global
existence of smooth, radially symmetric solutions was proved in [30]. Reference [15]
extended this result to the general case. Reference [27] extended this result to dimen-
sions 3 < d < 7. Global well-posedness for initial data lying in the energy space was
proved by [28] and [16].

Remark. This question has also been completely worked out for the defocusing
energy-critical (quintic) Schrédinger equation [3, 9], and the defocusing, mass-critical

Schrodinger equation [10, 21]. In each case scattering has also been proved.

Remark. The above discussion was not intended to be a complete discussion of
defocusing energy-critical and mass-critical problems. For one thing, discussion of
dimensions other than d = 3 was omitted entirely. Discussion of the focusing problem,

see for example [18], was also completely omitted.

What unites the energy-critical wave equation, the energy-critical Schrodinger
equation, and the mass-critical Schrodinger equation is the presence of a conserved
quantity that controls the critical Sobolev norm. For example, if u solves the wave

equation
uit — Au = —|ulPu, (3)
then the energy

E(u(t)) = % /R Va0 dx ot / |atu<t,x)|2dx+lﬁ f 0P (@)
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Low Regularity Global Well-Posedness 3

is conserved. Therefore for (1) the energy is given by
1 2 1 2 1 4
E@®) =7 [ [Vu(t,x)| dx + 7 | w0l dx + 7 | lu@xl dx = E(u(0)). (5

However, there is no known conserved quantity that controls |u(t)]| HY/2(R3) OF
lus(@®llg-1/2g3)- In fact this is the only obstacle to proving global well-posedness and

scattering for (1) with radial data.

Theorem 1.1. Suppose u solves (1) on an interval I, I is the maximal interval of

existence of the solution, and

el poo vz (rxrdy + el o172 1 cm3y < 00 (6)

Then u is global, that is I = R, and u scatters to a free solution both forward and

backward in time.
Proof. See[12]. [ |

The definitions of well-posedness and scattering that are used here are the standard

definitions.

Definition 1.2. (Well-posedness). The initial value problem (1) is well-posed on an open
interval I C R, 0 € I, for (uo, u1) € (HSNHY?) x (HS"'nH1/2) =X if
(i) (1) has a unique solution u lying in C? L; X),

(ii) The solution satisfies the Duhamel formula

t

(u@®), ug(t)) = St)(uo, u1) — / St —1)(0,u®) dr, (7)
0

where S(t)(f, g) is the solution operator to the linear wave equation u —
Au =0, ul0, x) = f(x), us(0, x) = gx).

(iii) For any compact J C I, the map (uo, u1) — Li, (J x R3) is continuous.

Equation (1) is said to be globally well-posed if I = R.
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4 B. Dodson

Definition 1.3. (Scattering). A global solution to (1) with initial data (up, u;1) € X is said

to scatter forward in time to some (ug, u;)* € X if

Jim [ @), wi(®) — S o, un)* | = 0. ®)
Analogously, u is said to scatter backward in time to some (ug, u;)~€ X if

tLiI}loo [ (w(®), ut(t)) — S(t)(uo, u1) ™ llx = 0. (9)

Equation (1) is said to be scattering for initial data lying in a certain set if for each (ug,
u1) lying in that set there exists (ug, u1)* and (ug, u;)~ such that (8) and (9) hold, and fur-
thermore, the maps (ug, u1) — (ug, u1)™ and (ug, u;) ~ (ug, u;)~ are continuous as func-

tions of (ug, u1). O

For a number of focusing, dispersive partial differential equations, there exist solutions
with bounded critical Sobolev norm that fail to be global or fail to scatter. This
phenomenon is called type-two blowup. Excluding type-two blowup, such as in the
proof of Theorem 1.1 of [12], usually utilizes concentration compactness arguments.
These arguments are very similar to arguments used to prove global well-posedness
and scattering for energy-critical wave and Schrddinger equations, and mass-critical
Schrodinger equations. In fact, given a conserved quantity that controls the critical
Sobolev norm, all that is left is to exclude type-two blowup. Thus, when [19] proved
global well-posedness and scattering for the cubic nonlinear Schrédinger equation with
bounded H'/2 (R%), this introduced a number of techniques that were very instrumental
in the proofs of energy-critical and mass-critical scattering results.

To the author’s knowledge there are no known methods for proving global well-
posedness and scattering for dispersive equations without either assuming the exis-
tence of a quantity that conserves the critical Sobolev norm or in fact having such a
quantity.

In this paper we utilize the I-method to prove that for any s > % the HS x H~! norm of
(u(t), us(t)) is bounded on any finite compact subset of R. This is enough to prove global

well-posedness.

Theorem 1.4. (Main theorem). Equation (1) is globally well-posed for any radial initial
data (u(0), u¢(0)) = (uo, u1) € H* (R®) x HS "1 (R} NHYVZ x H7Y/2, 5 > L.
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Low Regularity Global Well-Posedness 5

Remark. By finite propagation speed, this also implies that (1) is globally well-posed
1

for initial data lying in HS x H*~! for any s > 3.
The I-method has its roots in the Fourier truncation method. The Fourier truncation
method was introduced by [2] for the cubic nonlinear Schrédinger equation and by [20]
for (1), proving (1) is globally well-posed for u(0) € H* (R®) N L* (R?), u(0) € HS (R®),
s> %. See [1] for s > % and [13].

The I-method is an improvement over the Fourier truncation method. For example [7]
was able to improve the results of [2] for the nonlinear Schrédinger equation. On the
wave equation side, [25] and [26] extended the results of [20] to s > % and to s > 110 ifu
has radial symmetry (although in both cases with inhomogeneous initial data to avoid
technical complications). Perhaps more importantly, [17] proved a well-posedness result
that was technically unattainable via the Fourier truncation method. See [11] for a more
detailed discussion of the history of the I-method.

To prove our result we make use of the long-time Strichartz estimates. The long time
Strichartz estimates were introduced in [11] and were actually inspired in large part by
the linear-nonlinear decomposition of [26]. Basically, the idea is that if u solves (1) on
an interval [0, T], on which we have some a priori bound on the [[w()ll g5 (0,71 r2) DOTM
for some s > %, then we can show that at high frequencies, the solution u is dominated
by the free evolution from initial data («(0), u:(0)).

We then take the usual modified energy
1 2 1 2 1 a
E(fu®) = 5 [ VI, dx + o [ Tui(t, 01 dx + [ [Tu(t, 0)|* dx, (10)
where I is a smoothing Fourier multiplier
1B (R - B (R, 1A (RY) - 12 (R?). (11)

Direct computation shows that %E(Iu(t)) is a quadrilinear integral operator on u that
has at least two terms at high frequencies. Using the long-time Strichartz estimates, we
can then show that the integral of %E(Iu(t)) over the interval [0, T] is small, which in
turn implies that E(Iu(t)) is pretty close to E(Iu(0)). Meanwhile, an a priori upper bound
on E(Iu(t)) gives us good control over ||u(?)| s, allowing us to make a bootstrap argument
that proves Theorem 1.4.

This argument is extremely similar to the scattering argument in [11]. There are two

main reasons we do not prove scattering here. The first is the lack of an interaction
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6 B.Dodson

Morawetz estimate for the wave equation, unlike the interaction Morawetz estimate for
the nonlinear Schrédinger equation in [8]. The second is that the L? norm of u is not
conserved for the nonlinear wave equation (1), as it is for the nonlinear Schrédinger
equation. Observe that [11] assumed that the initial data lay in L% (R9).

2 Linear Estimates for the Wave Equation

In this section we prove some Strichartz-type estimates on solutions to linear wave
equations that will be needed in the proof of Theorem 1.4. We begin with a discussion
of the Littlewood-Paley partition of unity.

Definition 2.1. (Littlewood-Paley partition of unity). Suppose ¥ € Cg° (R3) is a radial,

decreasing function supported on |x| < 2, ¢ = 1 on |x| < 1. Then for any N we define the

Littlewood—-Paley projection

Puf)(x) = F! ((vf (%) —y (%))f@)) ), (12)

where

FrFE)x) = 2r)~%? / e Ef (&) de. (13)

Also define the operators

(Pnf)(x) = F! (w (%)f@)) (x), (14)

andP>N= 1 —P§N. O

Remark. Since ¢ is a Cf° (RS) function, Pyf is the convolution of f with a Schwartz
function that is <; N3(1 4+ N|x|) ! for any l € Z.

Next recall the Strichartz estimates of [29].
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Low Regularity Global Well-Posedness 7

Theorem 2.2. (Strichartz estimate). If u solves uy; —Au = F on an interval I, with
to €I, then

||u(t)||L4 _(IxR3) S ||u(to)||H1/2(R3) + lueo)lig-172(rsy + ||F||L4/3(I><R3) (15)

Reference [14] extended Strichartz estimates to all admissible pairs when d =

Combining Strichartz estimates with local energy decay yields the following estimate.
Theorem 2.3. (Linear estimates). If u solves the wave equation

Ui — Au =F; + F» + F3, u(0) = ug, ut(0) = uq, (16)
then

v|/2 u”L4 L(axr3) T (sup R1/2 ”Vu”LtX(Ix |X|§R}))

+H|V|_l/2u

¢ L, (IxR3) + (S up =iz R1/2 ||ut”LZ (Ix{|x|<R}))

S luoll g (R3) + llug ||L2(R3) + ||IF3 ||L}L§(I><R3)

+[1v1172m,

oo
E J/2 ‘ ‘
143 (1xR%) + . 2 ”F2||L§X(I><{21§\x|§21+1})- (17)
, oo

Proof. Again let S(t)(uo, u;) be the solution operator to (16) with F; = F, = F3 =0,

cos(tv/—A)ug + Sin(t—\/:/_;_A)ul. (18)
By Strichartz estimates and the sharp Huygens principle,
1/2 1
191725t (wo, 5 oy * (sgp =177 VS®)wo, u1)||Lg,X(RX{,X§R})>
+ |1V 2808 e (o, wa) 5 oty T (sgp #uatsa)(uo, u1>lngx<Rx{|X|§R}>)
S lluollgr gsy + lunllzz(rs)- (19)
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8 B. Dodson

To prove this, it suffices to prove

2 2 9 )
/R/mgl VU, 01" + @eu(t, 0)* dx dt S lIuoll gay + I1utliz2 ga),

(20)

and then rescale. The proof of (20) is quite standard. See for example Theorem 3 of [4].

Then by duality, (19), and the Strichartz estimates of [29],

F(r)dr + F(r)dr

3 /sin((t—r)«/—A)
t

NN

V/ sin(—1+/—A)
v=A

LE(R3) LE(R3)

S |iviem

(0.¢]
/2
+ 20 2Pl e mzminy) + 1B sy

L2 (IxR3)
Therefore, by the Christ-Kiselev lemma of [6], when ug = u; =0,

” V|2

+ |12,

< ol ey + w2 s,

L}, (IxR3) L}, (IxR3)

+ |ivir

o)
2 /2 . .
L?{XS(IXR3) + ' 2 ||F2||L?'X(IX{2]§|X\§2]+1}) + ”F3||L%L)Z((I><R3)'
\ j=—o00

and

1
sup (F1 + F3)(t)drt

R R1/2

/t sin((t — 1)V —A)
0 v=A

L2, (Rx{|x|<R})

+ | sup (F1 + F3)(r)dr

) tsin((t — t)v/—A)
r RV2 "),

J=A

L2, (Rx{|x|<R})

S |iviem

43 + 1F3 L1 2 (1 xR3)-

Ly (IxR3)

(21)

(22)

(23)
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Low Regularity Global Well-Posedness 9

Therefore it only remains to show

sup Fa(r)dr

R>0 R1/2

V/tsin((t — )/ —A)
0 V=A

L7, (Ix{x:[x|<R})

+ | sup Fy(r)dt

r-0 R'/?

5 /‘tsin((t —1)/—A)
t
V-A

L, (Ix{x:|x|<R})

00
5 Z 2J/2||F2||L§X(I><{2f§|x\§2f+1})‘ (24)

j=—o0

Finally, if up = uy = F; = F3 = 0 and F; is supported on {x : |x|< R}, then the sharp
Huygens principle implies that the supports of

/ S(t—1)(0,F;)dr (25)
7€l0,tIN[kR, (k+1)R]

are finitely overlapping. Since Hélder's inequality implies

1/2
||F2||L§L§([kR,(k+1)R]xR3) SR / ||F2||L§L§([kR,(k+1)R]xR3)r (26)

1 1
(;‘ilg m||V“”L§,X<Ix{x:|x|sﬂ}>> + <§ilg RIZ ||”t”L§,x<1x{x:x|sR}>>

oo
5 Z 2J/2||F2||LfX(I><{2f§|X|§2J+1}) (27)
j=—o0 '
follows from (23). This completes the proof of Theorem 2.3. |

Remark. The same argument also implies that if Py is a Littlewood—Paley multiplier,

<ZuISN”PNu”L§X(RX{X;X|§R})> < ”u0||H1(R3) + llus ||L2(R3)
2 ,

o0
/2
HIVE zrams) + 2 22 IFalliz quzicii=ainty: (28)

j=—o00

with constant independent of V.

We will also utilize the endpoint Strichartz estimate of [22].
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10 B. Dodson

Theorem 2.4. (Endpoint Strichartz estimates). For ug, u; radial,

IS(t) (uo, u1)||L§L§O(R><R3) S lwollgn (R3) + lluy ||L§(R3)'

Also, by duality, if F is radial,

”/ S(—1)(0,F)(¢) dt
R

< |IF]l;271 3
S 20l R xR3)-
12(R3) rhaRx

Proof. See [22].

3 Proof of the Main Theorem

(29)

(30)

We follow the work of [7] and later [25] and [26], and define the I-operator I : HS — H!,

where I is given by the Fourier multiplier

1 if || <N
m(E) = if |§] <

1-s .
@’lﬁ if |£| > 2.

By the Sobolev embedding theorem,

E(Iu(0)) S IIVIu(O, 0117, + 11us (0, x) 12, + I11u(0, x) |26 53, 1(0, ) 175 g3,

Shuollre 1VIut, )12, + I1Tus(, x)|2,.
Therefore,

E(Iu(0)) < C (luollgyz + llutllg-1/2, 1ol gs + 1wt llgs—1 ) N2375).

(31)

(32)

(33)

To prove global well-posedness it suffices to prove that for any compact interval

[0, Tol C R, there exists an N(Ty) sufficiently large so that

E(Iu(t)) < 2CN?1-9),

(34)

We prove this with a standard bootstrap argument. Suppose that for some interval

[O, T] C [0, TO]/

sup E(Iu(t)) < 2CcN?1-9,
tel0,T]

(35)
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Low Regularity Global Well-Posedness 11
Then we show that for N(Tg) sufficiently large,
3 2(1-s)
E(Iu(t)) < ECN , (36)
which implies E(Iu(t)) < 2CN?1~9 on [0, Tol.
Definition 3.1. Let I be the Fourier multiplier with a fixed N. For 1 <M < N, let
Pou|V| V2 Tuy

S(T, M) = ‘P>M|V|1/21u

|

L}, (0, T1xR3) L}, ([0, T1xR3)

1
+  sup o IPam VIl o1 (xi<R))
N-1<R<4T,

1
TSP R1/2”P>M1ut||L?,X<10,Tlx{|x|sR}>

N-1<R<4T,
M
+ sup RijZ ”P>MIu”L?X([O,T]><{|x|5R})- (37)
N-1<R<4Ty .
(]

Theorem 3.2. (Long-time Strichartz estimate). Suppose E(Iu(t) < 2CN?(~9 on [0, TI.

Then there exists a small constant c(s, |[uollz1/2, |U1llg-1/2) > 0 such that if

1-—s In(T,
In() > ——— + 1( o_ (38)
c(z -9 c(z -9
then
N 1-s
S(Tg)s VCN~S, (39)
O
Proof of Theorem 3.2. For a large, fixed constant Cj, let
N
T= {T’ c0,T]: S (T’, g) - clzvl—s} . (40)

It is clear from Ho6lder's inequality in time and the uniform bound on E(Iu(t)) that 7
is nonempty. Also, by the Lebesgue dominated convergence theorem, 7 is a closed set.

Therefore, to prove Theorem 3.2 it suffices to prove that 7 is open in [0, T].
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12 B. Dodson

The radial Sobolev embedding theorem implies a bilinear estimate on [0, T'] with T’ € T.

Lemma 3.3. (Bilinear estimate). For M < N, if E(Tu(t)) < 2CN21-9 on [0, T'],

| (P Vi) Py

M
< (n(Ty) + In@)/2s (T, = ) VCN'~S,  (41)
L2 ([0, T"]x {x:|x| <4To} 8

| (. y2e)

1 M
< — (In(Tp) + In(V)/2s (T, — NS, (42
12,10, T"1x {x:[x|<4To}) ~ M (In(To) + In@n) =S 8 Ve (42)

and

[

M
, < (In(To) + In(V))/%s (T/, —) VCN'—S, (43)
Li (10, T {x:]x|<4To} 8

|
Remark. Because E(fu(t)) < 2CN*"), | Py ullpopn qo,rxre) S VCN' .
Proof of Lemma 3.3. By definition of S (T’, %),
M
[P vru <SNYS (T’, —) , (44)
8 Lf’X<[O,T’]><[|X|§%}) 8
so by the Sobolev embedding theorem ||P_yullz~ < NYV2|VP_yul|;2,
P VIu) P_yu
H( >4 (Pnw) £2,(0,T") x||x\5ﬁ}
M M
<S8 <T’, E) IVIull gop2 0, 71xR3) S VCN'TSS (T/, §> . (45)

Now partition {4 < |x| <4To} into < In(V) + In(Tp) annuli {x : 2/ < |x| < 2/+1}, where
& < 2/ < 4T,. On each annulus, by definition of S (T”, %[),

M .
HP>MVIu , o<s(T, 2 2, us)
8 0 @sixi=2it) 8
while by the radial Sobolev embedding theorem,
2P Ml o1 2izisi=2iviy S 1 VI gongo,rcmey < VEN'. (47)
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Low Regularity Global Well-Posedness 13

The arguments to prove (42) and (43) are identical, (42) makes use of Bernstein's

inequality. |
Now by Duhamel’s formula, (7),

t
Tu(t), Iug(t)) = S(®)Iug, Iuy) — / S(t—r1) (O,Iu3> dr. (48)
0

Decompose

P>Mu3 = 3P>M <<P>

u) (P. u)2> +3P.y <<P>

=3P ((Powru) (PLuu) (Poyw)

«I=
N
~—
N
——~
=
A
«I=
N
~—
~—
+
"
4
S
~
——~
=
\
S
N
~—
w
—

IS
IS

+ 3P ((Pyu) (Puy) o)+ Poae ((2g)”). o)

Take ¥ € C° (R3), y(x) = 1 for |x| < 1, and ¥ (x) is supported on |x| < 2. Now by (42) and the
fact that the Littlewood—Paley kernel is rapidly decreasing, To >> 1 and N >> 1, E(Iu(t)) <
2CN?(1~%)  and the Sobolev embedding theorems, both radial and standard,

5 2 ) (2) v (o)

LZ,.(0,T]x (x:27 <|x|<2/+1})

2/ <4Ty
1/2
<s T M \/ENI_S (ln(T ) +ln(N))1/2 Z 2] HP ” 2 /
~ 's) M 0 . <% "l (0, 7% (27 <lxi <2741
2/ <4Ty "’
(50)
M)\ CN!—s
<S(17,= ) >=—(In(Tp) + In(\V H 1/2
N5< 8> U (In(To) + In(\V)) | |x]™"“u L55.00,71xR%)
M\ /CN!—s M\ CN2(1-S)
< S(T/, E) T(ln(T0)+ln(N))||u||L?oH1([OIT/]XR3) <S8 (T/, E) T(1n(To)+1n(1v)).
(51)

Also, by the radial Sobolev embedding theorem, Holder’s inequality in time, and

Bernstein's inequality,

e (1= (575)) () (o) )

|x|1/2P<NuH

LILZ(I0,T"1x {x:2] <|x|<2/t1})

1
S 2| 2p
M

. <z =
8 Mullzo o, rxr3) S — 7

(52)

LPLY(10,T'1xR3) L¥LY ([0, T'1xR3)

C3/23(1-5)
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14 B. Dodson
Similarly, since

<1
12,(10,7'1xR3) ~ N1/2M1/2

e (55) () 0 ()

[y

S (T’,%) S(T',N), (53)

Z 2i/2

L2,(10,T"]x {x:2/ <|x|<2/+1})

2/ <4T,
1/2
M 1 .
SS(T, = )S(T',N)——— 21‘13 , 54
~ ( 8) T e z,.gT < L33.(10, T x {x:2 <|x| <2/+1}) (54)
= 0
M CN1—)
<S8 (T’, E) S(T’,N)f—(ln(To) + In(V)). (55)

Also, by the radial Sobolev embedding theorem, Holder's inequality in time, and

Bernstein’s inequality,

s (=5 (35)) o) o) )

1
< sz | (P ) @)

LILZ([0,T"]x {x:2) <|x| <2/+1})

C3/2y3(1-5)
Il oo g1 o, 711xR3) — (56)

12,(I0,T"1xR3)

Finally split

(P>%u)3 = (P.uu) (P%<_<Nu>2 +2(Pwu) Py (Pu_ _yu) + (Powu) Py,
(57)

Because P%<v<Nu = P<NP>%u, the above computations may also be applied to the first
two terms in (57), apply (50)-(52) to the first term and (53)—(56) to the second term.

To estimate the last term, since [£|'/?m(£) is increasing as |£|] — oo, |V|'/I obeys
a Leibniz-type rule (use the paraproduct estimates of [31]). Therefore, by Bernstein's

inequality and the definition of S,

4/3
t,x

19121 (P ) nu®)?)

L¥3(10,7’1xR3)

< H|V|1/ZIP>Mu

8

Pyul?
L4 (10,T'1xR3) IP-wullzs o mrems)

+HP nu

>

191 /21P yu

I1P>ntelizg o,r1xre)

L, (0,T'1xR3) L}, (10, T'IxR3)

1 1

/ M 2
S iz S <T ' §) S(T', N)*. (58)

020z AelNl 9z uo Jasn AusieAlun sumdoH suyor ‘Areiqr [BOIPSIN UDIOM Ad 0GESESY/L6.9/12/610ZABASR-0IE/UIY/WOD dNO"0lWapEoR)/:SARY WO} POPEOJUMOQ



Low Regularity Global Well-Posedness 15

Therefore, by Theorem 2.3, (48)-(57), and E(Iu(t)) < 2CN*1~ on [0, T],

C3/2N3(1—s) CNZ(I—S)
+ +S(T', M)

7 / 2
— o +Ml/2N1/ZS(T,M)S(T,N) , (59)

S(T', M) < CV/2N'~S
so, by the bootstrap assumption, S (T’, §) < C;N'~%,if M > N3-S,

S(T', M) < CY2NY=S + C3/2N3-25 1 S(T',M)CN2~S + C2Ni~35S(T', M). (60)

Therefore, for some ¢ > 0 sufficiently small, for Ty large and N satisfying

) > =5, [0 61)
=D Vel
S <T’, %’) <8 (T/,N%*S) In(To)NCIMG=9) 4 13, (62)
Then Theorem 3.2 follows from the following lemma.
Lemma 3.4. If u solves (1) and E(Iu(t)) < 2CN2(—9 on [0, T'], then
s(T.N8) S NIy, (63)
Indeed, returning to the proof of Theorem 3.2, plugging (63) into (62),
S (T’, %V) << C1N'7S, (64)
and therefore 7" is both open and closed in [0, T]. Since 7~ is nonempty, 7' = [0, T].
Proof of Lemma 3.4. Since E(Iu(t)) < 2CN%1-9 for t € [0, T] C [0, Tol,
| Tu|® < To2CN21—9), (65)

L?,(10,TIxR3)

Partition [0, T] into < %CTONZ(I*S) subintervals Ij such that |Ij| < for some small

/4,

__n___

CN2(1-s) '
. < 1

constant 5. Then on each interval ||u5N||L§X(Iij3) <n
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16 B. Dodson

Then by Theorem 2.2, E(Iu(t)) < 2CN?(1~S), Bernstein's inequality, and the fact that

|£]'/2m/(£) is increasing in |£|,

H V11 L (IjxR?) S Ml gycre) + ez pma) + H V1Mo L (IjxR?) “u”iﬁxdfo%
< N1-S 4 1/ H|V|1/21u - n % HIVII/ZIu ;X(Ijxm)' (66)
Then since N is large, |V|1/21u|}L§X(Iij3) < CY2N'-3%, and by Bernstein's inequality,
Il o) S 1l ey + 10— Dl o) S 1+ CY2NZ7 S, (67)
Therefore, by Theorem 2.3 and E(Iu(t)) < 2CN'~5 on I},
H MEE 13 (G xRD) + (sng1/2||V1u||L§X(5X{X|SR})> < clZpyt-s, (68)
This proves Lemma 3.4. |
Theorem 3.2 provides a bound on the growth of E(Iu(t)).
Lemma 3.5. Foranyte€ [0, Tol, Equ(t)) < %CNI*S. O
Proof. Again make a bootstrap argument. Let
T = {T € [0, Tol : E(Iu(t)) < ECNI’S for all ¢ € [0, T]} ) (69)

Because E(Iu(0)) = CN'~S, T is clearly nonempty. Also, since E(Iu(t)) is a con-
tinuous function of time 7 is closed. Therefore, it only remains to show that 7 is open

in [0, Tol. Then compute

d 3 3

d—tE(Iu(t)) = | (Tuy) (t, x)I(u”)(t, x) — (u)°(¢, x)) dx. (70)
Splitting u = up, + uy, W = P<%u, the Fourier support of u; implies that

g (uf) — (I)® = 0. (71)
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Also,
1(ufP_yu) - qup*P_yu=0, (72)
which implies that
(70) =3 / 1Pyu(t, %) (1 (ufun) (%) = Qu(t, ) Tt x)?) dx
+0 ( f Tua(t,3) (T (uFw) 630 — Tup)* (€, 201, x) ) dx). (73)

Then by Theorem 3.2 and Lemma 3.3, for N sufficiently large,

T
/ / Py us(t, X) (1 (ulzuh) (t, x) — (Iuh(t,X))(Iul(t,X))z) dx dt
0 Jix<at,

(74)
2(1—s)

N
< (Inv) + ln(To))Csz“—S)T << N2(1-9),

Meanwhile, by the radial Sobolev embedding theorem, Bernstein's inequality, the fact
that le << Tp, and that the Littlewood-Paley kernel of I is rapidly decreasing outside
the ball |x| < %,

T
/ / Py (t, %) (I (ufuh) (t, x) — (Iuh(t,X))(Iul(t,X))2> dx dt
0 Jix|>4T,

2
S 2w

133,10, TIxR?) IVIulizeor2 10, mxr3) MUt I o2 10, 11xR3)

< C4N4(1—s)1iv << N2(1-9) (75)

Next, integrating by parts, again by Theorem 3.2 and the fact that |V|'/?I satisfies

the Leibniz-type rule, and Bernstein's inequality

/O i / (T9;up)(t, %) (I(uh(t,x)3) - (Iuh(t,x))3) dx dt

T
= / / V172 @deun) (&, 0)191V2 (1 (u}) (8,%) = (Quntt, o)) dxdt— (76)
0

< [V, 119112

2
4, ([0, TIxR3) Tunllzg, ocry 1n 2 mocno)
X\ ,

C4
< ﬁle_S) << N2(-9) (77)
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18 B. Dodson
Meanwhile, by Lemma 3.3 and the fact that [[IPcyu¢ll;n S NilTugllzz S CNN'-s,
| [ o (st 0)?) - (ruate,0)?) dxae
0 J|x|=4To
2
N ”uh”L‘t‘,X([O,T]><R3)”uh(P<NIut)”Lﬁx([oyT]X{XilX\§4To}) (78)

2na72(1—
cart

< ¥ C%Nz(l_s) << N2d-9), (79)

Finally, by the radial Sobolev embedding theorem and Bernstein’s inequality,

T
/ f (I9,uy)(t, X) (1 (uh(t,x)3) — (Iuh(t,x))3) dx dt
0 Jix|>aT,

2 1/2
S ||uh”L§X([o,T]xR3)|||X| / Idturllr o,r1xr®) IUR o2 (0,71 R?) (80)
2n72(1—5)
< GV caya-s __ p2a-9), (81)
N
The term
T

/ / (Tuy) (¢, %) (I (uﬁul) (t, %) — (Tup)?(t, X) Ty (t, x)) dx dt (82)

0

can be treated as an interpolation of terms with the cubic nonlinearity in the form ul2 up
with terms in the cubic nonlinearity of the form ufl
Therefore, /OT %E(Iu(t))‘ dt << N2(-9, which implies that E(fu(t)) < 3CN2(1-9,
so [0, T] is open in Ty. Therefore, E(Iu(t) < CN?1~% on [0, Tol. [
Proof of Theorem 1.4. By Bernstein’s inequality,
”u>N”L§’°HS([0,TO]><R3) + ||atu>N||L§OHSfI([o,TO]><R3)

S Ni-s ||VIu||L§°L§([0,TO]xR3) + ||Iut||L;’°L§([0,TO]xR3) S L (83)

Also,

1-s
||u<N”L§’°H1([O,T0]><R3) + ”u<N”L§°L§([O,TO]xR3) SN (84)
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Interpolating this bound with the trivial bound
t
[Tu(t) — Iu(0)|l2g3) < / 19T (t) | 2ms) dv S ToN' %,
0
proves that for Ty > 1,
, 1-sprl—
||Iu(t)”L?°H5([0,T0]xR3) S TO SN s
and
1/2

1_
||Iu(t)||L§OHI/2([0,TO]XRS) STy "N 5.

Also for % = % — s, by the Sobolev embedding theorem and definition of I,

t t
Me(t) — e O) 1 s < fo | AT 1 o, AT + /0 @)

t t
S [ et [ i g IParu( g,
0 0 x

t
_ _ 3/2 _
+N! S/O ||P>Nu(r)||2§p(R3) dr < ToN' =5 + T/2N30-9),

Therefore, by interpolation if ¢ € [0, Tyl, Tp > 1,

3(1-9) 3(1—s)
”ut(t)”[l]s—l(R3) s To N ,

and

3/4
lus@lg-12@s) S To N2,

dr
LY (R3)

19

(85)

(86)

(87)

(88)

(89)

(90)

(91)

Thus the HSNH'/2 x HS~1NH~1/2 norm is uniformly bounded on any compact subset of R.

Global well-posedness then follows from the local result of [24].
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