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In this paper we study the defocusing, cubic nonlinear wave equation in three dimen-

sions with radial initial data. The critical space is Ḣ1/2 × Ḣ−1/2. We show that if the

initial data is radial and lies in
(

Ḣs × Ḣs−1
)

∩
(

Ḣ1/2 × Ḣ−1/2
)

for some s > 1
2 , then the

cubic initial value problem is globally well-posed. The proof utilizes the I-method, long

time Strichartz estimates, and local energy decay. This method is quite similar to the

method used in [11].

1 Introduction

In this paper we study the defocusing, cubic wave equation

utt − �u = F(u) = −u3, u(0, x) = u0, ut(0, x) = u1, u : R × R3 → R. (1)

A solution to (1) actually produces a family of solutions due to scaling. Indeed, if u

solves (1) with initial data (u(0), ut(0)) then for any λ > 0,

u(t, x) �→ λu(λt, λx), (2)
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2 B. Dodson

is a solution to (1) with initial data
(

λu(0, λx), λ2ut(0, λx)
)

. Equation (2) preserves the

Ḣ1/2
(

R3
)

norm of u and the Ḣ−1/2
(

R3
)

norm of ut, and thus (1) is called Ḣ1/2-critical.

Study of dispersive partial differential equations with initial data lying in the critical

Sobolev space is currently an important topic of research. References [23] and [24]

proved a sharp counterexample to well-posedness of (1) for data lying in a Sobolev space

less regular than the critical Sobolev space. See [5] for similar results for a number of

dispersive equations, including (1).

On the other hand, positive results have been obtained for a number of initial value

problems with initial data lying in the critical Sobolev space. Reference [24] proved a

local well-posedness result for (1) with initial data in Ḣ1/2 × Ḣ−1/2.

For the energy-critical, defocusing wave equation in three dimensions (quintic), global

existence of smooth, radially symmetric solutions was proved in [30]. Reference [15]

extended this result to the general case. Reference [27] extended this result to dimen-

sions 3 ≤ d ≤ 7. Global well-posedness for initial data lying in the energy space was

proved by [28] and [16].

Remark. This question has also been completely worked out for the defocusing

energy-critical (quintic) Schrödinger equation [3, 9], and the defocusing, mass-critical

Schrödinger equation [10, 21]. In each case scattering has also been proved.

Remark. The above discussion was not intended to be a complete discussion of

defocusing energy-critical and mass-critical problems. For one thing, discussion of

dimensions other than d = 3 was omitted entirely. Discussion of the focusing problem,

see for example [18], was also completely omitted.

What unites the energy-critical wave equation, the energy-critical Schrödinger

equation, and the mass-critical Schrödinger equation is the presence of a conserved

quantity that controls the critical Sobolev norm. For example, if u solves the wave

equation

utt − �u = −|u|pu, (3)

then the energy

E(u(t)) = 1

2

∫

Rd
|∇u(t, x)|2 dx + 1

2

∫

|∂tu(t, x)|2 dx + 1

p + 2

∫

|u(t, x)|p+2dx (4)
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Low Regularity Global Well-Posedness 3

is conserved. Therefore for (1) the energy is given by

E(u(t)) = 1

2

∫

|∇u(t, x)|2 dx + 1

2

∫

|ut(t, x)|2 dx + 1

4

∫

|u(t, x)|4 dx = E(u(0)). (5)

However, there is no known conserved quantity that controls ‖u(t)‖Ḣ1/2(R3) or

‖ut(t)‖Ḣ−1/2(R3). In fact this is the only obstacle to proving global well-posedness and

scattering for (1) with radial data.

Theorem 1.1. Suppose u solves (1) on an interval I, I is the maximal interval of

existence of the solution, and

‖u‖L∞
t Ḣ1/2(I×R3) + ‖ut‖L∞

t Ḣ−1/2(I×R3) < ∞. (6)

Then u is global, that is I = R, and u scatters to a free solution both forward and

backward in time.

Proof. See [12]. �

The definitions of well-posedness and scattering that are used here are the standard

definitions.

Definition 1.2. (Well-posedness). The initial value problem (1) is well-posed on an open

interval I ⊂ R, 0 ∈ I, for (u0, u1) ∈
(

Ḣs ∩ Ḣ1/2
)

×
(

Ḣs−1 ∩ Ḣ−1/2
)

= X if

(i) (1) has a unique solution u lying in C0
t (I; X),

(ii) The solution satisfies the Duhamel formula

(u(t), ut(t)) = S(t)(u0, u1) −
∫ t

0
S(t − τ)(0, u3) dτ , (7)

where S(t)(f , g) is the solution operator to the linear wave equation utt −
�u = 0, u(0, x) = f (x), ut(0, x) = g(x).

(iii) For any compact J ⊂ I, the map (u0, u1) �→ L4
t,x

(

J × R3
)

is continuous.

Equation (1) is said to be globally well-posed if I = R.
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4 B. Dodson

Definition 1.3. (Scattering). A global solution to (1) with initial data (u0, u1) ∈ X is said

to scatter forward in time to some (u0, u1)+ ∈ X if

lim
t→+∞

∥

∥(u(t), ut(t)) − S(t)(u0, u1)+
∥

∥

X
= 0. (8)

Analogously, u is said to scatter backward in time to some (u0, u1)−∈ X if

lim
t→−∞

‖(u(t), ut(t)) − S(t)(u0, u1)−‖X = 0. (9)

Equation (1) is said to be scattering for initial data lying in a certain set if for each (u0,

u1) lying in that set there exists (u0, u1)+ and (u0, u1)− such that (8) and (9) hold, and fur-

thermore, the maps (u0, u1) �→ (u0, u1)+ and (u0, u1) �→ (u0, u1)− are continuous as func-

tions of (u0, u1). �

For a number of focusing, dispersive partial differential equations, there exist solutions

with bounded critical Sobolev norm that fail to be global or fail to scatter. This

phenomenon is called type-two blowup. Excluding type-two blowup, such as in the

proof of Theorem 1.1 of [12], usually utilizes concentration compactness arguments.

These arguments are very similar to arguments used to prove global well-posedness

and scattering for energy-critical wave and Schrödinger equations, and mass-critical

Schrodinger equations. In fact, given a conserved quantity that controls the critical

Sobolev norm, all that is left is to exclude type-two blowup. Thus, when [19] proved

global well-posedness and scattering for the cubic nonlinear Schrödinger equation with

bounded Ḣ1/2
(

R3
)

, this introduced a number of techniques that were very instrumental

in the proofs of energy-critical and mass-critical scattering results.

To the author’s knowledge there are no known methods for proving global well-

posedness and scattering for dispersive equations without either assuming the exis-

tence of a quantity that conserves the critical Sobolev norm or in fact having such a

quantity.

In this paper we utilize the I-method to prove that for any s > 1
2 the Ḣs × Ḣs−1 norm of

(u(t), ut(t)) is bounded on any finite compact subset of R. This is enough to prove global

well-posedness.

Theorem 1.4. (Main theorem). Equation (1) is globally well-posed for any radial initial

data (u(0), ut(0)) = (u0, u1) ∈ Ḣs
(

R3
)

× Ḣs−1
(

R3
)

∩ Ḣ1/2 × Ḣ−1/2, s > 1
2 .
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Low Regularity Global Well-Posedness 5

Remark. By finite propagation speed, this also implies that (1) is globally well-posed

for initial data lying in Ḣs × Ḣs−1 for any s > 1
2 .

The I-method has its roots in the Fourier truncation method. The Fourier truncation

method was introduced by [2] for the cubic nonlinear Schrödinger equation and by [20]

for (1), proving (1) is globally well-posed for u(0) ∈ Ḣs
(

R3
)

∩ L4
(

R3
)

, ut(0) ∈ Ḣs
(

R3
)

,

s > 3
4 . See [1] for s ≥ 3

4 and [13].

The I-method is an improvement over the Fourier truncation method. For example [7]

was able to improve the results of [2] for the nonlinear Schrödinger equation. On the

wave equation side, [25] and [26] extended the results of [20] to s > 13
18 and to s > 7

10 if u

has radial symmetry (although in both cases with inhomogeneous initial data to avoid

technical complications). Perhaps more importantly, [17] proved a well-posedness result

that was technically unattainable via the Fourier truncation method. See [11] for a more

detailed discussion of the history of the I-method.

To prove our result we make use of the long-time Strichartz estimates. The long time

Strichartz estimates were introduced in [11] and were actually inspired in large part by

the linear–nonlinear decomposition of [26]. Basically, the idea is that if u solves (1) on

an interval [0, T], on which we have some a priori bound on the ‖u(t)‖L∞
t Ḣs([0,T]×R3) norm

for some s > 1
2 , then we can show that at high frequencies, the solution u is dominated

by the free evolution from initial data (u(0), ut(0)).

We then take the usual modified energy

E(Iu(t)) = 1

2

∫

|∇Iu(t, x)|2 dx + 1

2

∫

|Iut(t, x)|2 dx + 1

4

∫

|Iu(t, x)|4 dx, (10)

where I is a smoothing Fourier multiplier

I : Ḣs
(

R3
)

→ Ḣ1
(

R3
)

, I : Ḣs−1
(

R3
)

→ L2
(

R3
)

. (11)

Direct computation shows that d
dt

E(Iu(t)) is a quadrilinear integral operator on u that

has at least two terms at high frequencies. Using the long-time Strichartz estimates, we

can then show that the integral of d
dt

E(Iu(t)) over the interval [0, T] is small, which in

turn implies that E(Iu(t)) is pretty close to E(Iu(0)). Meanwhile, an a priori upper bound

on E(Iu(t)) gives us good control over ‖u(t)‖Ḣs , allowing us to make a bootstrap argument

that proves Theorem 1.4.

This argument is extremely similar to the scattering argument in [11]. There are two

main reasons we do not prove scattering here. The first is the lack of an interaction
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6 B. Dodson

Morawetz estimate for the wave equation, unlike the interaction Morawetz estimate for

the nonlinear Schrödinger equation in [8]. The second is that the L2 norm of u is not

conserved for the nonlinear wave equation (1), as it is for the nonlinear Schrödinger

equation. Observe that [11] assumed that the initial data lay in L2
(

Rd
)

.

2 Linear Estimates for the Wave Equation

In this section we prove some Strichartz-type estimates on solutions to linear wave

equations that will be needed in the proof of Theorem 1.4. We begin with a discussion

of the Littlewood–Paley partition of unity.

Definition 2.1. (Littlewood–Paley partition of unity). Suppose ψ ∈ C∞
0

(

R3
)

is a radial,

decreasing function supported on |x| ≤ 2, ψ = 1 on |x| ≤ 1. Then for any N we define the

Littlewood–Paley projection

(PNf )(x) = F
−1

((

ψ

(

ξ

N

)

− ψ

(

2ξ

N

))

f̂ (ξ)

)

(x), (12)

where

F
−1(f̂ (ξ))(x) = (2π)−3/2

∫

eix·ξ f̂ (ξ) dξ . (13)

Also define the operators

(P≤Nf )(x) = F
−1

(

ψ

(

ξ

N

)

f̂ (ξ)

)

(x), (14)

and P>N = 1 − P≤N. �

Remark. Since ψ is a C∞
0

(

R3
)

function, PNf is the convolution of f with a Schwartz

function that is �l N3(1 + N|x|)−l for any l ∈ Z.

Next recall the Strichartz estimates of [29].
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Low Regularity Global Well-Posedness 7

Theorem 2.2. (Strichartz estimate). If u solves utt −�u = F on an interval I, with

t0 ∈ I, then

‖u(t)‖L4
t,x(I×R3) � ‖u(t0)‖Ḣ1/2(R3) + ‖ut(t0)‖Ḣ−1/2(R3) + ‖F‖

L
4/3
t,x (I×R3)

. (15)

�

Reference [14] extended Strichartz estimates to all admissible pairs when d = 3.

Combining Strichartz estimates with local energy decay yields the following estimate.

Theorem 2.3. (Linear estimates). If u solves the wave equation

utt − �u = F1 + F2 + F3, u(0) = u0, ut(0) = u1, (16)

then

‖|∇|1/2u‖L4
t,x(I×R3) +

(

sup
R

1

R1/2
‖∇u‖L2

t,x(I×{|x|≤R})

)

+
∥

∥

∥
|∇|−1/2ut

∥

∥

∥

L4
t,x(I×R3)

+
(

sup
R

1

R1/2
‖ut‖L2

t,x(I×{|x|≤R})

)

� ‖u0‖Ḣ1(R3) + ‖u1‖L2(R3) + ‖F3‖L1
t L2

x(I×R3)

+
∥

∥

∥
|∇|1/2F1

∥

∥

∥

L
4/3
t,x (I×R3)

+
∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}). (17)

�

Proof. Again let S(t)(u0, u1) be the solution operator to (16) with F1 = F2 = F3 = 0,

cos(t
√

−�)u0 + sin(t
√

−�)√
−�

u1. (18)

By Strichartz estimates and the sharp Huygens principle,

∥

∥

∥
|∇|1/2S(t)(u0, u1)

∥

∥

∥

L4
t,x(R×R3)

+
(

sup
R

1

R1/2
‖∇S(t)(u0, u1)‖L2

t,x(R×{|x|≤R})

)

+
∥

∥

∥
|∇|−1/2∂tS(t)(u0, u1)

∥

∥

∥

L4
t,x(R×R3)

+
(

sup
R

1

R1/2
‖∂tS(t)(u0, u1)‖L2

t,x(R×{|x|≤R})

)

� ‖u0‖Ḣ1(R3) + ‖u1‖L2(R3). (19)
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8 B. Dodson

To prove this, it suffices to prove

∫

R

∫

|x|≤1
|∇u(t, x)|2 + (∂tu(t, x))2 dx dt � ‖u0‖2

Ḣ1(R3)
+ ‖u1‖2

L2(R3)
, (20)

and then rescale. The proof of (20) is quite standard. See for example Theorem 3 of [4].

Then by duality, (19), and the Strichartz estimates of [29],

∥

∥

∥

∥

∥

∇
∫

sin(−τ
√

−�)√
−�

F(τ ) dτ

∥

∥

∥

∥

∥

L2
x(R3)

+
∥

∥

∥

∥

∥

∂t

∫

sin((t − τ)
√

−�)√
−�

F(τ ) dτ

∥

∥

∥

∥

∥

L2
x(R3)

�
∥

∥

∥
|∇|1/2F1

∥

∥

∥

L
4/3
t,x (I×R3)

+
∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}) + ‖F3‖L1
t L2

x(I×R3). (21)

Therefore, by the Christ–Kiselev lemma of [6], when u0 = u1 = 0,

∥

∥

∥
|∇|1/2u

∥

∥

∥

L4
t,x(I×R3)

+
∥

∥

∥
|∇|−1/2ut

∥

∥

∥

L4
t,x(I×R3)

� ‖u0‖Ḣ1(R3) + ‖u1‖L2(R3)

+
∥

∥

∥
|∇|1/2F1

∥

∥

∥

L
4/3
t,x (I×R3)

+
∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}) + ‖F3‖L1
t L2

x(I×R3), (22)

and

⎛

⎝sup
R

1

R1/2

∥

∥

∥

∥

∥

∫ t

0

sin((t − τ)
√

−�)√
−�

(F1 + F3)(τ ) dτ

∥

∥

∥

∥

∥

L2
t,x(R×{|x|≤R})

⎞

⎠

+

⎛

⎝sup
R

1

R1/2

∥

∥

∥

∥

∥

∂t

∫ t

0

sin((t − τ)
√

−�)√
−�

(F1 + F3)(τ ) dτ

∥

∥

∥

∥

∥

L2
t,x(R×{|x|≤R})

⎞

⎠

�
∥

∥

∥
|∇|1/2F1

∥

∥

∥

L
4/3
t,x (I×R3)

+ ‖F3‖L1
t L2

x(I×R3). (23)
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Low Regularity Global Well-Posedness 9

Therefore it only remains to show

⎛

⎝sup
R>0

1

R1/2

∥

∥

∥

∥

∥

∇
∫ t

0

sin((t − τ)
√

−�)√
−�

F2(τ ) dτ

∥

∥

∥

∥

∥

L2
t,x(I×{x:|x|≤R})

⎞

⎠

+

⎛

⎝sup
R>0

1

R1/2

∥

∥

∥

∥

∥

∂t

∫ t

0

sin((t − τ)
√

−�)√
−�

F2(τ ) dτ

∥

∥

∥

∥

∥

L2
t,x(I×{x:|x|≤R})

⎞

⎠

�

∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}). (24)

Finally, if u0 = u1 = F1 = F3 = 0 and F2 is supported on {x : |x|≤ R}, then the sharp

Huygens principle implies that the supports of

∫

τ∈[0,t]∩[kR,(k+1)R]
S(t − τ)(0, F2) dτ (25)

are finitely overlapping. Since Hölder’s inequality implies

‖F2‖L1
t L2

x([kR,(k+1)R]×R3) � R1/2‖F2‖L2
t L2

x([kR,(k+1)R]×R3), (26)

(

sup
R>0

1

R1/2
‖∇u‖L2

t,x(I×{x:|x|≤R})

)

+
(

sup
R>0

1

R1/2
‖ut‖L2

t,x(I×{x:|x|≤R})

)

�

∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}) (27)

follows from (23). This completes the proof of Theorem 2.3. �

Remark. The same argument also implies that if PN is a Littlewood–Paley multiplier,

(

sup
R>0

N‖PNu‖L2
t,x(R×{x:|x|≤R})

)

� ‖u0‖Ḣ1(R3) + ‖u1‖L2(R3)

+‖∇F1‖L2
t L1

x(I×R3) +
∞
∑

j=−∞
2j/2‖F2‖L2

t,x(I×{2j≤|x|≤2j+1}), (28)

with constant independent of N.

We will also utilize the endpoint Strichartz estimate of [22].
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10 B. Dodson

Theorem 2.4. (Endpoint Strichartz estimates). For u0, u1 radial,

‖S(t)(u0, u1)‖L2
t L∞

x (R×R3) � ‖u0‖Ḣ1(R3) + ‖u1‖L2
x(R3). (29)

Also, by duality, if F is radial,

∥

∥

∥

∥

∫

R
S(−t)(0, F)(t) dt

∥

∥

∥

∥

L2
x(R3)

� ‖F‖L2
t L1

x(R×R3). (30)

Proof. See [22]. �

3 Proof of the Main Theorem

We follow the work of [7] and later [25] and [26], and define the I-operator I : Hs → H1,

where I is given by the Fourier multiplier

m(ξ) =

⎧

⎨

⎩

1 if |ξ | ≤ N

N1−s

|ξ |1−s if |ξ | > 2N.
(31)

By the Sobolev embedding theorem,

E(Iu(0)) � ‖∇Iu(0, x)‖2
L2 + ‖Iut(0, x)‖2

L2 + ‖Iu(0, x)‖2
L6(R3)

‖u(0, x)‖2
L3(R3)

�‖u0‖
Ḣ1/2 ‖∇Iu(t, x)‖2

L2 + ‖Iut(t, x)‖2
L2 . (32)

Therefore,

E(Iu(0)) ≤ C
(

‖u0‖Ḣ1/2 + ‖u1‖Ḣ−1/2 , ‖u0‖Ḣs + ‖u1‖Ḣs−1

)

N2(1−s). (33)

To prove global well-posedness it suffices to prove that for any compact interval

[0, T0] ⊂ R, there exists an N(T0) sufficiently large so that

E(Iu(t)) ≤ 2CN2(1−s). (34)

We prove this with a standard bootstrap argument. Suppose that for some interval

[0, T] ⊂ [0, T0 ],

sup
t∈[0,T]

E(Iu(t)) ≤ 2CN2(1−s). (35)
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Low Regularity Global Well-Posedness 11

Then we show that for N(T0) sufficiently large,

E(Iu(t)) ≤ 3

2
CN2(1−s), (36)

which implies E(Iu(t)) ≤ 2CN2(1−s) on [0, T0].

Definition 3.1. Let I be the Fourier multiplier with a fixed N. For 1 ≤ M ≤ N, let

S(T, M) =
∥

∥

∥
P>M |∇|1/2Iu

∥

∥

∥

L4
t,x([0,T]×R3)

+
∥

∥

∥
P>M |∇|−1/2Iut

∥

∥

∥

L4
t,x([0,T]×R3)

+ sup
N−1≤R≤4T0

1

R1/2
‖P>M∇Iu‖L2

t,x([0,T]×{|x|≤R})

+ sup
N−1≤R≤4T0

1

R1/2
‖P>M Iut‖L2

t,x([0,T]×{|x|≤R})

+ sup
N−1≤R≤4T0

M

R1/2
‖P>M Iu‖L2

t,x([0,T]×{|x|≤R}). (37)

�

Theorem 3.2. (Long-time Strichartz estimate). Suppose E(Iu(t)) ≤ 2CN2(1−s) on [0, T].

Then there exists a small constant c(s, ‖u0‖Ḣ1/2 , ‖u1‖Ḣ−1/2) > 0 such that if

ln(N) �
1 − s

c
(

1
2 − s

) +
√

ln(T0)

c
(

1
2 − s

) , (38)

then

S

(

T,
N

8

)

�
√

CN1−s. (39)

�

Proof of Theorem 3.2. For a large, fixed constant C1, let

T =
{

T ′ ∈ [0, T] : S

(

T ′,
N

8

)

≤ C1N1−s

}

. (40)

It is clear from Hölder’s inequality in time and the uniform bound on E(Iu(t)) that T

is nonempty. Also, by the Lebesgue dominated convergence theorem, T is a closed set.

Therefore, to prove Theorem 3.2 it suffices to prove that T is open in [0, T].
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12 B. Dodson

The radial Sobolev embedding theorem implies a bilinear estimate on [0, T′] with T ′ ∈ T .

Lemma 3.3. (Bilinear estimate). For M ≤ N, if E(Iu(t)) ≤ 2CN2(1−s) on [0, T′],

∥

∥

∥

(

P
> M

8
∇Iu

)

(P<Nu)

∥

∥

∥

L2
t,x([0,T ′]×{x:|x|≤4T0}

� (ln(T0) + ln(N))1/2S

(

T ′,
M

8

) √
CN1−s, (41)

∥

∥

∥

(

P
> M

8
u

)

(P<Nu)

∥

∥

∥

L2
t,x([0,T ′]×{x:|x|≤4T0})

�
1

M
(ln(T0) + ln(N))1/2S

(

T ′,
M

8

)√
CN1−s, (42)

and

∥

∥

∥

(

P
> M

8
Iut

)

(P<Nu)

∥

∥

∥

L2
t,x([0,T ′]×{x:|x|≤4T0}

� (ln(T0) + ln(N))1/2S

(

T ′,
M

8

) √
CN1−s. (43)

�

Remark. Because E(Iu(t)) ≤ 2CN2(1−s), ‖P<Nu‖L∞
t Ḣ1([0,T ′]×R3) �

√
CN1−s.

Proof of Lemma 3.3. By definition of S
(

T ′, M
8

)

,

∥

∥

∥
P

> M
8
∇Iu

∥

∥

∥

L2
t,x

(

[0,T ′]×
{

|x|≤ 1
N

}) � N−1/2
S

(

T ′,
M

8

)

, (44)

so by the Sobolev embedding theorem ‖P<Nu‖L∞ � N1/2‖∇P<Nu‖L2 ,

∥

∥

∥

(

P
> M

8
∇Iu

)

(P<Nu)

∥

∥

∥

L2
t,x([0,T ′] ×

{

|x|≤ 1
N

}

� S

(

T ′,
M

8

)

‖∇Iu‖L∞
t L2

x([0,T ′]×R3) �
√

CN1−s
S

(

T ′,
M

8

)

. (45)

Now partition
{

1
N ≤ |x| ≤ 4T0

}

into � ln(N) + ln(T0) annuli {x : 2j ≤ |x| ≤ 2j+1}, where
1
N ≤ 2j ≤ 4T0. On each annulus, by definition of S

(

T ′, M
8

)

,

∥

∥

∥
P

> M
8
∇Iu

∥

∥

∥

L2
t,x([0,T ′]×{2j≤|x|≤2j+1})

� S

(

T ′,
M

8

)

2j/2, (46)

while by the radial Sobolev embedding theorem,

2j/2‖Iu‖L∞
t,x([0,T ′]×{2j≤|x|≤2j+1}) � ‖∇Iu‖L∞

t L2
x([0,T ′]×R3) �

√
CN1−s. (47)
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Low Regularity Global Well-Posedness 13

The arguments to prove (42) and (43) are identical, (42) makes use of Bernstein’s

inequality. �

Now by Duhamel’s formula, (7),

(Iu(t), Iut(t)) = S(t)(Iu0, Iu1) −
∫ t

0
S(t − τ)

(

0, Iu3
)

dτ . (48)

Decompose

P>Mu3 = 3P>M

(

(

P
> M

8
u

) (

P
< M

8
u

)2
)

+ 3P>M

(

(

P
> M

8
u

)2 (

P
< M

8
u

)

)

+ P>M

(

(

P
> M

8
u

)3
)

= 3P>M

((

P
> M

8
u

) (

P
< M

8
u

)

(P<Nu)
)

+ 3P>M

((

P
> M

8
u

) (

P
< M

8
u

)

(P>Nu)
)

+ P>M

(

(

P
> M

8
u

)3
)

. (49)

Take ψ ∈ C∞
0

(

R3
)

, ψ (x) = 1 for |x| ≤ 1, and ψ (x) is supported on |x| ≤ 2. Now by (42) and the

fact that the Littlewood–Paley kernel is rapidly decreasing, T0 >> 1 and N >> 1, E(Iu(t))≤
2CN2(1−s), and the Sobolev embedding theorems, both radial and standard,

∑

2j≤4T0

2j/2

∥

∥

∥

∥

IP>Mψ

(

x

2T0

)

((

P
> M

8
u

)

(P<Nu)
(

P
< M

8
u

))

∥

∥

∥

∥

L2
t,x([0,T ′]×{x:2j≤|x|≤2j+1})

� S

(

T ′,
M

8

)

√
CN1−s

M
(ln(T0) + ln(N))1/2

⎛

⎝

∑

2j≤4T0

2j
∥

∥

∥
P

< M
8

u
∥

∥

∥

2

L∞
t,x([0,T ′]×{x:2j≤|x|≤2j+1})

⎞

⎠

1/2

,

(50)

� S

(

T ′,
M

8

)

√
CN1−s

M
(ln(T0) + ln(N))

∥

∥

∥
|x|1/2u

∥

∥

∥

L∞
t,x([0,T ′]×R3)

� S

(

T ′,
M

8

)

√
CN1−s

M
(ln(T0)+ln(N))‖u‖L∞

t Ḣ1([0,T ′]×R3)�S

(

T ′,
M

8

)

CN2(1−s)

M
(ln(T0)+ln(N)).

(51)

Also, by the radial Sobolev embedding theorem, Holder’s inequality in time, and

Bernstein’s inequality,

∥

∥

∥

∥

IP>M

((

1 − ψ

(

x

2T0

))

(

P
> M

8
u

) (

P
< M

8
u

)

(P<Nu)

)
∥

∥

∥

∥

L1
t L2

x([0,T ′]×{x:2j≤|x|≤2j+1})

�
1

M

∥

∥

∥
|x|1/2P

< M
8

u
∥

∥

∥

L∞
t L∞

x ([0,T ′]×R3)

∥

∥

∥
|x|1/2P<Nu

∥

∥

∥

L∞
t L∞

x ([0,T ′]×R3)
‖Iu‖L∞

t Ḣ1([0,T ′]×R3)�
C3/2N3(1−s)

M
.

(52)
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14 B. Dodson

Similarly, since

∥

∥

∥

(

P
> M

8
u

)

(P>Nu)

∥

∥

∥

L2
t,x([0,T ′]×R3)

�
1

N1/2M1/2
S

(

T ′,
M

8

)

S(T ′, N), (53)

∑

2j≤4T0

2j/2

∥

∥

∥

∥

IP>Mψ

(

x

2T0

)

((

P
> M

8
u

)

(P>Nu)
(

P
< M

8
u

))

∥

∥

∥

∥

L2
t,x([0,T ′]×{x:2j≤|x|≤2j+1})

� S

(

T ′,
M

8

)

S(T ′, N)
1

N1/2M1/2

⎛

⎝

∑

2j≤4T0

2j
∥

∥

∥
P

< M
8

u
∥

∥

∥

2

L∞
t,x([0,T ′]×{x:2j≤|x|≤2j+1})

⎞

⎠

1/2

, (54)

� S

(

T ′,
M

8

)

S(T ′, N)

√
CN(1−s)

M
(ln(T0) + ln(N)). (55)

Also, by the radial Sobolev embedding theorem, Holder’s inequality in time, and

Bernstein’s inequality,

∥

∥

∥

∥

IP>M

((

1 − ψ

(

x

2T0

))

(

P
> M

8
u

) (

P
< M

8
u

)

(P>Nu)

)
∥

∥

∥

∥

L1
t L2

x([0,T ′]×{x:2j≤|x|≤2j+1})

�
1

M1/2N1/2

∥

∥

∥

(

P
> M

8
u

)

(P>Nu)

∥

∥

∥

L2
t,x([0,T ′]×R3)

‖Iu‖L∞
t Ḣ1([0,T ′]×R3) �

C3/2N3(1−s)

M
. (56)

Finally split

(

P
> M

8
u

)3
=

(

P
> M

8
u

) (

P M
8 <·<Nu

)2
+ 2

(

P
> M

8
u

)

(P>Nu)
(

P M
8 <·<Nu

)

+
(

P
> M

8
u

)

(P>Nu)2.

(57)

Because P M
8 <·<Nu = P<NP

> M
8

u, the above computations may also be applied to the first

two terms in (57), apply (50)–(52) to the first term and (53)–(56) to the second term.

To estimate the last term, since |ξ |1/2m(ξ ) is increasing as |ξ | → ∞, |∇ |1/2I obeys

a Leibniz-type rule (use the paraproduct estimates of [31]). Therefore, by Bernstein’s

inequality and the definition of S,

∥

∥

∥
|∇|1/2I

((

P
> M

8
u(t)

)

(P>Nu(t))2
)
∥

∥

∥

L
4/3
t,x ([0,T ′]×R3)

�
∥

∥

∥
|∇|1/2IP

> M
8

u
∥

∥

∥

L4
t,x([0,T ′]×R3)

‖P>Nu‖2
L4

t,x([0,T ′]×R3)

+
∥

∥

∥
P

> M
8

u
∥

∥

∥

L4
t,x([0,T ′]×R3)

∥

∥

∥
|∇|1/2IP>Nu

∥

∥

∥

L4
t,x([0,T ′]×R3)

‖P>Nu‖L4
t,x([0,T ′]×R3)

�
1

N1/2

1

M1/2
S

(

T ′,
M

8

)

S(T ′, N)2. (58)
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Low Regularity Global Well-Posedness 15

Therefore, by Theorem 2.3, (48)–(57), and E(Iu(t)) ≤ 2CN2(1−s) on [0, T],

S(T ′, M) � C1/2N1−s + C3/2N3(1−s)

M
+ S(T ′, M)

CN2(1−s)

M
+ 1

M1/2N1/2
S(T ′, M)S(T ′, N)2, (59)

so, by the bootstrap assumption, S
(

T ′, N
8

)

≤ C1N1−s, if M ≥ N
3
2 −s,

S(T ′, M) � C1/2N1−s + C3/2N
3
2 −2s + S(T ′, M)CN

1
2 −s + C2

1N
3
4 − 3

2 s
S(T ′, M). (60)

Therefore, for some c > 0 sufficiently small, for T0 large and N satisfying

ln(N) ≥ 1 − s

c
(

s − 1
2

) +
√

ln(T0)

c
(

s − 1
2

) , (61)

S

(

T ′,
N

8

)

� S

(

T ′, N
3
2 −s

)

ln(T0)Nc ln(N)( 1
2 −s) + CN1−s. (62)

Then Theorem 3.2 follows from the following lemma.

Lemma 3.4. If u solves (1) and E(Iu(t)) ≤ 2CN2(1−s) on [0, T′], then

S

(

T ′, N
3
2 −s

)

� CN2(1−s)T
1/2
0 . (63)

Indeed, returning to the proof of Theorem 3.2, plugging (63) into (62),

S

(

T ′,
N

8

)

<< C1N1−s, (64)

and therefore T ′ is both open and closed in [0, T]. Since T ′ is nonempty, T ′ = [0, T].

Proof of Lemma 3.4. Since E(Iu(t)) ≤ 2CN2(1−s) for t ∈ [0, T] ⊂ [0, T0],

‖Iu‖4
L4

t,x([0,T]×R3)
� T02CN2(1−s). (65)

Partition [0, T] into � 2
η
CT0N2(1−s) subintervals Ij such that |Ij| ≤ η

CN2(1−s) , for some small

constant η. Then on each interval ‖u≤N‖L4
t,x(Ij×R3) � η1/4.
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16 B. Dodson

Then by Theorem 2.2, E(Iu(t)) ≤ 2CN2(1−s), Bernstein’s inequality, and the fact that

|ξ |1/2m(ξ ) is increasing in |ξ |,

∥

∥

∥
|∇|1/2Iu

∥

∥

∥

L4
t,x(Ij×R3)

� ‖Iu‖L∞
t Ḣ1(Ij×R3) + ‖Iut‖L∞

t L2
x(Ij×R3) +

∥

∥

∥
|∇|1/2Iu

∥

∥

∥

L4
t,x(Ij×R3)

‖u‖2
L4

t,x(Ij×R3)

� N1−s + η1/2
∥

∥

∥
|∇|1/2Iu

∥

∥

∥

L4
t,x(Ij×R3)

+ 1

N

∥

∥

∥
|∇|1/2Iu

∥

∥

∥

3

L4
t,x(Ij×R3)

. (66)

Then since N is large,
∥

∥|∇|1/2Iu
∥

∥

L4
t,x(Ij×R3)

� C1/2N1−s, and by Bernstein’s inequality,

‖u‖L4
t,x(Ij×R3) � ‖Iu‖L4

t,x(Ij×R3) + ‖(1 − I)u‖L4
t,x(Ij×R3) � η + C1/2N

1
2 −s � η. (67)

Therefore, by Theorem 2.3 and E(Iu(t)) ≤ 2CN1−s on Ij,

∥

∥

∥
|∇|1/2Iu

∥

∥

∥

L4
t,x(Ij×R2)

+
(

sup
R

R−1/2‖∇Iu‖L2
t,x(Ij×{|x|≤R})

)

� C1/2N1−s. (68)

This proves Lemma 3.4. �

Theorem 3.2 provides a bound on the growth of E(Iu(t)).

Lemma 3.5. For any t ∈ [0, T0], E(Iu(t)) ≤ 3
2CN1−s. �

Proof. Again make a bootstrap argument. Let

T =
{

T ∈ [0, T0] : E(Iu(t)) ≤ 3

2
CN1−s for all t ∈ [0, T]

}

. (69)

Because E(Iu(0)) = CN1−s, T is clearly nonempty. Also, since E(Iu(t)) is a con-

tinuous function of time T is closed. Therefore, it only remains to show that T is open

in [0, T0]. Then compute

d

dt
E(Iu(t)) =

∫

(Iut)(t, x)(I(u3)(t, x) − (Iu)3(t, x)) dx. (70)

Splitting u = uh + ul, ul = P
< N

8
u, the Fourier support of ul implies that

I
(

u3
l

)

− (Iul)
3 = 0. (71)
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Low Regularity Global Well-Posedness 17

Also,

I
(

u2
l P

< N
2

u
)

− (Iul)
2IP

< N
2

u = 0, (72)

which implies that

(70) = 3

∫

IPhut(t, x)
(

I
(

u2
l uh

)

(t, x) − (Iuh(t, x))(Iul(t, x))2
)

dx

+ O

(∫

Iut(t, x)
(

I
(

u2
hu

)

(t, x) − (Iuh)2(t, x)Iu(t, x)
)

dx

)

. (73)

Then by Theorem 3.2 and Lemma 3.3, for N sufficiently large,

∫ T

0

∫

|x|≤4T0

IPhut(t, x)
(

I
(

u2
l uh

)

(t, x) − (Iuh(t, x))(Iul(t, x))2
)

dx dt

� (ln(N) + ln(T0))C2
1N2(1−s) N2(1−s)

N
<< N2(1−s).

(74)

Meanwhile, by the radial Sobolev embedding theorem, Bernstein’s inequality, the fact

that 1
N << T0, and that the Littlewood–Paley kernel of I is rapidly decreasing outside

the ball |x| � 1
N ,

∫ T

0

∫

|x|>4T0

IPhut(t, x)
(

I
(

u2
l uh

)

(t, x) − (Iuh(t, x))(Iul(t, x))2
)

dx dt

�
∥

∥

∥
|x|1/2ul

∥

∥

∥

2

L∞
t,x([0,T]×R3)

‖∇Iu‖L∞
t L2

x([0,T]×R3)‖Iut‖L∞
t L2

x([0,T]×R3)

� C4N4(1−s) 1

N
<< N2(1−s). (75)

Next, integrating by parts, again by Theorem 3.2 and the fact that |∇ |1/2I satisfies

the Leibniz-type rule, and Bernstein’s inequality

∫ T

0

∫

(I∂tuh)(t, x)
(

I(uh(t, x)3
)

−
(

Iuh(t, x))3
)

dx dt

=
∫ T

0

∫

|∇|−1/2(I∂tuh)(t, x)|∇|1/2
(

I
(

u3
h

)

(t, x) − (Iuh(t, x))3
)

dx dt (76)

�
∥

∥

∥
|∇|−1/2IPhut

∥

∥

∥

L4
t,x([0,T]×R3)

‖|∇|1/2Iuh‖L4
t,x(R×R3)‖uh‖2

L4
t,x(R×R3)

�
C4

1

N
N4(1−s) << N2(1−s). (77)
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18 B. Dodson

Meanwhile, by Lemma 3.3 and the fact that ‖IP<Nut‖Ḣ1 � N‖Iut‖L2 � CNN1−s,

∫

0

∫

|x|≤4T0

(I∂tul)(t, x)
(

I(uh(t, x))3
)

−
(

Iuh(t, x))3
)

dx dt

� ‖uh‖2
L4

t,x([0,T]×R3)
‖uh(P<NIut)‖L2

t,x([0,T]×{x:|x|≤4T0}) (78)

�
C2

1N2(1−s)

N
C2

1N2(1−s) << N2(1−s). (79)

Finally, by the radial Sobolev embedding theorem and Bernstein’s inequality,

∫ T

0

∫

|x|>4T0

(I∂tul)(t, x)
(

I
(

uh(t, x)3
)

− (Iuh(t, x))3
)

dx dt

� ‖uh‖2
L4

t,x([0,T]×R3)
‖|x|1/2I∂tul‖L∞

t,x([0,T]×R3)‖uh‖L∞
t L2

x([0,T]×R3) (80)

�
C2

1N2(1−s)

N
C2N2(1−s) << N2(1−s). (81)

The term

∫ T

0

∫

(Iut)(t, x)
(

I
(

u2
hul

)

(t, x) − (Iuh)2(t, x)Iul(t, x)
)

dx dt (82)

can be treated as an interpolation of terms with the cubic nonlinearity in the form u2
l uh

with terms in the cubic nonlinearity of the form u3
h.

Therefore,
∫ T

0

∣

∣

∣

d
dt

E(Iu(t))
∣

∣

∣
dt << N2(1−s), which implies that E(Iu(t)) ≤ 3

2CN2(1−s),

so [0, T] is open in T0. Therefore, E(Iu(t)) ≤ CN2(1−s) on [0, T0]. �

Proof of Theorem 1.4. By Bernstein’s inequality,

‖u>N‖L∞
t Ḣs([0,T0]×R3) + ‖∂tu>N‖L∞

t Ḣs−1([0,T0]×R3)

�
1

N1−s
‖∇Iu‖L∞

t L2
x([0,T0]×R3) + ‖Iut‖L∞

t L2
x([0,T0]×R3) � 1. (83)

Also,

‖u<N‖L∞
t Ḣ1([0,T0]×R3) + ‖u<N‖L∞

t L2
x([0,T0]×R3) � N1−s. (84)
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Low Regularity Global Well-Posedness 19

Interpolating this bound with the trivial bound

‖Iu(t) − Iu(0)‖L2(R3) ≤
∫ t

0
‖∂tIu(τ )‖L2(R3) dτ � T0N1−s, (85)

proves that for T0 > 1,

‖Iu(t)‖L∞
t Ḣs([0,T0]×R3) � T1−s

0 N1−s (86)

and

‖Iu(t)‖L∞
t Ḣ1/2([0,T0]×R3) � T

1/2
0 N1−s. (87)

Also for 3
p = 7

2 − s, by the Sobolev embedding theorem and definition of I,

‖Iut(t) − Iut(0)‖Ḣ−1(R3) ≤
∫ t

0
‖�Iu(τ )‖Ḣ−1(R3) dτ +

∫ t

0

∥

∥

∥
Iu3(τ )

∥

∥

∥

L
6/5
x (R3)

dτ (88)

�

∫ t

0
N1−s dτ +

∫ t

0
‖u(τ )‖2

L3
x(R3)

‖P<Nu(τ )‖L6
x(R3)

+ N1−s

∫ t

0
‖P>Nu(τ )‖3

L
3p
x (R3)

dτ � T0N1−s + T
3/2
0 N3(1−s). (89)

Therefore, by interpolation if t ∈ [0, T0], T0 > 1,

‖ut(t)‖Ḣs−1(R3) � T
3
2 (1−s)

0 N3(1−s), (90)

and

‖ut(t)‖Ḣ−1/2(R3) � T
3/4
0 N3/2. (91)

Thus the Ḣs∩Ḣ1/2×Ḣs−1∩Ḣ−1/2 norm is uniformly bounded on any compact subset of R.

Global well-posedness then follows from the local result of [24]. �
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